COMBINATORICA **18** (2) (1998) 293[–296](#page-3-0)

COMBINATORICA

Bolyai Society – Springer-Verlag

NOTE

EDGE-COLORING CLIQUES WITH THREE COLORS ON ALL 4-CLIQUES

[DHRUV MUBAYI](#page-3-0)

Received March 12, 1998

A coloring of the edges of K_n is constructed such that every copy of K_4 has at least three colors on its edges. As $n \to \infty$, the number of colors used is $e^{O(\sqrt{\log n})}$. This improves upon the previous probabilistic bound of $O(\sqrt{n})$ due to Erdős and Gyárfás.

1. The Problem

The classical Ramsey problem asks for the minimum n such that every k coloring of the edges of K_n yields a monochromatic K_p . For each n below this threshold, there is a k -coloring such that every p -clique receives at least 2 colors. Since the thresholds are unknown, we may study the problem by fixing n and asking for the minimum k such that $E(K_n)$ can be k-colored with each p-clique receiving at least 2 colors. This generalizes naturally as follows.

Definition. For integers n, p, q , a (p, q) -coloring of K_n is a coloring of the edges of K_n in which the edges of every p-clique together receive at least q colors. Let $f(n, p, q)$ denote the minimum number of colors in a (p, q) -coloring of K_n .

The function $f(n, p, q)$ was first studied by Elekes, Erdős and Füredi (as described in Section 9 of $[1]$). Erdős and Gyárfás $[2]$ $[2]$ later improved the results, using the Local Lemma to prove an upper bound of $O(n^{c_{p,q}})$, where $c_{p,q} = \frac{p-2}{\binom{p}{2}-q+1}$. In addition they determined, for each p, the smallest q such that $f(n, p, q)$ is linear in n, and the smallest q such that $f(n, p, q)$ is quadratic in n. Many small cases remain unresolved, most notably the determination of $f(n,4,3)$. Indeed, the Local Lemma shows only that $f(n,4,3)=O(\sqrt{n})$, but it remains open even whether $f(n,4,3)/\log n\rightarrow\infty$.

Mathematics Subject Classification (1991): 05C35, 05C55, 05D10

294 DHRUV MUBAYI

In this note we show that the optimal $(4,3)$ -coloring of K_n uses many fewer colors than the random $(4,3)$ -coloring. We do this by explicitly constructing a $(4,3)$ coloring of K_n . Our main theorem is the following:

Theorem. $f(n, 4, 3) < e^{\sqrt{c \log n} (1 + o(1))}$, where $c = 4 \log 2$.

2. The Coloring

In this section we describe the coloring of $E(K_n)$.

We write $[n]$ for $\{1,2,\ldots,n\}$. The symmetric difference of sets A and B is $A \triangle B = (A - B) \cup (B - A)$. For integers $t < m$, let $\begin{pmatrix} [m] \\ t \end{pmatrix}$ denote the family of all *t*-subsets of $[m]$.

Let G be the complete graph on $\binom{m}{t}$ vertices. Let $V(G) = \binom{[m]}{t}$, and for each t-set T of [m], rank the $2^t - 1$ proper subsets of T according to some linear order. Color the edge AB with the two dimensional vector

$$
c(AB) = (c_0(AB), c_1(AB))
$$

where

$$
c_0(AB) = \min\{i : i \in A \triangle B\}.
$$

Set

$$
S = \begin{cases} A & \text{if } c_0(AB) \in A \\ B & \text{if } c_0(AB) \in B. \end{cases}
$$

Let $c_1(AB)$ be the rank of $A \cap B$ in the linear order associated with the proper subsets of S.

In this construction, the number of colors used is at most $(2^t - 1)(m-1)$.

Remark. This construction is valid even if we let the vertex set consist of all subsets of $[m]$ of size at most t, but the gain in the number of vertices is asymptotically negligible.

3. The Proof

We now check that our coloring is a $(4,3)$ coloring of K_n . First observe that there are no monochromatic triangles. Indeed, if ABC is one such triangle, and $c_0(AB) = i \in A$, then, since $c(AB) = c(BC)$ implies that $c_0(AB) = c_0(BC)$, we have $i \in C$. But now $i \notin A \triangle C$, so $c(AC) \neq c(AB)$.

Since monochromatic triangles are forbidden, the only types of 2-colored K_4 's that can occur are those in [Figure 1](#page-2-0).

Type 1. Here one color class is the path ABCD, while the other is the path BDAC. Suppose $c_0(AB)=i$.

Fig. 1. The 2-colored K_A 's

Case 1. $i \in A$. Then $i \in C$ and $i \notin B, D$. Moreover,

$$
A \cap [i-1] = B \cap [i-1] = C \cap [i-1] = D \cap [i-1]
$$

because i is the smallest element in $A\Delta B$ and $c(AB) = c(BC) = c(CD)$. This implies that $c_0(AC) > i = c_0(AD)$. Thus $c(AC) \neq c(AD)$.

Case 2. $i \in B$. Then $i \in D$ and $i \notin A, C$. Reversing the labels on the path ABCD now puts us back in Case 1.

Type 2. Here one color class is the 4-cycle ABCD, while the other contains the edges AC and BD. By symmetry we may assume that $c_0(AB) \in A-B$; and hence also $c_0(AB) \in C-D$. Thus $c_0(AD)=c_0(AB) \in (A \cap C)-(B \cup D)$, which implies that

1) $c_1(AB)$ is the rank of $A \cap B$ in A, and

2) $c_1(AD)$ is the rank of $A \cap D$ in A.

Since the rank of a subset in a set identifies the subset, we have $A \cap B = A \cap D$. Interchanging the roles of A and C, we obtain $C \cap B = C \cap D$.

Because $c(AC) = c(BD)$, we may assume that $c_0(AC) = c_0(BD) = i$. Thus either $i \in (A \cap B) - (C \cup D)$, or $i \in (A \cap D) - (C \cup B)$, or $i \in (C \cap B) - (A \cup D)$, or $i \in (C \cap D) - (A \cup B)$. Each of these four cases contradicts either $A \cap B = A \cap D$ or $C \cap B = C \cap D$.

Proof of Theorem. Set $t = \lceil \sqrt{\log n} / \sqrt{\log 2} \rceil$ and choose m such that $\binom{m}{t} < n \leq$ $\binom{m+1}{t}$. Since f is a nondecreasing function of n and $(m/t)^t < \binom{m}{t}$ for $t < m$, we have

$$
f(n, 4, 3) \le f\left(\binom{m+1}{t}, 4, 3\right)
$$

\n
$$
\le (2^t - 1)m
$$

\n
$$
< 2^t t n^{1/t}
$$

\n
$$
= (1 + o(1)) e^{2\sqrt{\log 2 \log n} + \frac{\log \log n - \log \log 2}{2}}
$$

\n
$$
= e^{\sqrt{4 \log 2 \log n} (1 + o(1))}.
$$

Acknowledgements. The author thanks András Gyárfás for directing his attention to [[2\]](#page-3-0) and providing a copy of it, Gergely Harcos for simplifying the original construction, and Douglas B. West for improving the presentation of this paper.

П

296 D. MUBAYI: EDGE-COLORING CLIQUES WITH THREE COLORS ON ALL 4-CLIQUES

References

- [1] P ERDOS: Solved and unsolved problems in combinatorics and combinatorial number theory, Congressus Numerantum, **32** (1981), 49–62.
- [2] P ERDŐS and A. GYÁRFÁS: A variant of the classical ramsey problem, Combinatorica, **17** (1997), 459–467.

Dhruv Mubayi

School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160 mubayi@math.gatech.edu