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NOTE

EDGE-COLORING CLIQUES WITH THREE COLORS ON ALL
4-CLIQUES
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A coloring of the edges of Kn is constructed such that every copy of K4 has at least three

colors on its edges. As n→∞, the number of colors used is eO(
√

logn ). This improves upon the
previous probabilistic bound of O(

√
n) due to Erdős and Gyárfás.

1. The Problem

The classical Ramsey problem asks for the minimum n such that every k-
coloring of the edges of Kn yields a monochromatic Kp. For each n below this
threshold, there is a k-coloring such that every p-clique receives at least 2 colors.
Since the thresholds are unknown, we may study the problem by fixing n and asking
for the minimum k such that E(Kn) can be k-colored with each p-clique receiving
at least 2 colors. This generalizes naturally as follows.

Definition. For integers n,p,q, a (p,q)-coloring of Kn is a coloring of the edges
of Kn in which the edges of every p-clique together receive at least q colors. Let
f(n,p,q) denote the minimum number of colors in a (p,q)-coloring of Kn.

The function f(n,p,q) was first studied by Elekes, Erdős and Füredi (as de-
scribed in Section 9 of [1]). Erdős and Gyárfás [2] later improved the results, using

the Local Lemma to prove an upper bound of O(ncp,q ), where cp,q = p−2

(p2)−q+1
. In

addition they determined, for each p, the smallest q such that f(n,p,q) is linear
in n, and the smallest q such that f(n,p,q) is quadratic in n. Many small cases
remain unresolved, most notably the determination of f(n,4,3). Indeed, the Lo-
cal Lemma shows only that f(n,4,3)=O(

√
n ), but it remains open even whether

f(n,4,3)/ logn→∞.
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In this note we show that the optimal (4,3)-coloring of Kn uses many fewer
colors than the random (4,3)-coloring. We do this by explicitly constructing a (4,3)
coloring of Kn. Our main theorem is the following:

Theorem. f(n,4,3)<e
√
c logn (1+o(1)), where c=4log2.

2. The Coloring

In this section we describe the coloring of E(Kn).
We write [n] for {1,2, . . . ,n}. The symmetric difference of sets A and B is

A4B = (A−B)∪ (B−A). For integers t <m, let
(

[m]
t

)
denote the family of all

t-subsets of [m].

Let G be the complete graph on
(m
t

)
vertices. Let V (G)=

([m]
t

)
, and for each

t-set T of [m], rank the 2t−1 proper subsets of T according to some linear order.
Color the edge AB with the two dimensional vector

c(AB) = (c0(AB), c1(AB))

where
c0(AB) = min{i : i ∈ A4B}.

Set

S =
{
A if c0(AB) ∈ A
B if c0(AB) ∈ B.

Let c1(AB) be the rank of A∩B in the linear order associated with the proper
subsets of S.

In this construction, the number of colors used is at most (2t−1)(m−1).

Remark. This construction is valid even if we let the vertex set consist of all subsets
of [m] of size at most t, but the gain in the number of vertices is asymptotically
negligible.

3. The Proof

We now check that our coloring is a (4,3) coloring of Kn. First observe that
there are no monochromatic triangles. Indeed, if ABC is one such triangle, and
c0(AB)= i∈A, then, since c(AB)=c(BC) implies that c0(AB)=c0(BC), we have
i∈C. But now i 6∈A4C, so c(AC) 6=c(AB).

Since monochromatic triangles are forbidden, the only types of 2-colored K4’s
that can occur are those in Figure 1.

Type 1. Here one color class is the path ABCD, while the other is the path BDAC.
Suppose c0(AB)= i.
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Type 2

A B

CD

Type 1

A B

CD

Fig. 1. The 2-colored K4’s

Case 1. i∈A. Then i∈C and i 6∈B,D. Moreover,

A ∩ [i− 1] = B ∩ [i− 1] = C ∩ [i− 1] = D ∩ [i− 1]

because i is the smallest element in A4B and c(AB) = c(BC) = c(CD). This
implies that c0(AC)>i=c0(AD). Thus c(AC) 6=c(AD).

Case 2. i∈B. Then i∈D and i 6∈A,C. Reversing the labels on the path ABCD
now puts us back in Case 1.

Type 2. Here one color class is the 4-cycle ABCD, while the other contains the
edges AC and BD. By symmetry we may assume that c0(AB)∈A−B; and hence
also c0(AB)∈C−D. Thus c0(AD)=c0(AB)∈(A∩C)−(B∪D), which implies that

1) c1(AB) is the rank of A∩B in A, and
2) c1(AD) is the rank of A∩D in A.
Since the rank of a subset in a set identifies the subset, we have A∩B=A∩D.

Interchanging the roles of A and C, we obtain C∩B=C∩D.
Because c(AC) = c(BD), we may assume that c0(AC) = c0(BD) = i. Thus

either i ∈ (A∩B)− (C ∪D), or i ∈ (A∩D)− (C ∪B), or i ∈ (C ∩B)− (A∪D), or
i∈ (C∩D)− (A∪B). Each of these four cases contradicts either A∩B=A∩D or
C∩B=C∩D.

Proof of Theorem. Set t =
⌈√

logn/
√

log2
⌉

and choose m such that
(m
t

)
< n ≤(m+1

t

)
. Since f is a nondecreasing function of n and (m/t)t <

(m
t

)
for t < m, we

have

f(n, 4, 3) ≤ f
((

m+ 1
t

)
, 4, 3

)
≤ (2t − 1)m

< 2tt n1/t

= (1 + o(1)) e2
√

log 2 logn+ log log n−log log 2
2

= e
√

4 log 2 log n (1+o(1)).
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