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Abstract Effects of changing light conditions on thesame anatomy that had been developed before transfer.
ecophysiological condition behind survival were exanseedlings from Sicily had thicker leaves than those of
ined on beech from two different populations. Plansgedlings from Abetone. Seedlings from Abetone were
were grown in a greenhouse under simulated understdiaynd to be more susceptible to changing light condi-
and canopy gap light conditions. Upon exposure to higbns than seedlings from Sicily. We conclude that small
light maximum photosynthesis of shade-acclimatédrest gaps may represent a favorable environment for
leaves increased followed by a reduction over sevepalbtosynthesis and growth of beech regeneration as a re-
days to between high- and low-light control rates. In tsealt of the limited ability of seedlings to acclimate to
reciprocal transfer, the decrease in maximum photosgdden increases in high irradiance and because of the
thesis was rapid during the first 2—3 days and then lenederate levels of light stress in small gaps.

elled off to values comparable to low-light controls.

Seedlings from Sicily (Madonie) showed generally higikey words Fagus sylvatica Light acclimation -

er maximum photosynthetic rates than those from Ald@hotoinhibition - Photosynthesis - Populaiion

tone. Leaf conductance varied in the same direction as

photosynthesis in high- to low-light seedlings but to_a
lesser degree. Leaves grown under low light and expohetioduction

to high light experienced photoinhibition. The Abetone

population was more susceptible to photoinhibitory danm forest ecosystems acclimation to changing light condi-
age than the seedlings from Sicily. Exposure to high ligiduns plays a major role in tree recruitment and competi-
of shade-acclimated seedlings resulted in intermedititn processes (Chazdon 1988; Kippers 1994). Respons-
chlorophyll concentrations between levels of the highs to light fluctuations in both natural and managed
light and low-light seedlings. Carotenoid concentratiggatches may simultaneously involve acclimation to high
was unaffected by treatments. Seedlings grew moreiriadiance levels, as well as photoinhibition damage
high light, but had a lower leaf area ratio. Light-limite(Mulkey and Pearcy 1992). The increase in light avail-
seedlings showed a shift in carbon allocation to foliagebility over the scale of weeks can lead to differences in
Leaves formed in the new light regime maintained tiplotosynthetic characteristics, leaf anatomy and whole-
plant growth (Chazdon 1988; Kamaluddin and Grace

R. Tognetti (]) 1993). The overall response of tree seedlings to canopy
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Minotta and Pinzauti 1996). On the other hand, likéncoln, Neb., USA). Halogen lamps (Osram 41870 WFL) were

many late successional species, it may show limited pl pended 50 cm above the plant canopy to eliminate differences
y P Y P §té-tﬁhe red/far-red ratio; the lamps were automatically turned on/off

t'?!ty in leaf Char_a(.:t.erlstlcs and thus increased Susc%%ﬁ'min after sunrise and 30 min before sunset; the red/far ratio

bility to photoinhibition when suddenly exposed to highas repeatedly measured at midday with a Li-1800 portable

irradiances (Bjorkman 1981; Anderson and Osmospectroradiometer (Li-Cor); it fluctuated between 0.85 and 0.95,

1987). In beech stands natural recruitment is consideyéigout significant differences between the low light and the high

; ; P ioht treatment.

a good and inexpensive method O.f regeneration; u_nsIL%l n 13 June 1995, half of H-plants, of each population, were

cessful cases of_natural regeneration are often attributgfsferred to low light conditions (HL, i.érom high to low

to unfavourable light conditions (Madsen 1995). light), and half of L-plants were transferred to high light condi-
In a recent experiment (Tognetti et al. 1994), shadens (LH, i.e. from low to high light). Half of plants remained as

grown leaves of beech seedlings, which all derived frdigfiols: HH, (@ways under high light) and LL (always under
leaf pri di f d ’ l h fraQw light). Plants were kept well watered by a drip irrigation
sun-leaf primordia, were found to acclimate rather elf€Grgiem (leaf predawn water potential ranged between —0.08 and

tively to full light conditions. —0.28 MPa), fertilized with a 20/20/20 N/P/K commercial slow-re-
In the present experiment, the reaction to increasiegse fertilizer, and shifted frequently to minimise positional ef-

irradiances of long-term shade acclimated beech plafftsts:

in which all leaves derived from shade-leaf primordia,

were studied. The main objective was to tesj[ the_ hypolma'asurements of photosynthesis, leaf conductance

esis that seedling performance under changing light c@Rd chiorophyll fluorescence

ditions, which follow overstorey removal and gaps open-

ing in forests, may involve acclimation of pre-existinljleasurements were performed on seven dates, between June 1

; _ _ ; apd July 25, on nine plants, each population, per treatment (HH,
leaves. To this end 2-year-old seedlings, grown for HL, LH) and one fully expanded leaf per plant; the same leaf

consecutive years under either shade and moderafglyy from the top) was sampled each time.
high light, were exposed to contrasting light regimes. Af- Maximum photosynthetic rateA(,,) was measured under
ter the transfer, plants were characterized by measumstegdy-state conditions between 11-14 h with a portable gas ex-

gas exchange, fluorescence emission parameters, chigfghge ofer Systen (LCAZ ADC, Hoddesdon, UIO. Leal con
phyll and carotenoid contents, leaf anatomy, and biom ﬁge porometer (Li-Cor).
allocation. Chlorophyll fluorescence was measured using a PAM 2000

Beech populations are known to differentiate by is®todulated Fluorimeter (H. Walz, Effeltrich, Germany) on both
enzyme markers, late winter xylem embolism, growiggves kept illuminated according to the experimental treatment

; . ; ht-adapted’ leaves), and on leaves which were wrapped for
parameters (Borghetti et al. 1993; Leonardi and Meno gmin in aluminium foil (‘dark-adapted’ leaves). All measure-

1995), morphology and phenology (Borghetti andents were performed with the fibre optic probe at an angle of
Giannini 1982), and susceptibility to drought stress (Togpout 45° to the leaf.

netti et al. 1995). The capability to acclimate to a partic- The following parameters were measured: mininkg),(maxi-

; ; ; ; al (F,) and variable K, = F—F;) fluorescence of ‘dark-adapt-
ular light intensity may be under genetic control and Hé‘d, leaves; steady statB}( minimal Fy) and maximal F..") fluo-

: : A ; &
sults from light environment prevailing in the native habzscence for ‘light-adapted’ leaves: the fluorescence nomenclature
itat (Boardman 1977). Thus, the hypothesis that acclim@lows van Kooten and Snel (1990).

tion to changing light conditions may depend upon the ‘Dark-adapted’ leaves were exposed o 115-min stepwise se-
geographic origin of plant material was evaluated in tHjgences of red light (from 0 to 6Qdnol nr2 s, and then to 0

. . - - ain to estimate lasting effects); a black sheet covered the leaf
experiment by studying beech populations from d'ﬁereZﬁd the probe during the measuremegtvas determined after an

geographic origins growing at ecologically contrastingposure to 3 s of far-red light (600 Hz) to open PSII reaction cen-
sites. tres fully. The modulated light source was weak enoughp(al

m-2 s at 655 nm) to prevent any induction of variable fluores-
cence. Maximal fluorescence was measured after saturating flush-
es at 500Qumol m2s-1for 0.8 s generated by the internal halogen

Materials and methods lamp.
The maximal photochemical efficiency of PSIl was calculated
Plant material and experimental design as F/F, for ‘dark-adapted’ leaves and a$.(-F)/F, (i.e.

F,//F.) for ‘light-adapted’ leaves (Butler 1978); the quantum effi-

Seedlings off. sylvaticawere produced from seeds collected ii€ncy of PSIl as\F/F,,, whereAF = F,/—F (Genty et al. 1989)
natural populations growing in Tuscany (Abetone, northern Itagd the apparent relative electron transport rate as=E[¥®/F")
44°08 N and 10°42 E) and Sicily (Madonie, southern Italy,XPPFD (Bilger et al. 1995). Photochemical quenching, which is
37°57 N and 14°51E). After 2 years in a nursery, seedlings werdsed as an estlp‘late of'the,fractlon of PSII open centres, was com-
transplanted to 3-1 plastic pots, filled with a mixiure of fine gravéuted asj, = (Fy —F)/(F’'—F,), and non-photochemical quenching
and local soil, and brought to a greenhouse at the University@8fNPQ =K&,/F/)-1 (Bilger and Bjorkman 1990).
Bologna (northern Italy).

In March 1994, before bud break, 144 plants were selected for
dimensional uniformity from each population, and divided in twidleasurement of chlorophyll and caretonoid pigments
groups of 72 plants each; one group was maintained under a pho-
tosynthetic active photon flux density (PPFD) of 500—®dol Chlorophyll (Chla and Chlb) and total carotenoid concentrations
m2 s1 (high light plants, H); the other group was shaded by susere measured on five plants from each population, per treatment.
pending, 2 m above the plant canopy, a neutral density shade-chdtbut 0.5 g (fresh weight, fw) of leaf tissue was macerated in
which reduced PPFD to 20-36nol m2 s-1 (low light plants, L); 10 ml N,N-dimethylformamide in the dark for 48 h at 4°C; pig-
PPFD was monitored with a Li-190-S1 quantum sensor (Li-Conent concentrations were determined in the extracts spectrophoto-
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metrically (DU-65, Beckman, Fullerton, Calif., USA), and exthan those measured in HH plants (Fig. 1). In the recip-

pressed ona |eaf dl’y WEIght (dW) baSiS (MOI’an 1982) rocal transfer (HL plants)ATnax decreased by 50_60%
during the first 2-3 days and levelled off on values
Measurement of biomass, leaf area and leaf anatomy equivalent to LL controls. In most cases, HL and LH

plants from Sicily showed highéy,,.,. Leaf conductance
In November 1995, ten plants of each population per treatm varied in the same direction As,,, in HL plants; in

were harvested. Leaf area ratio (LAR) was calculated as the r ; _
between total plant leaf area and plant dry weight; specific leaf plants,g started to increase four days after the trans

ea (SLA) as the ratio between total plant leaf area and total pigt t0 high light, with a more evident trend in the Sicily
leaf weight; leaf weight ratio (LWR) was calculated as the ratgopulation. As forA,,, 0 values were generally higher
between total leaf weight and plant weight and root/shoot rajjp plants from Sicily (Fig. 1).

(RSR) as the ratio between below ground and above ground bio-
mass. All weights were measured to the nearest 0.1 mg after 48 h
in an oven at 70°C. Leaf area was measured with a Li-3000 meter
(Li-Cor).

The thickness of leaves, and of palisade and spongy parenchy-
ma, were measured on Opn-thin leaf cross-sections under a
light microscope, following the procedure described by Bussotti et
al. (1995).

®  HH-Ab ® LH-Ab
0,3 O  HH-Si O LH-Si
Results 0,2 & LLAb A HL-Ab
0,1 & LL-Si A HL-Si

T

Gas exchange, fluorescence and chlorophyll concentration 0,0

High light (HH) plants showed a much highky,,, than

low light (LL) plants, with values generally higher in the
Sicily population. In LH plants,A,,. increased by
50-70% within the first hour of exposure to high light,
declined the day after the transfer and stabilized at val-
ues higher than LL control plants, but still 40-50% lower
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Fig. 1 Time course of leaf conductance and maximum photosyfig. 2 Time course of chlorophyll fluorescence parametegs (
thesis @, upper panel and,,,, lower panel) in leaves of beechAF/F, F,//F, andF/F, from upper to lower panel) in leaves of
seedlings which were allowed to develop fully under a high ligheech seedlings which were allowed to develop fully under a high
regime HH), then transferred to a low light regimiL(), or, al- light regime HH), then transferred to a low light regimdL(), or,
lowed to develop fully under a low light regimeL{, then trans- allowed to develop fully under a low light regime.{, then trans-
ferred to a high light regimé.H). Values are means * SE for Abeferred to a high light regimé_H). Values are means * SE for Abe-
tone @b) and Sicily Si) populations. Overall means instead ofone @b) and Sicily 8i) populations. Overall means instead of
time course for HH and LL seedlings are reportedveaxis. On time course for HH and LL seedlings are reportedYeaxis. On

the X-axis time is reported as houts) @nd daysd), andO indi- the X-axis time is reported as houts) @nd daysd), andO indi-
cates the day of transfer (measurements taken just k=fore) cates the day of transfer (measurements taken just t=fore)
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Fig. 3 The relationship of apparent relative electron transpdfig. 4 The relationship of apparent relative electron transport
rates (ETR,AF/F,/xPPFD) to incident PPFD, and non-photorates (ETR,AF/F,'xPPFD) to incident PPFD, and non-photo-
chemical quenching (NPQ) in relation to incident PPFD in leavekemical quenching (NPQ) in relation to incident PPFD in leaves
of beech seedlings which were allowed to develop fully undemfibeech seedlings which were allowed to develop fully under a
high light regime KIH), or allowed to develop fully under a lowhigh light regime and then transferred to a low light regihike) (
light regime and then transferred to a high light regitrté)(Val- or allowed to develop fully under a low light regime. }. Values

ues are means + SE for Abetorfd) and Sicily 8i) populations. are means + SE for Abetonak) and Sicily Si) populations. Each
Each line represent a second order polynomial equation fit to time represent a second order polynomial equation fit to the data
data P < 0.001, for ETRR2 = 0.97, 0.96, 0.87 and 0.72, while for(P < 0.001, for ETRR? = 0.80, 0.65, 0.99 and 1, while for NPQ
NPQR2=0.83, 0.82, 0.96 and 0.71, respectively, for HH-Ab, HHR2 = 0.79, 0.90, 0.97 and 0.97, respectively, for LL-Ab, LL-Si,
Si, LH-Ab and LH-Si). Measurements were taken before transfell.-Ab and HL-Si). Measurements were taken before tranifr,
left panels and during 3 days after transfaght panels. panels and during 3 days after transfeght panels

Modulated fluorescence was utilized for evaluatingPFD of 500—-60@imol nr2s-1 an almost linear increase
the functioning of the photosynthetic machinery soon aff ETR was observed in HH plants (data were more scat-
ter the exposure to contrasting light regimes (Fig. 2). tered at higher PPFD). ETR of LL plants saturated at a
LH plants, AF/F, F,[Fy, F,/F, and g, sharply de- considerably lower value, 250-3@nol m—2s-1, despite
creased soon after the transfer to high light; 4 days atterplants from Sicily showed a high point at 5afol
the transfer, these parameters were 50-80% of thosésl LH and HL plants displayed trends similar to LL
measured on LL control plants; in most cases lower vakd HH plants, respectively. NPQ increased with PPFD,
ues were found in the Abetone plants. As measured adut- the relationship was scattered, particularly in LL
0, 30-40% of the PSII reaction centres remained opgants. A more pronounced response of NPQ to increas-
in Abetone plants, and 20-30% in those from Sicily. Ing PPFD was observed in HL as compared to LH plants.
HL plants, the same fluorescence parameters showeldasting effects were negligible (data not shown). Differ-
slight increase after transfer to shade that was similarimces between population were relatively evident only
the two populations, and remained slightly above Hidr LH plants, those from Sicily showing higher values
control plants. In both HH and LL control plants, fluoef ETR and NPQ at increasing PPFD values.
rescence parameters remained relatively constant oveChlorophyll concentration (on a dry weight basis) was
the entire study, (Fig. 2); only bulk-averaged values areich higher in LL than in HH plants, and in the Sicily
reported for clarity. as compared to the Abetone population. In response to

For ‘dark-adapted’ leaves exposed to 15-min stepwisieading, chlorophyll concentration increased in HL
sequences of red light, the response of ETR and NP(lants from Sicily, but not in those from Abetone. In LH
incident PPFD, before and after transfer to contrastipi@ants the chlorophyll concentration decreased after ex-
light conditions, is depicted in Figs. 3 and 4. Up to @osure to light, without differences between populations
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while LAR and SLA were lowest in HH plants; HL andjuantum efficiency of PSIl was not only due to the re-
LH plants showed intermediate values (Table 1). duction of the efficiency of open PSII centres.

The thickness of leaf, palisade and spongy parenchy-n the case of stepwise exposure to increasing irradi-
ma followed this order: (HH = HL) > (LH = LL), Sicily ance, the quantum efficiency of PSIl electron transport
> Abetone. Significant interactions between treatmermiscreased in all treatments. However, under irradiance
and population were found in several cases (Table High enough to saturate photosynthesis, LH plants re-
HH and LL plants did not differ in their leaf anatomgponded much more than HH plants, and LL plants than
throughout the season. HL plants. Thus, it seems that PSII reaction centres of
sun and shade beech plants do not have the same intrin-
sic susceptibilities to photoinhibition. Therefore, our da-
Discussion ta do not support the hypothesis that photoinhibition of

PSII reaction centres is related to long-term down-regu-
The down-regulation of photosynthesis in plants grovation of photochemistry (Oquist et al. 1992). On the oth-
at low irradiance and transferred to high irradiance (@shand, in all treatments (to a lesser extent in LH seed-
LH plants) can be attributed to the depletion of RuBP bggs from Abetone compared to those from Sicily), non-
Rubisco, coupled with the reduced energy supply h@hotochemical quenching (NPQ), which is related to ra-
cause of slower electron transport (Stitt and Schuldiationless photoprotective dissipation processes (Schrei-
1994). On the other hand, the increase in leaf condber and Bilger 1987; Osmond et al. 1993), increased
tance shown by LH plants (particularly those from Siaivith irradiance: at 60@imol mr2 s NPQ was between 1
ly) may allow high intercellular levels of GOenhancing and 1.5 in HH and HL plants, which are values similar to
guantum yield for CQ (Pearcy 1987; Tognetti et al.those found for leaves of mature beech trees by Bilger et
1997; Johnson et al. 1997), and evaporative leaf coolalg(1995).
(Sims and Pearcy 1991), which all may represent accli-No carotenoid (total concentration) biosynthesis, in-
mation mechanisms for understorey plants exposedtdpretable as a photoprotective strategy (Demmig-
sunflecks in small canopy gaps. Adams and Adams 1992), can be suggested for LH seed-

The ratio between assimilation rate and stomatal cdimgs. LH Abetone plants were found to be more suscep-
ductance suggests a more conservative leaf-level watiddle to photoinhibitory damage, as they showed limited
use efficiency in HH with respect to LH plants; thugapacity of thermal dissipation at the PSII level and re-
light-acclimated plants can be considered as more abl¢aioed a more reduced plastochinone pool at high light.
survive in a more xeric habitat (such as a gap), resultiagilowing Bilger et al. (1995), apparent electron trans-
from increased evaporative demand and light intensiggrt rate (ETR) was estimated to be in the range
(Ellsworth and Reich 1992; Johnson et al. 1997). 20-300umol m2 s1 for HH seedlings and of about
shaded plants (LL plants) carbon gain is impaired by si®0pumol m2s-1for LL seedlings; low ETR values were
matal closure more than water loss, which is interpretore lasting in the Abetone plants. Studying the same
able as acclimation to the light-limited, but not watepopulations, Tognetti et al. (1997) showed a tendency for
limited, understorey environment (Kippers and Schnerolonged photoinhibition of PSII following changes in
der 1993; Johnson et al. 1997). irradiance, suggesting no readily reversible damages to

Drastic changes in irradiance may induce photoinhilitSIl centres; similar results are reported by Layne and
tion in shade-acclimated leaves (Bjorkman 1981; OgrElore inPrunus cerasul993).
and Sjostrom 1990; Rosengvist et al. 1991; Johnson efThe highest chlorophyll concentration was found in
al. 1997). In agreement with other studies (Wallace asithded plants, in accordance with previous results on
Dunn 1980; Fetcher et al. 1983; Langenheim et al. 198éech (Johnson et al. 1997; Minotta and Pinzauti 1996)
Kamaluddin and Grace 1992a, b, 1993; Tognetti et ahd on sugar maple (Ellsworth and Reich 1992). Sub-
1997; Johnson et al. 1997), when shade-acclimastdntial nitrogen cost is linked to high chlorophyll con-
plants were transferred to high light, the decline in phients in shaded plants (Evans 1989), and adjustment to
tosynthetic rate was paralleled by a reduction in the phow light regimes can be interpreted as a switch in the al-
tochemical efficiency of PSII, PSIl quantum yield anlbcation of nitrogen resources from Rubisco and electron
photochemical quenching. According to Havaux et atansport proteins towards associated chlorophyll pro-
(1991) the efficiency of open PSII reaction centres is &ins (Field 1983), thus improving light interception.
approximate measure of their trapping efficiency; under An only slight decline of chlorophyll concentrations
photoinhibitory conditions reduced plastoquinone accwas found in LH seedlings, thus providing a chance for
mulates, resulting in the inhibition of electron transpddng-term partial recovery of shade-acclimated leaves. A
(Kyle et al. 1984). The decrease of efficiency of openore rapid and substantial decline in chlorophyll con-
PSII centres and reduction of photochemical quenchiogntrations was observed, after transfer to high irradi-
indicates that the fraction of closed PSIl centres iance, in shade-acclimated leaves originated from sun-leaf
creased in leaves transferred from low to high lightimordia (Tognetti et al. 1994). The increase of chloro-
(Chow et al. 1989; Bjorkman 1987). At a given irradphyll concentration observed in HL seedlings from Sicily
ance, photochemical quenching was different for LH antay allow them to couple with changing light conditions
HH plants; thus, we may argue that the decline in tffer instance sunflecks in canopy gaps) better than seed-
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lings from Abetone, which did not show adjustments w@fith high photosynthetic rates than on acclimation of the
chlorophyll content with decreasing irradiances. photosynthetic apparatus of pre-existing shade acclimat-
Differences between treatments in the chloropddl ed seedlings. Seedlings from the Abetone population
ratio suggest that leaves were structurally different; theere confirmed to be more susceptible to changing light
lower chlorophylla/b ratio in HL and LL plants may beconditions than those from Sicily (Tognetti et al. 1997).
related to increased thylakoid membrane stackihg Sicily beech generally grows in a more open habitat
(shade-type chloroplasts) containing predominantly ligtand may have developed physiological and morphologi-
harvesting units (Virzo de Santo et al. 1984). It is wortlal mechanisms to utilise more effectively a high light
noting that chlorophylé/b ratio in HL plants exhibited a environment.
more pronounced decrease in Abetone with respect to
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