
COMBINATORICA
Bolyai Society – Springer-Verlag

COMBINATORICA 18 (1) (1998) 37–59

PRIMAL-DUAL APPROXIMATION ALGORITHMS FOR FEEDBACK
PROBLEMS IN PLANAR GRAPHS

MICHEL X. GOEMANS* and DAVID P. WILLIAMSON

Received August 22, 1996

Given a subset of cycles of a graph, we consider the problem of finding a minimum-weight
set of vertices that meets all cycles in the subset. This problem generalizes a number of problems,
including the minimum-weight feedback vertex set problem in both directed and undirected graphs,
the subset feedback vertex set problem, and the graph bipartization problem, in which one must
remove a minimum-weight set of vertices so that the remaining graph is bipartite. We give a
9
4 -approximation algorithm for the general problem in planar graphs, given that the subset of

cycles obeys certain properties. This results in 9
4 -approximation algorithms for the aforementioned

feedback and bipartization problems in planar graphs. Our algorithms use the primal-dual method
for approximation algorithms as given in Goemans and Williamson [16]. We also show that our
results have an interesting bearing on a conjecture of Akiyama and Watanabe [2] on the cardinality
of feedback vertex sets in planar graphs.

1. The problems

We consider the following general problem: given a graph G=(V,E), non-negative
weights wi on the vertices i∈V , and a collection C of cycles of G, find a minimum-
cost set of vertices F such that every cycle in C contains some vertex of F . We
call this problem the hitting cycle problem, since we must hit every cycle in C.
The hitting cycle problem generalizes several other problems we will study in this
paper. If C is the set of all cycles in G, then the hitting cycle problem is equivalent
to the problem of finding a minimum-weight feedback vertex set in a graph; that is,
the problem of finding a minimum-weight set F ⊆V such that the graph G[V −F]
induced by V −F is acyclic. The feedback vertex set problem will be abbreviated
by FVS. If G is a directed graph (digraph), and C the set of all directed cycles
in G, then we have the minimum-weight feedback vertex set problem in directed
graphs (D-FVS). If we are given a set of special vertices and C is all cycles of
an undirected graph G that contain some special vertex, then we have the subset
feedback vertex set problem (S-FVS). Finally, if C contains all odd cycles of G, then
we have the graph bipartization problem (BIP); that is, the problem of finding a

Mathematics Subject Classification (1991): 90C27, 05C85, 68Q25

* Research supported in part by NSF contracts 9302476-CCR and 9623859-CCR, DARPA

contract N00014-92-J-1799, a Sloan fellowship, and IBM. This research was conducted in part

while the author was visiting IBM.

0209–9683/98/$6.00 c©1998 János Bolyai Mathematical Society

38 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

minimum-weight subset F such that G[V −F] is bipartite. All these problems are
also special cases of vertex deletion problems: that is, find a minimum-weight (or
minimum cardinality) set of vertices whose deletion gives a graph satisfying a given
property.

We will restrict our attention to the versions of these problems in which the
input graph is planar and simple. Yannakakis [30] has given a general NP-hardness
proof for almost all vertex deletion problems restricted to planar graphs; his results
apply to the planar (directed, undirected or subset) feedback vertex set problem
and to the planar graph bipartization problem. In addition, the planar D-FVS is
NP-hard even if both the indegree and outdegree of every vertex is no more than 3
[12, p. 192].

We consider approximation algorithms for these problems. An α-approxima-
tion algorithm for a minimization problem runs in polynomial time and produces
a solution of weight no more that α times the weight of an optimal solution. We
call α the performance guarantee of the algorithm. In this paper, we give a 9

4 -
approximation algorithm for a general class of planar hitting cycle problems which
includes the planar feedback vertex set problem in undirected or directed graphs,
the planar subset feedback vertex set problem in undirected graphs, and the planar
graph bipartization problem.

Our algorithms are based on the primal-dual method for approximation al-
gorithms. This method has proven useful over the past few years in designing
algorithms for network design problems (see, for example, [15, 13, 21, 29]). The
authors have written a survey of this method [16] which gives a generic algorithm
and theorem for deriving approximation algorithms for the hitting set problem, of
which the hitting cycle problem is a special case. The algorithm and analysis here
are an application of the algorithm and theorem given in the survey.

We now review previously known work. For FVS in general undirected graphs,
two slightly different 2-approximation algorithms were given recently by Becker and
Geiger [6] and Bafna, Berman, and Fujito [4]; see Chudak et al. for an overview
[8]. These algorithms improve on a logn-approximation algorithm of Bar-Yehuda,
Geiger, Naor, and Roth [5], where n is the number of vertices. They also gave
a 10-approximation algorithm for the case of undirected planar graphs, which
we can show to be a 5-approximation algorithm for this case. None of these
algorithms apply to the feedback vertex set problem in directed graphs. Even,
Naor, Schieber, and Sudan [9] show that a result of Seymour [27] can be converted
to an O(logn log logn)-approximation algorithm for general directed graphs. This
observation improves on an O(log2n)-approximation algorithm for this case due
to Leighton and Rao [22]. In the case of directed planar graphs, Stamm [28] has
given an O(n logn) time approximation algorithm whose performance guarantee is
bounded by ∆, the maximum degree of the graph, and anO(n2) time approximation
algorithm with performance guarantee no more than the number of cyclic faces in
the planar embedding of the graph minus 1.

For the subset feedback vertex set problem in general undirected graphs, the
first approximation algorithm is due to Klein, Rao, Agrawal and Ravi [20], who

PRIMAL-DUAL APPROXIMATION ALGORITHMS 39

give a O(log3n)-approximation algorithm. A very recent result due to Even, Naor,
and Zosin [11] shows an 8-approximation algorithm. To the best of our knowledge,
no previous approximation algorithm has been given for the special case of planar
graphs.

For the graph bipartization problem, Klein et al. give a O(log3n)-approxima-
tion algorithm. Garg, Vazirani, and Yannakakis [14] give an improved O(logn)-
approximation algorithm. As before, to the best of our knowledge, no previous
approximation algorithm was known for the case of planar graphs.

Although our result for the undirected feedback vertex set problem on planar
graphs is worse than the known approximation algorithm for general undirected
graphs, it still turns out to be interesting. Our result implies that the LP relaxation
of the cycle formulation of all four problems is within a factor of 9/4 of the
corresponding optimum value for planar graphs. This is known to be false for
general graphs (the ratio can be logarithmic in n [27, 10]). This ratio has an
interesting connection to a conjecture of Akiyama and Watanabe [2] and Albertson
and Berman [3] which we discuss in Section 6. Their conjecture states that any
undirected planar graph on n vertices contains a feedback vertex set of size no more
than n/2, and that any undirected planar bipartite graph contains a feedback vertex
set of size 3n/8. Our bound of 9/4 implies the existence of a feedback vertex set of
size at most 3n/4 in planar graphs, and a feedback vertex set of size at most 9n/16
if the graph is also bipartite. The first statement follows easily from the 4-color
theorem, but we don’t know of any other proof besides our own. A coloring result
of Borodin [7] shows that any planar graph has a feedback vertex set of size no more
than 3n/5; however, Jensen and Toft [19, p. 6] call the proof reminiscent of the proof
of the 4-color theorem, partly because it involves 450 reducible configurations.

Our result also has consequences for the Gallai–Younger conjecture for directed
planar graphs. The Gallai–Younger conjecture states that for any directed graph
with exactly k vertex disjoint cycles, there exists a directed feedback vertex set of
size at most g(k) for some function g. This conjecture has recently been proven by
Reed, Robertson, Seymour, and Thomas [25], for a function g that is worse than
exponential in k. Reed and Shepherd [26] show that for directed planar graphs,
g(k)=O(kR(k)), where R(k) is the worst-case ratio between the size of the optimal
feedback vertex set and the value of the LP relaxation of the cycle formulation.
Since we show that R(k) = 9/4, this implies that g(k) =O(k) in the case of planar
graphs.

It is also possible to consider edge counterparts of the given problems; that is,
find a minimum-weight subset of edges F that meet every cycle in a given collec-
tion C. This leads to the minimum-weight feedback edge set problem in undirected
graphs, the minimum-weight feedback arc set problem in directed graphs, and the
minimum-weight graph bipartization problem via edge removals. However, these
problems tend to be simpler than their vertex counterparts, especially for planar
graphs. The feedback problem in general undirected graphs is trivially the com-
plement of the maximum spanning tree problem. The minimum-weight biparti-
zation problem is complementary to the maximum-weight cut problem in planar
graphs, which is polynomial-time solvable (Hadlock [18]; Orlova and Dorfmann

40 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

[24]) since the problem is equivalent to a T -join problem in the dual graph. The
feedback arc set problem in planar digraphs is well-known to be reducible to find-
ing a minimum-weight dijoin in the dual graph, which can be solved in polynomial
time (see, for example, Grötschel, Lovász, and Schrijver [17, p. 253, 254]). Given
a directed graph G= (V,A), a dijoin A′ ⊆A is a set of arcs such that G= (V,B),
B =A∪{(v,u)|(u,v) ∈A′}, is strongly connected. In the minimum-weight dijoin
problem, we are given non-negative weights wa for a ∈ A, and we must find the
minimum-weight dijoin. Stamm [28] has given a simple 2-approximation algorithm
for this problem by superposing two arborescences. It is interesting to notice that
all these problems, when translated to the dual graph, lead to problems of hitting
certain cutsets of the dual graph, problems which can be approximated within a
ratio of 2 by the primal-dual method [15, 29, 16].

The paper is structured as follows. In Section 2 we begin with some preliminary
concepts and definitions. Section 3 reviews the generic primal-dual algorithm
and its analysis from Goemans and Williamson [16]. In Section 4, we show how
the algorithm leads to a 3-approximation algorithm for a class of hitting cycle
problems, and in Section 5 we improve the algorithm and its analysis to give
a 9

4 -approximation algorithm. We comment on the integrality gap of the linear
programming relaxation and its relation to Akiyama and Watanabe’s conjecture in
Section 6. The implementation of the algorithms is described in Section 7, and we
conclude in Section 8.

2. Preliminaries

Throughout the paper, when we say “cycle” we mean a sequence of vertices
v1,v2, . . . ,vk−1,vk ≡ v1 such that v1, . . . ,vk−1 are distinct, (vi,vi+1) ∈ E for 1 ≤
i ≤ k− 1, and these edges are distinct. Such cycles are sometimes called simple
cycles. A trivial cycle of a multigraph is a cycle v1,v2,v3≡ v1 with distinct edges
e=(v1,v2), e′=(v2,v1). In most cases we will be dealing with simple graphs and do
not need to worry about trivial cycles. When we refer to a cycle C of an undirected
graph G = (V,E), we refer to its vertex set v1,v2, . . . ,vk−1, even though this is
somewhat ambiguous. If we would like to refer to its edge set, we will write E(C).

Recall the hitting cycle problem defined in the previous section. Let G be an
undirected graph, let wi≥ 0 be the weight of vertex i, and let C be a collection of
cycles of G. The hitting cycle problem is that of finding a minimum-weight set F
of vertices such that F intersects every member of C. In most cases, when we will
refer to a cycle, we will implicitly mean a cycle of C, unless stated otherwise.

We will restrict our attention to families C satisfying the following property.
We abuse notation slightly here by referring to cycles C as both sets of edges and
of vertices. Paths P are sets of edges; for directed graphs, the set of edges is a path
for the underlying undirected graph.

Uncrossing Property. For any two cycles C1,C2 ∈C such that there exists a path
P2 in C2 which is edge-disjoint from C1 and which intersects C1 only at the

PRIMAL-DUAL APPROXIMATION ALGORITHMS 41

endpoints of P2, the following must hold. Let P1 be a path in C1 between the
endpoints of P2. Then either P1∪P2 ∈C and (C1−P1)∪(C2−P2) contains a
cycle in C, or (C1−P1)∪P2∈C and (C2−P2)∪P1 contains a cycle in C.

We will refer to families satisfying the Uncrossing Property as uncrossable. Our
approximation algorithms will apply to any uncrossable hitting cycle problem for
input graphs restricted to be planar, given that we can compute efficiently certain
minimal cycles which we will define in a moment.

We claim that the problems we are interested in correspond to uncrossable
families. First notice that the (multi)graph H = E(C1)∪E(C2) is Eulerian, i.e.
every vertex has even degree, or every vertex has indegree equal to outdegree in the
case of D-FVS. Also, when removing a cycle C from H , the resulting multigraph
remains Eulerian (assuming C is directed in the case of D-FVS). It can therefore be
decomposed into cycles. However, we have to be somewhat careful since these cycles
may be trivial cycles consisting simply of duplicated edges. Taking C=P1∪P2, this
shows that the Uncrossing Property is satisfied for FVS unless (C1−P1)∪(C2−P2)
only consists of trivial cycles. However, in this latter case, C1−P1 =C2−P2 and
both (C1−P1)∪P2 and P1∪(C2−P2) are simple cycles, implying the Uncrossing
Property. For D-FVS, the Uncrossing Property is also satisfied. Let a and b be the
two endpoints of the path P2. Then either P2 is directed from a to b (and C2−P2
is directed from b to a) or vice versa. Thus, either P1∪P2 or (C1−P1)∪P2 defines
a directed cycle C, and H −E(C) contains a directed cycle since it is Eulerian
(directed cycles cannot consist of duplicated edges). For S-FVS, there must be a
special vertex on either P1 or C1−P1 and also on either P2 or C2−P2. Therefore,
we can make sure that the Eulerian graph H−E(C) still contains a special vertex,
say v. Moreover, in a cycle decomposition of H−E(C), v will only be on trivial
cycles if the edges incident to v in C1 and C2 are identical. In this case, taking
C = P1 ∪P2 (resp. C = (C1−P1)∪P2) if v ∈ P1 (resp. v ∈ (C1−P1)) would give
an Eulerian graph H −E(C) for which v is on a non-trivial cycle. Thus, one of
the two cases of the Uncrossing Property must hold. For BIP, we observe that
P1∪P2 and (C1−P1)∪P2 have different parities, and therefore one of them must
be odd. Moreover, H−E(C) is Eulerian and has an odd number of edges if C is
odd, and therefore must contain an odd cycle (which cannot be trivial) in any cycle
decomposition. So, once again, the Uncrossing Property holds.

Our approximation algorithms for uncrossable hitting cycle problems will de-
pend on the embedding of the planar graph. Given a plane graph G (i.e. a planar
graph with an embedding), any cycle C partitions the plane into two regions, the
interior and exterior regions. We will associate to any cycle C the set f(C) of faces
in the interior region of C. Observe that the exterior face of the embedding of
G never belongs to f(C). We will say that cycle C1 contains cycle C2 and write
C1 ⊇f C2 or C2 ⊆f C1 if f(C1) ⊇ f(C2). Two cycles C1 and C2 are said to be
crossing if f(C1) and f(C2) cross1, i.e. f(C1)∩f(C2) 6= ∅, f(C1)− f(C2) 6= ∅ and

1 Observe that the exterior face is never in f(C1)∪ f(C2), and thus the notions of crossing

and intersecting are equivalent.

42 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

f(C2)−f(C1) 6=∅. Similarly, we say that a collection of cycles form a laminar family
if no two cycles are crossing.

We say that a cycle C∈C is face-minimal if there does not exist a cycle C′∈C,
C′ 6= C, with f(C′) ⊆f f(C). The collection of face-minimal cycles will play a
central role in our approximation algorithms. The following lemma shows that
face-minimal cycles form a laminar family.

Lemma 2.1. Let C satisfy the Uncrossing Property and let C1,C2 ∈ C. If C1 is a
face-minimal cycle then C1 and C2 do not cross.

Proof. The proof follows immediately from the Uncrossing Property. If the two
cycles were to cross, then by choosing P2 to be a path in C2 which lies in the interior
of C1, the two cycles P1∪P2 and (C1−P1)∪P2 would both be contained in C1. This
is a contradiction since at least one of them belongs to C and C1 is face-minimal.

3. The primal-dual framework

The uncrossable hitting cycle problem is a special case of the general hitting
set problem in which one needs to find a minimum-weight set hitting every set
in a given collection of sets. More precisely, given a ground set of elements E,
weights ce for all e∈E, and sets T1, . . . ,Tp⊆E, the hitting set problem is that of
finding a minimum-weight A⊆E such that A∩Ti 6= ∅ for i= 1, . . . ,p. In a recent
survey [16], we have developed a general methodology to derive approximation
algorithms for hitting set problems based on the so-called primal-dual method. This
was motivated by a sequence of papers [1, 15, 21, 29] developing the technique for
network design problems. In the survey, we propose a generic primal-dual method
for deriving approximation algorithms for hitting set problems, with a generic proof
of the performance guarantee. We illustrate in [16] the technique on a variety of
problems, and also claim that the method can be applied to many more problems.
As we show here, the technique directly applies to any uncrossable hitting cycle
problem in planar graphs.

A hitting cycle problem can be formulated by the following integer program
(IP):

Min
∑
i∈V

wixi

subject to:(IP) ∑
i∈C

xi ≥ 1 cycles C ∈ C

xi ∈ {0, 1} i ∈ V.
The primal-dual method simultaneously constructs a feasible solution to this hit-
ting set problem, and a solution feasible for the dual of the linear programming

PRIMAL-DUAL APPROXIMATION ALGORITHMS 43

relaxation of (IP). The dual of the LP relaxation is:

Max
∑
C∈C

yC

subject to:(D) ∑
C:i∈C

yC ≤ wi i ∈ V

yC ≥ 0 C ∈ C.

The generic primal-dual method developed in [16] is described in Figure 1. It is
specified by the oracle Violation(S) which given a set of vertices S outputs a
specific set of cycles in C which are not hit by S. The algorithm begins with an
empty set of vertices S and a dual solution y=0. While S is not a feasible solution
to the hitting cycle problem, it increases the dual variables on the cycles returned
by Violation(S) until one of the dual packing constraints becomes tight for some
vertex i∈V . This vertex is added to S and the process continues. When S becomes
feasible, the algorithm performs a “clean-up” step. It goes through the vertices in
the reverse of the order in which they were added and removes any vertex which is
not necessary for S to remain feasible.

In [16], it is proved that the performance guarantee of this algorithm can be
obtained by using the following theorem. In this theorem, a minimal augmentation
F of S means a feasible solution F containing S such that for any v∈F −S, F −v
is not feasible.

Theorem 3.1. (Goemans and Williamson [16]) The primal-dual algorithm described
in Figure 1 delivers a solution of cost at most γ

∑
C yC ≤ γzOPT , where zOPT

denotes the weight of an optimum solution, if γ satisfies that for any infeasible set
S⊂V and any minimal augmentation F of S∑

C∈V(S)

|F ∩C| ≤ γ|V(S)|,

where V(S) denotes the collection of violated sets output by the Violation oracle
on input S.

Therefore, we only need to specify what the Violation oracle does, com-
pute the value of γ given by Theorem 3.1, and prove that the algorithm runs in
polynomial time in order to obtain a γ-approximation algorithm. Observe that by
considering G−S, we can assume without loss of generality that, in Theorem 3.1,
S=∅ and F is a minimal feasible solution.

One possibility is that the Violation oracle returns only one cycle. This is
essentially the approach used by Bar-Yehuda et al. [5] for FVS in general graphs.
They gave a 10-approximation algorithm for this problem in planar graphs by
simply finding a “short” cycle in the graph, but their analysis can be improved. We
give below a brief sketch of their Violation oracle and of the improved analysis.

44 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

1 y←0
2 S←∅
3 l←0
4 While S is not feasible
5 l← l+1
6 V← Violation(S)
7 Increase yC uniformly for all C∈V until ∃vl /∈S :

∑
C:vl∈C yC =wvl

8 S←S∪{vl}
9 For j← l downto 1
10 if S−{vj} is feasible then S←S−{vj}
11 Output S (and y)

Figure 1. Primal-dual algorithm for uncrossable hitting cycle problems.

Given the planar graph G, we can first assume that G has no degree 1 vertex since
such vertices can be deleted without affecting the cycles of G. We claim that the
resulting graph has a cycle with at most 5 vertices of degree 3 or higher; moreover,
this cycle can be chosen to be (part of) the boundary of a face. It is then easy to
see that γ can be chosen to be 5 in Theorem 3.1. To prove the claim, observe that,
if the graph is 2-connected, the claim is equivalent to the existence of a vertex of
degree at most 5 in the dual graph, a well-known fact (since the sum of the degrees
is at most 6|V |−12). If the graph is not 2-connected, we consider an endblock of
the graph (i.e. a block with at most one cutvertex) and use the same argument.
The only slight problem is that the resulting cycle may contain the cutvertex and
this cutvertex may have degree 2 in the endblock. This however can be dealt with
by using the fact that a planar graph has more than one vertex of degree at most
5. The idea of having the Violation oracle return only one cycle does not seem
to work for S-FVS, D-FVS or BIP.

4. A 3-approximation algorithm

In this section, we consider the Violation oracle which, on input S, returns
the set of face-minimal cycles of G−S (with respect to C). We will refer to this
oracle as Face-Minimal. We show that the corresponding value of γ is 3. In the
following section, we give a refined oracle for which the corresponding γ is 9/4.
These performance guarantees are tight for D-FVS, S-FVS and BIP.

In order to prove that Face-Minimal has a γ value of 3, we need to show the
following result (applied to the graph G−S).

Theorem 4.1. Let G be a planar graph and letM be the collection of face-minimal
cycles corresponding to an uncrossable family C. Consider any minimal solution F .

PRIMAL-DUAL APPROXIMATION ALGORITHMS 45

Then ∑
C∈M

|F ∩ C| ≤ 3|M|.

Since F is a minimal solution, we know that for every v ∈ F , F − v is not
feasible, implying the existence of a cycle Cv ∈C such that Cv ∩F = {v}. We call
such a cycle Cv a witness cycle (for v). A family of witness cycles is a collection of
witness cycles Cv∈C, one for each v∈F .

Lemma 4.2. There exists a laminar family of witness cycles Cv∈C, v∈F .

Proof. Consider any family of witness cycles and assume the existence of two
witness cycles Cu and Cv that cross for u,v∈F . By assumption F ∩Cu={u} and
F ∩Cv ={v}. The assumption implies that u and v have degree 2 in H=E(Cv)∪
E(Cu) and that no other vertices of H are in F . Since the cycles cross there is
some path Pu of Cu in the interior of Cv which intersects Cv only at its endpoints.
By the Uncrossing Property, Cu and Cv can be replaced by two cycles such that
one is in C, call it C′, and the other contains a cycle say C′′ in C. Say that Cv is
replaced by C′; by the Uncrossing Property, it will contain strictly fewer faces than
Cv. Since F is feasible, both C′ and C′′ must be hit by F . However, since u and v
have degree 2, it must be the case that C′ and C′′ each have exactly one of u and
v and are witness cycles for u and v.

In order to show the existence of a laminar family of witness cycles, we need
to prove that the crossing pairs of cycles being replaced can be selected in such
a way that the replacing process terminates with a laminar family. We begin by
arbitrarily choosing two cycles Ca and Cb that cross, and replacing them with two
cycles C′ and C′′ as above. Either C′ or C′′ will contain a strict subset of the faces
of Ca; suppose it is C′. If C′ is crossed by any cycles, we continue the process
by replacing this pair as above; otherwise, we stop and mark the witness cycle C′.
This process must terminate since each time we replace a pair, one cycle in the pair
contains a smaller subset of faces of the cycle Ca than a cycle in the previous pair.
Once we have marked a cycle, we begin again by choosing two crossing witness
cycles and continue as before, except that we never choose any marked cycle. The
important observation to make is that as we replace a crossing pair Ca and Cb as
explained in the first part of the proof, if a cycle C does not cross either Ca or Cb,
then C still does not cross the new witness cycles C′ and C′′ for a and b. This
follows from the fact that f(C) must either be contained entirely in one of the faces
of H=E(Ca)∪E(Cb) or must contain all the interior faces of H or is disjoint from
the interior faces of H . Therefore, once we mark a witness cycle, it will never cross
any other witness cycle during the course of the replacement process. Therefore,
this uncrossing process terminates with a laminar family of witness cycles.

A laminar family F = {Cv ∈C : v∈F} of witness cycles can be represented by
a tree or more precisely by a forest by considering the partial order imposed by
⊆f . To simplify the exposition, we can add a root node r which is connected to all
maximal sets in the family, and thus obtain a tree T. Notice that any vertex in T

46 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

is either r or corresponds to a cycle Cv for v ∈F . Thus for each vertex v ∈F we
will correspond a vertex v∈T.

The crucial (and only) properties of M we will be using are the following:
1. No element ofM crosses any element of F . This follows from Lemma 2.1.
2. Every element of F (and therefore the cycles corresponding to the leaves of T)

contains at least one element ofM.
We will call these the Minimal Cycle Properties. For the analysis, and because of
these two properties, we assign every element of M to some node in the tree T:
cycle C ∈M is assigned to the vertex of T corresponding to the smallest set in F
(inclusion-wise) which contains it. If C ∈M is not contained in any member of
F , it is assigned to the root r. For v ∈T, let Mv denote the set of cycles of M
assigned to node v of T. Observe thatMr may be non-empty, and that someMv

may be empty. However, because of property 2, Mv is non-empty for every leaf v
of T.

In order to prove Theorem 4.1, we first derive an upper bound on
∑
C∈Mv

|F∩
C| for every v ∈ T. Fix v ∈ T, and let Fv denote the subset of vertices of F
corresponding to v (unless v=r) and the children (if any) of v in T. Observe that
F ∩C = Fv ∩C for any C ∈Mv. Thus,

∑
C∈Mv

|F ∩C| =
∑
C∈Mv

|Fv ∩C|. By
definition of Fv, its cardinality is equal to the degree deg(v) of node v in T. In
order to get an upper bound on

∑
C∈Mv

|Fv∩C|, we construct a bipartite graph
B. B has a vertex for every u∈Fv and for every C ∈Mv, and an edge between u
and C iff u∈C. Therefore,

∑
C∈Mv

|Fv∩C| is precisely the number of edges of B.
Observe that B is planar, since a planar embedding of B can be obtained from the
embedding of G by placing the vertex corresponding to C ∈Mv in the interior of
C. But the number of edges of a simple bipartite planar graph is at most twice the
number of vertices minus four, unless the graph consists simply of a single vertex
or of two vertices with one edge. Notice that B can only be a single vertex if v=r.
Also, B can be an edge on two vertices; this can occur only if v is a leaf of T or
v=r. We have therefore derived that

(1)
∑

C∈Mv

|Fv ∩ C| ≤ 2|Mv|+ 2|Fv| − 4 = 2|Mv|+ 2 deg(v) − 4,

unless v is a leaf of T in which case∑
C∈Mv

|Fv ∩ C| ≤ 2|Mv|+ 2 deg(v) − 3,

or v corresponds to r in which case∑
C∈Mr

|Fv ∩ C| ≤ 2|Mr|+ 2 deg(r)− 2.

Summing over all v∈T, we derive that∑
C∈M

|F ∩ C| ≤ 2|M|+ 2
∑
v∈T

deg(v) − 4|T|+ l + 2,

PRIMAL-DUAL APPROXIMATION ALGORITHMS 47

where l denotes the number of leaves of T. Since T is a tree,
∑

deg(v) is equal to
twice the number of nodes of the tree minus two. This implies that∑

C∈M
|F ∩ C| ≤ 2|M| − 2 + l.

Moreover, because of Minimal Cycle Property 2, the number l of leaves is upper
bounded by |M|. This therefore shows that∑

C∈M
|T ∩C| ≤ 3|M| − 2,

proving Theorem 4.1.
For FVS, the worst instance we are aware of for our primal-dual algorithm

with the oracle Face-Minimal achieves a performance ratio of 2. However, for
the other problems, namely D-FVS, S-FVS and BIP, the performance guarantee
of 3 is tight. Instances achieving this ratio are given in Figure 2; the same figure
applies to all three problems. There are k white vertices and they have a weight of
3, and the other (black) vertices have a weight of 1+ ε. In the case of S-FVS, the
special vertices are denoted by (black) squares, while for D-FVS the orientation of
the arcs along two of the faces are explicitly given on the figure (the orientation
of the other arcs are such that the shaded faces define directed cycles). The face-
minimal cycles are the boundaries of the shaded faces, and the algorithm will select
all white vertices in the solution for a total weight of 3k. However, in all three
cases, the black squares constitute a feasible solution of weight (k+2)(1+ε), giving
the desired bound as k gets large and ε tends to 0. The analysis of our algorithm
in fact indicates that bad examples arise only when there are two cycles inM with
several points in common. The improved Violation oracle we develop in the next
section deals precisely with such cases.

Figure 2. A bad example for the 3-approximation algorithm applied to BIP, to D-FVS, or to
S-FVS.

48 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

5. A 9/4-approximation algorithm

We first need some preliminaries. Two (face)-disjoint2 cycles C1 and C2
partition the plane into one or several regions; excluding the interiors of C1 and
C2, each remaining region corresponds to a connected component of the dual graph
after having removed f(C1)∪f(C2). One of these regions contains the exterior face,
and we refer to the others as the pockets between C1 and C2. The boundary of any
pocket is defined by two vertices common to C1 and C2, say u and v, and consists
of two paths between u and v, one from C1 and one from C2. If there exist k non-
empty pockets between C1 and C2 then C1 and C2 must have at least k+1 vertices
in common. We say that two disjoint cycles C1 and C2 surround a cycle C3 if f(C3)
is contained in one of the pockets between C1 and C2. See Figure 3 for an example.
Notice that it is possible that C1 and C2 might form a pocket surrounding two
cycles C′1 and C′2, with C′1 and C′2 also forming a pocket, as in Figure 3.

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

Figure 3. An example of pockets.

Our improved algorithm is based on the following oracle which returns a subset
V of the family M of face-minimal cycles. If M does not contain two cycles which
surround a third one then the oracle returns M. Otherwise, the oracle outputs a
non-empty subset V ofM such that (i) there do not exist two cycles C1 and C2 in
V which surround a third cycle of V , and (ii) V consists of all cycles of M in one
of the pockets between two cycles C1 and C2 of M. This is always possible since
the oracle can simply recursively select the non-empty set of cycles of one of the
pockets between two cycles C1 and C2 until the remaining collection satisfies (i).

2 that is, f(C1)∩f(C2)=∅.

PRIMAL-DUAL APPROXIMATION ALGORITHMS 49

Theorem 5.1. Let G be a planar graph and let V be as defined in the paragraph
above. Consider any minimal feasible solution F . Then∑

C∈V
|F ∩ C| ≤ 9

4
|V|.

The structure of the proof is similar to the one in the previous section, the main
difference being the proof of a sharper version of inequality (1). First, let us assume
that M does not contain two cycles with more than one point in common. In this
case, V=M. Then the bipartite graph B constructed in the proof of Theorem 4.1
does not have any cycle of length 4; indeed such a cycle would imply the existence
of two cycles C1 and C2 inMv and two vertices x and y belonging both to C1 and
C2. We need a sharper bound on the number of edges of such graphs.

Lemma 5.2. Let B be a simple bipartite planar with bipartition (V1,V2) where
a= |V1| and b= |V2|, and with e edges. Assume that B has no cycle of length 4 and
is 2-edge-connected. Then

e ≤ 5
4
b+

9
4

(a− 2).

Proof. Let f be the number of faces, and let ni denote the number of edges (or
vertices) on face i. By assumption, ni ≥ 6. By summing this inequality over all
faces, we obtain that 2e=

∑
ini ≥ 6f , i.e. f ≤ 1

3e. Together with Euler’s formula
stating that f−e+a+b=2, this implies that

(2) e ≤ 3
2

(a+ b− 2).

We now claim that b ≤ 3a− 6. This follows from the following construction.
Replace any vertex u ∈ V2 and its incident edges by one edge joining two of the
neighbors of u (there are at least 2 neighbors since the graph is 2-edge-connected).
It is obvious that the resulting graph is planar. Moreover, it is simple; if not there
would be two vertices x and y in V1 both connected to two vertices u and v in V2
implying the existence of a cycle of length 4. The number of edges of the resulting
graph is b (since any vertex of V2 was replaced by an edge) and the number of
vertices is a. Moreover, a≥ 3 (since the original graph is 2-connected and cycles
have length at least 6). Euler’s formula now implies the claim.

The claim together with equation (2) implies that

e ≤ 5
4
b +

1
4
b+

3
2
a− 3 ≤ 5

4
b+

3
4
a− 3

2
+

3
2
a− 3 =

5
4
b+

9
4
a− 9

2
.

The bound in Lemma 5.2 is tight for any a≥3. Indeed, take a maximal planar
graph on the vertex V1 with |V1|=a, and insert a vertex of V2 on every edge. One

50 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

easily checks that the resulting graph satisfies the assumptions and that the number
of edges is precisely given by the bound in the lemma.

The next lemma deals with the case when the bipartite graph is not 2-edge-
connected.

Lemma 5.3. Under the same assumptions as in Lemma 5.2 except that the bipartite
planar graph B may not be 2-edge-connected, we have that

e ≤ 5
4

(b− 2) +
9
4
a,

unless B has only one vertex.

Proof. If B has no edge then the condition e= 0≤ 5
4 (b−2) + 9

4a is equivalent to
9a+5b≥10 which holds if B has at least 2 vertices.

If B is a non-empty forest then e≤a+b−1≤ 5
4 (b−2)+ 9

4a, the latter inequality
being equivalent to 6≤5a+b which holds because B has at least one vertex on each
side of the bipartition.

If B is not a forest it has a non-trivial block and we can apply Lemma 5.2 to
each such block. We claim that the stronger bound of 9

4a+ 5
4 b−

9
2 of Lemma 5.2

holds. B can be built by successively adding blocks and/or edges to a first non-
trivial block (and maintaining connectivity). The claim holds for the first non-trivial
block. When we add another non-trivial block, the number of edges increases by
at most 9

4∆a+ 5
4∆b− 9

4 , where ∆a (resp. ∆b) represents the increase in the number
of vertices in V1 (resp. V2); we have used the fact that the new block shares only
one vertex with the rest. If we add an edge, this one edge can be upper bounded
by 9

4∆a+ 5
4 ∆b− 1

4 since either ∆a or ∆b is one. Summing all these contributions,
we derive the claim.

We can now continue the proof of Theorem 5.1 for the case in which M does
not contain two cycles with more than one point in common. From Lemma 5.3 and
the discussion of the previous section, we derive that

(3)
∑

C∈Mv

|Fv ∩C| ≤
9
4
|Mv|+

5
4

(deg(v) − 2),

unless the bipartite graph B for node v has only one vertex. This can only happen
for the root node r, and only if deg(r) = 1 and Mr = ∅, in which case we have to
increase the RHS by 5

4 . We will refer to this case as the pathological case. Summing
over all nodes of T, we derive that

(4)
∑
C∈M

|F ∩ C| ≤ 9
4
|M|+ 5

4

∑
v

(deg(v)− 2) =
9
4
|M| − 5

2
,

except in the pathological case for which

(5)
∑
C∈M

|F ∩ C| ≤ 9
4
|M| − 5

4
.

PRIMAL-DUAL APPROXIMATION ALGORITHMS 51

Now consider the slightly more general case in which V=M. This now includes
the situation in which there are cycles inM with more than one vertex in common,
but these cycles do not surround other cycles ofM. Consider any minimal solution
F . Consider two cycles C1 and C2 with more than one vertex in common. If F
does not contain more than one of these common vertices and if this happens to be
true for all such pairs of cycles C1, C2, then the proof above is unchanged since the
bipartite graph B still does not have any cycle of length 4. Assume now that there
are two cycles C1, C2∈M with more than one vertex in common belonging to F .
We first claim that there must be exactly two vertices of F in C1∩C2. Indeed, if
there were three (or more), one of their witness cycles would be contained in one
of the interior pockets, contradicting the emptyness of these pockets. Furthermore,
observe that no witness cycle can contain C1 but not C2: such a witness cycle
would pass through all vertices in C1∩C2 which contradicts the fact that a witness
cycle has only one vertex of F . We now modify M by replacing C1 and C2 by the
cycle C whose interior consists of f(C1), f(C2) and the interior pockets between
C1 and C2. This cycle may not be a cycle in C, but we will not need this. The
important fact is that the new family still obeys the Minimal Cycle Properties 1
and 2, and therefore we can still apply the previously established results. Suppose
that we successively replace pairs of cycles C1,C2 such that |F ∩C1∩C2|= 2 with
a cycle C as above to obtain a family M′, and suppose that we perform t such
replacements. While replacing M by M′, we have decreased |M| by t, and have
decreased

∑
C∈M |F ∩C| by exactly 2t. Because the Minimal Cycle Properties 1

and 2 hold forM′, andM′ does not contain two cycles with more than one vertex
of F in common, inequality (4) (or (5) in the pathological case) holds for M′. It
then follows that these inequalities hold for M.

Finally, let us consider the general case in which M 6= V , and let u and v
be the two vertices on C1 and C2 which define V . We claim that the family V
almost satisfies the Minimal Cycle Properties 1 and 2; the only difference is that
the witness cycles of u and/or v (if they belong to F) may not contain a cycle of
V . For the purpose of the analysis (we cannot do this algorithmically), assume we
add to V (at most two) cycles ofM to guarantee that this enlarged family satisfies
properties 1 and 2. Therefore we can now use (4) and/or (5). But in enlarging V ,
we have increased its size by t≤|F ∩{u,v}| and increased

∑
C∈V |F ∩C| also by t.

Thus, rewriting (4), we derive that(∑
C∈V
|F ∩ C|

)
+ t ≤ 9

4
(|V|+ t)− 5

2
,

or ∑
C∈V
|F ∩ C| ≤ 9

4
|V|+ 5

4
t− 5

2
≤ 9

4
|V|,

since t≤2. In the pathological case, however, we need to be a bit more careful. We
claim that in the pathological case, t≤ 1. Indeed, if t was 2, the witness cycles of
u and v would both be maximal sets in the laminar family of witness cycles, and

52 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

thus the root node r would have degree at least 2, contradicting the definition of
the pathological case. But, the same derivation then shows that in the pathological
case we also have: ∑

C∈V
|F ∩ C| ≤ 9

4
|V|.

This concludes the proof of Theorem 5.1.
The performance guarantee of 9/4 is tight for D-FVS, S-FVS and BIP, but

again we are not aware of an instance with a performance worse than 2 for FVS. As
before, we have a single class of instances applying to all three problems; we show
a sample instance in Figure 4. This time, there are 3k−1 white vertices and they
each have a weight of 3, and the other (black) vertices have a weight of 1+ε. As in
the previous figure, the special vertices for S-FVS are denoted by (black) squares,
while for D-FVS the orientation of the arcs along k+ 2 of the faces are explicitly
given on the figure and the orientation of the other arcs are such that the shaded
faces define directed cycles. The face-minimal cycles are the boundaries of the
shaded faces, and since no pockets are formed by any pairs of face-minimal cycles,
the violation oracle will return all the face-minimal cycles. The algorithm will then
select all white vertices in the solution for a total weight of 9k−3. However, in all
three cases, the black squares constitute a feasible solution of weight (4k+1)(1+ε),
giving the desired bound as k gets large and ε tends to 0.

Figure 4. A bad example for the 9/4-approximation algorithm applied to BIP, to D-FVS, or to
S-FVS.

PRIMAL-DUAL APPROXIMATION ALGORITHMS 53

6. Worst-case duality gaps

In this section, we discuss the worst-case ratio between the value of the problem
considered and the optimum value of the linear programming relaxation of (IP)
(or the value of its dual (D)), the worst-case being taken over all non-negatively
weighted planar instances. The results of the previous section immediately imply
that this worst-case ratio ρ is at most 9/4 for any uncrossable hitting cycle problem.

Before considering the worst-case ratio for hitting cycle problems in more
detail, we investigate the vertex cover problem. In the vertex cover problem, one
would like to find a minimum-weight set of vertices S such that for every edge at
least one of its endpoints is in S. A classical linear programming relaxation of this
problem is given below:

Min
∑
i∈V

wixi

subject to:(LP)
xi + xj ≥ 1 (i, j) ∈ E
xi ≥ 0 i ∈ V.

It is well-known that the ratio between the value of the vertex cover problem and
the value of (LP) is upper bounded by 2, and this can be approached arbitrarily
closely by general graphs. However, we show below that the worst-case ratio is
exactly 3/2 for planar instances by using the 4-color theorem.

Theorem 6.1. For planar graphs, ρV C = 3
2 .

Proof. For K4 with unit weights, the minimum vertex cover has size 3, but the LP
value is 2 and this is obtained by setting all xi’s to 0.5. This shows that ρV C≥ 3

2 .
To prove the other inequality, we use the 4-color theorem and a result about the

structure of the extreme points of (LP). It is known that at the extreme points of
(LP), xi∈{0, 1

2 ,1} for all i [23]. Given a four-coloring of the graph and an optimal
extreme point of (LP), we find the color class X which maximizes

∑
i∈X :xi=1/2wi.

Consider then the integral solution

x∗i =
{

1 if xi = 1 or xi = 1
2 , i /∈ X

0 if xi = 0 or xi = 1
2 , i ∈ X

By construction
∑
iwix

∗
i ≤

3
2

∑
iwixi. Furthermore, x∗ corresponds to a vertex

cover since for any edge (i,j) with xi=xj = 1
2 , both i and j cannot be in X .

A proof of this result not based on the 4-color theorem would be very nice.
Indeed, since the solution xi=0.5 for all i is always feasible for the linear program-
ming relaxation, the above theorem implies the existence of a vertex cover of size at

54 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

most 3n/4 (or an independent set of size at least n/4), which follows immediately
from the 4-color theorem, but no other proof of this result is known.

The K4 instance for the vertex cover problem leads to bad instances for many
hitting cycle problems. Consider FVS, for example. If we replace in K4 every edge
by a triangle (introducing one new vertex) and if we keep all weights to be equal to
1, then the optimum solution still has value 3, and a feasible solution to the linear
programming relaxation of the hitting cycle formulation (IP) can be obtained by
setting the original vertices to have xi = 0.5 and the new vertices to have xi = 0.
This shows that the worst-case ratio ρFVS for FVS on planar instances is at least
3
2 . The same construction shows that that ρBIP≥ 3/2 and ρD−FVS≥ 3/2 for BIP
and D-FVS both in the planar case.

We can get a larger lower bound on ρFVS by considering an appropriately
weighted instance of K2,p. Let the two vertices on one side of the bipartition each
have weight p− 1, and the p vertices on the other side each have weight 1. An
optimal solution to this instance has weight p−1. A feasible solution to the linear
programming relaxation of (IP) has xi = 0.5 for the p vertices and xi = 0 for the
two vertices. This proves that ρFVS≥2− 2

p , which tends to 2 as p becomes large.

Conjecture 6.2. ρD−FVS = 3
2 , ρBIP = 3

2 , and ρFVS =2.

These ratios have an interesting connection with a conjecture of Akiyama and
Watanabe [2] and Albertson and Berman [3]. They conjectured that a planar graph
has a feedback vertex set of size at most n/2. Since the solution with xi = 1/3 is
feasible for the LP relaxation of (IP), this implies the existence of a feedback vertex
set of size at most ρFVSn/3. A coloring result of Borodin [7] shows that any planar
graph has a feedback vertex set of size no more than 3n/5; however, Jensen and
Toft [19, p. 6] call the proof reminiscent of the proof of the 4-color theorem, partly
because it involves 450 reducible configurations. We think it would be interesting to
derive results along these lines that do not invoke the four-color theorem or similar
theorems. Akiyama and Watanabe also conjectured that in bipartite planar graphs,
there exists a feedback vertex set of size at most 3n/8. Since xi=1/4 is feasible for
the LP relaxation if the graph is bipartite, this implies the existence of a feedback
set of size ρFVSn/4. For BIP, the conjecture that ρBIP = 3/2 would imply the
existence of at most n/2 vertices whose removal makes the graph bipartite. This
follows easily from the 4-color theorem (removing the two smallest color classes),
but once again we are not aware of any proof of this statement not based on the
4-color theorem. We should point out that in the worst case one cannot remove
less than half the vertices for either FVS or BIP (consider K4 or multiple copies of
K4). For D-FVS on simple planar digraphs, the same reasoning would imply the
existence of a feedback vertex set of size at most n/2, which would follow clearly
from Akiyama and Watanabe’s or Albertson and Berman’s conjecture. It seems
possible in fact that n/3 vertices are enough for simple digraphs.

PRIMAL-DUAL APPROXIMATION ALGORITHMS 55

7. Implementation

We first sketch how our 3-approximation algorithms can be implemented in
O(n2) time, where n= |V |. We begin by noting that the FVS, S-FVS and BIP also
satisfy an additional property:

Halving Property. For any cycle C ∈C and any path P , edge-disjoint from C and
intersecting C only at the endpoints of P , let C1,C2 be the two cycles defined
by C and P . Then either C1 or C2 (or both) belongs to C.

Observe that this is not the case for D-FVS since there is no guarantee that P is a
directed path.

We can now prove a useful lemma about the face-minimal cycles of families
that obey the Halving Property.

Lemma 7.1. Let C satisfy the Halving Property. Then the face-minimal cycles of
2-connected graphs are the boundaries of the interior faces which are simple cycles.

Proof. Suppose C is a face-minimal cycle of C which is not given by the boundary
of an interior face. Then there must be a path P in the interior of C that only
intersects C at its endpoints. Using the Halving Property, one of the two cycles
defined by C and P must be in C. But this cycle must be contained in C, which
contradicts the face-minimality of C.

In particular, for families satisfying the Halving Property, this lemma shows
that the face-minimal cycles are the boundaries of all interior faces corresponding
to cycles in C if the graph is 2-connected.

With these preliminaries, for all problems considered, the Face-Minimal

oracle can easily be implemented in linear time as follows. For the three undirected
problems (FVS, S-FVS and BIP), we can first decide whether the boundary of any
face is a cycle of C in time proportional to the length of this cycle. We can also in
O(n) time compute the block structure of the graph. Over all faces, this gives a
linear running time to compute a set of candidates for the face-minimal cycles in
C (since the total length of all faces is equal to twice the number of edges, which
is at most 3n−6). Of these candidates we then select the cycles corresponding to
faces containing no block containing a candidate. To implement the Face-Minimal

oracle in the case of D-FVS, we consider the planar dual G∗ of the graph G. It is
not difficult to see that the face-minimal cycles correspond to sources and sinks in a
DAG formed by contracting the strongly connected components of G∗. The planar
dual, its strongly connected components and the sources and sinks can easily be
found in linear time, and as a result we can implement Face-Minimal in linear
time also for D-FVS. Notice that the Face-Minimal oracle can also be used to
implement the “clean-up” phase (line 10 of Figure 1): a set S is feasible if the
oracle does not return any cycle. As we buildM for any of these problems, we can
also compute for each vertex v the quantity r(v)= |{C∈M :v∈C}| which represents

56 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

the rate of growth of the left-hand-side of the dual constraint corresponding to v.
This is useful in order to select the next vertex to add to S. Indeed, if we keep
track of a(v) =

∑
C:v∈C yC for each vertex v then the next vertex selected by the

algorithm is the one minimizing ε=minv(wv−a(v))/r(v). We can then update a(v)
by setting a(v)← a(v)+ ε ·r(v). As we add a vertex to S (and remove it from the
graph), we can easily update the planar graph in linear time as well. Since both
loops of Figure 1 are executed O(n) times, this gives a total running time of O(n2).

To get the 9/4-approximation algorithm, we have to describe how to find the
appropriate subset of cycles returned by Face-Minimal. We claim that this subset
can be found in O(n2) time, leading to an overall running time of O(n3). We focus
on the undirected problems, even though D-FVS can be treated similarly by first
computing the strongly connected components of G∗. By abuse of notation, let
M denote the vertices of G∗ that correspond to face-minimal cycles in C, and let
o denote the vertex of G∗ corresponding to the outer face. We use the following
characterization: two cycles in M corresponding to vertices u,v ∈ G∗ induce a
non-empty pocket if and only if G∗−{u,v} has a connected component containing
a vertex of M and not containing o. For a given u ∈ M, we can thus consider
G∗−{u}, compute its block structure and find the cutvertex v∈M furthest away
from the component containing o such thatG∗−{u}−{v} has a connected component
containing a vertex in M and not o. This can be done in linear time. If we then
select among all vertices u∈M the one that induces such a connected component
of smallest size, we are then guaranteed that the vertices in M in that connected
component form a suitable choice for V . Finding V thus takes O(n2) time.

8. Conclusion

The most pressing question left open by this work is whether one can derive
an 2-approximation algorithm for FVS in planar graphs using the primal-dual
technique on the cycle formulation. Such a result would immediately imply that
planar graphs have feedback vertex sets of size at most 2n/3, which we think would
be interesting since alternate proofs invoke the four color theorem or similar results.
To prove such a result, one would “simply” need to find some subset of cycles N
such that for any minimal fvs F ,

∑
C∈N |F∩C|≤2|N |. Note that in order to prove

a bound on the size of a feedback vertex set, the subset would not necessarily have
to be polynomial-time computable.

An additional open question is whether the time complexity of our algorithms
can be made linear or near-linear.

Acknowledgements. We thank Seffi Naor for pointing out reference [28], Jon Klein-
berg for helpful discussions, and the anonymous referee for several useful comments.

PRIMAL-DUAL APPROXIMATION ALGORITHMS 57

References

[1] A. Agrawal, P. Klein, and R. Ravi: When trees collide: An approximation

algorithm for the generalized Steiner problem on networks, SIAM Journal on

Computing , 24 (1995), 440–456.

[2] Akiyama and Watanabe: Research problem, Graphs and Combinatorics, 3 (1986),

201–202.

[3] M. Albertson and D. Berman: A conjecture on planar graphs, In J. Bondy and

U. Murty, editors, Graph Theory and Related Topics, Academic Press, 1979.

[4] V. Bafna, P. Berman, and T. Fujito: Constant ratio approximation of the

weighted feedback vertex set problem for undirected graphs, In J. Staples, P.

Eades, N. Katoh, and A. Moffat, editors, ISAAC ’95 Algorithms and Com-

putation, number 1004 in Lecture Notes in Computer Science, pages 142–151.

Springer-Verlag, 1995.

[5] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth: Approximation algo-

rithms for the vertex feedback set problem with applications to constraint sat-

isfaction and Bayesian inference, In Proceedings of the 5th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 344–354, 1994.

[6] A. Becker and D. Geiger: Approximation algorithms for the loop cutset problem,

In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence,

pages 60–68, 1994.

[7] O. Borodin: On acyclic colorings of planar graphs, Discrete Mathematics, 25 (1979),

211–236.

[8] F. A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson: A

primal-dual interpretation of two 2-approximation algorithms for the feedback

vertex set problem in undirected graphs, to appear in Operations Research

Letters, 1997.

[9] G. Even, J. Naor, B. Schieber, and M. Sudan: Approximating minimum feed-

back sets and multi cuts in directed graphs, Algorithmica, 20 (1998), 151–174.

[10] G. Even, J. Naor, B. Schieber, and L. Zosin: Approximating minimum subset

feedback sets in undirected graphs with applications, In Proceedings of the

Fourth Israel Symposium on Theory of Computing and Systems, pages 78–88,

1996.

[11] G. Even, J. Naor, and L. Zosin: An 8-approximation algorithm for the subset

feedback vertex set problem. In Proceedings of the 37th Annual Symposium on

Foundations of Computer Science, pages 310–319, 1996.

[12] M. R. Garey and D. S. Johnson: Computers and Intractability , W. H. Freeman

and Company, New York, 1979.

[13] N. Garg, V. Vazirani, and M. Yannakakis: Primal-dual approximation algo-

rithms for integral flow and multicut in trees, Algorithmica, 18 (1997), 3–20.

58 MICHEL X. GOEMANS, DAVID P. WILLIAMSON

[14] N. Garg, V. V. Vazirani, and M. Yannakakis: Approximate max-flow min-

(multi)cut theorems and their applications, SIAM Journal on Computing , 25

(1996), 235–251.

[15] M. X. Goemans and D. P. Williamson: A general approximation technique for

constrained forest problems, SIAM Journal on Computing , 24 (1995), 296–317.

[16] M. X. Goemans and D. P. Williamson: The primal-dual method for approxi-

mation algorithms and its application to network design problems, In D. S.

Hochbaum, editor, Approximation Algorithms for NP-hard Problems, chapter

4, pages 144–191. PWS, Boston, 1997.

[17] M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and Combi-

natorial Optimization, Springer-Verlag, Berlin, 1988.

[18] F. Hadlock: Finding a maximum cut of a planar graph in polynomial time, SIAM

Journal on Computing , 4 (1975), 221–225.

[19] T. R. Jensen and B. Toft: Graph Coloring Problems, John Wiley and Sons, New

York, 1995.

[20] P. Klein, S. Rao, A. Agrawal, and R. Ravi: An approximate max-flow min-cut

relation for undirected multicommodity flow, with applications, Combinatorica,

15 (1995), 187–202.

[21] P. Klein and R. Ravi: When cycles collapse: A general approximation technique

for constrained two-connectivity problems, In Proceedings of the Third MPS

Conference on Integer Programming and Combinatorial Optimization, pages

39–55, 1993. Also appears as Brown University Technical Report CS-92-30.

To appear in Algorithmica.

[22] T. Leighton and S. Rao: An approximate max-flow min-cut theorem for uniform

multicommodity flow problems with applications to approximation algorithms,

In Proceedings of the 29th Annual Symposium on Foundations of Computer

Science, pages 422–431, 1988.

[23] G. L. Nemhauser and L. E. Trotter Jr.: Vertex packing: Structural properties

and algorithms, Mathematical Programming, 8 (1975), 232–248.

[24] G. I. Orlova and Y. G. Dorfman: Finding the maximal cut in a graph, Engineering

Cybernetics, pages 502–506, 1972.

[25] B. Reed, N. Robertson, P. Seymour, and R. Thomas: Packing directed circuits,

Combinatorica, 16 (1996), 535–554.

[26] B. A. Reed and F. B. Shepherd: The Gallai–Younger conjecture for planar graphs,

Combinatorica, 16 (1996), 555–566.

[27] P. D. Seymour: Packing directed circuits fractionally, Combinatorica, 15 (1995),

281–288.

[28] H. Stamm: On feedback problems in planar digraphs, In R. Möhring, editor, Graph-

Theoretic Concepts in Computer Science, number 484 in Lecture Notes in Com-

puter Science, pages 79–89. Springer-Verlag, 1990.

[29] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani: A primal-

dual approximation algorithm for generalized Steiner network problems, Com-

binatorica, 15 (1995), 435–454.

PRIMAL-DUAL APPROXIMATION ALGORITHMS 59

[30] M. Yannakakis: Node and edge-deletion NP-complete problems, In Proceedings of

the 10th Annual ACM Symposium on Theory of Computing, pages 253–264,

May 1978.

Michel X. Goemans

Dept. of Mathematics,

M.I.T., Cambridge, MA 02139.

goemans@math.mit.edu

David P. Williamson

IBM T.J. Watson Research Center,

P.O. Box 218, Yorktown Heights,

NY, 10598

dpw@watson.ibm.com

mailto:goemans@math.mit.edu
mailto:dpw@watson.ibm.com

	Heading
	1. The problems
	2. Preliminaries
	3. The primal-dual framework
	4. A 3-approximation algorithm
	5. A $9/4$-approximation algorithm
	6. Worst-case duality gaps
	7. Implementation
	8. Conclusion
	References

