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Abstract. In this paper, we obtain the existence of at least two nontrivial
homoclinic orbits for a class of second order autonomous Hamiltonian sys-
tems. This multiplicity result is obtained by a new variational method based
on the relative category: to overcome the lack of compactness of the prob-
lem, we first solve perturbed nonautonomous problems and study the limit
of the solutions as the nonautonomous perturbation goes to0. This method
allows to get rid of some assumptions on the potential used in the work of
Ambrosetti and Coti-Zelati.

1 Introduction

The goal of this paper is to prove a multiplicity result on homoclinic orbits,
solutions of the following autonomous second order Hamiltonian system,
for q : R −→ R

N ,

q̈ + V ′(q) = 0 ,(1.1)

where the potentialV satisfies

V (q) = −1
2
|q|2 +W (q) , W ∈ C2(RN ,R),(1.2)

∀x ∈ R
N / V (x) = 0 andx �= 0, ∇V (x) �= 0 ,(1.3)

and the attractive potentialW satisfies the followingpinchingcondition

∃α > 2,∃c1, c2 /c2
c1

< 2
α−2

2 and∀x ∈ R
N , c1|x|α ≤W (x) ≤ c2|x|α,

(1.4)
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Let us recall that an orbithomoclinic to0 is a solution of (1.1) which
moreover satisfies the following limit conditions:

lim
t→±∞ q(t) = 0 , lim

t→±∞ |q̇(t)| = 0 .(1.5)

Many results ensure the existence of at least one nontrivial homoclinic
orbit for first order ([6], [9], [13]) or second order ([1], [4], [12]) Hamiltonian
systems. But there exists few multiplicity results in the autonomous case and
these results often require many technical assumptions on the potentialV .
This work improves a result by Ambrosetti-Coti-Zelati [2], who proved the
existence of two homoclinic orbits under a pinching assumption (1.4), a
superquadraticitycondition

∀x ∈ R
N , W ′(x).x ≥ αW (x) ,(1.6)

and the following second order conditions

W ′′(0) = 0 and∀x ∈ R
N , x �= 0 ,W ′(x).x < W ′′(x).x.x .(1.7)

Ambrosetti-Coti-Zelati’s method is variational and based on the use of
a topological tool: theLyusternik-Schnirelman categoryand its application
in critical point theory. Our aim is to generalize their result with the use of a
relative category, which allows us to get rid of the second order conditions
and to weaken condition (1.6) to the local condition (1.3). We then obtain:

Theorem 1.1 Let V be a potential satisfying (1.2), whereW satisfies the
local first-order condition (1.3) and the pinching condition (1.4). Then (1.1)
admits at least two nontrivial homoclinic orbits.

The paper is organized as follows. For the reader’s convenience, we
show in Sect. 2 a multiplicity result for Hamiltonian systems whose potential
satisfies conditions (1.4) and (1.6). The main difficulty, the construction of
a deformation necessary to calculate a lower bound to the number of critical
points, is postponed in Sect. 4. Finally, Theorem 1.1 is proved in Sect. 3, by
a new method: we solve suitable perturbed nonautonomous problems, and
study the limit of the solutions when the nonautonomous perturbation goes
to 0, using the concentration-compactness principle (see [10], [11]).
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numerous questions, Paolo Caldiroli for fructuous conversations, and Patricio Felmer for
his kind invitation (ECOS-CONICYT) at Santiago, Chile, where part of this work has been
done.
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2 Multiplicity with superquadraticity

2.1 Presentation and sketch of the proof

The aim of this section is the proof of the following result:

Theorem 2.1 LetV a potential satisfying

V (q) = −1
2
|q|2 +W (q) , W ∈ C2(RN ,R),(2.1)

whereW satisfies pinching and superquadraticity conditions (1.4),(1.6).
Then system (1.1) admits at least two nontrivial homoclinic orbits.

In our autonomous case (i.e.V does not depend explicitly ont), the
notion of distinct solutions is ambiguous: any time translation of a solution
is also a solution. To avoid this problem, we will study functionals defined
on spaces ofevenfunctions.

Let us now introduce the variational framework associated to the homo-
clinic problem.

Let E = H1
even(R,RN ) be the Sobolev space of evenL2 functions

defined onR and taking values inRN , whose derivatives are inL2. It is a
Hilbert space, when endowed with the following scalar product:

(q, q′) =
∫

R

(〈q̇(t), q̇′(t)〉+ 〈q(t), q′(t)〉)dt ,

where〈., .〉 is the standard euclidian scalar product inR
N , andq̇ is the time

derivative ofq. The notation for the induced norm inE is

||q||2 =
∫

R

(|q̇(t)|2 + |q(t)|2)dt .

This space is continuously embedded inC0, 12 (R,RN ), andq ∈ E will
always be considered as a continuous function.

We define the followingactionfunctional, forq ∈ E:

F (q) =
∫

R

(
1
2
|q̇(t)|2 − V (q(t))

)
dt =

1
2
||q||2 −

∫
R

W (q(t))dt .(2.2)

It is well-known that the non-trivial critical points ofF are the homoclinic
solutions of (1.1). The next definition of reference functionals, correspond-
ing with radial potentials in (1.4), will be useful:

Fi(q) =
1
2
||q||2 − ci

∫
R

|q(t)|αdt for i = 1, 2.(2.3)
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The pinching property (1.4) implies

∀q ∈ E, F2(q) ≤ F (q) ≤ F1(q) .(2.4)

In all the paper, we use the notation∫
q =

∫
R

q(t)dt .

As in every variational proof, we have to prove a compactness result. In
fact, there is a lack of compactness due to the invariance of the action func-
tional under time translations. In order to prove a compactness property at
the right level, we suppose, by contradiction, the uniqueness of a non-trivial
critical point forF , whose existence has been already proved by Bolotin
[5], Ambrosetti-Bertotti [1] and Rabinowitz-Tanaka [12]. We then use a
concentration-compactness method to prove a Palais-Smale(PS) property
for F .

Once we have obtained this property, we can use a topological tool of
critical point theory: therelative category, which is an extended notion of
the well-knownLyusternik-Schnirelman category, or (L-S) category. We
refer to [3] for an extensive definition and description of this notion. As a
difference with (L-S) category, we obtain, with the relative category, critical
point theorems for functionals which areunbounded from below, so that we
don’t have here to restrict the problem to a submanifold whereF is bounded
from below, as Ambrosetti-Coti-Zelati [2] do. The category of a level set of
a functional, relatively to a smaller one, if(PS) holds between these levels,
is closely related to the critical set of this functional:

Proposition 2.2 LetF be a functional defined onE, which satisfies(PS)c
property forc ∈ [a− ε, b+ ε], with a ≤ b, ε > 0. Then, with the following
notation

K
[a,b]
F = {q ∈ E / F ′(q) = 0 , a ≤ F (q) ≤ b} ,

we have
cat(F )b,(F )a(F )b ≤ #K

[a,b]
F .

We recall that the(PS)c property forF is the precompactness of each
(PS)c sequence, i.e. sequences(qn) such thatF (qn)→c ∈ R andF ′(qn)→
0 in E′. We use the following notation for level sets:

(F )a = {q ∈ E / F (q) ≤ a } .
Since the level sets of the functionalF are difficult to handle with, we

will use the following property of relative categories:



Multiple homoclinic orbits for a class of Hamiltonian systems 121

Proposition 2.3 LetY ⊆ X etY ′ ⊆ X ′ closed subsets ofE. Suppose there
exists maps:

(X,Y ) h−→ (X ′, Y ′) g−→ (X,Y ) ,

and a deformationjt : X → X, with t ∈ [0, 1] such that

j1 = g ◦ h and ∀t ∈ [0, 1], jt(Y ) ⊆ Y .

Then
catX,Y (X) ≤ catX′,Y ′(X ′) .

To efficiently use Proposition 2.3, we have to find spacesX et Y for
whichcatX,Y (X) will be easier to compute. The study of functionalsF1 and
F2 will give us good candidates. Then, we build the maps and deformation
which occur in the Proposition 2.3. These constructions are done in Sect. 2.3,
and the construction of the deformationj, rather technical, is postponed in
Sect. 4. Eventually, the computation ofcatX,Y (X) gives a lower bound
for the number of non-trivial critical points: as that bound is 2, this is in
contradiction with our uniqueness assumption. Since existence is proved,
we then obtain the multiplicity result that we claimed.

2.2 Compactness properties

The superquadraticity assumption (1.6) implies the boundedness of(PS)c
sequences at every level:

Lemma 2.4 Let (qn) be a(PS)c sequence, withc ∈ R. Then there exists
M ∈ R so that, for alln, we get

||qn|| ≤M.

Proof. Since(qn) is a(PS)c sequence, , there existsM1 such that

1
2
||qn||2 −

∫
W (qn) ≤M1 ,

hence, with (1.6),

1
2
||qn||2 ≤M1 +

1
α

∫
W ′(qn).qn ,

≤M1 +
1
α

(||qn||2 − F ′(qn).qn) ,

and it follows(
1
2
− 1
α

)
||qn||2 ≤M1 +

1
α
||F ′(qn)||E′ ||qn||, .
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Since||F ′(qn)||E′ is bounded andα > 2, we obtain that||qn|| is bounded.�
It is straightforward to see that each critical value forF is nonnegative.

This follows from the following computation, forq critical point at the level
c:

c = F (q)− F ′(q).q =
∫

1
2
W ′(q).q −W (q) ≥

(α
2
− 1

) ∫
W (q) ≥ 0 .

This property implies thatF satisfies(PS)c for c < 0. Now, let(qn) be a
(PS)0 sequence. ThenF (qn)− 1

2F
′(qn).qn → 0, so we have

∫
W (qn) → 0,

and, sinceF (qn) → 0, we finally get

lim
n→+∞ qn = 0 in E.

Thus all(PS)0 sequences converge strongly inE to0, the trivial critical
point ofF : F satisfies(PS)0. For positive levels, we prove this lemma:

Lemma 2.5 The critical value0 is isolated in the set of critical values of
F , i.e. there existsε > 0 such that every critical valueκ �= 0 of F satisfies

κ ≥ ε > 0 .

Proof. Let (qn) be a sequence of critical points forF such that

F (qn) >→ 0 .

Such a sequence is(PS)0, so we haveqn → 0 in E. But, by Sobolev
embedding, there existsCs such that, for alln, we get:

||qn||L∞ ≤ Cs||qn|| .
Hence we have||qn||L∞ → 0 whenn→ +∞.

Moreover, thanks to the assumption (1.6), there existsδ > 0 such that
for everyx ∈ R

N , x �= 0, |x| < δ, we get

2V (x) + 〈V ′(x), x〉 < 0 .

Sinceqn is a critical point forF , we know its regularity, by an elementary
bootstrapargument:qn ∈ C∞(R,RN ). At points tn where|qn|2 reaches
his global maximum value, we get thend

2

dt2
|qn(tn)|2 ≤ 0. But

d2

dt2
|qn(t)|2 = |q̇n(t)|2 + 〈qn(t), q̈n(t)〉

= |q̇n(t)|2 − 〈V ′(qn(t)), qn(t)〉
= −2V (qn(t))− 〈V ′(qn(t)), qn(t)〉 ,
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where the last equality is obtained by an energy argument:

en =
1
2
|q̇n(t)|2 + V (qn(t)) = 0.

Forn great enough, we get, for everyt ∈ R, |qn(t)| < δ. We then have
proved that0 is the only maximum value for|qn|, soqn(t) ≡ 0 for n great

enough, which is contradictory withF (qn) >→ 0. ��

By a result of Ambrosetti-Bertotti [1], under very large conditions, con-
taining our assumption (1.4) and (1.6), existence of a non-trivial critical
point q̄ ∈ E for F is proved, with critical valuēκ > 0. This result also
implies the existence of a critical valueκ1 for F1 andκ2 for F2. Inequal-
ity (2.4) then implies (since critical values are obtained in [1] by min-max
arguments, conserving potential inequalities),

κ2 ≤ κ̄ ≤ κ1 .(2.5)

On the other hand,κi is the only non-trivial critical value forFi, i = 1, 2.
This is due to the reduction to the following differential equation, possible
because of the radial potential:

−r̈ + r + αci|r|α−2r = 0,

lim
t→±∞ r(t) = 0 , lim

t→±∞ ṙ(t) = 0 ,

which has an unique even and positive solutionr0. Of course, forN > 1,
Fi admits an infinity of non-trivial critical points of the formr0(t).e , with
e ∈ SN−1. In the caseN = 1, Fi has exactly two critical points.

In order to prove thatF admits also two non-trivial critical points at least,
we suppose, by contradiction, thatq̄ is the unique non-trivial critical point
for F . This assumption allows us to find compactness properties at the right
level, by the means of a concentration-compactness result. We thus obtain:

Lemma 2.6 Suppose that̄q is the unique non-trivial critical point forF .
ThenF satisfies(PS)c property withc ∈ (0, 2κ̄).

Proof. Let (qn) be a(PS)c sequence forF , with c ∈ (0, 2κ̄). We make use
of the well-known concentration-compactness alternative due to P.-L. Lions
([10], [11]) on the following density:

ρn(t) =
|q̇n(t)|2 + |qn(t)|2

||qn||2 ,

which is well defined and normed inL1 sincec > 0. Then the proof fol-
lows from straightforward computations: we first show that thevanishing



124 E. Paturel

situation is impossible and that theconcentrationcase leads to the precom-
pactness of(qn), according to the fact that everyqn is even. Finally, thanks
our uniqueness assumption, we can deduce that there is nodichotomyphe-
nomenon, and the proof is over.�

2.3 Looking for critical points

This section is devoted to the study of the relative category

cat(F )2κ2−ε,(F )κ0 (F )2κ2−ε ,

whereε > 0 andκ0 > 0 will be defined later. Thus we will obtain a lower
bound of the number of non-trivial critical points forF , with values in
[κ0, 2κ2−ε]. Following Proposition 2.3, we deform level sets ofF into sets
whose category will be easier to compute. We then have to study functionals
of the formF1 or F2. We define the following class of functionals, defined
onE, for c > 0:

Fc(q) =
1
2
||q||2 − c

∫
R

|q(t)|αdt .

We get, of course,Fc1 = F1 andFc2 = F2. Let

Mc = {q ∈ E, q �= 0 /Fc
′(q).q = 0} .

We check easily thatMc is a hilbertian submanifold inE, of co-
dimension1. Indeed, if we define

Gc(q) = F ′
c(q).q ,

then we have

G′
c(q).q = 2||q||2 − α2c

∫
|q|α

= (2− α)||q||2 �= 0 for q ∈Mc .(2.6)

Moreover, if we denote byS = {q ∈ E / ||q|| = 1} the unit sphere in
E, we obtain, for allq ∈ S,

Fc(λq) =
1
2
λ2 − cλα

∫
|q|α ,

and

F ′
c(λq).λq = λ2 − αcλα

∫
|q|α .
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Henceλq ∈Mc if and only if

λ =
(

1
αc

) 1
α−2

.||q||
−α
α−2
Lα .

This dilation gives a bijection betweenMc andS. This yields thatMc

is diffeomorphic to the unit sphere and star-shaped relatively to0.
Concerning critical points forFc|Mc′ , with c, c′ > 0, we have the

straightforward result:

Lemma 2.7 Let c > 0. Then, with our notations, all non-trivial critical
points forFc stay inMc and they are the same as critical points for the
restricted functionalFc|Mc .

In other words, the constraintq ∈ Mc is artificial and the functional
Fc|Mc does not have more critical points thanFc.

For the correspondence between critical points forFc andFc′ , we get
this result:

Lemma 2.8 Let c, c′ > 0. Critical points forFc andFc′ are in correspon-
dence by the following dilation, centered at0 and with coefficient

λ =
( c

c′
) 1

α−2
.

The critical set ofFc is isomorphic to the unit sphereSN−1 in R
N , it is the

set of functions of the formq(t) = rc(t).e, with e ∈ SN−1 and rc is the
unique positive and even solution of the following differential equation:

−r̈ + r + αc|r|α−2r = 0,

lim
t→±∞ r(t) = 0 , lim

t→±∞ ṙ(t) = 0.

We denote byΣc the set of non-trivial critical points forFc, isomorphic to
SN−1.

Proof. Let q a non-trivial critical point forFc. Then, for allh ∈ E, we get

Fc
′(q).h = (q, h)− αc

∫
|q|α−2〈q, h〉 = 0 .

The definition ofλ given in the lemma implies

Fc′ ′(λq).h = (λq, h)− αc′
∫
|λq|α−2〈λq, h〉

= λ((q, h)− αc

∫
|q|α−2〈q, h〉)

= 0 .
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Thereforeλq is a critical point forFc′ . ��

These results allow us to define the followingcylinder, with c ≤ c′:

Λ(c, c′) =
c′⋃
d=c

Σd

=
{
λq, λ ∈

[( c

c′
) 1

α−2
, 1

]
, q ∈ Σc

}
.

This cylinder is a major element in the construction of tools for the
Proposition 2.3. With the notations of that proposition, we define:{

X ′ = (F )2κ2−ε

Y ′ = (F )κ0 ,

and {
X = (F1)κ0 ∪ Λ(γ1, γ2)
Y = (F1)κ0 ,

where0 < κ0 < κ2 andγ1 < c1 < c2 < γ2 satisfyF1(Σγ1) = κ0 and
F1(Σγ2) = κ0. The real numberε > 0 will be defined more precisely later.

From (2.4), it follows thatX ′ andY ′ are respectively included in{
X ′′ = (F2)2κ2−ε

Y ′′ = (F2)κ0 .

We show now that we may chooseh = Id, with notations of Proposition
2.3.

Lemma 2.9 X ⊂ X ′ andY ⊂ Y ′.

Proof. From (2.4), we get

max
q∈Λ(γ1,γ2)

F (q) ≤ max
q∈Λ(γ1,γ2)

F1(q) = κ1 .

Moreover, according to the pinching assumption (1.4), we claim that

κ1 < 2κ2 .(2.7)

This strict inequality definesε > 0 such thatκ1 ≤ 2κ2 − ε.
We prove (2.7) as follows: letq1 ∈ Σc1 . Then,

F1(q1) = c1

(α
2
− 1

) ∫
|q1|α = κ1.
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Takingλ =
(
c1
c2

) 1
α−2

, we haveλq1 ∈ Σc2 , and then

F2(λq1) = κ2 =
(
λ2

2
αc1 − λαc2

) ∫
|q1|α ,

thus we get

κ2

κ1
=

(
c1
c2

) 2
α−2

>
1
2
.

We have proved thatΛ(γ1, γ2) ⊂ (F )2κ2−ε. Finally, (2.4) andκ0 < 2κ2−ε
directly infer that(F1)κ0 ⊂ (F )κ0 , and the proof is over. ��

In order to use Proposition 2.3, we have to build a deformation(X ′, Y ′)
→ (X,Y ) which preservesX andY globally. The proof of the following
lemma, rather technical, is postponed in Sect. 4.

Lemma 2.10 There exists a deformationgt : X ′ → E, with t ∈ [0, 1],
satisfying the following properties:

– t �→ gt maps continuously[0, 1] to the set of continuous maps inX ′;
– g0 = Id andg1(X ′) ⊆ X, g1(Y ′) ⊆ Y ;
– for all t ∈ [0, 1], we havegt(X) ⊆ X andgt(Y ) ⊆ Y .

Proof. cf Sect. 4. ��

From Proposition 2.3, we infer

catX,Y (X) ≤ catX′,Y ′(X ′) ≤ #K
[κ0,2κ2−ε]
F .(2.8)

It remains to computecatX,Y (X). From the excision property of relative
category, we find that

catX,Y (X) ≥ catΛ(γ1,γ2),∂Λ(γ1,γ2)(Λ(γ1, γ2)) .(2.9)

The computation of the category of a cylinder relatively to its boundary
∂Λ(γ1, γ2) = Σγ1 ∪ Σγ2 is an easy task, and may be found, for example,
in [8]. We get

catΛ(γ1,γ2),∂Λ(γ1,γ2)(Λ(γ1, γ2)) = 2 .

Using Proposition 2.2, we prove thatF admits at least two non-trivial
critical points, whose critical values are in[κ0, 2κ2 − ε]. This is contradic-
tory with our uniqueness assumption. Hence, this assumption is false and
Theorem 2.1 is proved.
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3 Multiplicity without superquadraticity

3.1 Presentation and notations

In order to prove the most general result of this paper, Theorem 1.1, we have
to get rid of assumption (1.6). The difficulty here is that (1.6) implies the
boundedness of(PS) sequences, and no other assumption here gives the
same result. To overcome this problem, we build special(PS) sequences
for the new functional, i.e. sequences of critical points for functionals whose
related Hamiltonian system isno more autonomous, with potentials satisfy-
ing a weaker property, calledsuperquadraticity at infinity. Convergence of
such sequences will require, as in Sect. 2, the combination of a uniqueness
assumption with a concentration-compactness method. Topological proper-
ties of the relative category will finally ensure the contradiction and prove
Theorem 1.1. This part is organized as follows: in 3.2, we solve the non-
autonomous problems, in order to build special(PS) sequences; conver-
gence of these sequences, up to subsequences, is proved in 3.3; we show the
contradiction and conclude in 3.4.

Let W ∈ C2(RN ,R) satisfy the pinching assumption (1.4). We first
modify this attractive potential far from the origin: givenR > 0, there
existsW̃ ∈ C2(RN ,R) such that:

– for all x ∈ R
N , we havec1|x|α < W̃ (x) < c2|x|α;

– for all |x| ≤ R, we haveW̃ (x) = W (x);
– for all |x| ≥ 2R, we haveW̃ ′(x).x ≥ αW̃ (x).

We point out that strict pinching inequality is obtained by slightly mod-
ifying coefficientsc1 andc2, and we chooseR great enough, such that for
all |x| > R, we get−1

2 |x|2 + W̃ (x) > 0 and−1
2 |x|2 +W (x) > 0.

We define now the following non-autonomous potential: givenT > 0,
letWT ∈ C2(RN × R,R) satisfy the following conditions:

– for |t| ≤ T , we haveWT (x, t) = W̃ (x), ∀x ∈ R
N ;

– for |t| ≥ T + 1, we haveWT (x, t) = c2|x|α, ∀x ∈ R
N ;

– potentialWT is even relatively tot and for allx ∈ R
N \ {0}, t ∈

(T, T + 1), we have
∂

∂t
WT (x, t) > 0 ,

and, for allt ∈ (T, T + 1) andx such that|x| ≥ 2R, we get

∂

∂x
WT (x, t).x ≥ αWT (x, t) .

We define the following class of functionals, forq ∈ E:

GT (q) =
1
2
||q||2 −

∫
R

WT (q(t), t)dt ,
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G∞(q) =
1
2
||q||2 −

∫
R

W̃ (q) .

The problem is now to find critical points forGT and show that these
approximate solutions converge to critical points forG∞ asT goes to in-
finity.

3.2 Resolution of the approached problems

Let T > 0. As in Sect. 2, we have to find two non-trivial critical points for
a functional, hereGT . This case is not very different from the precedent
one, since superquadraticity at infinity still yields the boundedness of(PS)
sequences.

Lemma 3.1 Let c ∈ R and (qn) be a (PS) sequence at levelc for the
functionalGT . Then there existsM ∈ R such that, for alln, we have

||qn|| ≤M .

Proof. It is a direct computation:

1
2
||qn||2 = GT (qn) +

∫
WT (qn(t), t)dt

= GT (qn) +
∫
In∪Jn∪K

WT (qn(t), t)dt

≤ GT (qn) +
1
α

∫
Jn∪K

∂WT

∂x
(qn(t), t).qn(t)dt

+
∫
In

WT (qn(t), t)dt

≤ GT (qn) +
1
α

∫
R

∂WT

∂x
(qn(t), t).qn(t)dt

+
∫
In

[WT (qn(t), t)− 1
α

∂WT

∂x
(qn(t), t).qn(t)]dt

≤ GT (qn) +
1
α

[||qn||2 −G′
T (qn).qn] + C0 .

with the following notations:

– K = (−∞,−T − 1] ∪ [T + 1,+∞);
– In = {t ∈ [−T − 1, T + 1], |qn(t)| ≤ 2R};
– Jn = {t ∈ [−T − 1, T + 1], |qn(t)| ≥ 2R}.

The last inequality easily yields thatqn is bounded. ��
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Definition ofWT implies that, forq ∈ E:

F2(q) ≤ GT (q) ≤ F1(q) .

Hence it is possible to use exactly the same topological argument forGT

as forF in Sect. 2. Indeed, if we denote by{
X ′

T = (GT )2κ2−ε

Y ′
T = (GT )κ0 ,

we also have, with the notations of Sect. 2,{
X ⊂ X ′

T ⊂ X ′′
Y ⊂ Y ′

T ⊂ Y ′′ .

Now, we can apply Lemma 2.10 and its following computation to find
two non-trivial critical points forGT , provided that we show a compactness
result, i.e.(PS)c condition, forc ∈ [κ0, 2κ2 − ε]. First, by Lemma 3.1,
it is possible to show a concentration-compactness property for(PS)c se-
quences, forc > 0:

Lemma 3.2 Let c > 0 and(qn) ∈ E be a(PS)c sequence forGT . Then,
there exists a subsequence of(qn), still denoted by(qn), a set ofp non-zero
functionsQ1, ..., Qp inH1(R,RN ), distinct or not, andp sequences of real
numbers(τ1

n), ..., (τpn), such that

(i) ||qn(.)−∑p
i=1Q

i(.− τ in)||H1 −→ 0;
(ii) ∀i ∈ {1, ..., p},∀t ∈ R, Qi(t) = Qp−i+1(−t);
(iii) ∀n, τ in + τp−i+1

n = 0;
(iv) ∀i ∈ {1, ..., p− 1}, τ i+1

n − τ in → +∞.
Moreover, we get

c = lim
n→+∞

p∑
i=1

GT (Qi(.− τ in)) .

Proof. It is the same proof as in Lemma 2.6, with the difference that di-
chotomy is allowed. Then, parity ofqn implies properties (ii) and (iii). ��

The norm||.||H1 is the standard norm of spaceH1(R,RN ). We recall that
we choosed the same norm forE. The concentration-compactness method
leads to work inH1(R,RN ), because functionsQi do not have to be even.
In the only casep = 1, i.e. concentration case, we can conclude thatQ1 is
even.

This concentration-compactness property yields a(PS) result:
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Lemma 3.3 The functionalGT satisfies(PS)c property, forc ∈ [κ0, 2κ2−
ε].

Proof. Let c ∈ [κ0, 2κ2− ε] and(qn) be a(PS)c sequence forGT . We can
apply Lemma 3.2, and seeqn as a succession of bumps moving away from
each other to infinity asn goes to+∞.

Suppose there exists1 ≤ j ≤ p such that, up to a subsequence,(τ jn) →
+∞. Then, by Lemma 3.2 (iii),(τp−j+1

n ) → −∞, and we may writeqn as
the sum ofp functions:

qn(t) =
p∑

i=1

Qi
n(t)

whereQi
n are(PS) sequences forGT , representing these bumps. So we

have
G′

T (Qj
n) H−1−→ 0 .

We claim thatQj
n converges inH1

loc(R,R
N ), up to subsequence, to a

non trivial critical point forF2. We get indeed, for allh ∈ H1(R,RN ),

F ′
2(Q

j
n).h = G′

T (Qj
n).h+

∫ T+1

−T−1

[
∂WT

∂x
(Qj

n, t).h− αc2|Qj
n|α−2〈Qj

n, h〉
]
,

and it is an easy task to find a nondecreasing functionY : R
+ → R

+, taking
limit 0 in 0, such that:∣∣∣∣

∫ T+1

−T−1

[
∂WT

∂x
(Qj

n, t).h− αc2|Qj
n|α−2〈Qj

n, h〉
]∣∣∣∣

≤ (2T + 2)2Y (||Qj
n||L∞([−T−1,T+1])) · ‖h‖ .

Whenn goes to+∞, τ jn → +∞ and||Qj
n||L∞([−T−1,T+1]) → 0. Then,

taking Q̂j
n(t) = Qj

n(t + τ jn), we get a precompact(PS)c′ sequence for
F2, with c′ < 2κ2. Compactness properties ofF2 then implies thatQ̂j

n(t)
converges to an element ofΣ2, and the critical value forF2 is κ2.

Same arguments work forp−j+1. We get finally, jointly with Lemma 3.2,

c ≥ lim
n→+∞

p∑
i=1

GT (Qi(.− τ in)) ≥ F2(Q̂j) + F2(Q̂p−j+1) = 2κ2 ,

which is impossible, asc ≤ 2κ2 − ε. Thus, it is impossible for a sequence
τ jn to go to infinity, and this happens only ifp = 1. It follows that(qn) is
precompact and Lemma 3.3 is proved.��

With this precompactness lemma, we may use Lemma 2.10 and the
computation of the relative category, and hence prove the following result:



132 E. Paturel

Lemma 3.4 The functionalGT admitsat least twonon-trivial critical points
in E, whose critical levels are given by

GT (qiT ) = inf
P∈Ci

sup
q∈P

GT (q) > κ0 for i = 1, 2,

with

Ci = {P / (GT )κ0 ⊂ P ⊂ (GT )2κ2−ε, cat(GT )2κ2−ε,(GT )κ0 (P ) ≥ i} .

3.3 Precompactness and limit of critical point sequences

Let (Tn) be a sequence of real numbers going to+∞ and qn = qiTn
a

sequence of non-trivial critical points forGTn , with i = 1 or 2. In order to
prove precompactness for such sequences, we will combine, as in Sect. 2, a
concentration-compactness method with a uniqueness assumption, to have
(PS) property at the right levels.

A theorem of Rabinowitz-Tanaka [12] shows the existence of a non-
trivial critical point forG∞ in E. Indeed, potential

Ṽ (x) = −1
2
|x|2 + W̃ (x)

satisfies all conditions of this theorem (Ṽ has a local non degenerate max-
imum in 0, Ṽ (0) = 0 and (1.3)). We denote bỹq ∈ E this critical point
for G∞ andκ̃ = G∞(q̃). As critical levels are obtained by a minimization
framework, conserving potential inequalities, we still have an inequality like
(2.5):

κ2 < κ̃ < κ1 .(3.1)

As in Sect. 2, we will assume thatq̃ is the only non-trivial critical point for
G∞. Exactly as in Lemma 2.6, this yields a compactness result for bounded
(PS) sequences:

Lemma 3.5 Assume that̃q is the only non-trivial critical point forG∞.
Then, allbounded(PS)c sequences forG∞, with c ∈ [κ0, 2κ̃ − ε] are
precompact.

Proof. The proof is exactly the same as in Lemma 2.6.��

In order to prove a concentration-compactness result for(qn), we have
to find an a priori estimate of theH1 norm of this sequence. Assumption
(1.3) will play here an important role.
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Lemma 3.6 With the precedent notations , there existsm > 0 andM > 0
such that, for alln we have

0 < m ≤ ||qn|| ≤M .

Proof. Sinceκ0 > 0, it is easy to find a lower bound for||qn||:
1
2
||qn||2 ≥ GTn(qn) ≥ κ0 > 0 .

We define now the following sets, withε > 0:

– Ωt = {x ∈ R
N , VT (x, t) < 0};

– Φε(q) = {t ∈ R / d(q(t), ∂Ωt) ≥ ε};
– Ψε(q) = {t ∈ R / |q(t)| ≤ ε} ;
– Ξε(q) = {t ∈ R / d(q(t), ∂Ωt \ {0}) ≤ ε}.

From condition (1.3) and definition ofWT , there results that∂Ωt is the
reunion of a regular hypersurface contained inR

N , of classC1 and the point
{0}. Moreover we get the following energy inequality

eqn(t) =
1
2
|q̇n(t)|2 + VTn(qn(t), t) ≤ 0 ,

hence for allt ∈ R, qn(t) ∈ Ω̄t. We have, of course,

Φε(q) ∪ Ψε(q) ∪Ξε(q) = R .

We then have to control theH1 norm ofqn uniformly in n.
Step 1. We claim that the measure ofΦε(qn) is finite and uniformly bounded.
Indeed, there existsδ > 0 such that for allt ∈ Φε(qn), we get

−VTn(qn(t), t) ≥ δ > 0 ,

and fort ∈ Φε(qn), we then have

1
2
|q̇n(t)|2 − VTn(qn(t), t) ≥ δ .

The integral onR of the left hand side isGTn(qn) < 2κ2, so the measure of
Φε(qn) has to be finite. This gives an explicit upper bound forH1 norm of
qn onΦε(qn), independent ofn:

||qn||H1(Φε) ≤ meas(Φε) max
t∈R

max
x∈Ω̄t

[|x|2 + |V (x, t|2] .(3.2)

Step 2. We claim that the measure ofΞε(qn) is also uniformly bounded. This
is analogous to a result by Rabinowitz-Tanaka [12], for which assumption
(1.3) is necessary:



134 E. Paturel

Proposition 3.7 Let a non-autonomous potentialV ∈ C2(RN × R,R)
satisfy the following properties:

– for all t, 0 is a non degenerate local maximum forV (., t), withV (0, t) =
0;

– there existsK compact inR such that for allt ∈ R \K, the set defined
by {x/V (x, t) ≤ 0} is compact and its boundary is the reunion of{0}
and a regular hypersurface on which∣∣∣∣∂V∂x (x, t)

∣∣∣∣ ≥ η > 0 .

Then, forε > 0 fixed andM > 0, there exists a constantL0 such that for
all critical points q of the corresponding action functional with a positive
critical value lower thanM , we get, with the precedent notations,

mes(Ξε(q)) ≤ L0 .

This result gives an upper bound to the time while a solution of the system
remains close to the outer boundary of{x/V (x, t) ≤ 0}. The potentialVT
satisfies assumptions of Proposition 3.7: we obtain an upper bound of the
H1-norm ofqn onΞε(qn) in the same way as in (3.2).
Step 3. Let t ∈ Ψε(qn). Forε close to0, because of assumption (1.4), there
exists a constantCε depending only ofε such that:

|q̇n(t)|2 + |qn(t)|2 ≤ Cε

[
1
2
|q̇n(t)|2 +

1
2
|qn(t)|2 −WTn(qn(t), t)

]
.

Integrating this last inequality onΨε(qn), we get:

||qn||H1(Ψε(qn),RN ) ≤ Cε

[
GTn(qn) +

∫
Φε(qn)∪Ξε(qn)

WTn(qn(t), t)

]

≤ Cε

[
2κ2 + C ′||qn||H1(Φε(qn)∪Ξε(qn)),RN )

]
.

Gathering these three steps, we obtain that||qn|| is bounded by a constant
which does not depend onn, and Lemma 3.6 is proved.��

Lemma 3.6 allows, in the same way as Lemmas 2.6 and 3.2, to state a
concentration-compactness result for the sequence(qn) of critical points for
GTn :

Lemma 3.8 With the precedent notations, there exists a subsequence ofqn,
still denoted byqn, a set ofp non zero functionsQ1, ..., Qp in H1(R,RN ),
distinct or not, andp sequences(τ1

n), ..., (τpn) of real numbers such that

(i) ||qn(.)−∑p
i=1Q

i(.− τ in)||H1 −→ 0;
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(ii) ∀i ∈ {1, ..., p},∀t ∈ R, Qi(t) = Qp−i+1(−t);
(iii) ∀n, τ in + τp−i+1

n = 0;
(iv) ∀i ∈ {1, ..., p− 1}, τ i+1

n − τ in → +∞.
Moreover, we get

lim
n→+∞GTn(qn)−

p∑
i=1

GTn(Qi(.− τ in)) = 0 .(3.3)

In order to prove that sequence(qn) is precompact, as in proof of
Lemma 3.3, it is sufficient to prove that the only possible case isp = 1, i.e.
the concentration case. Suppose thatp ≥ 2, and thatlimn→+∞ τ1

n = +∞
(if the limit is −∞, thenlimn→+∞ τpn = +∞). As in proof of Lemma 3.3,
we write

qn(t) =
p∑

i=1

Qi
n(t)

whereQi
n are these bumps, moving away from each other to infinity. There

are two sequences of real numbers whose limit is+∞: Tn and τ1
n. By

comparing these two sequences, we claim thatp ≥ 2 is impossible.
Step 1. Suppose that, up to a subsequence, we have

lim
n→+∞(τ1

n − Tn) = +∞ .

This case is then very similar to the proof of Lemma 3.3: we show, by the
same computations, that the sequenceQ1

n(.+ τ1
n) converges inH1(R,RN )

to a non-trivial critical point forF2. By parity, there existsk such that

lim
n→+∞(−Tn − τkn) = +∞ ,

and we prove in the same way thatQk
n(.+ τkn) converges inH1(R,RN ) to

a non-trivial critical point forF2, i.e. an element ofΣ2. Thanks to (3.3), we
get then

2κ2 − ε ≥ lim
n→+∞GTn(qn) ≥ 2κ2 ,

which is impossible, sinceε > 0.
Step 2. Suppose that, up to a subsequence, we get

lim
n→+∞(τ1

n − Tn) = l ∈ R .

We can then suppose thatl = 0 and work inH1(R,RN ). The sequence
Q1

n(. + τ1
n) is precompact inH1(R,RN ) and the limitQ∞ is a non zero

function. If we define the following functional, forq ∈ H1(R,RN ):

Gs(q) =
∫

R

1
2
|q̇(t)|2 +

1
2
|q(t)|2 −W s(q(t), t) ,

with
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– W s(x, t) = W̃ (x) if t ≤ 0;
– W s(x, t) = c2|x|α if t ≥ 1;
– ∂W s

∂t (x, t) > 0 for x �= 0 andt ∈ (0, 1),

a direct computation shows that the sequenceQ1
n(.+τ1

n) is a(PS) sequence
forGs, thenQ∞ is a non-trivial critical point forGs. But this functional does
not have any non-trivial critical point: by a classical regularity argument, it
would belong toH2(R,RN ) and we would have:

Gs(Q∞).Q̇∞ = 0 ,

and this would imply ∫
R

∂W s

∂t
(Q∞(t), t) = 0 .

That is possible if and only ifQ∞ ≡ 0, and the contradiction follows.
Step 3. Suppose that, up to a subsequence, we obtain

lim
n→+∞(τ1

n − Tn) = −∞ .

By a direct computation, as in proof of Lemma 3.3, this implies thatqn is a
bounded(PS) sequence forG∞, which level stays in[κ0, 2κ̃−ε]. Applying
Lemma 3.5, we infer that(qn) is precompact, which is in contradiction with
p ≥ 2.

Taking together these 3 steps, we see that the only possible case isp = 1,
i.e. precompactness of the sequence(qn).

3.4 Contradiction and multiplicity result

The precedent section stated that the sequences(qn)of critical points forGTn

found in 3.2 converge inE, up to subsequence, to non-trivial critical points
forG∞ whenTn goes to infinity. Our uniqueness assumption yields then that
the limit for sequences(q1

n) and(q2
n) is q̃. We will show the contradiction

by a topological method, inspired by a work of Esteban-Sere [7]. We recall
that, according to our assumption,

κ̃ = G∞(q̃) = lim
n→+∞GTn(qin) for i = 1, 2 .

LetVr be the open ball inE centered oñq, with radiusr > 0, such that,
for all q ∈ Vr, we haveG∞(q) < 2κ2 − ε. Last results imply the following
one:

Lemma 3.9 Let qn, a sequence inE, satisfy the following properties:

– G′
Tn

(qn) → 0 in E′;
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– GTn(qn) → c ∈ [κ0, 2κ2 − ε];
– for all n, qn ∈ Vr;
where(Tn) is a sequence of positive real numbers. Then(qn) is precompact
in E, and, ifTn goes to+∞, then, up to a subsequence,q̃ is the limit ofqn.
Proof. It is a direct consequence of Lemmas 3.3 and 3.5, according to the
fact thatVr is bounded. ��

Let 0 < r′ < r andβ > 0. We putW = Vr \ Vr′ . There exists̃T such
that for allT ≥ T̃ , we get|GT (q1

T )− θ| ≤ β
10 and|GT (q2

T )− θ| ≤ β
10 .

Lemma 3.10 Assuming the uniqueness of a non-trivial critical point for
G∞, we get the following results:

1. there existsµ > 0 and T̃ ′ such that for allq ∈ W̄, and for allT ≥ T̃ ′,
we get

||G′
T (q)||E′ ≥ µ ,(3.4)

2. there exists̃T ′′ such that, ifT ≥ T̃ ′′, if G′
T (q) = 0 and if moreover

GT (q) ∈ [κ0, 2κ2 − ε], thenq ∈ Vr′ .
3. for all T , there existsνT such that for allq �∈ V̄r′ satisfyingGT (q) ∈

[κ0, 2κ2 − ε], we get

||G′
T (q)||E′ ≥ νT .(3.5)

Proof. 1. et 2. are direct consequences of Lemma 3.9, considering that there
is no critical point forG∞ andGT , forT great enough, inW. 3. is a straight-
forward consequence of 2.��

If we call T0 = max(T̃ , T̃ ′, T̃ ′′), Lemma 3.10 yields the following
result (whose standard proof, based on a deformation lemma which uses
Lemma 3.10, will be omitted):

Lemma 3.11With our uniqueness assumption, there existsβ′ > 0 such
that for all T > T0, there existss(T ) > 0 satisfying

GT (ΨT (s(T ), q)) ≤ θ − β′ ,(3.6)

for all q �∈ Vr such thatGT (q) ≤ θ + β′, while ΨT (., q) stands for the
decreasing flow ofGT .
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Topological properties of the relative category allow to conclude. Indeed,
Lemma 3.11 builds a deformation(GT )θ+β\Vr → (GT )θ−β letting(GT )κ0

globally invariant. This implies that

cat(GT )2κ2−ε,(GT )κ0 ((GT )θ+β \ Vr) ≤ cat(GT )2κ2−ε,(GT )κ0 ((GT )θ−β) .
(3.7)

The sub-additivity property of relative category then yields

cat(GT )2κ2−ε,(GT )κ0 ((GT )θ+β)

≤ cat(GT )2κ2−ε,(GT )κ0 ((GT )θ+β \ Vr) + cat(GT )2κ2−ε(Vr) .(3.8)

Moreover, definition of̃κ andT > T0 yield

cat(GT )2κ2−ε,(GT )κ0 ((GT )θ−β) = 0 ,(3.9)

cat(GT )2κ2−ε,(GT )κ0 ((GT )θ+β) ≥ 2.(3.10)

Indeed,(GT )θ−β �∈ C1 implies (3.9) and, considering a sequence(Pn) ∈
C2 realizing the min-maxGT (q2

T ), we obtain, forn great enough, that
Pn ⊂ (GT )θ+β, which directly implies (3.10). Combining (3.7), (3.8), (3.9)
and (3.10), we find

cat(GT )2κ2−ε(Vr) ≥ 2 ,

which is impossible. Thus, the uniqueness assumption leads to a contradic-
tion and Theorem 1.1 is proved.

4 Construction of the deformation

In this section, we will handleX ′′ andY ′′ in place ofX ′ andY ′. This
slight modification makes the construction easier, becauseX ′′ andY ′′ do
not depend on any choice. The following results come from straightforward
computations and enlighten the geometry of the problem:

Lemma 4.1 Let c, c′ > 0. Then

(i) the critical set for the restricted functionalFc|Mc′ isΣc′ ;
(ii) non-trivial critical points forFc, i.e. elements ofΣc aremountain pass

points:
– for q ∈ Σc,Fc(q) = minq∈Mc Fc(q), i.e.Σc is theset ofminimizers
of the restricted functionalFc|Mc ;

– for q ∈ Σc,Fc(q) = maxλ∈R Fc(λq) and themaximum is obtained
for λ = 1.

(iii) relatively to the functionalFc|Mc′ , elements ofΣc′ are
– minimizers forc′ > 2c

α and we haveFc|Mc′ > 0;
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– regular points forc′ = 2c
α since thenFc|Mc′ ≡ 0;

– maximizers forc′ < 2c
α and we getFc|Mc′ < 0.

(iv) ∀c > 0, X ′′ ∩Mc �= ∅;
(v) Y ′′ ∩Mc = ∅ if and only ifc ∈ [d1, d2], with 2c2

α < d1 < c2 < d2;
(vi) Y ∩Mc = ∅ if and only ifc ∈ [d′

1, d
′
2], with 2c1

α < d′
1 < c1 < d′

2;
(vii) d′

1 < d1 < d2 < d′
2.

The main tool of this construction is the deformation along vector field
flows inE. Vector fields are built fromF1 andF2 gradients, by projection on
tangent spaces of manifoldsMc. All vector fields used here will be locally
Lipschitz continuous, by theC2 regularity of the application

q ∈ E\{0} �→ c(q) =
||q||2

α
∫

R
|q|α ,

thus the flows are well-defined for any time. We will also extend the vector
fields by0 in 0.

The construction of the deformation - and proof of Lemma 2.10 - will be
achieved in several steps. In the first one, we deformX ′′ in order to bring
a part ofX ′′ closer to the cylinderΛ. The problem is now divided into two
parts:

– make a projection of the closest part ofX ′′ on the cylinderΛ: that will
be the goal of Step 2;

– build a deformation of the part ofX ′′ situated onMc manifolds with
small and greatc’s: that will be made in Step 3, which finishes the
construction.

Of course, we have to check at each step that setsX andY are globally
invariant, in order to respect conditions of Lemma 2.10.

Step 1. We define the following vector field onE:{
e1(0) = 0 ,
e1(q) = −F2

′|Mc(q)(q)θδ(c− c2) ,

with θδ ∈ C∞(R, [0, 1]) an even function being such that Suppθδ =
[−2δ, 2δ], θδ increasing on[−2δ,−δ] andθδ(c) = 1 for c ∈ [−δ, 0]. We
define0 < 2δ < c2 − c1. Let Ψ1(q, t) be the associate flow, defined as
follows: {

Ψ1(q, 0) = q
∂
∂tΨ1(q, t) = e1(Ψ1(q, t)) .

First properties of this flow are:

– We getc(Ψ1(q, t)) = c(q) sincee1 is tangent to the manifoldMc(q);
– SetsΛ(γ1, γ2) is invariant by this flow, sincee1(q) = 0 for q ∈ Λ(γ1, γ2);
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Fig. 1.The deformation: large lines are forX ′′ (dotted) andY ′′ (plain); middle lines represent
Y ; small lines represent manifoldsMc and cylinderΛ(0, ∞). The first picture represents
the level sets before deformation. The second one shows the effect of Steps 1 and 2. The last
one represents the final situation

– According to Lemma 4.1 (vi), given anyq ∈ Y , θ(c(q)− c2) = 0, soX
andY are invariant by the flowΨ1.

Moreover, givenν > 0 small enough, there existsδ < α−2
α such that,

given anyc ∈ [c2 − δ, c2 + δ], we get

Mc ∩ (F2)2κ2−ε ⊂ (Fc)2κc−ν .
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SinceF2
′|Mc is proportional toF ′

c andFc satisfies the(PS)d condition for
everyd ∈ [κc, 2κc − ν], we obtain:

∀η > 0, ∃T1 / sup
q∈X′′∩⋃c2+δ

c=c2−δ Mc

dE(Λ(d1, d2), Ψ1(q, T1)) < η ,(4.1)

wheredE is the distance inE induced by the norm||.||. We putg1 =
Ψ1(., T1).

Step 2. Precedent step allows to bring a part ofX ′′ closer toΛ(γ1, γ2). This
second step consists in projecting that part on toΛ(γ1, γ2). To this end, we
define the following projection:

Let Pc the orthogonal projection fromE on to the linear subspaceFc

spanned byΣc, of finite dimensionN . Let P ′
c be the “radial projection”

from Fc on to Σc, which is a simple dilation of the unit sphere inFc.
This projection is not well-defined in0, but, thanks to (4.1), elements of
Pc(g1(X ′′)∩Mc) have a norm close to the norm of elements ofΣc. Thus,
for η small enough,0 �∈ Pc(g1(X ′′) ∩Mc). Let

Ψ2(q, t) = (1− ν(t, c(q))).q + ν(t, c(q)).P ′
c(q)(Pc(q)(q)) ,

whereν ∈ C([0, 1]×]0,+∞[, [0, 1]) satisfies, with smallρ > 0:

– ν(., c) ≡ 0 for all c ≤ c2 − 2δ or c ≥ c2 + 2δ;
– ν(t, c) = t for all c2 − δ < c < c2 + δ;
– ν(t, c) = c−c2+2δ

δ t for all c2 − 2δ < c < c2 − δ;
– ν(t, c) = c2+2δ−c

δ t for all c2 + δ < c < c2 + 2δ.

It is clear that applicationg2 = Ψ2(q, 1) is continuous, thatX andY are
invariant (here we just have to see thatΛ(γ1, γ2) is invariant), and:

g2


g1


X ′′ ∩

c2+δ⋃
c=c2−δ

Mc





 ⊂ Λ(c2 − δ, c2 + δ) .(4.2)

Step 3. This step consists of a dilation, which allows to deform parts of
g2(g1(X ′′)) not yet contracted onΛ(c2 − δ, c2 + δ). With this dilation, of
course,c(q) will not be conserved, and thus we deform these parts on to
manifoldsMc having good properties. We define the following vector field:

e3(q) = (1− θ δ
2
(c− c2))sgn(c2 − c)q ,

and denote byΨ3(., t) its flow. It is straightforward thatΛ(0,+∞) is globally
invariant by this flow. In order to state thatX and Y are also globally
invariant, it is sufficient to show that(F1)κ0 = Y is globally invariant.
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According to Lemma 4.1 (iv)-(vii) ,Y has a non-empty intersection with
Mc if and only if c �∈ (d1

′, d2
′). Given c ≥ d2

′ > c1, a dilation by a
coefficient lower than 1 yields a decrease forF1, as this computation shows,
for q ∈Mc:

F1(ηq) =
η2

2
||q||2 − c1η

α

∫
|q|α

= ||q||2
(
η2

2
− c1η

α

αc

)
,(4.3)

and this function ofη is increasing for0 ≤ η ≤ ( c
c1

)
1

α−2 > 1. Given
c ≤ d1

′ < c1, and by the same way, a dilation by a coefficient greater than
1 still yields a decrease forF1. ThusX andY are globally invariant.

For c > c2 + δ, the vector fielde3 is the gradient of a very simple func-
tional (indeedq �→ −1

2 ||q||2) which obviously satisfies the(PS) condition
at any level. Moreover, givenq ∈Mc, we get:

F1(λq) = λ2
1
2 − c1λα−2

αc
1
2 − c2

αc

F2(q) .(4.4)

Thus there exists̄λ < 1 such that, for allq ∈ X ′′ ∩ ⋃
c>c2+δMc, we get

F1(λ̄q) ≤ κ0. So we infer that there existsT 1
3 such that

Ψ3


 ⋃

c>c2+δ

Mc ∩X ′′, T 1
3


 ⊂ (F1)κ0 .

Forc < c2−δ, (4.3) implies that there existsT 2
3 such that for everyq ∈Mc∩

X ′′,F1(Ψ3(q, T 2
3 )) < 0. TakingT3 = max(T 1

3 , T
2
3 ), we putg3 = Ψ3(., T3),

andg = g3 ◦ g2 ◦ g1. Properties ofg are the following ones:

– g(X ′′ ∩⋃
c≤c2−δMc) ⊂ (F1)κ0 ⊂ X,

– g(X ′′ ∩⋃c2+δ
c=c2−δMc) ⊂ Λ ⊂ X,

– g(X ′′ ∩⋃
c≥c2+δMc) ⊂ (F1)κ0 ⊂ X,

– g(Y ′′ ∩⋃
c≤c2−δMc) ⊂ (F1)κ0 = Y ,

– g(Y ′′ ∩⋃
c≥c2+δMc) ⊂ (F1)κ0 = Y .

Applicationsgi, for 1 ≤ i ≤ 3 have been constructed as deformation of
the identity. By reparametrization and composition, we findgt : X ′′ → X ′′,
for t ∈ [0, 1], with g0 =Id andg1 = g. The mappingt �→ gt is continuous
from [0, 1] on to the space of continuous mappings fromX ′′ to E, and
for all t ∈ [0, 1], gt(X) ⊂ X, gt(Y ) ⊂ Y . Finally, the last results imply
g1(X ′′) = g(X ′′) ⊂ X andg1(Y ′′) = g(Y ′′) ⊂ Y . Restriction ofgt to
(X ′, Y ′) satisfies the same properties: Lemma 2.10 is proved.
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