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For x,y elements of some (finite) poset P , write p(x<y) for the probability that x precedes
y in a random (uniform) linear extension of P . For u,v∈ [0,1] define

δ(u, v) = inf{p(x < z) : p(x < y) ≥ u, p(y < z) ≥ v},

where the infimum is over all choices of P and distinct x,y,z∈P .

Addressing an issue raised by Fishburn [6], we give the first nontrivial lower bounds on the
function δ. This is part of a more general geometric result, the exact determination of the function

γ(u, v) = inf{Pr(X1 < X3) : Pr(X1 < X2) ≥ u, Pr(X2 < X3) ≥ v},

where the infimum is over X= (X1, . . .,Xn) chosen uniformly from some compact convex subset
of a Euclidean space.

These results are mainly based on the Brunn–Minkowski Theorem and a theorem of Keith
Ball [1], which allow us to reduce to a 2-dimensional version of the problem.

1. Introduction

1.1. Posets

For a finite partially ordered set (poset) P , denote by p(x<y) the fraction of linear
extensions of P in which x precedes y; in other words, p(x< y) = Pr(f(x)<f(y))
where f is drawn uniformly from the set of linear extensions of P . (Following a
standard notational abuse, we identify a poset P with its element set. A linear
extension of P is then an order-preserving bijection f : P → {1, . . . ,n}, where
n= |P |.)

These probabilities are the subject of a number of fascinating problems and
results; see for example the list of references in [2].
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The present work was motivated by a class of questions raised by Peter Fish-
burn [6] (in turn suggested by [3], [4] and, according to [6], by [15], [14] and [5]).
Before discussing the general problem, let us single out the case which people (our-
selves included) seem mostly to have considered. (As sometimes happens, we can-
not point to written evidence that the problem has received much attention; we
can only say that a number of conversations over the last 10 years suggest that the
absence of progress on the problem was not due to absence of effort.)

Conjecture 1.1. There is a positive constant δ such that if x,y,z are (distinct)
elements of a poset P satisfying p(x<y)≥1/2 and p(y<z)≥1/2, then p(x<z)>δ.

That this is less obvious than it seems is suggested by the fact—whose verifi-
cation we leave to the reader (or see [6])—that it is not true if we replace 1/2 by
1/2−ε with ε>0.

As observed in [6], δ in Conjecture 1.1 cannot exceed 1/e, which in fact seems
likely to be the correct value; here we show

Theorem 1.2. Conjecture 1.1 is true with δ=1/4.

As will appear shortly (Section 1.2), Theorem 1.2 is actually true in a more
general geometric setting, where the value 1/4 is best possible.

For the general Fishburn question we define, for any u,v∈ [0,1],

(1) δ(u, v) = inf{p(x < z) : p(x < y) ≥ u, p(y < z) ≥ v}

(More formally, the infimum is over choices of P and distinct x,y,z∈P satisfying the
conditions in (1).) Fishburn’s question is: what can we say about these numbers?

The following are easy or trivial (see [6]): (i) δ is symmetric; (ii) δ(u,v) = 0
if u+ v < 1; (iii) δ(1,v) = v; (iv) δ is nondecreasing in each of its arguments; (v)
u+v−1≤δ(u,v)≤min{u,v}. (The last inequality follows from (iii) and (iv).)

Some nontrivial upper bounds for δ were given in [6], but the question of lower
bounds—i.e. any improvement of the lower bound in (v) for any u,v with u+v≥1—
has remained open. Here we give such lower bounds.

Let us mention, even before stating these, that what we prove will again be
true at a more general geometric level, where the unsightly function g we are about
to define is actually optimal.

Let T ={(u,v)∈ [0,1]2 :u+v≥1}. We assume henceforth (because of (ii)) that
all pairs (u,v) considered lie in T . Let

T̃ = {(u, v) ∈ T : v ≤ u2 − u+ 1, u ≤ v2 − v + 1}

(the shaded region in Figure 1). For (u,v)∈T , set

g(u, v) =
{

(1− u)(1− v)/(u+ v − 2
√
u+ v − 1) if (u, v) ∈ T̃

min{u, v} if (u, v) ∈ T \ T̃ .
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Figure 1

It is easy to check that ∂g/∂u,∂g/∂v>0 on the interior of T̃ , and that g(u,v)
is continous on T . So g(u,v) is monotone, and in particular, g(u,v)≤ g(u,1) = u
(and symmetrically g(u,v)≤g(1,v)=v).

Theorem 1.3. For all (u,v)∈T , γ(u,v)≥g(u,v).

Since g(1/2,1/2) = 1/4, this includes Theorem 1.2 except for the strictness
of the inequality (that is, p(x < z) > 1/4); the latter will follow from the second
assertion of Theorem 1.4 below, which allows us to add to Theorem 1.3:

If (u,v) 6∈ int (T̃ )∪{(0,1),(1,0),(1,1)}, then for x,z as in (1), p(x<z)>g(u,v).
Most likely the only possibilities for equality here are the trivial ones with u,v ∈
{0,1}. This could perhaps be proved by showing that posets never give rise (via
the reductions of Section 2) to the extreme (geometric) examples given at the end
of Section 3; but we have not really considered this.

1.2. Geometry

Here and throughout we use body to mean a full-dimensional, compact convex
subset of Rn, and use | · | for Euclidean volume (with dimension given by context),
in particular for Euclidean length.

As mentioned above, Theorems 1.2 and 1.3 are actually true in a more general
geometric setting. With K ranging over bodies and X = (X1, . . . ,Xn) drawn
uniformly from K, set

(2) γ(u, v) = inf{Pr(X1 < X3) : Pr(X1 < X2) ≥ u, Pr(X2 < X3) ≥ v}.

Theorem 1.4. For all (u,v)∈T , γ(u,v)=g(u,v). The infimum in (2) is attained iff

(u,v)∈ int(T̃ )∪{(0,1),(1,0),(1,1)}.
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To see that this contains Theorem 1.3, just recall (see [11]) that for V = (Vx :
x∈ P ) drawn uniformly from O(P ) = {v ∈ [0,1]P : x <P y ⇒ vx ≤ vy} (the order
polytope of P ), we have Pr(Vx<Vy)=p(x<y).

Remarks. The value 1/e mentioned preceding Theorem 1.2 recalls the following
surprising result of Grünbaum [7]. (See also [9], [8] for application of similar
arguments to posets. All these results are based on the Brunn–Minkowski Theorem
(e.g. [13]), which will again play an important role below.)

Theorem 1.5. Let K be a body in Rn and {x : v ·x= a} any hyperplane through

the centroid of K. Then |K∩{x :v ·x≥a}|≥(n/(n+1))n|K|>e−1|K|.

For example, this implies that if x,y,z are as in (1) with u+ v ≥ 1 and y is
an isolated element of P , then p(x < z) > 1/e. For in this case p(y < w) is (for
any w) simply the w-th coordinate, cw, of the centroid c= c(O(P )). So we have
cx≤1−u≤cz, and Theorem 1.5 then implies that p(x<z)>1/e. (Take v=ez−ex
with (ew :w∈P ) the standard basis for RP .)

So it may be useful to think of p(y<x) as a “generalized centroid” cy(x), and
consider Fishburn’s Conjecture from this point of view.

The key to the proof of Theorem 1.4 is a beautiful result of Keith Ball [1],
which, in conjunction with the Brunn–Minkowski Theorem, allows us to reduce to
a statement in dimension 2, viz.

Theorem 1.6. Suppose l1, l2, l3 are (distinct) concurrent lines in R2 and that l+i is

a half-plane bounded by li (i=1,2,3) with l+1 ∩ l
+
2 ⊆ l

+
3 . Suppose further that K is

a body with

(3) |K ∩ l+1 | ≥ u|K| and |K ∩ l+2 | ≥ v|K|.

Then |K ∩ l+3 | ≥ g(u,v)|K|. Moreover this bound is best possible for all u,v, and

equality can hold iff (u,v)∈ int(T̃ )∪{(0,1),(1,0),(1,1)}.

Ball’s result (Theorem 2.2) and its application in the present context are given
in Section 2, and the proof of Theorem 1.6 is given in Section 3. In Section 4 we give
our original proof (more or less) of Theorem 1.6 in the case u= v= 1/2. One nice
point here is Lemma 4.1, one case of which is: if there is a line l bisecting a body K,
and K ′ is the reflection of K through the midpoint of K∩ l, then |K∩K ′|≥|K|/2.

2. Log-concave functions

We write R+ for [0,∞). Recall that f :Rn→R+ is logarithmically concave (or log-
concave) if logf :Rk→ [−∞,∞) is concave (with the natural convention regarding
−∞).
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As mentioned above, we use two known results to reduce Theorem 1.4 to
Theorem 1.6. The first, which, as noted in [1] (see Lemma 2), is an easy consequence
of the the Brunn–Minkowski Theorem, is

Lemma 2.1. For an arbitrary body K and subspace H in Rn, f :H⊥→R+ given
by

(4) f(w) = |(H + w) ∩K|

is log-concave.

(So here | · | is volume in dimension dimH .)
The second is the basic result of [1] (see Theorem 5):

Theorem 2.2. Let p≥ 1 and suppose f : Rk→R+ is log-concave and positive on
some neighborhood of 0, and that

∫
f <∞. Then ‖·‖ given by

(5) ‖x‖ =
{

[
∫∞
0 f(rx)rp−1dr]−1/p if x 6= 0

0 if x = 0

is a (not necessarily symmetric) norm on Rk.

(That is, ‖αx‖=α‖x‖ for α∈R+, and ‖x+y‖≤‖x‖+‖y‖. The statement of
the theorem in [1] assumes that f is even, and concludes that ‖ ·‖ is a symmetric
norm, but the proof gives the version stated here.)

Reduction to Theorem 1.6. Suppose K is a body in Rn and that for X =
(X1, . . . ,Xn) drawn uniformly from K we have

Pr(X1 < X2) ≥ u, Pr(X2 < X3) ≥ v.

For the lower bounds of Theorem 1.4 we must show that

Pr(X1 < X3) ≥ g(u, v)

and that the inequality is strict when it is supposed to be.
(The remaining assertions of Theorem 1.4—that the infimum in (2) is not more

than g(u,v), and is actually a minimum for appropriate u,v—will follow easily
from the last sentence of Theorem 1.6, since it is easy to see that any example
achieving |K∩ l+3 |=α|K| in Theorem 1.6 can be “lifted” to an example achieving
Pr(X1 < X3) = α in (2). So we will have no more to say about this part of the
reduction.)

The reduction to Theorem 1.6 is achieved in two steps. We first use Lemma 2.1
to reduce to a 2-dimensional problem, but at the cost of replacing uniform distribu-
tion on a body by a general log-concave density. We then use a simple consequence
(Lemma 2.4) of Theorem 2.2 to replace the log-concave density by uniform distri-
bution on a body (but now in dimension 2).
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We may assume for convenience that

(6) |K| = 1.

We will apply Lemma 2.1 with

H⊥ = {x : x1 + x2 + x3 = 0, x4 = · · · = xn = 0},

which copy of R2 we rename S.
Now because of (6), f as in (4) is a (log-concave) probability density on S.

Choosing W according to f is equivalent to choosing X uniformly from K and
taking W =π(X), the projection of X on S; that is, π(X) = (X1−α,X2−α,X3−
α,0, . . . ,0), where α=(X1 +X2 +X3)/3. In particular, Pr(Wi<Wj)=Pr(Xi<Xj)
for each 1≤ i,j≤3. Thus Theorem 1.4 will follow from

Theorem 2.3. Suppose l1, l2, l3 are concurrent lines in R2 and that l+i is a half-

plane bounded by li (i=1,2,3) with l+1 ∩l
+
2 ⊆ l

+
3 . Suppose further that f :R2→R+

is log-concave with

(7)
∫
l+1

f ≥ u
∫
f,

∫
l+2

f ≥ v
∫
f.

Then
∫
l+3
f≥g(u,v)

∫
f . Equality is possible iff (u,v)∈ int (T̃ )∪{(0,1),(1,0),(1,1)}.

Notation. As usual, Sk−1 is the unit sphere in Rk. We write µ for Lebesgue
measure and σk−1 for its restriction to Sk−1. For B⊆Sk−1, set R(B) = R+B(=
{rθ :θ∈B, r∈R+}).

Lemma 2.4. Suppose f :Rk→R+ is log-concave and positive on some neighborhood

of 0 and that
∫
f <∞. Then there is a body C⊆Rk such that

|C ∩R(B)| =
∫
R(B)

fdµ

for every measurable B⊆Sk−1.

Proof. Let p=k and let D be the unit ball of the norm ‖·‖ given by (5). Then for
each measurable B⊆Sk−1,

|D ∩R(B)| =
∫
B

∫ ∞
0

1D(rθ)rk−1drdσk−1(θ) =
1
k

∫
B
‖θ‖−kdσk−1(θ)

=
1
k

∫
B

∫ ∞
0

f(rθ)rk−1drdσk−1(θ) =
1
k

∫
R(B)

fdµ.
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So C=k1/kD is the desired set.

Modulo one minor point this finishes our reduction: We may assume in The-
orem 2.3 that 0 is the common point of the lines li, and apply Lemma 2.4 (with
k=2) to reduce to an instance of Theorem 1.6.

The minor point is the requirement concerning 0 in Lemma 2.4; that is, we
cannot apply the lemma if 0 6∈ (supp(f))o. But in this case Theorem 2.3 is easily
seen directly as follows. Since g(u,v)≤min{u,v}, we may assume supp(f) either
meets l+1 \l

+
3 or is disjoint from l+1 4l

+
3 . The latter alternative implies (since supp(f)

is convex and full-dimensional) that u∈{0,1}, in which case Theorem 2.3 is trivial;
so we may assume supp(f) meets l+1 \ l

+
3 and (similarly) l+2 \ l

+
3 . But this implies

(again using convexity of supp(f)) that supp(f)∩ l+1 ∩ l
+
2 =∅ and u+v<1.

Remarks. 1. We could have avoided the preceding paragraph by dropping the
requirement involving 0 in Theorem 2.2, thus allowing ‖x‖=∞ in (5), and checking
that this does not invalidate our arguments; but it seemed preferable to treat these
essentially trivial cases as a side issue.

2. It follows from Lemma 2.4 that if we define γ′ to be the right hand side of
(2), but with X drawn from a general log-concave density, then γ′=γ; so we have
the corresponding generalization of Theorem 1.4. This can also be done a bit more
directly using the fact that any projection of a log-concave function is itself log-
concave. (Keith Ball tells us this is usually attributed to Prékopa [12] and Leindler
[10].) Substituting this for the application of Brunn–Minkowski (Lemma 2.1), we
could have started with X drawn from a general log-concave density and used the
above arguments to derive determination of γ′ from Theorem 1.6.

3. Proof of Theorem 1.6

For convenience set, for K ′ ⊆ K, p(K ′) = |K ′|/|K|. We first prove the main
assertion of Theorem 1.6, i.e. that

(8) p(K ∩ l+3 ) ≥ g(u, v).

Examples to show that g is best possible and discussion of possibilities for equality
are given at the end of the section. This order is convenient because in verifying
correctness of the examples we will appeal to the proof of (8); but the reader might
find an early peek at the examples helpful in motivating the proof.

We require two lemmas.

Lemma 3.1. Assume in Figure 2 that A1A2B1B2 is a square of area 2 with all its
vertices on the boundary of a convex body K and that B2B1 is the x-axis and
B2A1 the y-axis. Let

R1 = K ∩ {y ≥
√

2}, R2 = K ∩ {x ≤ 0}, R3 = K ∩ {y ≤ 0}, R4 = K ∩ {x ≥
√

2},
ri = |Ri| 1 ≤ i ≤ 4.
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Then (r1 +r3)(r2 +r4)≤1.

Proof. Let K ′={(a,b) :0≤b≤|K∩{x=a}|} and K ′′={(a,b) :0≤a≤|K ′∩{y=b}|}.
These are both convex under the convention |∅| < 0. Defining R′i,r

′
i,R
′′
i ,r
′′
i in

analogy with Ri,ri, we have

r′′1 = r′1 = r1 + r3, r′′2 = 0, r′′3 = r′3 = 0, r′′4 = r′2 + r′4 = r2 + r4.

Finally the desired inequality 1≥r′′1r′′4 =(r1 +r3)(r2 +r4) follows from the fact that
R′′1 and R′′4 are bounded by some support line of K ′′ at A2.

Figure 2

Lemma 3.2. If f(x) and g(x) are non-negative, concave functions on [0,1], then

1∫ 1
0 min{f(x), g(x)}dx

≤ 1∫ 1
0 f(x)dx

+
1∫ 1

0 g(x)dx

Proof. Assume f(x) attains its maximum at x=d. Let I be any measurable subset
of [0,1], a= |I∩[0,d]|, b= |I∩[d,1]|, c=a/(a+b). Then 0≤a≤c≤1−b≤1. Concavity
implies ∫ a

0
f(x)dx ≥

∫ a

0

a

c
f(
cx

a
)dx = |I|2

∫ c

0
f(x)dx,

and similarly ∫ 1

1−b
f(x)dx ≥ |I|2

∫ 1

c
f(x)dx.

Since f(x) is monotone increasing (resp. decreasing) on [0,d] (resp. [d,1]), we have∫
I∩[0,d]

f(x)dx ≥
∫ a

0
f(x)dx and

∫
I∩[d,1]

f(x)dx ≥
∫ 1

1−b
f(x)dx.
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Combining these observations we have∫
I
f(x)dx ≥ |I|2

∫ 1

0
f(x)dx.

(And of course the corresponding inequalities hold for g(x).)

Let u=
∫ 1
0 f(x)dx, v=

∫ 1
0 g(x)dx. Then choosing I={x|f(x)≤g(x)}, we have∫ 1

0
min{f(x), g(x)}dx =

∫
I
f(x)dx+

∫
[0,1]\I

g(x)dx ≥ u|I|2 + v(1 − |I|)2 ≥ uv

u+ v
.

(Remark: equality holds iff f(x) = 2ux,g(x) = 2v(1−x) or f(x) = 2u(1−x),g(x) =
2vx.)

We now turn to the lower bounds, beginning with a few easy reductions. First
observe that we may assume equality holds in (3) (otherwise translate l1, l2 so that
equality does hold, translate l3 so that the lines are again concurrent, and notice
this can only decrease |K∩ l+3 |).

We may also assume (via affine transformation) that l1, l2 are the y-axis and
x-axis respectively and that l+1 ∩ l

+
2 is the first quadrant, Q1 (so also Q1⊆ l+3 ). We

write s(l) for the slope of a line l (note −∞<s(l3)<0) and Q1,Q2,Q3,Q4 for the
four quadrants in the usual order. In Figures 3-6, an arrow attached to a line l
indicates the half-plane l+.

Finally, since we have already proved Theorem 2.3 (which contains Theorem
1.6) when 0 /∈ supp(f)o (see the ‘minor point’ following the proof of Lemma 2.4),
we may assume 0∈Ko.

We suppose li meets ∂K, the boundary of K, in Ai,Bi (i= 1,2) with Ai on
the positive axis. We distinguish three cases.

Case 1. 0 is the midpoint of both A1B1 and A2B2. (This is the main case; the
others will be handled by reducing to this one.) We may assume |0A1|= |0A2|=1.
Let R1,R2,R3,R4 denote the shaded regions in Figure 2 as indicated, and set
ri= |Ri|, k= |K|. Thus k=

∑
ri+2, u=(r1 +r4 +1)/k and v=(r1 +r2 +1)/k. By

Lemma 3.1, we have

k(r1 − r3) = r2
1 − r2

3 + (r2 + r4 + 2)(r1 − r3) ≤ r2
1 + 2r1 + r1(r2 + r4)

≤ r2
1 + 2r1 + 1 = (r1 + 1)2(9)

This implies u+v−1≤u2 and u+v−1≤ v2, so that (u,v)∈ T̃ . Equality holds in
(9) iff

(10) r3 = 0, r1(r2 + r4) = 1

Moreover again using (9), we have

(r1 + 1)(r2 + r4) + r2r4
r2 + r4

≥ r1 + 1 ≥ r1 + 1 +
√
k(r1 − r3)

2
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=
(r1 + 1)2 − k(r1 − r3)

2r1 + 2− 2
√
k(r1 − r3)

=
(r3 + 1)2 + (r3 − r1)(r2 + r4)

2r1 + 2− 2
√
k(r1 − r3)

(We can take the square root because u+ v≥ 1 implies r1 ≥ r3. We have cheated
slightly here since the denominator may vanish; but this occurs only if (10) holds,
in which case it is easy to see directly that (11) holds with equality.) It follows that

1 + r1 +
r2r4
r2 + r4

≥ (r3 + 1)2 + (r3 − r1)(r2 + r4) + (r1 + 1)(r2 + r4) + r2r4

2r1 + 2− 2
√
k(r1 − r3) + (r2 + r4)

=
(r3 + r4 + 1)(r3 + r2 + 1)

2r1 + r2 + r4 + 2− 2
√
k(r1 − r3)

=
(1 − u)(1− v)k

u+ v − 2
√
u+ v − 1

= g(u, v)k.(11)

Let K ′ = K \R1 \R3. Note that the convexity of K implies that R2 and R4 lie
between the lines A1A2 and B1B2. By Lemma 3.2, we have

(12) |K ′ ∩ (−K ′)| = 2 + |R2 ∩ (−R4)|+ |R4 ∩ (−R2)| ≥ 2 +
2r2r4
r2 + r4

.

Thus

|K ∩ l+3 | = r1 + |K ′ ∩ l+3 | ≥ r1 + |K ′ ∩ (−K ′) ∩ l+3 |

= r1 +
|K ′ ∩ (−K ′)|

2
≥ 1 + r1 +

r2r4
r2 + r4

,(13)

which with (11) gives (8).

Let r(θ) be the radius of K in direction θ. In the next case, and again in
Section 4, we make repeated use of continuity of r(θ) and the formula

(?) |K ∩R(B)| = 1
2

∫
B
r2(θ)dθ

(B⊆S1, R(B) as in Lemma 2.4)

Case 2. 0 is the midpoint of A1B1, but not of A2B2 (or vice versa). Here we
consider two possibilities.

Case 2.1. |0A2|< |0B2| (see Figure 3). That u+v≥1 implies (is actually equivalent
to) |K ∩Q1| ≥ |K ∩Q3|, which in view of (?) and the assumption |0A2| < |0B2|
implies the existence of l0 with 0< s(l0)<∞ such that |0B0|= |0A0|. (Note we
don’t need |0A1|= |0B1| here.) Choose such an l0 with s(l0) minimum (note the
minimum is attained since |0A2| 6= |0B2|), let l+0 be the half-plane bounded by l0

that contains Q2, and set v′ = p(K ∩ l+0 ). Then our choice of l0 implies (because
of (?)) that v′ > v. We can now invoke Case 1 (with l2 replaced by l0) to finish:
p(K∩ l+3 )≥g(u,v′)≥g(u,v).
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Figure 3

Figure 4

Case 2.2. |0A2|> |0B2| (see Figure 4). If there exists l0 with −∞<s(l0)< 0 such
that |0B0|= |0A0|, then we choose such an l0 with maximum slope; otherwise let
l0 = l1 and define s(l0)=−∞. Let l+0 be the half-plane bounded by l0 that contains

Q1, and set v′=p(K∩ l+0 ). Then again using (?) we have v′>v.

If s(l3)< s(l0), then l0 6= l1, and we again use Case 1: p(K ∩ l+3 )≥ g(u,v′)≥
g(u,v). If, on the other hand, s(l3)≥ s(l0), then (?) implies |K∩ l+3 |> |K ∩ l

+
2 |, so

p(K∩ l+3 )>v≥g(u,v).

Case 3. 0 is the midpoint of neither A1B1 nor A2B2. If |0A2|< |0B2|, we can repeat
the argument of Case 2.1 to reduce to Case 2 rather than Case 1 (and similarly if
|0A1|< |0B1|). If instead |0A1|> |0B1| and |0A2|> |0B2|, then the continuity of
r(θ) implies that there is l0 with −∞<s(l0)<0 such that |0B0|= |0A0|. We may
then argue as in Case 2.2, again using Case 2 in place of Case 1.

Finally we need to show that the lower bound g is best possible and that
equality in (8) is possible precisely when (u,v)∈ int(T̃ )∪{(0,1),(1,0),(1,1)}. Let K
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be the triangle CDE of Figure 5, where we retain the assumptions (in particular
that A1A2B1B2 is a square) and notation of Case 1. Choose A3,B3 so that B2B3
and B1A3 are parallel to DE and CE respectively. It is easy to see that A3,0,B3
are collinear, and we take the line joining them to be l3.

Figure 5

That equality then holds in (8) can, of course, be verified directly; but at this
point it is easier to simply observe that the argument of Case 1 gives away nothing
here: Since K satisfies (10) we have equality in (9) and (11); equality in (12) is the
observation following Lemma 3.2; and our choice of l3 gives |K ′∩l+3 |= |K ′∩(−K ′)∩
l+3 |, and so equality in (13). In view of the requirement (10), it is easy to see that
the pairs (u,v) for which the above construction can be carried out are precisely
those in int(T̃ ); so we have equality in (8) for all such (u,v).

That g is also best possible when u+ v = 1 now follows by continuity (of g).
For the cases with g(u,v) = min{u,v}, optimality of g is more trivial: just let l3
approach l1 (when g(u,v)=u) or l2. Moreover it is easy to see that equality in (8)
is impossible here (except in the trivial cases with u,v∈{0,1}), briefly because: if
Case 1 holds then equalities in (9)–(13) require that K and l3 be constructed as
above; on the other hand equality in Case 2 or Case 3 would imply a waste-free
reduction to one of the examples above, and this is easily seen to be impossible.

4. Coda: u=v=1/2

Before closing we would like to record (something like) the original proof of
Theorem 1.6 in the case u = v = 1/2, since we think it is a little nicer than the
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general proof (though the latter also seems reasonably clean considering the form
of g). As observed below, this also implies the theorem when (u,v)=(1/2,3/4).

One other case worth mentioning is u=v=5/9, for which the fact that γ(u,v)≥
4/9 is an immediate consequence of Grünbaum’s Theorem 1.5 (and γ(u,v)≤4/9 is
easy).

Let K be a body in R2. For x ∈ R2 let Kx = 2x−K (the reflection of
K through x), and define f : R2 → R+ by f(x) = |K ∩Kx|/|K|. In particular,
f(0)= |K∩(−K)|/|K|. We first observe that

(14) f is log-concave.

This is again a consequence of the Brunn–Minkowski Theorem: it is easy to check
that {(x,y)∈R2×R2 | x∈K,y ∈K ∩Kx} is a body in R4, and then Lemma 2.1
implies (14).

Lemma 4.1. If l is a line and 0 is the midpoint of l∩K, then f(0)≥2p(K∩l+)p(K∩l−).
Equality holds iff K is a triangle and l passes through a vertex of K.

Proof. If there is only one line, l, for which the midpoint of l∩K is 0, then either
(−K)∩ l+⊆K∩ l+ or K∩ l+⊆(−K)∩ l+, so

f(0) = 2 min{p(K ∩ l+), p(K ∩ l−)} ≥ 2p(K ∩ l+)p(K ∩ l−).

Otherwise, let l1 = l and let l2 be another such line. Then with notation as in Case
1 of the proof of Theorem 1.6 (and using Lemma 3.1 for the first inequality), we
have

(1 + r1 + r4)(1 + r2 + r3)
k

= 1 +
(r1 + r4)(r2 + r3)− 1

k
≤

1 +
(r1 + r4)(r2 + r3)− (r1 + r3)(r2 + r4)

k
≤

1 +
r1r3 + r2r4

k
≤ 1 +

r1r3
r1 + r3

+
r2r4
r2 + r4

,

which with Lemma 3.2 implies f(0)≥2p(K∩ l+)p(K∩ l−).
Verification of the second sentence of the lemma is left to the reader.

Lemma 4.2. If two area bisectors l1, l2 of K meet at 0, then f(0)>1/2.

Proof. We may assume that l1, l2 are the y-axis and x-axis respectively as in
Figure 6. We work in the 1-dimensional projective space L consisting of all lines
through 0. The set S of all bisectors in L is closed, hence compact (since L is
compact). We may assume that 0 is not the midpoint of any l∈S, since otherwise
we are done by Lemma 4.1 (we can’t have equality because there is only one bisector
through the midpoint of a median of a triangle). But this implies by (?) that for
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Figure 6

each l∈S, some neighbourhood of l contains no other members of S; that is, S is
discrete, and hence finite. Suppose li meets ∂K at Ai,Bi with Ai on the positive
axis, and assume

(15) |0Ai| > |0Bi|.

Given α>0 let l4, l5 be the members of L with slopes α−1 and α respectively and
l+4 , l

+
5 the half-planes defined by l4, l5 and containing Q2. For sufficiently small

α>0, (15) implies (again via (?))

|K ∩ l+4 | >
|K|
2

and |K ∩ l+5 | <
|K|
2

Thus by continuity, S contains a line of positive slope. Choose such a line l0 with
minimum slope and suppose l0 meets ∂K at A0,B0. If |0A0|> |0B0|, then by the
preceding argument we can find a line in S between l0 and l2 (i.e. with slope in
(0,α)), contradicting our choice of l0. So we must have |0A0|< |0B0|. Let Ci be
the midpoint of AiBi, i=0,1,2. Then since 0 is clearly inside the triangle C0C1C2,
Lemma 4.1 and (14) imply f(0)>1/2 unless f(Ci)=1/2 for all i=0,1,2. But this
can only happen if K is a triangle and l0, l1, l2 are its medians (see the last sentence
of Lemma 4.1); and then 0 is the centroid of K and f(0)=2/3.

The case u = v = 1/2 now follows. For if l1, l2 are bisectors of K meeting
(w.l.o.g.) at 0, and l3 is any line through 0, then for l+3 either of the half-planes

bounded by l3 we have p(K∩ l+3 )≥p(K∩(−K)∩ l+3 )=f(0)/2>1/4.

Finally, for the case (u,v)=(1/2,3/4), just note that if the desired conclusion,
p(K∩l+3 )>1/2 fails, then we have p(K∩l−3 )≥1/2, p(K∩l+1 )≥1/2. But according to

the case (1/2,1/2) this implies p(K∩ l−2 )>1/4, which is contrary to assumption.
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