Calc. Var. 12, 117-143 (2001)
Digital Object Identifier (DOI) 10.1007/s005260000048

Multiple homoclinic orbits
for a class of Hamiltonian systems

Eric Paturel
CEREMADE, UMR CNRS 7534, UniverdtParis-Dauphine, Place du Mahal de Lattre
de Tassigny, F-75775 Paris Cedex 16, France (e-mail: paturel@pi.ceremade.dauphine.fr)

Received August 9, 1999 / Accepted September 7, 1999 /
Published online September 14, 200@-Springer-Verlag 2000

Abstract. In this paper, we obtain the existence of at least two nontrivial
homoclinic orbits for a class of second order autonomous Hamiltonian sys-
tems. This multiplicity result is obtained by a new variational method based
on the relative category: to overcome the lack of compactness of the prob-
lem, we first solve perturbed nonautonomous problems and study the limit
of the solutions as the nonautonomous perturbation gogsTiois method
allows to get rid of some assumptions on the potential used in the work of
Ambrosetti and Coti-Zelati.

1 Introduction

The goal of this paper is to prove a multiplicity result on homoclinic orbits,
solutions of the following autonomous second order Hamiltonian system,
forg: R — RV,

(1.1) G+V'(g)=0,

where the potentidl” satisfies

12) Vi) =l + W), W e CRY,R),

(1.3) vz e RY /V(z) =0andz #0, VV(z) #0,
and the attractive potentiél” satisfies the followingpinchingcondition
(1.4)

do > 2,3c1, 2 /Z—j <2 andvz € RN, ¢1]z|* < W (x) < eo)z]®,
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Let us recall that an orblhomoclinic to0 is a solution of (1.1) which
moreover satisfies the following limit conditions:

(1.5) lim ¢(t) =0, lim |4(¢)]=0.

t—=+oo t—=oo

Many results ensure the existence of at least one nontrivial homoclinic
orbit forfirstorder ([6], [9], [13]) or second order ([1], [4], [12]) Hamiltonian
systems. But there exists few multiplicity results in the autonomous case and
these results often require many technical assumptions on the poténtial
This work improves a result by Ambrosetti-Coti-Zelati [2], who proved the
existence of two homoclinic orbits under a pinching assumption (1.4), a
superquadraticitycondition

(1.6) Ve e RN, W(z).x > aW(z),
and the following second order conditions
(1.7) W"0)=0 andVz e RY, z £ 0, W (z).x < W' (z).z.x.

Ambrosetti-Coti-Zelati's method is variational and based on the use of
a topological tool: théyusternik-Schnirelman categoaynd its application
in critical point theory. Our aim is to generalize their result with the use of a
relative categorywhich allows us to get rid of the second order conditions
and to weaken condition (1.6) to the local condition (1.3). We then obtain:

Theorem 1.1 Let V' be a potential satisfying (1.2), whel& satisfies the
local first-order condition (1.3) and the pinching condition (1.4). Then (1.1)
admits at least two nontrivial homoclinic orbits.

The paper is organized as follows. For the reader’s convenience, we
show in Sect. 2 a multiplicity result for Hamiltonian systems whose potential
satisfies conditions (1.4) and (1.6). The main difficulty, the construction of
a deformation necessary to calculate a lower bound to the number of critical
points, is postponed in Sect. 4. Finally, Theorem 1.1 is proved in Sect. 3, by
a new method: we solve suitable perturbed nonautonomous problems, and
study the limit of the solutions when the nonautonomous perturbation goes
to 0, using the concentration-compactness principle (see [10], [11]).
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2 Multiplicity with superquadraticity

2.1 Presentation and sketch of the proof

The aim of this section is the proof of the following result:

Theorem 2.1 Let V' a potential satisfying
1
(2.1) V(g) =—5la* + W(g), W € C*(RY,R),

where W satisfies pinching and superquadraticity conditions (1.4),(1.6).
Then system (1.1) admits at least two nontrivial homoclinic orbits.

In our autonomous case (i.&. does not depend explicitly of), the
notion of distinct solutions is ambiguous: any time translation of a solution
is also a solution. To avoid this problem, we will study functionals defined
on spaces oévenfunctions.

Let us now introduce the variational framework associated to the homo-
clinic problem.

Let £ = H! . (R,RY) be the Sobolev space of evdi? functions
defined onR and taking values iRV, whose derivatives are ih2. It is a

Hilbert space, when endowed with the following scalar product:
(@.0) = [ (0.40) + ) d Ot

where(., .) is the standard euclidian scalar producRil, andg is the time
derivative ofq. The notation for the induced norm il is

lqlf? = / (O + la(0)2)dt

This space is continuously embeddeder%(R, RM), andq € E will
always be considered as a continuous function.
We define the followingctionfunctional, forqg € E:

1. 1
@2) Flo) = [ (GlaF - Vi) at =3l - [ wiaoar
R R
It is well-known that the non-trivial critical points df are the homoclinic

solutions of (1.1). The next definition of reference functionals, correspond-
ing with radial potentials in (1.4), will be useful:

1 .
@3 F@=lldP e /R lg(®)|dt for i =1,2.
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The pinching property (1.4) implies
(2.4) Vg € E, F>(q) < F(q) < Fi(q)-

In all the paper, we use the notation

/q:/Rq(t)dt-

As in every variational proof, we have to prove a compactness result. In
fact, there is a lack of compactness due to the invariance of the action func-
tional under time translations. In order to prove a compactness property at
the right level, we suppose, by contradiction, the uniqueness of a non-trivial
critical point for F', whose existence has been already proved by Bolotin
[5], Ambrosetti-Bertotti [1] and Rabinowitz-Tanaka [12]. We then use a
concentration-compactness method to prove a Palais-SiRaleproperty
for F.

Once we have obtained this property, we can use a topological tool of
critical point theory: thaelative categorywhich is an extended notion of
the well-knownLyusternik-Schnirelman categqrgr (L-S) category. We
refer to [3] for an extensive definition and description of this notion. As a
difference with (L-S) category, we obtain, with the relative category, critical
point theorems for functionals which anabounded from belovgo that we
don’t have here to restrict the problem to a submanifold wi&iebounded
from below, as Ambrosetti-Coti-Zelati [2] do. The category of a level set of
a functional, relatively to a smaller one(iPS) holds between these levels,
is closely related to the critical set of this functional:

Proposition 2.2 Let F' be a functional defined off, which satisfie$P.S)..
property forc € [a — &,b + €], witha < b, e > 0. Then, with the following
notation

K ={qe B/ F'(9) =0, a < Fg) < b},

we have
Cat(F)b,(F)a(F)b < #Kl[ﬁ’b} .

We recall that thé PS). property forF is the precompactness of each
(PS).sequence, i.e. sequenges) such thaf'(¢,,) — ¢ € RandF’(q,) —
0in E’. We use the following notation for level sets:

(F)*={qe b/ F(q) <a}.

Since the level sets of the function&lare difficult to handle with, we
will use the following property of relative categories:
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Proposition 2.3 LetY C X etY’ C X’ closed subsets @. Suppose there
exists maps:

(X,Y) % (X Y) -4 (X,Y),
and a deformation; : X — X, with¢ € [0, 1] such that
j1=goh andVt e [0,1], j:(Y)CY.
Then
catxy(X) < catx: y (X').

To efficiently use Proposition 2.3, we have to find spa&est Y for
whichcat x y (X') will be easier to compute. The study of functionajsand
5 will give us good candidates. Then, we build the maps and deformation
which occurin the Proposition 2.3. These constructions are done in Sect. 2.3,
and the construction of the deformatigrrather technical, is postponed in
Sect. 4. Eventually, the computation eftx y (X) gives a lower bound
for the number of non-trivial critical points: as that bound is 2, this is in
contradiction with our uniqueness assumption. Since existence is proved,
we then obtain the multiplicity result that we claimed.

2.2 Compactness properties

The superquadraticity assumption (1.6) implies the boundedndg3%f.
sequences at every level:

Lemma 2.4 Let (q,,) be a(PS). sequence, with € R. Then there exists
M € R so that, for alln, we get

|lgn|| < M.

Proof. Since(g,,) is a(PS). sequence, , there exisi$; such that
1
SllanllP = [ Wia) <11,
hence, with (1.6),
1 2 1 /
o 14N <M - w n/-4n
sllaall? < 21+ 5 [ Waa

1
< M + a(HQnHZ — F'(gn)-qn) ,

and it follows

1 1

1
<2 _ a) laal * < My + ~[1F"(ga) |l
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Since||F'(¢,)|| g is bounded and > 2, we obtain that|q,|| is bounded:

It is straightforward to see that each critical value fois nonnegative.
This follows from the following computation, farcritical point at the level
c:

c=F(q) — F'(q).q = /;W’(q).q —W(g) > (% . 1) /W(q) > 0.

This property implies thak' satisfieg PS). for ¢ < 0. Now, let(q,) be a
(PS)o sequence. TheFi(q,)— 3 F'(gn).qn — 0,s0we have W (g,) — 0,
and, sinceF'(g,) — 0, we finally get

lim ¢,=0in FE.

n—-+oo

Thus all(PS), sequences converge stronglyAro 0, the trivial critical
point of F': F satisfieg P.S),. For positive levels, we prove this lemma:

Lemma 2.5 The critical value0 is isolated in the set of critical values of
F, i.e. there exists > 0 such that every critical valug # 0 of F' satisfies

k>e>0.

Proof. Let (¢,) be a sequence of critical points férsuch that
F(g) > 0.

Such a sequence {&5S)y, so we havey, — 0in E. But, by Sobolev
embedding, there exists; such that, for alh, we get:

gnllzoe < Csllanl] -

Hence we hav@q, ||~ — 0 whenn — +oo.
Moreover, thanks to the assumption (1.6), there exists 0 such that
foreveryz € RN, 2 # 0, |2| < §, we get

2V (z) + (V'(z),z) < 0.

Sincey, is a critical point forF’, we know its regularity, by an elementary
bootstrapargumentg, € C=(R,R"Y). At pointst,, where|q,|? reaches

his global maximum value, we get th%?ﬂqn(tn)F < 0. But

2
O = ()P + (an(0) (1)
= () ~ (V' (an (1)), 4n 1)

= =2V (qn(t)) = (V' (qn(t)), qn (1)) ,
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where the last equality is obtained by an energy argument:

en = Sldn )+ V(gu(®) = 0.

Forn great enough, we get, for evene R, |q,,(t)| < §. We then have
proved that is the only maximum value fdg, |, S0g,(t) = 0 for n great

enough, which is contradictory with(¢,) = 0. O

By a result of Ambrosetti-Bertotti [1], under very large conditions, con-
taining our assumption (1.4) and (1.6), existence of a non-trivial critical
pointg € E for F' is proved, with critical valuez > 0. This result also
implies the existence of a critical valug for F; andxs for F5. Inequal-
ity (2.4) then implies (since critical values are obtained in [1] by min-max
arguments, conserving potential inequalities),

(25) K9 § K § K1 .

On the other hand; is the only non-trivial critical value foF;,: = 1, 2.
This is due to the reduction to the following differential equation, possible
because of the radial potential:

—F 4+ 7+ ac|r|*?r =0,

lim r(t)=0, lim 7(t) =0,
t—*+oo t—+oo
which has an unique even and positive solutignOf course, forV > 1,
F; admits an infinity of non-trivial critical points of the formy(¢).e , with
e € SN~1 Inthe caseV = 1, F; has exactly two critical points.
In order to prove thak’ admits also two non-trivial critical points at least,
we suppose, by contradiction, thats the unique non-trivial critical point
for F'. This assumption allows us to find compactness properties at the right
level, by the means of a concentration-compactness result. We thus obtain:

Lemma 2.6 Suppose thaj is the unique non-trivial critical point foi.
ThenF satisfieq P.S). property withc € (0, 2&).

Proof. Let(q,)be a(PS). sequence foF’, with ¢ € (0, 2%). We make use
of the well-known concentration-compactness alternative due to P.-L. Lions
([10], [11]) on the following density:

_ |Qn(t)‘2 + |Qn(t)‘2
[l gnl[? ’

pn(t)

which is well defined and normed id! sincec > 0. Then the proof fol-
lows from straightforward computations: we first show thatwhaishing
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situation is impossible and that thencentratiorcase leads to the precom-
pactness ofg,, ), according to the fact that evegy is even. Finally, thanks
our uniqueness assumption, we can deduce that theredicimatomyphe-
nomenon, and the proof is over.

2.3 Looking for critical points

This section is devoted to the study of the relative category

2Ko—€

Cat(F)2m2fsj(F)n0 (F) s

wheree > 0 andxg > 0 will be defined later. Thus we will obtain a lower
bound of the number of non-trivial critical points fdf, with values in

[k0, 2r2 — €]. Following Proposition 2.3, we deform level setsfointo sets
whose category will be easier to compute. We then have to study functionals
of the form £, or F5. We define the following class of functionals, defined
onE, forc > 0:

1 (0%
Fula) = il = ¢ [ la(olar.
R
We get, of coursel., = Fy andF., = F». Let

M.={qeE, q#0/F'(q).q=0}.

We check easily thaiM. is a hilbertian submanifold irF, of co-
dimensionl. Indeed, if we define

Ge(q) = Fl(q).q,
then we have
G'o(g)-q = 2|lql? — o2 / gl°
(2.6) = (2—a)|lqll* #0 forqg e M..

Moreover, if we denote by = {q € E/||q|| = 1} the unit sphere in
E, we obtain, for ally € S,

1
F.(\q) = 5)\2 - cAa/\qu,

and
F'.(Aq) Mg = N2 — ac)\® / lg|* .
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Hencelq € M. if and only if

1
1\ a—2 —a
A= — 852 .
(ac) lall

This dilation gives a bijection betweew(. andS. This yields thatM .
is diffeomorphic to the unit sphere and star-shaped relatively to

Concerning critical points foi,|r,, with ¢,/ > 0, we have the
straightforward result:

Lemma 2.7 Let ¢ > 0. Then, with our notations, all non-trivial critical
points for F, stay in M, and they are the same as critical points for the
restricted functionalF;| s, .

In other words, the constraint € M. is artificial and the functional
F.|m, does not have more critical points thap

For the correspondence between critical pointsApiand F,./, we get
this result:

Lemma 2.8 Letc, ¢ > 0. Critical points for F,. and F,, are in correspon-
dence by the following dilation, centeredtaand with coefficient

()

The critical set off. is isomorphic to the unit sphe®¥ —! in RY, it is the
set of functions of the form(t) = r.(t).e, withe € S¥—! andr, is the
unique positive and even solution of the following differential equation:

—F 47+ acr|*?r = 0,
lim r(t) =0, lim 7(¢)=0.
t—=+o0 t—+o0

We denote by, the set of non-trivial critical points fofF., isomorphic to
SN,

Proof. Let ¢ a non-trivial critical point forF,.. Then, for allh € F, we get

F/@)h = (a.h) ~ ac [ la* (. b} = 0.

The definition ofA given in the lemma implies
F.'(\q).h = (\q,h) — ac / IAq|*72(\g, h)

= A(g,h) — ac/ [al*™*(q. b))
=0.
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Therefore\q is a critical point forF.,. O

These results allow us to define the followinginder, with ¢ < ¢
C/
Alc,d) = U X
d=c

:{/\q,)\e [(;)é,l],qe&}-

This cylinder is a major element in the construction of tools for the
Proposition 2.3. With the notations of that proposition, we define:

{X/ — (F)Qm—é
Y = (F)ro,

and

{X = (F1)™ U A(71,72)
Y = (Fl)ﬁo ’

where0 < kg < kg andy; < ¢1 < ¢ < 7o satisfy F1(X,,) = ko and
F1(X%,,) = ko. The real number > 0 will be defined more precisely later.
From (2.4), it follows thatX’ andY” are respectively included in

X// — (F2)2H,2—E
{ Y = (Fy).

We show now that we may chooke= Id, with notations of Proposition
2.3.

Lemma2.9 X Cc X'andY CY'.

Proof. From (2.4), we get

max F(q) < max Fi(q)=~k1.
q€A(71,72) (@) q€A(71,72) (@)

Moreover, according to the pinching assumption (1.4), we claim that
(2.7) K1 < 2Kg .

This strict inequality defines > 0 such that; < 2k, — ¢.
We prove (2.7) as follows: let; € X, . Then,

Fi(q1) = a1 (g—l)/QHO‘:/ﬂ-
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1

Taking\ = (C—1> fz we have\q; € X, and then

C2

)\2
F>(Aq1) = ke = (20401 - )\%2) lqi]*,

2
K c1\ o2 1
iz 2 > —.
K1 (&) 2

We have proved that(v;,v2) C (F)?%27¢. Finally, (2.4) andsg < 2ky —¢
directly infer that(F7)"° C (F')"°, and the proof is over. O

thus we get

In order to use Proposition 2.3, we have to build a deformdtioh Y”)
— (X, Y) which preserves( andY globally. The proof of the following
lemma, rather technical, is postponed in Sect. 4.

Lemma 2.10 There exists a deformatiopy : X’ — FE, witht € [0,1],
satisfying the following properties:

— t — g maps continuousli, 1] to the set of continuous maps.i;
— go=Idandg(X') C X, g1 (Y') CY;
— forall ¢ € [0, 1], we havey(X) C X andg(Y) C Y.

Proof. cf Sect. 4. O
From Proposition 2.3, we infer
(2.8) caty y (X) < catyryr (X') < K Fo22e)

It remains to computeat x y (X ). From the excision property of relative
category, we find that

(29) CatX,Y(X) > Cat/l(’yh’)’z),a/l(’yl,'m) (A(717 72)) .

The computation of the category of a cylinder relatively to its boundary
0A(v1,72) = X, U X, is an easy task, and may be found, for example,
in [8]. We get

cat (y, ,72),3/1("/1,72)(/1(717 72)) = 2.

Using Proposition 2.2, we prove thatadmits at least two non-trivial

critical points, whose critical values areliy, 2k2 — ¢]. This is contradic-

tory with our uniqueness assumption. Hence, this assumption is false and
Theorem 2.1 is proved.
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3 Multiplicity without superquadraticity
3.1 Presentation and notations

In order to prove the most general result of this paper, Theorem 1.1, we have
to get rid of assumption (1.6). The difficulty here is that (1.6) implies the
boundedness afPS) sequences, and no other assumption here gives the
same result. To overcome this problem, we build spedred) sequences
for the new functional, i.e. sequences of critical points for functionals whose
related Hamiltonian system i more autonomousvith potentials satisfy-
ing a weaker property, callezliperquadraticity at infinityConvergence of
such sequences will require, as in Sect. 2, the combination of a uniqueness
assumption with a concentration-compactness method. Topological proper-
ties of the relative category will finally ensure the contradiction and prove
Theorem 1.1. This part is organized as follows: in 3.2, we solve the non-
autonomous problems, in order to build spe¢iBlS) sequences; conver-
gence of these sequences, up to subsequences, is proved in 3.3; we show the
contradiction and conclude in 3.4.

Let W € C?(RM,R) satisfy the pinching assumption (1.4). We first
modify this attractive potential far from the origin: giveg > 0, there
existsiV € C%(RY,R) such that:

— forallz € RV, we haver;|z|* < W (z) < ea|z|%;
— forall [z| < R, we haveW (z) = W (x);
— for all |z| > 2R, we havelV'(z).z > aW (z).

We point out that strict pinching inequality is obtained by slightly mod-
ifying coefficientsc; andc,, and we choosé great enough, such that for
all |z| > R, we get—3 |z + W(z) > 0 and—1|z|? + W(z) > 0.

We define now the following non-autonomous potential: gi¥ep- 0,
let Wr € C2(RY x R,R) satisfy the following conditions:

— for |t| < T, we havelWr(z,t) = W(x), Vo € RY;
— for |t| > T + 1, we haveWy(z,t) = co|z|®, Vo € RY;
— potential Wr is even relatively tat and for allz € RV \ {0}, ¢t €

(T,T + 1), we have

0
aWT(x,t) > 0,

and, for allt € (T, T + 1) andz such thatxz| > 2R, we get

0
%WT(m,t).x > aWrp(x,t).

We define the following class of functionals, fpe E:

Grla) = 3lalP = [ Wr(a(e). 00t
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Guolt) = 3lalF = [ Wta).

The problem is now to find critical points f@F; and show that these
approximate solutions converge to critical points €&y, as7' goes to in-
finity.

3.2 Resolution of the approached problems

LetT > 0. As in Sect. 2, we have to find two non-trivial critical points for
a functional, here7 . This case is not very different from the precedent
one, since superquadraticity at infinity still yields the boundedne&B §j
sequences.

Lemma3.1 Letc € R and (g,) be a(PS) sequence at level for the
functionalGr. Then there existd/ € R such that, for allz, we have

lgn]| < M.

Proof. Itis a direct computation:
1
llanll? = Grlan) + [ Weau(o), e

= Gr(qn) + / Wr(gn(t), t)dt

1,UJn UK
oWr

UK ax

<Grla)+7 [ (40, 2)-0a (e

+ /I W (0) )

<Grlan)+ [ T (D). 00t

+ [ Vet = 2 5 00,0000

1
< GT(‘]n) + E[HQnH2 - G/T(Qn)Qn] + CO .

with the following notations:

- K=(—00,-T—-1U[T+1,+00);
— 1ip = {t € [_T_ 1aT+ 1]a ’%’L(t” < 2R}1
— Jp={te[-T-1,T+1],|q:.(t)| = 2R}.

The last inequality easily yields that is bounded. O
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Definition of W implies that, forg € E:
Fy(q) < Gr(q) < Fi(q).

Hence itis possible to use exactly the same topological argume@t;for
as forF' in Sect. 2. Indeed, if we denote by

Xi = (Gr)*=—s
Y= (Gr)™

we also have, with the notations of Sect. 2,

XcX,cX”
YCY,CcY”.

Now, we can apply Lemma 2.10 and its following computation to find
two non-trivial critical points foiG, provided that we show a compactness
result, i.e.(PS). condition, forc € [ko, 2k — €]. First, by Lemma 3.1,
it is possible to show a concentration-compactness propertyisy. se-
guences, for > 0:

Lemma 3.2 Letc > 0 and(qy,) € E be a(PS). sequence foGr. Then,
there exists a subsequence @f), still denoted by(q,,), a set ofp non-zero
functions@?, ..., Q7 in H' (R, RY), distinct or not, ang sequences of real
numberg(7}), ..., (74), such that

Q) lgn() =D, Q — )| — 0

(i) vie{l,. ,p} VteR, Q'(t)=Q " (~t);
(iiy Vn, 74+ =0,

(iv) Vze{l ,p—l} Tl — 7 40,

Moreover, we get

= lim ZGT Q. — 7).

n——+oo

Proof. It is the same proof as in Lemma 2.6, with the difference that di-
chotomy is allowed. Then, parity qf, implies properties (ii) and (iii). O

The norm||.|| ;1 is the standard norm of spag€ (R, RV ). We recall that
we choosed the same norm fBr The concentration-compactness method
leads to work inf7! (R, R™V), because function®’ do not have to be even.
In the only casg = 1, i.e. concentration case, we can conclude §rats
even.

This concentration-compactness property yield®4) result:



Multiple homoclinic orbits for a class of Hamiltonian systems 131

Lemma 3.3 The functionalG satisfieg P.S). property, forc € [k, 2k2 —
el.

Proof. Letc € [ko, 2k2 — €] and(gy,) be a(P.S). sequence fo&zr. We can
apply Lemma 3.2, and seg as a succession of bumps moving away from
each other to infinity as goes to+oo.

Suppose there exists< j < p such that, up to a subsequengg,) —

+00. Then, by Lemma 3.2 (iii)(72 7 *') — —o0, and we may writey,, as
the sum ofp functions:

= Qi)
=1

whereQ?, are (PS) sequences fofir, representing these bumps. So we
have

. —1
G(Q)) % 0.
We claim that@}, converges inH}. (R, R"), up to subsequence, to a
non trivial critical point forF,. We get indeed, for alh ¢ H'(R, RY),

) ) T+1 )
P =cr@nt [T @0k - aclQi @]

and itis an easy task to find a nondecreasing fundtio®R ™ — R, taking
limit 0 in 0, such that:

/TH [a;?( % t)h — aca Q0% ”’h>H

—-T-1
< (2T +2)°Y (||Q || oo ((——1,7+17)) - |1l -

Whenn goes to+oo, 73, — +00 and||@Q4|| pe(_r—1.7+1)) — 0. Then,
taking Q% (t) = QL(t + 7), we get a precompadtPS). sequence for
F,, with ¢ < 2k9. Compactness properties 8% then implies tha@%(t)
converges to an element &k, and the critical value foF> is k.

Same arguments work fpr-j+1. We get finally, jointly with Lemma 3.2,

CZHETOOZGT 1)) > F2(Q)) + Fa(Qp—js1) = 22,
which is impossible, ag < 2x2 — ¢. Thus, it is impossible for a sequence
75 to go to infinity, and this happens onlyjif = 1. It follows that(g,) is
precompact and Lemma 3.3 is provedl

With this precompactness lemma, we may use Lemma 2.10 and the
computation of the relative category, and hence prove the following result:
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Lemma 3.4 The functionalG admits at least two non-trivial critical points
in E, whose critical levels are given by

Gr(qr) = Jnf, sup Gr(q) > ko fori = 1,2,
q

with

CZ' — {P/ (GT)HO C P C (GT)2I€27€, Ca,t(GT)QnQ—s’(GT)KO (P) > 7/} .

3.3 Precompactness and limit of critical point sequences

Let (T;,) be a sequence of real numbers goingteo and ¢, = ¢, a
sequence of non-trivial critical points f6#7, , with ¢ = 1 or 2. In order to
prove precompactness for such sequences, we will combine, as in Sect. 2, a
concentration-compactness method with a unigueness assumption, to have
(PS) property at the right levels.

A theorem of Rabinowitz-Tanaka [12] shows the existence of a non-
trivial critical point for G in E. Indeed, potential

V(@) = — 5ol + W(a)

satisfies all conditions of this theorei fas a local non degenerate max-
imum in 0, V(0) = 0 and (1.3)). We denote by € E this critical point

for G, andk = G (q). As critical levels are obtained by a minimization
framework, conserving potential inequalities, we still have an inequality like
(2.5):

(31) Ko < k < K1 .

Asin Sect. 2, we will assume thais the only non-trivial critical point for
G . Exactly as in Lemma 2.6, this yields a compactness result for bounded
(PS) sequences:

Lemma 3.5 Assume thag is the only non-trivial critical point forG .
Then, allbounded(PS). sequences foG,, With ¢ € [ko, 2k — ¢] are
precompact.

Proof. The proof is exactly the same as in Lemma 2.6

In order to prove a concentration-compactness resultgpor, we have
to find an a priori estimate of th&! norm of this sequence. Assumption
(2.3) will play here an important role.
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Lemma 3.6 With the precedent notations , there exists> 0 and M > 0
such that, for alln we have

0<m <|lgall < M.

Proof. Sincero > 0, it is easy to find a lower bound folg,,||:

1
Sllanll* = G, (an) > o > 0.

We define now the following sets, with> 0:

— 2 ={z e RN, Vp(a,t) < 0};

— P:(q) ={t e R/d(q(t),082) > e};
—V(q) ={teR/|q(t) <e};

— Z(q) = {t € R/ d(q(t),062% \ {0}) < ¢}

From condition (1.3) and definition 6¥, there results thai(2; is the
reunion of a regular hypersurface containeitih, of classC'! and the point
{0}. Moreover we get the following energy inequality

L .
€(In(t) - ilqn(t”z + VTn(qn(t)at) S 07
hence for alt € R, ¢,,(t) € ;. We have, of course,

P.(q) UV¥:(q) U Z:(q) = R.

We then have to control thE' norm ofg,, uniformly in n.
Step 1 We claim that the measure®f (g, ) is finite and uniformly bounded.
Indeed, there exists > 0 such that for alt € ¢.(g,,), we get

=V, (an(t),t) 26 >0,

and fort € ®.(q,), we then have

SO — Vi, (4a(0).1) 2 6.

The integral orR of the left hand side i&'7,, (¢,) < 2k2, S0 the measure of
®.(q,) has to be finite. This gives an explicit upper bound fbr norm of
qn ONP.(qy,), independent of:

(32 laallma,) < meas(@.) maxmax(laf? + [V (..
teR ze
Step 2 We claim that the measure &t (g,,) is also uniformly bounded. This
is analogous to a result by Rabinowitz-Tanaka [12], for which assumption
(1.3) is necessatry:
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Proposition 3.7 Let a non-autonomous potentiadl € C?(RY x R, R)
satisfy the following properties:

— forall ¢, 0 is a non degenerate local maximum ¥o(., ¢), with V (0, ¢) =
0;

— there existd{ compact inR such that for allt € R \ K, the set defined
by {z/V(x,t) < 0} is compact and its boundary is the reunion{6f
and a regular hypersurface on which

ov
—(x,t)| > 0.
' 5 & )’ > >
Then, fore > 0 fixed andM > 0, there exists a constari, such that for

all critical points ¢ of the corresponding action functional with a positive
critical value lower than)M, we get, with the precedent notations,

mes(Z:(q)) < Lo

This result gives an upper bound to the time while a solution of the system
remains close to the outer boundary{ef/V (x,t) < 0}. The potentiaV
satisfies assumptions of Proposition 3.7: we obtain an upper bound of the
H'-norm ofg,, on Z.(g,) in the same way as in (3.2).

Step 3 Lett € ¥.(qy). Fore close to0, because of assumption (1.4), there
exists a constan®. depending only of such that:

(O + au(O < Co | ZHOF + 5lan O =W, (0,(0.0)]

Integrating this last inequality o#. (¢, ), we get:

Gr,(qn) + /

lanller (o gy < Ce
(We(gn),RY) Pe(gqn)UZe(gn)

WTn (Qn (t)’ t)]

< Ce {2@ + Cl’\Qn’\Hl(@E(qn)ui(qn))RN)} :

Gathering these three steps, we obtaintlgat| is bounded by a constant
which does not depend o and Lemma 3.6 is proved.O

Lemma 3.6 allows, in the same way as Lemmas 2.6 and 3.2, to state a
concentration-compactness result for the sequépgeof critical points for
GTnZ

Lemma 3.8 With the precedent notations, there exists a subsequenge of
still denoted byy,, a set ofp non zero functiong)!, ..., Q” in H'(R,RV),
distinct or not, andp sequencesr,!), ..., () of real numbers such that

@ llan() = 27 Q=) — 0;
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(i) Vie{l,.p}VteR, Q'(t) = QP (—1);
(i) Vn, 7i 4727 =
(iv) Vie {1 Sp—1}, Tl 7 4o,

Moreover, we get
(3.3) Jim G, (an) }:Gncy ~ 7)) =

In order to prove that sequencﬁqn) is precompact, as in proof of
Lemma 3.3, it is sufficient to prove that the only possible ca@&-isl i.e.
the concentration case. Suppose Idnat 2, and thalim,, , 1 o, 7} = +00
(if the limit is —oco, thenlim,, , ;o 7 = +0o0). As in proof of Lemma 3.3,

we write »
t)=> Qi)
=1

whereQ?, are these bumps, moving away from each other to infinity. There
are two sequences of real numbers whose limit-is: 7,, and 7.}, By
comparing these two sequences, we claim phat2 is impossible.
Step 1 Suppose that, up to a subsequence, we have
. 1 _

ngrfoo(Tn T,) = +0.
This case is then very similar to the proof of Lemma 3.3: we show, by the
same computations, that the seque@¢é. + 7,1) converges i/ (R, RY)
to a non-trivial critical point forF,. By parity, there existé such that

lim (=T, — 7%) = +o0,

n—-+0o

and we prove in the same way th@f (. + 7%) converges iff! (R, RY) to
a non-trivial critical point forFs, i.e. an element ok,. Thanks to (3.3), we
get then

—e> >
2k — € ETOOGT (qn) = 2kK2,

which is impossible, since > 0.
Step 2 Suppose that, up to a subsequence, we get

lim (1! —T,)=1€R.

n—-+o0o

We can then suppose thiat 0 and work inH* (R, R"V). The sequence
QL(. 4+ 7}) is precompact inff (R, RY) and the limitQ.. is a non zero
function. If we define the following functional, far¢ H*(R, RY):

Ga) = [ SHOF + 5la0 = W(a(0).),

with
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- Wo(z,t) = W(x) if t <O0;
- We(x,t) = colz|*if t > 1;
— MW= (1) > 0forz # 0 andt € (0, 1),

a direct computation shows that the sequepge +7.1) is a(PS) sequence

for G*, then@ ., is a non-trivial critical point forz*. But this functional does
not have any non-trivial critical point: by a classical regularity argument, it
would belong toH ?(R, RY) and we would have:

GS(QOO)QOO = 0 9
and this would imply

ows
——(Qx(t),t) =0.
| 5 (Qx(0).)
That is possible if and only if) ., = 0, and the contradiction follows.
Step 3 Suppose that, up to a subsequence, we obtain
. 1 _
nEI—‘,l:loo(Tn T,) 00 .

By a direct computation, as in proof of Lemma 3.3, thisimplies¢héd a
bounded PS) sequence fofi ., which level stays ifig, 2% — £]. Applying
Lemma 3.5, we infer thdy,, ) is precompact, which is in contradiction with
p =2

Taking together these 3 steps, we see that the only possible gaselis
i.e. precompactness of the sequefigg.

3.4 Contradiction and multiplicity result

The precedent section stated that the sequédngesf critical points forG,,
found in 3.2 converge iy, up to subsequence, to non-trivial critical points
for G, whenT,, goes to infinity. Our uniqgueness assumption yields then that
the limit for sequenceég}) and(q2) is . We will show the contradiction

by a topological method, inspired by a work of Esteban-Sere [7]. We recall
that, according to our assumption,

F=Gx(q) = nEIEOOGTn(q;) fori=1,2.

Let V. be the open ball i centered oig, with radiusr > 0, such that,
forall g € V,, we haveG'«(q) < 2k2 — e. Last results imply the following
one:

Lemma 3.9 Letgq,, a sequence ik, satisfy the following properties:
- G, (qn) — 0in E;
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— Gr,(qn) — ¢ € [ko, 2r2 — €];
— forall n, ¢, € V,;

where(T,,) is a sequence of positive real numbers. Thgy) is precompact
in £, and, ifT},, goes tot+oo, then, up to a subsequendgs the limit ofg,,.

Proof. Itis a direct consequence of Lemmas 3.3 and 3.5, according to the
fact thatV, is bounded. O

Let0 < 7/ < randg > 0. We putW = V), \ V.. There existd such
that for all T > T', we get|Gr(q}) — 0] < £ and|Gr(¢2) — 0| < 4.

Lemma 3.10 Assuming the uniqueness of a non-trivial critical point for
G, We get the following results:

1. there existg > 0 andT” such that for ally € W, and for allT > T,
we get

(3.4) G (@)le > 1,

2. there existd™” such that, ifT" > T", if G/.(¢) = 0 and if moreover
Gr(q) € [ko,2kr2 — €], theng € V.

3. for all T, there exists/r such that for ally ¢ V), satisfyingGr(q) €
[ko, 2K2 — €], we get

(3.5) |G (D)l > vr.
Proof. 1. et 2. are direct consequences of Lemma 3.9, considering that there
is no critical point forG ., andGr, for T' great enough, imV. 3. is a straight-
forward consequence of 2.0

If we call Ty = max(T,7",7"), Lemma 3.10 yields the following

result (whose standard proof, based on a deformation lemma which uses
Lemma 3.10, will be omitted):

Lemma 3.11 With our unigueness assumption, there exists> 0 such
that for all " > T, there exists(7") > 0 satisfying

(3.6) Gr(Wr(s(T),q) <0 -4,

for all ¢ € V. such thatGr(¢q) < 6 + 3, while ¥ (., q) stands for the
decreasing flow of7 .
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Topological properties of the relative category allow to conclude. Indeed,
Lemma 3.11 builds a deformati¢a'z)?+%\V, — (Gr)?~P letting (G7)"°
globally invariant. This implies that
(3.7)

Cat(GT)an—s’(GT)no ((GT)9+6 \ Vr) < Cat(GT)2n2—57(GT)n0 ((GT)ei’B) .
The sub-additivity property of relative category then yields

Cat(GT)2H27€7(GT)NU ((GT)9+B)

(B.8) < catigpyzec (@pyo (GT) TP\ V) + cat(gyze—= (V) .

Moreover, definition ok andT > Ty yield

(39) Cat(GT)2n27sy(GT)n0((GT)Q ﬂ)

— 0,
(310) Cat(GT)Q’Q?*E,(GT)“O((GT)9+6) 2.

Y

Indeed,(G7)?~# ¢ C' implies (3.9) and, considering a sequenéy) €
C? realizing the min-maxGr(g%), we obtain, forn great enough, that
P, C (G7)?*?, which directly implies (3.10). Combining (3.7), (3.8), (3.9)
and (3.10), we find

Cat(GT)QK,Q—s (Vr) Z 2,

which is impossible. Thus, the uniqueness assumption leads to a contradic-
tion and Theorem 1.1 is proved.

4 Construction of the deformation

In this section, we will handleX” andY” in place of X" andY”. This
slight modification makes the construction easier, becaifsandY” do

not depend on any choice. The following results come from straightforward
computations and enlighten the geometry of the problem:

Lemma4.1 Lete, ¢ > 0. Then

(i) the critical set for the restricted functiondl. |, , is Xv/;
(i) non-trivial critical points for F,., i.e. elements of. are mountain pass
points:
— forq € X, Fi(q) = mingem, Fe(q),i.e. X, isthe setof minimizers
of the restricted functional | \,,;
— forq € X, F.(q) = max)cr Fr(Ag) and the maximum is obtained
for A = 1.
(iii) relatively to the functionalF; |, ,, elements ot are

— minimizers for’ > 2 and we have|r, > 0;



Multiple homoclinic orbits for a class of Hamiltonian systems 139

— regular points forc’ = % since thenf;| v, = 0;

— maximizers for’ < 2 and we get,|r¢,, < 0.
(iv) Ve>0, X"NM,.#0;
(v) Y'NM,=0ifand onlyifc € [dy, ds], with 22 < dy < 3 < da;
(viy YN M. =0ifandonlyifc € [d'1,d’s], with 2L < d'y < ¢; < d's;
(VII) dll <di <dos < dlg.

The main tool of this construction is the deformation along vector field
flows in E. Vector fields are built frond; andF;, gradients, by projection on
tangent spaces of manifoldsl.. All vector fields used here will be locally
Lipschitz continuous, by thé? regularity of the application

gl
q € E\{0} — c(q) = ;
« fR ‘Q|a
thus the flows are well-defined for any time. We will also extend the vector

fields by0 in 0.

The construction of the deformation - and proof of Lemma 2.10 - will be
achieved in several steps. In the first one, we defartnin order to bring
a part of X" closer to the cylinderl. The problem is now divided into two
parts:

— make a projection of the closest part®f on the cylinderA: that will
be the goal of Step 2;

— build a deformation of the part oX” situated onM,. manifolds with
small and great’s: that will be made in Step 3, which finishes the
construction.

Of course, we have to check at each step thatsedadY are globally
invariant, in order to respect conditions of Lemma 2.10.

Step 1 We define the following vector field oh'
61(0) = 07
61((]) - _FQI‘MC(q) (Q)05(C - 02) )

with 85 € C*°(R,]0,1]) an even function being such that Sdpp=
[—24, 2], 05 increasing of—24, —d] andfs(c) = 1 for ¢ € [—4,0]. We
define0 < 26 < co — ;1. Let ¥(q,t) be the associate flow, defined as

follows:
{ ¥1(q,0) = ¢
G0 (g.1) = er(i(q.1)) -
First properties of this flow are:

— We getc(¥1(g,t)) = c(q) sincee; is tangent to the manifold1,.,;
— SetsA(y1,72) isinvariant by this flow, since; (¢) = 0forg € A(y1,72);
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Fig. 1.The deformation: large lines are f&t” (dotted) and”” (plain); middle lines represent

Y’; small lines represent manifoldst. and cylinderA(0, co). The first picture represents

the level sets before deformation. The second one shows the effect of Steps 1 and 2. The last
one represents the final situation

— According to Lemma 4.1 (vi), given any< Y, 0(c(q) — c2) = 0, 50X
andY are invariant by the flow,.

Moreover, giverv > 0 small enough, there exists< “7*2 such that,
given anyc € [ca — 6, co + 4], we get

Mc N (FQ)QI{Q*E C (Fc)Qﬁcfu )
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SinceFy'| v, is proportional toF!. and F,. satisfies thé PS), condition for
everyd € [k, 2k. — V], we obtain:

4.1) vYnp>0,311/ sup dr(A(dy,d2),¥1(q,Th)) <7,
deX U, M

wheredg is the distance in® induced by the norn|.||. We putg! =

Uy (., Ty).

Step 2 Precedent step allows to bring a parfof closer toA(~1,v2). This
second step consists in projecting that part or¢e;, v2). To this end, we
define the following projection:

Let P, the orthogonal projection fron’ on to the linear subspacg.
spanned byr., of finite dimensionN. Let P’. be the “radial projection”
from F. on to X, which is a simple dilation of the unit sphere jf..
This projection is not well-defined i, but, thanks to (4.1), elements of
P.(g'(X") N M_,) have a norm close to the norm of elementsif Thus,
for n small enough) ¢ P.(¢'(X"”) N M.). Let

LPQ((L t) = (1 - V(ta C(q)))'q + V(tv C(Q))'Plc(q) (Pc(q) (Q)) )
wherer € C([0, 1]x]0, +oc], [0, 1]) satisfies, with smalp > 0:
v(.,c)=0forallc <cg—200rec> cy+ 26;

—v(t,e)=tforallca —d < c<cy+6;
—v(t,c) = =2 B¢foralle; — 26 <c < ey — 6;
— v(t,c) = 2F2=¢tforall ca + 6 < ¢ < 3 + 2.

Itis clear that applicatiop? = W5 (q, 1) is continuous, thak” andY” are
invariant (here we just have to see thty;, v2) is invariant), and:

co+0
42 Sl [X'n | M| ]| cAea=6,c2+0).

c=co—0

Step 3 This step consists of a dilation, which allows to deform parts of
g*(g* (X)) not yet contracted orl(cy — &, c2 + &). With this dilation, of
coursec(q) will not be conserved, and thus we deform these parts on to
manifoldsM . having good properties. We define the following vector field:

e3(q) = (1 —0s(c—ca))sgricz — c)q,

and denote bys (., t) its flow. Itis straightforward that (0, +co) is globally
invariant by this flow. In order to state th&f andY are also globally
invariant, it is sufficient to show thatF;)"0 = Y is globally invariant.
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According to Lemma 4.1 (iv)-(vii) Y has a non-empty intersection with
M_, if and only if ¢ € (dyi’,dy’). Givenc > dy’ > ¢, a dilation by a
coefficient lower than 1 yields a decreasefgr as this computation shows,
forq e M.:

_ 772 2 o a
Fi(nq) = EHQH —cn® [ q|
2 c o
43) ~ 1l (% - =2

acC

and this function ofy) is increasing fol0 < n < (é)ﬁ > 1. Given
c < di’ < ¢1, and by the same way, a dilation by a coefficient greater than
1 still yields a decrease fdr;. Thus X andY are globally invariant.

Forc > ¢o + 4, the vector fielaes is the gradient of a very simple func-
tional (indeed; — —2||¢|%) which obviously satisfies th@”S) condition
at any level. Moreover, giveqp € M., we get:

1 C1>\a72
(4.4) Fi(\g) = /\Q%FQ(Q) .
2 ac

Thus there exista < 1 such that, for aly € X" N, 5 M., we get
Fi(A\q) < ko. So we infer that there exisB} such that

7| MenX", T | C (Fy)r
c>co+6

Forc < co—46, (4.3)implies that there exist§ such that for every € M.N
X", F1(¥5(q,T%)) < 0. TakingTs = max(Ty,T§), we putg® = ¥3(., T3),
andg = ¢2 o g% o g'. Properties of; are the following ones:

9(X" N Uezr,s Me) C (F1)™ C X,

- g(X" AU Mo cAc X,
g(X// N Uc>cg+5M ) (Fl)no C X,
- g(Y” N Uc<02 6M ) (FI)KO = Y’
(Y” N Uc>02+6 M ) (Fl)/fo =Y.

Applicationsg?, for 1 < i < 3 have been constructed as deformation of
the identity. By reparametrization and composition, we find X" — X",
for ¢t € [0, 1], with gy =Id andg; = g. The mapping — g, is continuous
from [0, 1] on to the space of continuous mappings frofff to E, and
forallt € [0,1], ¢:(X) C X, :(Y) C Y. Finally, the last results imply
g1(X") = g(X") ¢ X andg;1(Y") = g(Y”) C Y. Restriction ofg; to
(X', Y") satisfies the same properties: Lemma 2.10 is proved.
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