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On linguistic approximation in the frame of fuzzy logic deduction
A. Dvor\ aH k

Abstract This paper presents a new linguistic approxima-
tion algorithm and its implementation in the frame of fuzzy
logic deduction. The algorithm presented is designed
for fuzzy logic deduction mechanism implemented in
Linguistic Fuzzy Logic Controller (LFLC).
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1
Introduction
This article deals with the problem of linguistic approximation.
By definition, linguistic approximation is a procedure which
assigns linguistic expression to a given fuzzy set.

The usual method of obtaining results in fuzzy systems is
called defuzzification. It means that as soon as we perform one
step of inference mechanism, we defuzzify the obtained fuzzy
set and receive one crisp number. However, it is not much in
the spirit of fuzzy logic. It is the only possibility in fuzzy
control, because we need control action, e.g. electric current or
gas flow, as a crisp number in order to perform the next step of
the control process.

In other kinds of fuzzy systems, e.g. fuzzy expert systems,
decision support systems, etc., we need something different. It
is desirable to obtain a linguistic expression better than the
crisp number. The former have similar form as the linguistic
expressions which enter the inference mechanism. We must
use the linguistic approximation for this purpose.

There are several approaches to this problem, e.g. in
[4, 13]. In [7], a good overview of the approaches presented so
far is given. In our approach, we will suppose that fuzzy sets
which enter the linguistic approximation algorithm are outputs
of a fuzzy logic deduction. If it is the case, then we are allowed
to construct the linguistic expression which corresponds to
these fuzzy sets by using atomic terms and linguistic modifiers
used in the fuzzy logic deduction.

This paper is organized as follows: In Sect. 2 we present
basic theory of fuzzy logic deduction, Sect. 3 contains
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description of the linguistic approximation procedure,
Sect. 4 presents two examples, and Sect. 5 contains some
conclusions.

2
Fuzzy logic deduction
There are several approaches to fuzzy inference, which is the
implementation of the modus ponens inference rule in which
the implication and possibly the premise are also given
vaguely. They differ mainly in the interpretation of implica-
tion. One approach, known as Mamdani—Zadeh inference or
fuzzy interpolation or Max-t-norm inference, is essentially an
approximation of an unknown function [5]. The second
approach, which we call fuzzy logic deduction, uses the
'ukasiewicz implication operator as a basis for the inference
mechanism. The basic scheme known as generalized modus
ponens is the following:
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Hence, the conclusion B@ can be slightly different from all
B

j
, j\1, 2, r.
Natural language expressions A

ij
, B

j
in the generalized

modus ponens scheme are assumed to have the following form
[12]:

Slinguistic modifierTSatomic termT. (1)

The atomic terms characterize various properties of objects,
and the linguistic modifiers specify various nuances of
properties. To describe some qualitative property linguistically
we need an ordered linguistic scale with three atomic terms
small, medium and big.

The linguistic expressions A are generally assigned the
fuzzy sets AL

\
U. In [12], it is shown in detail how the

membership functions for the meanings of the atomic terms
can be derived using the concept of the horizon. In Fig. 1,
typical membership functions of the atomic terms are depicted.
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Fig. 1. Membership functions S~, S` and p fuzzy
sets. They usually correspond to the meaning of the
atomic terms small, big and medium, respectively

In [12], it is also proposed to understand the atomic term
medium as a compound term of the form

medium\medium1 or medium2,

where medium1 is the increasing and medium2 decreasing part
of the membership function for medium (cf. Fig. 1).

The membership functions of the meanings of atomic
terms can have linear, quadratic or exponential form. In our
opinion, the quadratic shape of the membership functions (see
Fig. 1) best fits the meaning of the atomic terms as used by the
people.

The linguistic modifiers [12, 11] are derived by
means of the concept of the horizon shift. They can
be divided into two categories, namely, linguistic modifiers
with narrowing effect (very, extremely, etc.) and with widening
effect (more or less, roughly). The linguistic modifiers with
widening effect only are permitted for use with the atomic term
medium.

The meanings of the linguistic expressions (1) can be
modeled using fuzzy sets with membership functions taken
from some class of functions Z(U), [12]

Z(U)\MZ, S D Z, S: U][0, 1]N,

where members of the class of non-decreasing functions
Z model the meanings of linguistic expressions with atomic
terms small and medium1, and members of the class of
non-increasing functions S model the meanings of linguistic
expressions with atomic terms medium2 and big.

Let the fuzzy sets A
ij
, i\1, 2, n, j\1, 2, r and

B
j
, j\1, 2, r represent the meanings of all the natural

language expressions Aij and Bj , respectively, which occur in
the generalized modus ponens scheme above. Then the fuzzy
set B@ representing the meaning of the conclusion B@ can be

computed using the formula [3, 8]
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where U
1
, 2, U

n
are universes of discourse of the antecedent

variables, A@
i

are fuzzy sets which represent the observations,
? and ] are 'ukasiewicz conjunction and implication,
respectively.

3
Linguistic approximation algorithm
The linguistic approximation is, in general, a method, which
assigns linguistic expression to the given fuzzy set. Formally,
we can describe this method as follows [9]:

First, we define a similarity relation between fuzzy sets:

Definition 1 A fuzzy relation

RL
\

F(U)]F(U),

where F(U)\[0, 1]U is the set of all fuzzy sets on U, is called
similarity relation, if for all A, B3F(U) the following condi-
tions hold:

1. RSA, AT\1,
2. RSA, BT\RSB, AT,
3. Supp(A)WSupp(B)\0 implies RSA, BT\0,

where

Supp(A)\Mx3U DAx[0N

is the support of the fuzzy set A.
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Definition 2 Let SX, T(X), U, G, MT be a linguistic variable
[14], where X is name of the variable, T(X) is the term set,
U is the universe, G and M are the syntactic and semantic
rules, respectively. Let A

0
L
\

U be a fuzzy set and
RL

\
F(U)]F(U) be a fuzzy relation defined above. Then the

term A3T(X), for which is RSM(A), A
0
T maximal, is called

the linguistic approximation of the fuzzy set A
0
.

If there are more terms Ai with the same value of
RSM(Ai), A

0
T, then we should use different similarity

measure (possibly more sensitive in this individual situation).
Definition 2 states that we search for the term, whose meaning
is most similar to the approximated fuzzy set. There are several
problems encountered:

f we have to search not only among atomic and modified
atomic terms, but also among composed terms, e.g. roughly
small or medium,

f the fuzzy set which enters linguistic approximation can be
subnormal,

f the information included in the fuzzy set which enters
linguistic approximation can be distorted or noisy.

The algorithm which performs linguistic approximation
has to take the above-mentioned problems into consideration.
The algorithms of the linguistic approximation can be divided
into two categories [7]:

1. Algorithm performing the entire check of the term set,
2. Algorithm based on the piecewise decomposition of the

fuzzy set.

In the first method, we simply compare a given fuzzy set
with all the fuzzy sets corresponding to the terms from the
term set. Some similarity relation is used for the determination
of similarity between these fuzzy sets. The term whose meaning
has the smallest distance from the given one is taken as the
result.

The Piecewise Decomposition method, in general, decom-
poses the given fuzzy set into several pieces or segments,
determines the linguistic term for each of them, and then
constructs the result by means of logical connectives [4].

In our approach, we want the resulting expression to have
the form

Slinguistic modifier
1
T SsmallT or Slinguistic modifier

2
T

SmediumT or Slinguistic modifier
3
T SbigT,

where Slinguistic modifieriT, i\1, 2, 3 are linguistic modifiers
described in Sect. 2 including special modifiers empty and
ignored. Modifier empty does not change the membership
function which models the meaning of the atomic term.
Modifier ignored forces the membership function which model
the meaning of modified atomic term to be identically equal
to zero. Thus we can obtain linguistic expression with one, two
or three linguistic expressions (1) connected by the connective
or. We divide approximated fuzzy set into several segments
and determine the atomic term and the modifier to each of
them.

Fuzzy sets which enter linguistic approximation are
outputs B@ of fuzzy logic deduction described by formula (2),
which is in real situations always performed on discretized
universes U

1
, U

2
, 2, Un. Thus fuzzy set B@ is also discrete and

we can in the following consider only fuzzy sets defined on the
linearly ordered discrete universe U\Mx

1
, x

2
, 2, x

m
N.

The linguistic approximation algorithm can be described in
the following steps:

1. Divide the membership function of the given fuzzy set into
segments.

2. Discard ‘‘horizontal’’ segments, which bear no information.
3. Decide, for each segment, whether segment is ‘‘peak’’ or

‘‘section’’.
4. For all segments, if the segment is ‘‘peak’’ then normalize it.
5. Compare segments with meanings of terms from the term

set and find term with the highest membership degree of
similarity relation.

6. Compose resulting linguistic expression by means of
connectives.

Ad 1: We divide membership function into segments whose
boundaries are defined as follows:

Definition 3 Let A be a fuzzy set on universe U\Mx
1
, x

2
,

2, x
m
N. The point x

i
3U is boundary if x

i
\x

0
or xi\x

m
or

sgn(x
i`1

[x
i
)Osgn(x

i
[x

i~1
),

where

sgn(x)\G
[1, x\0,

0, x\0,

1, x[0.

Definition 4 Let A be a fuzzy set from Definition 3 and

B\Mb1, b2, 2, bkN, k\m

be a set of all boundary points. Then sets Si-U

Si\Mxj\bi, xj`1, 2, xj`l\bi`1N, i\1, 2, 2, k[1

are segments of A.

Ad 2: Segment Si which satisfies Abi\Abi`1 is called
horizontal. Horizontal segments bear, in our opinion, no
information about resulting linguistic expression, and there-
fore, they are discarded.

Ad 3: Other kinds of segments are: sections and peaks.

Definition 5 Segment Si is a section if its first boundary point
bi satisfies

K
Axj`1[2Abi]Axj~1

xj`1[xj~1 K[i, (3)

where xj~1, xj`1 are the two closest neighbours of bi in U, or its
second boundary point bi`1 satisfies

K
Axj`1[2Abi`1]Axj~1

xj`1[xj~1 K[i, (4)

where xj~1, xj`1 are the two closest neighbour points of bi`1 in
U. If formulae (3) and (4) are not fulfilled then the segment Si is
a peak.

The value of the constant i is important for the proper
distinguishing between sections and peaks. If i is too big, then
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the segment of type peak can be recognized as section and vice
versa. We obtained the best results with i\0.5. Informally, the
peak is the segment which corresponds to ‘‘upper’’ part of
membership function, i.e. the part in which the global
maximum of membership function is included, and the section
is the segment which corresponds to that part of the member-
ship function which does not include global maximum.

Ad 4: If the segment is of the type ‘‘peak’’ and is subnormal,
i.e. the maximal membership degree is smaller than 1, then
we have to normalize it. The reason is that the meanings of
terms from our term set are all normal fuzzy sets. The simplest
way to normalize the ‘‘peak’’ is to find out the maximal
membership degree M\Sx|Si

Ax in the segment Si and to
modify all membership degrees using the formula

A
.0$

x\
Ax
M

, ∀x3Si .

Ad 5: The term most appropriate to the given segment
can be obtained as follows: we generate fuzzy sets which
correspond to all the possible linguistic terms with the same
atomic term. As a atomic terms we consider small, big,
medium1 and medium2, as described in Sect. 2. The term we
determined as the most appropriate is that which has a mem-
bership function most similar to the given segment.

The following formula can be used for computation of the
similarity relation [9]:

RSA, BT\

1[
(1/d(SuppAXSuppB)) +

x|S611AXS611B
f (Ax[Bx)

(1/dSuppA) +
x|S611A

f (Ax)](1/dSuppB) +
x|S611B

f (Bx)
,

(5)

where d(C) denotes the number of elements of the set C, and

f : [[1, 1]][0, 1]

is an even continuous measurable function increasing on
[0, 1].

As the most appropriate term we choose that with the
maximal value of R. Functions f (x) are chosen from the family
of functions Fe\MDxD, x2, x4,2N. We start with f (x)\DxD and if
there are more than one term with the same maximal value of
R, we use the subsequent f3Fe .

Ad 6: In the last step of algorithm we compose segments
with assigned atomic terms medium1 and medium2 to one
medium term, and then compose all partial terms by means of
the connective or.

4
Example
In this section, we present our linguistic approximation
algorithm working on two fuzzy sets, depicted in Figs. 2 and 3.

The shape of the membership function of fuzzy set in Fig. 2
suggests that the corresponding linguistic expression should be
composed of two partial expressions with atomic terms
medium and big connected by or. Linguistic approximation
algorithm indeed gives us the expected result.

At first, we perform Step 1 of our algorithm, division to
segments. Result is shown in Fig. 2 and labeled as S1, S2, S3, S4.

Fig. 2. Example 1 fuzzy set

Fig. 3. Example 2 fuzzy set

Then, horizontal segment S2 is discarded (Step 2). All
remaining segments S1, S3 and S4 are of type ‘‘section’’
(Step 3), i.e. they do not include the global maximum of the
membership function. Since the normalization (Step 4) is
performed only for segments of type ‘‘peak’’, it is not used here.

In Step 5, we compare segments S1 and S3, whose
membership function is increasing with fuzzy sets which
model the meaning of linguistic expressions (1) with atomic
terms small and medium1, and segment S4 whose membership
function is decreasing with fuzzy sets which model the
meaning of linguistic expressions (1) with atomic term
medium2 and big. The comparison is performed by means of
formula (5). We obtained the following results: S1 corresponds
to more or less medium1, S3 to roughly big and S4 to more or
less medium2. As the last step, we compose the final linguistic
expression: more or less medium or roughly big.

Linguistic expression describing fuzzy set depicted in Fig. 3
should also be composed of expressions with atomic terms
medium and big, but segments S2, S4 and S6 are of type
‘‘peak’’. As all these segments are normal, no normalization is
necessary. Segments S1, S3, S5 and S7 are horizontal. Steps 5
and 6 of linguistic approximation algorithm gives us the final
result quite roughly medium or big.

5
Conclusion
Applications of linguistic approximation can be found when-
ever we need linguistic description of results given by fuzzy
systems. The easy interpretability of fuzzy systems is one of
their crucial features, and linguistic approximation allows to
interpret results given by them.

The most promising is the field of expert systems and
decision support systems, where we do not need crisp
(defuzzified) value, but rather linguistic expression which can
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be easily understood by humans. Other fields of application
can be found in fuzzy data analysis and fuzzy modeling [13],
various kinds of medical systems, and even in some types of
fuzzy control [2, 1].
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