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RANDOM MATCHINGS IN REGULAR GRAPHS
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For a simple d-regular graph G, let M be chosen uniformly at random from the set of all
matchings of G, and for x∈V (G) let p(x) be the probability that M does not cover x.

We show that for large d, the p(x)’s and the mean µ and variance σ2 of |M | are determined
to within small tolerances just by d and (in the case of µ and σ2) |V (G)|:
Theorem. For any d-regular graph G,

(a) p(x)∼d−1/2 ∀x∈V (G), so that |V (G)|−2µ∼|V (G)|/
√
d,

(b) σ2∼|V (G)|/(4
√
d),

where the rates of convergence depend only on d.

1. Introduction

Given a graph G= (V,E), write M(G) for the set of matchings of G, and let
M be chosen uniformly at random fromM(G). (For graph theory background see
e.g. [24]. We use “graph” to mean simple graph.) In this paper we are concerned
with the behavior of M , and in particular of the random variable ξ = ξG = |M |,
when G is regular of large degree.

Set pk = pk(G) = Pr(ξ= k). The distribution {pk} (for a general G) has been
considered in many contexts, in physics and chemistry as well as mathematics. We
will not try to give a thorough bibliography, but see e.g. [20], [13], [23], [7], [8], [9],
[24, Chapter 8].

These distributions are in some ways very nice. For instance, as shown in [12],
[13], [23], for any G the probability generating function

(1) f(G;λ) =
∑
k

pkλ
k

has real roots. This gives log-concavity of the sequence {pk} (c.f. “Newton’s
inequalities,” e.g. [10, p.51]), and implies that the distribution is approximately
normal provided the variance σ2 = σ2

ξ =: σ2(G) is large. (The latter is essentially
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due to L. Harper [11]. See the two paragraphs preceding Theorem 1.2 for some
discussion and references concerning the question of when σ2 is large.)

Here we show that for regular G the behavior of {pk} is nice in another sense:
the mean (µ= µξ =:µ(G)) and variance of ξ are remarkably well determined just
by the degree and number of vertices of G.

Before stating this we need a finer parameter than µ. For x∈V , write x≺M
if x is covered by (i.e. is contained in some edge of) the matching M , and set

p(x) = pG(x) = Pr(x 6≺M).

Thus µ=(n−
∑
x∈V p(x))/2, where, here and throughout the paper, we set |V |=n.

Theorem 1.1. For any d-regular graph G,

(a) p(x)∼d−1/2 ∀x∈V (G), so that n−2µ(G)∼n/
√
d,

(b) σ2(G)∼n/(4
√
d).

Here the limits are taken as d→∞; so for example p(x)∼d−1/2 means

(1− o(1))d−1/2 < p(x) < (1 + o(1))d−1/2,

where o(1) depends only on d, and not on G or x. Let us stress that what’s
interesting here is the existence of the limiting values (d−1/2, n/(4

√
d)), rather

than the values themselves.
(The values themselves are easily seen to be a natural expression of the idea

that the events {x≺M} are roughly independent. To see this, we observe the easy
identity (see (5))

p(x) =

(
1 +

∑
y∼x

p(y|x)

)−1

(where the conditional probability p(y|x) has the obvious meaning). Using this, if
we pretend the events {x≺M} are mutually independent with p(x) = p for all x,
then

(2) p = (2d)−1(−1 +
√

1 + 4d) = d−1/2 + (2d)−1 +O(d−3/2)

gives (a) (see also Conjecture 1.3); while (b) derives from the fact that ξ is half the
random variable |{x∈V :x≺M}|, which has the binomial distribution B(n,1−p),
so variance np(1−p)∼nd−1/2.)

Let us also mention that it is not even easy to show that a large regular G
has large σ2(G); precisely: if Gα is dα-regular (dα 6= 0) with nα := |V (Gα)| →∞,
then σ2(Gα)→∞ as α→∞. This was shown in [7] provided dα/nα→ 0, but in
full generality only in [18] (with a proof quite different from the arguments used
here). So it is, again, rather surprising that one can say something as precise as
Theorem 1.1.
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(As more or less observed following (1), the condition σ2(Gα)→∞ is equivalent
to asymptotic normality of {pk(Gα)}k≥0. This was the reason for most of the

earlier work on σ2(G)—see [28], [24, Ch. 8] in addition to [7], [18]—though not our
principal motivation here.)

The actual bounds we establish are given in

Theorem 1.2. For any d-regular graph G and ε>0

(a) p(x)=d−1/2 +O(d−3/4+ε) ∀x∈V (G),

(b) σ2(G)=
(

1+O(d−1/4+ε)
) n

4
√
d

.

Again note the error terms depend only on d. (This is slightly abusive, in a
standard way. For example the error term in (a) does depend on G, x, but is
bounded by some O(d−3/4+ε) which depends only on d. So we should really write
|p(x)−d−1/2|<O(d−3/4+ε).)

Theorem 1.2 is proved beginning in Section 2. Before closing the present
section, we just mention a few related questions.

First, surprisingly accurate though they are, it seems possible that the bounds
in Theorem 1.2 can be strengthened considerably (compare (2)):

Conjecture 1.3. For any d-regular graph G and x∈V (G),

(a) p(x)=d−1/2−(2d)−1 +O(d−3/2),

(b) σ2(G)= 1
4nd
−1/2 +O(nd−1).

This may be wishful thinking. It does, admittedly, seem too good to be true, but
the same might have been (and was) said of Theorem 1.1 when it was not yet a
theorem. Certainly the conjecture, if true, would be fairly remarkable.

Second, it would be of considerable interest if something like Theorem 1.1 were
true for hypergraphs of fixed edge size. We recall a few definitions. (For further
background see e.g. [6] or [16].) A hypergraph H on a vertex set V is simply a
collection of subsets of V , and is k-uniform if each of its members (called edges) is
of size k. (So a 2-uniform hypergraph is a graph.) A hypergraph is d-regular if each
of its vertices is contained in exactly d edges, and simple if no two of its vertices
are contained in two distinct edges.

A matching in a hypergraph is again a collection of pairwise disjoint edges,
and, as for graphs, we write ν(H) for the size of a largest matching of H. We
extend our earlier notation (M, ξ, p(x) . . .) in the natural ways.

Conjecture 1.4. Fix k. If H is a simple, k-uniform, d-regular hypergraph on a
vertex set V of size n, then

(a) p(x)∼d−1/k ∀x∈V , so that n−kµ(H)∼nd−1/k, and in particular µ(H)∼n/k,
(b) σ2(H)∼n/(k2d1/k)
(where again limits are taken as d→∞).



204 JEFF KAHN, JEONG HAN KIM

This would be extremely interesting, not only for its own sake, but also because
of its relation to work done over the last fifteen or so years on the asymptotic
behavior of hypergraphs of bounded edge size. A central result in this area, proved
by N. Pippenger following ideas of Ajtai, Komlós and Szemerédi [1], Rödl [27] and
Frankl and Rödl [5], says in part:

Theorem 1.5. (unpublished; see [29], [6]) Fix k. If H is as in Conjecture 1.4, then

(3) ν(H) > (1− o(1))n/k,

where o(1) depends only on d.

(See also e.g. [26], [6], [16], [15], [21], [19], [14], [30], [17], [22] for exposition
and related work. For Pippenger’s Theorem in full we should relax “simple” to a
(uniform) bound o(d) on the pairwise degrees d(x,y); but we are in deep enough
waters with the present hypotheses and will not explore this extra generality.)

As was pointed out to us by Anders Johansson, it is not hard to show (using
Pippenger’s Theorem) that (3) is still true with µ in place of ν. Of course Conjec-
ture 1.4 (a) implies a much stronger result. (In fact the error term (1+o(1))d−1/kn/k
(in the approximation µ≈ n/k) implied by the conjecture is far better than what
was known, even for ν, when the present paper was written. The stronger bounds

n− kν =
{
O(nd−1/2 log3/2 d) if k = 3
O(nd−1/(k−1)) if k > 3

were subsequently established in [2].)
In contrast, for a graph G as in Theorem 1.1: (i) Vizing’s Theorem ([31] or

e.g. [24, Theorem 7.4.1]) implies ν(G) ≥ (1− 1/(d+ 1))n/2; and (ii) µ > (1−
O(d−1/2))n/2—a less precise version of Theorem 1.1 (a)—is not too hard to prove
using the approach of Section 2 (see (8)).

2. Path-trees and indication of proof

We first recall Godsil’s [8] notion of the path-tree T (G,v) associated with a graph G
and v∈V (G). (This is called a tree of walks in [8]. The present name is from [24].
Were it not for its length, we would prefer “tree of self-avoiding walks,” since we
will eventually view the vertices of T (G,v) as outcomes of a random self-avoiding
walk in G.)

The vertices of T = T (G,v) are the paths of G which begin at v. (For our
purposes a path is a sequence (y0,y1 . . . yl) of distinct vertices with yi∼yi−1.) Two
vertices of T are adjacent if one is a maximal proper subpath of the other.

We will usually use X,Y,Z, . . . for vertices of T , and in particular write V for the
singleton path (v), which we regard as the root of T . Later we will be interested
in a random path (v= y0,y1 . . . yk) in G, and will write Yl for the vertex (y0 . . . yl)
(where l≤ k). For W ∈ V (T ) we write |W| for the length of the path W, in other
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words the depth of W in T , and set Tl={W∈V (T ) : |W|= l}. We use S(W) for the
set of children of W, s(W) for |S(W)| and T (W) for the subtree rooted at W.

Path-trees T (G,v) turn out to capture considerable information about match-
ings in G, and to be in some respects easier to work with than the graph itself.
(Again see [8] or the exposition in [24].) For present purposes the relevant connec-
tion is given by

Lemma 2.1. With notation as above, pG(v)=pT (G,v)(V).

That is, the probability that a random matching of G misses v is the same as the
probability that a random matching of T misses V.
Proof. This is an immediate consequence of the main result of [8], which we repeat
here for the reader’s convenience.

The matching generating polynomial of G is

g(G;λ) = |M(G)|f(G;λ) =
∑
k

mkλ
k

where mk =mk(G) is the number of matchings of size k in G. The main result of
[8] is (equivalent to)

g(G− v;λ)/g(G;λ) = g(T − V;λ)/g(T ;λ).

Evaluation at λ=1 gives the lemma.

An advantage of working with T (G,v) is that it allows us to compute prob-
abilities pG(x) recursively. Let us extend our earlier notation, writing p(y|x) for
pG−x(y) and p(x,y) for Pr(x 6≺M,y 6≺M). Since p(x,y)=p({x,y}∈M) when x∼y,
we have

(4) p(x) +
∑
y∼x

p(x, y) = 1,

which, when divided by p(x), gives the basic identity

(5) p(x) =

(
1 +

∑
y∼x

p(y|x)

)−1

.

For trees this takes the form

(6) pT (Y)(Y) =

1 +
∑

Z∈S(Y)

pT (Z)(Z)

−1

where we write T (Y) for the subtree rooted at Y. Thus in principle we may compute
the probabilities pT (Y)(Y) recursively, beginning at the leaves and working up to
the root, V, for which pT (V)(V)=pT (V).
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For example, if T = T (G,v) with G d-regular, then it’s not hard to use this
recursion together with the obvious

(7) d− l ≤ s(W) ≤ d ∀W ∈ Tl

to show

(8) c1d
−1/2 < pG(v) < c2d

−1/2 ∀v ∈ V (G)

for some positive constants c1, c2. (This gives the bound µ(G)>(1−O(d−1/2))n/2
mentioned at the end of Section 1.)

For Theorem 1.2 the inequalities (7) are not enough—e.g. the reader could try
evaluating the extreme case

(9) s(W) =
{
d if |W| is even
d− |W| if |W| is odd

—and we must show that degree fluctuations in T (G,v) are, in some usable sense,
much more moderate than those in (9).

This is accomplished by comparing the degree s(W) of a vertex W with the
average of the degrees of its children,

s(W) =
1

s(W)

∑
U∈S(W)

s(U).

We show that, in contrast to (9), s(W) and s(W) are close for most W∈V (T ). For
the precise technical statement, set

Γ(l, ε) := {W ∈ Tl : |s(W)− s(W)| > d1/4+ε} and γ(l, ε) := |Γ(l, ε)|,

and let t = 4b
√
d logdc. (To prove (8) it’s enough to consider something like the

first
√
d logd levels of T , and this will again be true for the proof of Theorem 1.2.)

Lemma 2.2. For any fixed ε>0, if d is sufficiently large and l≤ t, then

(10) γ(l, ε) < t−1(d− t)le−dε .

This is proved in Section 3, and the derivation of Theorem 1.2 is completed in
Sections 4 and 5. The bound (10) is given in a form convenient for later calculations,
and is slightly weaker than what’s produced in Section 3.
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3. Proof of Lemma 2.2

For w∈V (G), we write N(w) for the set of neighbors of w.
For W=(v=w0 . . .wl)∈V (T ) let

δ(W) = d− s(W) = |{w0 . . . wl−1} ∩N(wl)|.

Set

δ(W) =
1

s(W)

∑
U∈S(W)

δ(U) = d− s(W).

Our proof of Lemma 2.2 is more naturally expressed in terms of these parameters,
that is, with γ(l,ε) rewritten as

γ(l, ε) = |{W ∈ Tl : |δ(W)− δ(W)| > d1/4+ε}|.

Let (v= y0,y1 . . . yt) be the natural random self-avoiding walk given by y0 = v
and

(11) Pr(yi = w|y0 . . . yi−1) = s(yi−1)−11{w∈S(yi−1)},

where, in agreement with our notation for T ,

S(yi−1) = N(yi−1) \ {y0 . . . yi−2}

and s(yi−1) = |S(yi−1)|; that is, the walk chooses yi uniformly from the as yet
unvisited neighbors of yi−1.

As earlier, we write Yl for (y0 . . .yl), thought of as a random vertex of Tl. We
will show that for Yl chosen according to this (not quite uniform) distribution on
Tl, |δ(Yl)−δ(Yl)| is very unlikely to be large; precisely, for any α>0,

(12) Pr(|δ(Yl)− δ(Yl)| > α+ 32 log2 d) < 2d2t exp
(
−α

2

2t

)
.

To see that this implies Lemma 2.2, note that for any W∈Tl,

Pr(Yl = W) ≥ d−1(d− 1)−(l−1) > d−l

whence, setting

Wα = {W ∈ Tl : |δ(W)− δ(W)| > α+ 32 log2 d},

we have

|Wα| ≤ Pr(Yl ∈Wα)
(

min
W∈Tl

Pr(Yl = W)
)−1

< 2d2t exp
(
−α

2

2t

)
dl.
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Taking α=d1/4+ε−32log2 d then gives Lemma 2.2 (and a bit more).

The key observation for the proof of (12) is that while δ(Yl) is the number
of visits to N(yl) by (y0 . . . yl−1), δ(Yl) is roughly the “expected” number of such
visits, where “expected” is used in the dynamic sense given by the function f below.
A little martingale analysis then shows that these actual and expected numbers are
likely to be close.

For fixed l∈ [t] and w∈V (G), define

(13) f(w) =
l∑
i=1

Pr(yi ∈ N(w)|y0 . . . yi−1),

(14) g(w) = |N(w) ∩ {y1 . . . yl}|.

Lemma 3.1. For any α>0

(15) Pr(∃w with |f(w)− g(w)| > α) < 2d2t exp
(
−α

2

2t

)
.

Remark. The reader may observe below that we only use the fact that |f(w)−g(w)|
is usually small when w=yl; but the proof gives the stated inequality, and in fact
we don’t see how to establish what we need for yl without proving something like
(15).

Before proving Lemma 3.1, let us see why it implies (12). Notice that

(16) g(yl) = δ(Yl).

On the other hand, we show that f(yl) is a good approximation of δ(Yl). We have

(17) δ(Yl) =
1

s(yl)

∑
{|N(u) ∩ {y0 . . . yl}| : u ∈ N(yl) \ {y0 . . . yl−1}},

while a similar expression for f(w) is

(18)
l∑

i=1

1
s(yi−1)

|(N(yi−1) ∩N(w)) \ {y0 . . . yi−2}|.

Now when w = yl, the sum of the set cardinalities appearing in (18) is not much
different than the sum in (17): the former—that is,

(19)
l∑
i=1

|(N(yi−1) ∩N(yl)) \ {y0 . . . yi−2}|
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—counts ordered pairs (u,yi−1) with 1≤ i≤ l, yl∼ u∼ yi−1, and u 6∈ {y0 . . . yi−2};
whereas the latter counts all such pairs for which u 6∈ {y0 . . . yl−1}, together with
the pairs (u,yl) with u∈N(yl)\{y0 . . . yl−1}.

The difference between these sums is thus bounded by

max
{
|{(j, i) : i ≤ j ≤ l − 1, yl ∼ yj ∼ yi−1}|, d

}
≤
(
t

2

)
,

and we have (using (7))

|f(yl)− δ(Yl)| ≤
1

s(yl)

(
t

2

)
+

l∑
i=1

∣∣∣∣ 1
s(yi−1)

− 1
s(yl)

∣∣∣∣ |N(yi−1) ∩N(yl)|

≤ 1
d− t

(
t

2

)
+
(

1
d− l −

1
d

)
ld

< 2t2d−1 ≤ 32 log2 d.

Of course this together with (16) shows that Lemma 3.1 implies (12).

Proof of Lemma 3.1. Let us for the moment fix w∈V and write

f(w)− g(w) =
l∑
i=1

Xi

where

Xi = Xi(w) = Pr(yi ∈ N(w)|y0 . . . yi−1)− 1{yi∈N(w)}.

Now {Xi}li=1 is a martingale difference sequence (that is, E[Xi|X1 . . .Xi−1] = 0),
with

(20) |Xi| ≤ 1.

So according to “Azuma’s inequality” (see, e.g., [4], [25], [3]), for any α>0,

(21) Pr(|f(w) − g(w)| > α) < 2 exp
(
−α

2

2t

)
.

Thus we have a bound like (15) for any fixed w.
For (15) we must somehow control the number of w’s under consideration. A

priori this number could be something like the number of vertices within distance
t of v (which swamps the bound in (21)); but we can reduce it by only beginning
to keep track of f(w)−g(w) when (and if) our random walk gets to within distance
2 of w.
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To do this, let us fix, solely for bookkeeping purposes, some linear ordering
“≺” of V . For each w∈V define the random variable j(w) by

j(w) =

 0 if d(v, w) ≤ 2
∞ if d(yi, w) > 2 0 ≤ i ≤ t− 1
min{i : d(yi, w) = 2} otherwise,

and then let vs be the sth vertex in the (lexicographic) ordering in which w precedes
w′ if either j(w)<j(w′) or j(w)=j(w′) and w≺w′. (Note this is a random ordering
determined by (y0 . . . yt).)

Now for 1≤s≤d2t and 1≤ i≤ t, set

Xs
i = Xi(vs).

(Note Xs
i = 0 if i ≤ j(vs). We could omit the restriction s ≤ d2t, but this adds

nothing since for larger s we have j(vs)=∞ and so Xs
i =0 for all i.)

Now for each fixed s, f(vs) − g(vs) =
∑l
i=1X

s
i , and {Xs

i }li=1 is again a
martingale difference sequence satisfying (20). Thus

Pr(|f(vs)− g(vs)| > α) < 2 exp
(
−α

2

2t

)
for each s, and

Pr(∃s ∈ [d2t], |f(vs)− g(vs)| > α) < 2d2t exp
(
−α

2

2t

)
.

But this gives (15), since (trivially) f(vs)=g(vs)=0 if s>d2t.

4. Proof of Theorem 1.2(a)

As mentioned in Section 2, we use T :=T (G,v) and pT (V) to estimate p(v). In a
sense, Lemma 2.2 says that degree fluctuations in T are much more moderate than
the extreme case (9); namely,

(22) |s(W)− s(W)| ≤ d1/4+ε

for “almost all” W∈V (T ). If stronger conditions

(23) d− |W| ≤ s(W) ≤ d− |W|+ d1/4+ε for all W ∈ V (T )

or
d− d1/4+ε ≤ s(W) ≤ d for all W ∈ V (T )
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were true, Theorem 1.2(a) would be straightforward. (For example, a complete
graph satisfies (23); cf. (7).) This is because the worst cases would be essentially

(24) s(W) =
{
d− |W| if |W| is even
d− |W|+ d1/4+ε if |W| is odd.

It turns out that (22) yields nothing worse than (24). If W∈V (T ) satisfies (22) and
all of its grandchildren X satisfy pT (x)(X)≤p for some constant p, then the identity
(6) gives

pT (w)(W) =

1 +
∑

U∈S(W)

pT (u)(U)

−1

=

1 +
∑

U∈S(W)

1 +
∑

X∈S(U)

pT (x)(X)

−1

−1

≤

1 +
∑

U∈S(W)

1
1 + s(U)p

−1

and Jensen’s inequality, (22) and s(W)≥d−|W| imply that

pT (w)(W) ≤
(

1 +
s(W)

1 + s(W)p

)−1

≤
(

1 +
s(W)

1 + (s(W) + d1/4+ε)p

)−1

≤
(

1 +
d− |W|

1 + (d− |W|+ d1/4+ε)p

)−1

.(25)

A similar lower bound can be also found. Notice that the equalities hold when
pT (x)(X)=p for all X and T is the tree described in (24).

Set pt=pt−1 =1 and for i=0,1 . . . t−2,

pi =
(

1 +
d− i

1 + (d− i + d1/4+ε)pi+2

)−1

.

We first show that pi is close to 1/
√
d for i≤ t/2 + 1, and then that the effect of

vertices violating (22) is negligible, so that pT (w)(W) is close to p|w| for most W.

Claim.

(26) pi =
1√
d

+O(d−3/4+ε) for 0 ≤ i ≤ t/2 + 1 .
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Proof. We prove this for i even; odd i is handled similarly. For i=0,2, · · · , t, define

fi(x) :=
(

1 +
d− i

1 + (d− i+ d1/4+ε)x

)−1

, x > 0

(so fi(pi+2)=pi) and denote by ai the unique positive solution of fi(ai)=ai; that
is,

ai :=
d1/4+ε − 1 +

√
(d1/4+ε − 1)2 + 4(d− i+ d1/4+ε)

2(d− i+ d1/4+ε)
.

It is easy to check that

ai =
1√
d

+O(d−3/4+ε) and 0 < ai+2 − ai ≤ d−3/2.

We will prove the following inequalities using induction in reverse order:

(27) 0 ≤ pi − ai ≤ exp
(
−3(t− i)

4
√
d

)
+

(t− i)d−3/2

2
,

for i= t, t−2, · · · ,0. (Recall that t=4b
√
d logdc.)

The base case i = t is trivial. Suppose (27) is true for i+ 2 ≤ t. Since fi is
increasing, the lower bound of the induction hypothesis gives

ai = fi(ai) ≤ fi(ai+2) ≤ fi(pi+2) = pi.

On the other hand, the Mean Value Theorem implies that there exists x with
ai≤x≤pi+2 and such that

pi − ai = fi(pi+2)− fi(ai) = f ′i(x)(pi+2 − ai).

Since f ′i(z)≤e−3/(2
√
d) for z≥ai=1/

√
d+O(d−3/4+ε), we have

pi − ai ≤ e−3/(2
√
d )

(
exp

(
−3(t− i− 2)

4
√
d

)
+

(t− i− 2)d−3/2

2
+ d−3/2

)

≤ exp
(
−3(t− i)

4
√
d

)
+

(t− i)d−3/2

2
.

If a vertex does not have many descendants which violate (22), then we only
need a small modification of the upper bound in (25) (see (31)). If it has many, it
will be called a “bad” vertex. To be formal, let 0<ε<0.1 (fixed) and Γi :=Γ(i,ε).
Then Lemma 2.2 says that

(28) |Γi| < t−1(d− t)ie−dε .
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Each vertex of Ti has at least (d−t)j−i descendants in Tj . Roughly speaking, (28)

says that at most a t−1e−d
ε

proportion of the descendants of an average vertex
violate (22). If a vertex W has more than t−1e−d

ε/2 × (d− t)j−|W| descendants
violating (22) for some j≥|W|, it is called bad. More precisely, let, for 0≤ i≤j≤ t,

(29) Bi,j := {W ∈ Ti : |T (W)∩Γj | ≥ t−1(d−t)j−ie−dε/2} and B :=
t⋃
i=0

t⋃
j=i

Bi,j

(B for bad). Clearly, (28) implies that neither v nor any of its children is in B.
Moreover, it is easy to see that

(30) |B ∩ Ti| ≤
t∑
j=i

|Bi,j | ≤
t∑
j=i

|Γj |
t−1(d− t)j−ie−dε/2

≤ t(d− t)ie−dε/2.

(We will not use this inequality until the last part of the next section.)
The following lemma and its corollary show that the effect of bad vertices is

negligible, which in particular implies Theorem 1.2(a). They will also be used in
the proof of Theorem 1.2(b).

Lemma 4.1. Let 0≤ i≤ t−1 and X∈Ti \B. Then

(31) pT (x)(X) ≤ pi + e−d
ε/2,

and

(32) pT (x)(W) ≤ pi+1 + (d− t)e−dε/2 for all W ∈ S(X).

Note that (6) and (32) yield

pT (x)(X) ≥
(

1 + d(pi+1 + (d− t)e−dε/2)
)−1

for X ∈ Ti \B .

Thus the following corollary follows from Lemma 4.1 and (26).

Corollary 4.2. Let 0≤ i≤ t/2 and X∈Ti \B. Then∣∣∣∣pT (x)(X)− 1√
d

∣∣∣∣ = O(d−3/4+ε).

In particular, we have Theorem 1.2(a).

We prove (31) for |X| even (recall that t is even) and (32) for |X| odd. The
proof when these parities are reversed is identical, except that one truncates at odd
rather than even levels in the following definition of T ′.
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If a descendant U of X violates (22) (i.e. U ∈ Γi for i = |U|) and |U| is even,
the trivial upper bound pT (u)(U) ≤ 1 will be used. We also neglect vertices U of
level |U| > t and use the trivial bound for vertices at level t. To do this, it is
convenient to introduce an auxiliary subtree T ′(X) of T (X) obtained by removing
all descendants of even vertices violating (22) and all vertices at levels greater than
t. In this subtree, leaves are vertices violating (22) or at level t. Notice that the
trees T ′(U) generated by leaves U do not have edges and so pT ′(u)(U) = 1, which
was the bound we wanted. Clearly (6) implies that for every W of even level

pT (w)(W) ≤ pT ′(w)(W),

In particular,

(33) pT (x)(X) ≤ pT ′(x)(X).

Inductive applications of the arguments used to obtain (25) will yield the
following lemma.

Lemma 4.3. For all W∈T ′(X) with |W| even, we have

(34) pT ′(w)(W) ≤ p|w| +
∑

U∈L′(W)

(d− t)−|U|+|W|(1 − p|U|),

where L′(W) is the set of leaves of T ′(W). (The vertex of a singleton tree is regarded
as a leaf.)

Proof. Let q′(W) = pT ′(w)(W). If W is a leaf of T ′, then the right side of (34) is
pT ′(w)(W) + 1−pT ′(w)(W) = 1, so the result follows. Suppose W is not a leaf, |W|
is even and (34) is true for all descendants of W with even levels. Then (6) and
Jensen’s inequality give

q(W) =

1 +
∑

U∈S′(W)

q(U)

−1

=

1 +
∑

U∈S′(W)

1

1 +
∑

X∈S′(U)

q(X)


−1

≤

1 +
s′(W)

1 + s′(W)−1
∑

U∈S′(W)

∑
X∈S′(U)

q(X)


−1

.
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Clearly, for a non-leaf W and its children U, S′(W)=S(W), S′(U)=S(U) and hence
s′(W)=s(W), s′(U)=s(U). The induction hypothesis yields

s(W)−1
∑

U∈S(W)

∑
X∈S(U)

q(X) ≤

s(W)−1
∑

U∈S(W)

∑
X∈S(U)

p|X|+s(W)−1
∑

U∈S(W)

∑
X∈S(U)

∑
Z∈L′(X)

(d−t)−|Z|+|X|(1−p|Z|).

The first term of this bound appeared when (25) was derived. That is,

s(W)−1
∑

U∈S(W)

∑
X∈S(U)

p|X| =

s(W)−1
∑

U∈S(W)

s(U)p|X| = s(W)p|W|+2 ≤ (s(W) + d1/4+ε)p|W|+2,

where the inequality uses the fact that W is not a leaf. The second term is nothing
but

s(W)−1
∑

Z∈L′(W)

(d− t)−|Z|+|W|+2(1− p|Z|) ≤
∑

Z∈L′(W)

(d− t)−|Z|+|W|+1(1 − p|Z|).

We now use the easy inequality(
1 +

α

β + x

)−1

≤
(

1 +
α

β

)−1

+ α−1x for all α, β, x > 0,

to obtain

q(W) ≤
(

1 +
s(W)

1 + (s(W) + d1/4+ε)p|W|+2

)−1

+ s(W)−1
∑

Z∈L′(W)

(d− t)−|Z|+|W|+1(1− p|Z|)

≤
(

1 +
d− |W|

1 + (d− |W|+ d1/4+ε)p|W|+2

)−1

+
∑

Z∈L′(W)

(d− t)−|Z|+|W|(1− p|Z|)

= p|W| +
∑

Z∈L′(W)

(d− t)−|Z|+|W|(1− p|Z|).
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Proof of (31). Since Lemma 4.3 and (33) give

q(X) ≤ p|X| +
∑

U∈L′(X)

(d− t)−|U|+|X|(1− p|U|),

it is enough to show that∑
U∈L′(X)

(d− t)−|U|+|X|(1− p|U|) ≤ e−d
ε/2.

But X 6∈B and pt=1 imply that∑
U∈L′(X)

(d− t)−|U|+|X|(1− p|U|) ≤
∑
j: even

|X|≤j≤t−2

∑
U∈T (X)∩Γj

(d− t)−j+|X|

≤
∑
j: even

|X|≤j≤t−2

t−1(d− t)j−|X|e−dε/2(d− t)−j+|X| ≤ e−dε/2.

The proof of (32) is the same as that of (31), except we use

|T (W) ∩ Γj | ≤ t−1(d− t)j−|W|+1e−d
ε/2

(which follows from W∈S(X) and X 6∈B).

5. Proof of Theorem 1.2(b)

First we note that

σ2(G) = Var

1
2

n− ∑
v∈V (G)

1{v 6≺M}

 =
1
4

Var

 ∑
v∈V (G)

1{v 6≺M}


and clearly

Var

 ∑
v∈V (G)

1{v 6≺M}

 =
∑

v,w∈V (G)

(pG(v, w)− pG(v)pG(w))

≤
∑

v∈V (G)

pG(v) +
∑

v∈V (G)

pG(v)
∑

w∈V (G)\{v}
(pG(w|v)− pG(w)) .

Set

I(G, v) :=
∑

w∈V (G)\{v}
(pG(w|v)− pG(w)) .
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Then Theorem 1.2(a) gives

σ2(G) ≤
(

1 +O(d−1/4+ε)
) n√

d
+

∑
v∈V (G)

p(v)I(G, v).

Theorem 1.2(b) will follow from the fact that

(35) |p(v)I(G, v)| ≤ 2d−3/4+4ε for all v ∈ V (G).

Of course (35) is a concrete expression of the idea that the indicators 1{v 6≺M} are
close to independent (compare the discussion in the vicinity of (2) of the limiting
values in Theorem 1.2).

Central to our argument are the quantities rT (W) which are the product of
pT (u)(U) over all ancestors U of W, including W itself:

rT (W) := pT (w)(W) ·
∏

U:ancestor
of W

pT (u)(U).

We know by (6) that

1 = pT (V)

1 +
∑

W∈S(V)

pT (w)(W)


and multiplying both sides by pT (V) yields

(36) pT (V) = p2
T (V) + p2

T (V)
∑

W∈S(V)

pT (w)(W).

The next lemma follows by inductive application of this argument.

Lemma 5.1.

pT (V) =
∑

W∈V (T )

r2
T (W).

Proof. We just use (36) and induction:

pT (V) = p2
T (V) + p2

T (V)
∑

W∈S(V)

pT (w)(W)

= p2
T (V) + p2

T (V)
∑

W∈S(V)

∑
U∈T (W)

r2
T (w)(U).

Since p2
T (V)=r2

T (V) and p2
T (V)r2

T (w)(U)=rT (U) for W∈S(V), the lemma follows.
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Since pT (V)=pG(v), this lemma implies that

(37) pG(v) =
∑

W∈V (T )

r2(W).

The quantity pG(v)I(G,v) (see (35)) turns out to be an alternating sum of the
r2
T (W)’s:

Lemma 5.2.

pG(v)I(G, v) =
∑

W∈V (T )\{V}
(−1)|W|−1r2(W).

Proof. The proof will be based on the recursive relations

(38) I(G, v) = −
∑

y∈NG(v)

pT (v, y)I(G \ v, y) +
∑

y∈NG(v)

pG(v, y)pG(y|v),

where G\v is the subgraph of G induced by V (G)\{v}.
To prove (38) notice that if the event {v≺M} occurs, then there must be a

unique y∈NG(v) such that the event {{v,y}∈M} occurs. Hence

(39) pG(v) +
∑

y∈N(G)

pG({y, v} ∈M) = 1,

and

pG(w) = pG(v)pG(w|v) +
∑

y∈NG(v)

pG({v, y} ∈M)pG(w|{v, y} ∈M).

Using

pG(w|v) = pG(w|v)

pG(v) +
∑

y∈NG(v)

pG({v, y} ∈M)


we have

pG(w|v)− pG(w) =
∑

y∈NG(v)

pG({v, y} ∈M) (pG(w|v)− pG(w|{v, y} ∈M)) .

Furthermore, since there is a bijection between the set all matchings containing an
edge {v,y} and the set of all matchings containing no edge incident to v or y, we
have

pG({v, y} ∈M) = pG(v, y),
and

pG(w|{v, y} ∈M) =
{
pG(w|y, v) if w 6∈ {v, y}
0 if w ∈ {v, y}.
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Thus

pG(w|v)− pG(w) =
∑

y∈NG(v)

pG(v, y) (pG(w|v)− pG(w|{v, y} ∈M))

and

I(G, v) =
∑

w∈V (G)\{v}

∑
y∈NG(v)

pG(v, y) (pG(w|v)− pG(w|{v, y} ∈M))

=
∑

y∈NG(v)

pG(v, y)
∑

w∈V (G)\{v}
(pG(w|v)− pG(w|{v, y} ∈M))

=
∑

y∈NG(v)

pG(v, y)
∑

w∈V (G)\{y,v}
(pG(w|v)− pG(w|y, v))

+
∑

y∈NG(v)

pG(v, y)pG(y|v).

Since pG(w|v)=pG\v(w) and pG(w|v,y)=pG\v(w|y),∑
w∈V (G)\{y,v}

(pG(w|v)− pG(w|y, v)) = −I(G \ v, y),

and (38) follows.
Suppose now that the lemma is true for G \ y, y ∈ NG(v). Then pG(y|v) =

pG\v(y), y∈NG(v) and the induction hypothesis imply that

pG(v, y)I(G \ v, y) = pG(v)pG\v(y)I(G \ v, y)

= pG(v)
∑

W∈V (T (Y))\{Y}
(−1)|W|y−1r2

T (y)(W),

where |W|y is the level of W in T (Y), which is |W|−1. Thus (using pG(v,y)pG(y|v)=
pG(v)p2

G(y|v))

(40) pG(v)I(G, v)

= −p2
G(v)

∑
y∈NG(v)

∑
W∈V (T (Y))\{Y}

(−1)|W|−2r2
T (y)(W) +

∑
y∈NG(v)

p2
G(v)p2

G(y|v).

For y∈NG(v), clearly

p2
G(v)r2

T (y)(W) = p2
T (V)r2

T (y)(W) = r2
T (W).

Using pG(y|v)=pT (y)(Y) we also know that

p2
G(v)p2

G(y|v) = p2
T (V)p2

T (y)(Y) = r2
T (Y).
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So altogether we have

pG(v)I(G, v) =
∑

W∈V (T )\{V}
(−1)|W|−1r2(W).

To complete the proof of (35), and therefore Theorem 1.2(b), we show tight
lower bounds on the even and odd sums of the r2

T (W)’s:

(41)
∑

W∈V (T )\{V}
|W| even

r2
T (W) ≥ pG(v)(1 − d−1/4+4ε)

2

and

(42)
∑

W∈V (T )

|W| odd

r2
T (W) ≥ pG(v)(1 − d−1/4+4ε)

2
.

(We wind up with the (4ε)’s because we often use extra factors dε to subsume
smaller but clumsier error terms.) These inequalities together with Theorem 1.2(a)
and (37) imply that∑

W∈V (T )\{V}
(−1)|W|−1r2

T (W) =
∑

W∈V (T )\{V}
r2
T (W) − 2

∑
W∈V (T )\{V}
|W| even

r2
T (W)

≤ pG(v)− 2 · pG(v)(1− d−1/4+4ε)
2

≤ 2d−3/4+4ε

and similarly ∑
W∈V (T )\{V}

(−1)|W|−1r2
T (W) ≥ −2d−3/4+4ε.

So (35) follows.
The proofs of (41) and (42) are essentially identical, so we prove only (41).

Recall s(W) is the number of chidren of W in T . Let W ∈ V (T ) be of even level.
Denote by a(W) the product of s(U)−1 over all even ancestors of W; that is,

a(W) =

 ∏
U: ancestors of W

|U| even

s(U)


−1
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(a(V) := 1). Of course, we should really use aT (W). The subscript T is ommitted
for simplicity. We also write r(W) for rT (W).

Now consider

 ∑
W∈Tl

a(W)r(W)

2

and apply the Cauchy–Schwarz inequality

to obtain

(43)

 ∑
W∈Tl

a(W)r(W)

2

≤
∑

W∈Tl
a2(W)

∑
W∈Tl

r2(W).

The next two claims give tight lower and upper bounds (respectively) on the left
hand side of (43) and the first term on the right hand side for even l, which will
yield the desired lower bound on

∑
W∈Tl r

2(W) for even l.

Claim 1.∑
W∈Tl

a(W)r(W) ≥ pG(v)
(

1− d−1/2 − 2d−3/4+2ε
)l/2

for even l ≤ t/2− 2.

Proof. We show by induction that∑
W∈Tl

a(W)r(W) ≥ pG(v)
(

1− d−1/2 − d−3/4+2ε
)l/2
− l · e−dε/5

2
.

The base case l=0 is trivial. For l>0 note that for W∈Tl+2 and its parent U and
grandparent X,

a(W) = a(X)s−1(X) and r(W) = r(X)pT (u)(U)pT (w)(W).

Hence∑
W∈Tl+2

a(W)r(W) =
∑

X∈Tl

∑
U∈S(X)

∑
W∈S(U)

a(W)r(W)

=
∑

X∈Tl
a(X)r(X)s−1(X)

∑
U∈S(X)

pT (u)(U)
∑

W∈S(U)

pT (w)(W).

Applying (6) we have

pT (u)(U)
∑

W∈S(U)

pT (w)(W) = 1− pT (u)(U)

and ∑
W∈Tl+2

a(W)r(W) =
∑

X∈Tl
a(X)r(X)s−1(X)

∑
U∈S(X)

(1− pT (u)(U)).
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For X∈Tl \B and U∈S(X), we know by (26) and (32) that

pT (u)(U) ≤ d−1/2 + d−3/4+2ε.

Therefore∑
W∈Tl+2

a(W)r(W) ≥
∑

X∈Tl\B
a(X)r(X)s−1(X)

∑
U∈S(X)

(1− pT (u)(U))

≥
(

1− d−1/2 − d−3/4+2ε
) ∑

X∈Tl\B
a(X)r(X)

≥
(

1− d−1/2 − d−3/4+2ε
) ∑

X∈Tl
a(X)r(X)−

∑
X∈B∩Γl

a(X)r(X).

The induction hypothesis implies that∑
W∈Tl+2

a(W)r(W)

≥ pG(v)
(

1− d−1/2 − d−3/4+2ε
)(l+2)/2

− l · e−dε/5
2

−
∑

X∈B∩Γl

a(X)r(X).

Hence it is enough to show ∑
X∈B∩ΓL

a(X)r(X) ≤ e−dε/5,

which follows easily from Cauchy–Schwarz, (30) and (37):

∑
X∈B∩Γl

a(X)r(X) ≤

 ∑
X∈B∩Γl

a2(X)

1/2 ∑
X∈B∩Γl

r2(X)

1/2

≤
(
t(d− t)le−dε/2(d− t)−l

)1/2
(pG(v))1/2 ≤ e−dε/5.

Claim 2. ∑
W∈Tl

a2(W) ≤ 1 + d−1/4+2ε for all even l ≤ t.

Proof. We show by induction that

(44)
∑

W∈Tl
a2(W) ≤

(
1 + 2d−3/4+ε

)l/2(
1 +

l

2t
e−d

ε
)
.
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Since l ≤ t = o(d1/2+ε), this is sufficient. As usual, the base case is trivial. For
general cases, notice that∑

W∈Tl+2

a2(W) =
∑

X∈Tl

∑
U∈S(X)

∑
W∈S(U)

a2(W)

=
∑

X∈Tl
a2(X)s−2(X)

∑
U∈S(X)

∑
W∈S(U)

1

=
∑

X∈Tl
a2(X)s−1(X)s(X).

For X∈Tl \Γl, we have

s−1(X)s(X) ≤ (1 + 2d−3/4+ε)

while for X∈Γl, we use the trivial bounds

s(X) ≥ d− t and s(X) ≤ d.

These yield

∑
W∈Tl+2

a2(W) ≤
(

1 + 2d−3/4+ε
) ∑

X∈Tl\Γl

a2(X) +
d

d− t
∑

X∈Γl

a2(X)

≤
(

1 + 2d−3/4+ε
) ∑

X∈Tl
a2(X) +

∑
X∈Γl

a2(X).

On the other hand, (28) and a(X)≤(d− t)−l give∑
X∈Γl

a2(X) ≤ t−1(d− t)le−dε(d− t)−l = t−1e−d
ε
,

so the induction hypothesis implies (44).

Proof of (41). Claims 1 and 2 with (43) imply that, for all even l ≤ t/2− 2 =
o(d1/2+ε),

∑
W∈Tl

r2(W) ≥ p2
G(v)

(
1− d−1/2 − 2d−3/4+2ε

)l (
1 + d−1/4+2ε

)−1

≥ p2
G(v)

(
1− d−1/4+3ε

)(
1− d−1/2

)l
.
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Thus

∑
W∈V (T )\{V}
|W| even

r2(W) ≥
t/2−2∑
l=2
l even

∑
W∈Tl

r2(W)

≥ p2
G(v)

(
1− d−1/4+3ε

) t/2−2∑
l=2

l: even

(
1− d−1/2

)l
.

Since
t/2−2∑
l=2

l: even

(
1− d−1/2

)l
≥ (1 − d−1/4+ε)d1/2/2

and pG(v)=d−1/2 +O(d−3/4+ε), we have, finally,

∑
W∈V (T )\{V}
|W| even

r2(W) ≥
p2
G(v)(1 − 2d−1/4+3ε)d1/2

2

≥ pG(v)(1 − d−1/4+4ε)
2

.
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