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Abstract. Let P be a polyhedral subdivision inR3 with a total ofn faces. We show that
there is an embeddingσ of the vertices, edges, and facets ofP into a subdivisionQ, where
every vertex coordinate ofQ is an integral multiple of 2−dlog2 n+2e. For each facef of P, the
Hausdorff distance in theL∞ metric betweenf andσ( f ) is at most32. The embeddingσ
preserves or collapses vertical order on faces ofP. The subdivisionQ hasO(n4) vertices
in the worst case, and can be computed in the same time.

1. Introduction

Geometric algorithms are usually described in the “real-number RAM” model of com-
putation, where arithmetic operations on real numbers have unit cost. A programmer
implementing a geometric algorithm must find some substitution for real arithmetic.
The substitution of exact arithmetic on a subset of the reals, say the integers or the
rationals, avoids the difficulties that can arise from naive substitution of floating-point
arithmetic [4], [12], [14], [15]. The substitution is not trivial, since the required arithmetic
bit-length usually exceeds the native arithmetic bit-length of most computer hardware,
and some form of software arithmetic is required.

Recent research has made the use of software exact arithmetic for geometric algo-
rithms much more attractive. A predicate on geometric data is determined by the sign
of an arithmetic expression in the coordinates of the data. A promising strategy for
sign-evaluation is adaptive-precision arithmetic [6], [13], [20], where the expression is
evaluated to higher and higher precision until its sign is known, i.e., until the magnitude
of the expression exceeds an error bound. Low precision, even floating-point, suffices
most of the time, since most instances of geometric predicates are easy. In addition,
for some basic predicates like the sign of a determinant, there are alternative evaluation
strategies that require arithmetic with relatively low precision [1]–[3].
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Exact arithmetic would be more useful if high-level geometric rounding algorithms
were available. Virtually any geometric construction that produces new geometric data
increases the bit-length of geometric coordinates. For example, suppose points are rep-
resented with homogeneous integer coordinates. The plane through three such points has
coefficients whose bit-lengths are about three times the point coordinate bit-lengths; the
point of intersection of three such planes has coordinate bit-length about nine times that
of the original points. Thus a solid modeler, which implements boolean operations and
rigid motions on polyhedra, might produce a polyhedron with high coordinate bit-length
even if the original polyhedra had short coordinate bit-length. Typically an application
requires only a low-precision approximation, not the exact answer. Hence there is a
need for high-level rounding, which replaces a geometric structure with high bit-length
coordinates with an approximating structure with short bit-length coordinates. It does
not suffice to round each coordinate independently, since such rounding is a geometric
perturbation, and may introduce inconsistencies between geometric and combinatorial
information. Furthermore, some change in combinatorial structure is inevitable; indeed,
in certain cases it is NP-hard to determine if it is possible to round to low-precision
without changing combinatorial structure [19].

Satisfactory high-level rounding algorithms are known for polygonal subdivisions in
two dimensions. One such algorithm is snap-rounding [10]. Fix a polygonal subdivision,
with arbitrary-precision coordinates. Apixel is a unit square in the plane centered at a
point with integer coordinates; a pixel ishot if it contains a vertex of the subdivision.
Snap-rounding replaces each vertex by the center of the pixel containing the vertex, and
each edge by the polygonal chain through the centers of the hot pixels met by the edge,
in the same order as met by the edge. The snap-rounded subdivision approximates the
original subdivision in the sense that each vertex and edge of the original subdivision has
an image in the snap-rounded arrangement whose Hausdorff distance is at most1

2 in the
L∞ metric. Snap-rounding may change the combinatorial structure of the subdivision,
for example, vertices and edges may collapse together, but some combinatorial ordering
information is preserved [10].

This paper presents a generalization of snap-rounding to polyhedral subdivisions in
three dimensions. Fix a polyhedral subdivisionP with a total ofn vertices, edges, and
facets. We show that there is a polyhedral subdivisionQ so that each vertex coordinate
is an integer multiple of 1/2dlog2 ne+2. Each facef of P has an imageσ( f ) in Q so
that the Hausdorff distance betweenf andσ( f ) is at most3

2. As with snap-rounding
in two dimensions,f andσ( f ) may have different combinatorial structures: an edge
may be replaced with a polygonal chain, and a facet with a triangulation. Two vertices
may collapse together; the polygonal chains for two edges or the triangulations for two
facets may collapse together or overlap partially, perhaps in several places. However,
vertical order is preserved (or collapsed): if facef is vertically above facef ′ (i.e., there
is a line parallel to thez-axis meeting both faces, and the intersection withf has higher
z-coordinate), thenσ( f ) is above (or overlaps)σ( f ′). In the worst caseQ hasO(n4)

vertices and can be computed in timeO(n4).
As is the case with snap-rounding in two dimensions, the Hausdorff distance between

a facet f and its imageσ( f ) can be reduced by scaling coordinates. For example, for
k > 0, the Hausdorff distance can be reduced to at most3

2 · 2−k, by multiplying every
coordinate ofP by 2k, rounding as above, and then dividing every coordinate of the result
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by 2k. Of course, coordinates are now integral multiples of 1/2k+dlogne+2. Alternatively,
the same procedure withk = −(dlogne + 2) guarantees an approximating subdivision
with integer coordinates, although with Hausdorff distance bounded by 6n.

Though the algorithm in this paper demonstrates the theoretical possibility of three-
dimensional snap-rounding, it is not immediately practical. One concern is the discour-
agingly large bound on the number of new vertices. The algorithm as described always
adds all vertices that might potentially be needed; a variant algorithm might add ver-
tices only as necessary. It is plausible that for typical subdivision instances—not chosen
by an adversary—the number of new vertices will be acceptable. Another concern is
the complexity of the algorithm. Snap-rounding in two dimensions is essentially a lo-
cal algorithm, with the rounding of each vertex and edge determined simply from the
set of hot pixels. Unfortunately, as is seen below, the three-dimensional algorithm re-
quires more complicated global information. Devising a simple, practical, and efficient
three-dimensional rounding algorithm is a significant open problem.

Other Work. Greene and Yao were the first to suggest a rounding scheme for polygonal
subdivisions in two dimensions [8]. Hobby [11] and Greene [9] give algorithms to
compute the snap-rounding of the arrangement formed by a set of intersecting edges.
Guibas and Marimount [10] show how to maintain the snap-rounded arrangement of
edges under insertion and deletion of edges; they also give elementary proofs of basic
topological properties of snap-rounding. Goodrich et al. [7] give improved algorithms
to snap-round a set of intersecting edges, in the case when there are many intersections
within a pixel. Milenkovic [18] suggests a “shortest-path” geometric rounding scheme
that sometimes introduces fewer bends than snap-rounding.

Goodrich et al. [7] propose a scheme for snap-rounding a set of edges in three di-
mensions after first adding as vertices the points of “closest encounter” between nearby
edges. Milenkovic [16] sketches a scheme for rounding a polyhedral subdivision in
three dimensions (in fact, any dimension). Unfortunately, both schemes have the prop-
erty that rounded edges can cross (see below), which violates any notion of topological
consistency.

Fortune [5] suggests a high-level rounding algorithm for polyhedra in three dimen-
sions. His algorithm assumes that a polyhedron is presented by the equations of its
face planes (and the combinatorial incidence structure of faces), not the coordinates of
vertices as assumed by snap-rounding. His algorithm does not appear to extend from
polyhedra to polyhedral subdivisions.

The Challenges of Three-Dimensional Snap-Rounding. The obvious way to snap-round
a vertex in three dimensions is to replace it with the center of the voxel containing it. (A
voxelis a unit cube centered at an integer point.) It is less clear how to snap-round edges
and facets.

Snap-rounding a set of edges in three dimensions requires the addition of new vertices,
unlike the situation in two dimensions. Consider two transverse nearby edges. Rounding
the endpoints to voxel centers perturbs the edges, and hence the edges may change
orientation or cross. We can attempt to prevent this by adding a vertex in the interior of
each edge near the other edge; then either the two new vertices are in the same voxel
and snap-round together, or they are in different voxels and the snap-rounded edges will
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Fig. 1. Verticesa anda′ project to the same pixel in thexy-plane, as dob andb′. Hence in three dimensions,
the snap-rounding ofab crosses the snap-rounding ofa′b′.

not cross. Clearly, it might be necessary to add quadratically many vertices, if the edges
form a “cross-hatch” pattern.

Snap-rounding with facets as well is more problematic. If a vertexv and a facetf are
nearby, we can add a new vertexv′ to f to ensure thatv and f are properly separated or
collapsed. However, this requires thatf be triangulated, which introduces new edges.
Potentially these edges are close to old edges, which could require new vertices, and
it is not immediate that the process is finite. We can attempt to ensure termination by
projecting nearby edges onto a facet, and then triangulating the facet compatibly with
the projection. The actual rounding algorithm is a formalization of this idea.

Overview of the Rounding Algorithm. The rounding algorithm is based on the following
general outline. Orthogonally project all edges of the subdivisionP onto thexy-plane,
form the arrangement, snap-round, and compute a triangulationT . Each facetf of P has
an imageTf that forms a subtriangulationTf of T . The rounding of facetf is obtained
by lifting Tf to a polygonal surfaceσ( f ) that approximatesf . By considering each
cylinder over a vertex, edge, or triangle ofT separately, we can ensure that the lifting
preserves (or collapses) the vertical order on faces ofP.

The first step of the actual algorithm is to determine the roundingσ(e) of each edge
eof P; recall thatσ(e) in general can be a polygonal chain. This step is nontrivial, since
we must prevent crossings among the resulting edges (see Fig. 1). To prevent crossings,
we subdivide the edges ofP by all xy-, xz-, andyz-intersection points. (If the orthogonal
projections ofeande′ into thexz-plane cross at a pointp, andl is the line parallel to the
y-axis throughp, thene∩ l ande′ ∩ l arexz-intersection points.) While this subdivision
prevents most crossings, it is not quite sufficient to prevent all crossings. In Fig. 2 the

Fig. 2. The endpoints ofe∗ andd∗ lie on column boundaries (or extend slightly inside). The roundingsρ(d∗)
andρ(e∗) cross, although thexy-, xz-, andyz-projections ofd∗ ande∗ do not.
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Fig. 3. Side view. Edgee is above facetf ande′ is below. Hence the rounding of facetf must contain the
vertical interval from the rounding ofe to the rounding ofe′.

xy-, xz-, andyz-projections ofd∗ ande∗ are all disjoint, but their snap-roundings cross.
Fortunately, the configuration of Fig. 2 is almost the only way this can happen, and we
can show that there is a slight modification of snap-rounding that does avoid crossings.
For example, in Fig. 2 the modified snap-rounding ofd∗ is a two-edge polygonal chain,
connecting a snap-rounded endpoint ofd∗ to the snap-rounded endpoint ofe∗ on the
same vertical line, and then to the other snap-rounded endpoint ofd∗. We show that
the distance between an edge and its modified snap-rounding increases slightly, to at
most 3

2. (The configuration in Fig. 2 can be modified to show that the “close encounter”
subdivision of Goodrich et al. [7] does not prevent edge crossings.) Section 4 below
describes the subdivision and modification of snap-rounding.

The second step of the actual algorithm is to liftTf to its imageσ( f ). The lifting
must respect constraints on vertical order among facets and edges; for example, if facet
f is vertically above edgee, thenσ( f )must be above or containσ(e). These constraints
can be somewhat complex. In the schematic view in Fig. 3, facetf is below edgee of
facetg and above edgee′ of facetg′. If σ(e) andσ(e′) have the samexy-projection with
σ(e′) aboveσ(e), thenσ( f ) must contain the entire vertical interval betweenσ(e) and
σ(e′) (as doσ(g) andσ(g′), in this case).

The liftingσ( f ) is determined by merging the lifted images of each vertex, edge, and
triangle ofTf . For a vertexv of Tf , its lifting l f (v)may just be a vertex; however, it could
be a vertical chain of edges if there are verticesv′ andv′′ of P so thatv′ is abovef , v′′

is below f , σ(v′) is belowσ(v′′), and bothσ(v′) andσ(v′′) project and snap-round to
v. Similarly, the lifting l f (e) of an edgee of Tf may just be an edge or it may contain
the vertical interval between two edges whosexy-projection snap-rounds toe.

The lifting l f (1) of a triangle1 of Tf is more complicated. It is defined in terms of the
lifting l f1(e) for each edgee of 1. The lifting l f1(e) is just an edge withxy-projection
e; it will form part of the boundary ofl f1(e). It must satisfy three properties: it must be
close to f , it must not cross any other lifted edge, and it must respect vertical order with
other lifted edges (i.e., iff is vertically below f ′ , thenl f1(e) must be belowl f ′1(e)).
The last property is crucial to establishing that the lifted trianglesl f (1) respect vertical
order. Satisfying all three properties requires some care (see Section 5).
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Fig. 4. The liftings of triangleabcfor facets f and f ′ have boundarya1a0bf cf anda1a0bf ′cf ′ , respectively.

There are two naively plausible properties of the definition ofl f1 that do not hold.
First, if 1 and1′ are both incident toe and in Tf , then there is no guarantee that
l f1(e) = l f1′(e) (though they do not cross). However, this causes no difficulty (since
l f (e) contains bothl f1(e) andl f1′(e)).

The second untrue property causes more difficulty. Suppose1 has verticesa,b, c.
There is no guarantee that, say,l f1(ab) is incident tol f1(ac) (though both meet the
vertical line througha). Hencel f (1) must be a triangulation of the polygon formed
by l f1(ab), l f1(bc), andl f1(ac), and perhaps edges along the vertical lines througha,
b, andc. See Fig. 4. It is easy to triangulate the polygon using a central vertex whose
xy-projection is within triangle1. However, a vertical boundary edge may be shared
among several different liftings. To ensure that there are no crossings among edges,
each central vertex must have distinct coordinates. Since there may beÄ(n) central
vertices, coordinates that are integer multiples of roughly 1/n are necessary. This leads
to the additionaldlogne+2 bits needed for vertex coordinates. More details of the lifting
appear in Section 6.

Naively the rounded subdivisionQ has at mostO(n3) faces: the triangulationT has
O(n2) triangles, so for each facetf the roundingσ( f ) consists ofO(n2) lifted triangles
{l f (1)}. However, in the worst case each lifted trianglel f (1)may consist ofO(n) faces,
since there could be linearly many vertices on the vertical edges of its boundary. Hence
Q hasO(n4) faces.

2. The Main Theorem

For pointsa,b ∈ R3 and setsA, B ⊂ R3, d(a,b) is theL∞ distance betweena andb (the
L∞ distance is used exclusively in this paper);d(a, B) is infb∈B d(a,b); andd(A, B)
is supa∈A d(a, B). Note thatd is symmetric for points, but not in general for sets. The
Hausdorff distance dH(A, B) is max(d(A, B),d(B, A)).

The direction parallel to thez-axis is thevertical direction. Two setsA, B ⊂ R3 are
vertically ordered A≺ B (read “A is belowB”) if there is a vertical line meeting both
A andB, and, for every vertical linel meetingA andB, A ∩ l is belowB ∩ l , i.e., the
z-coordinate of every point ofA∩ l is less than thez-coordinate of every point inB∩ l .
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SetsA andB satisfyA ¹ B if there is a vertical line meeting both, and, for every vertical
line meeting both,A∩ l is below or intersectsB∩ l . As is well known,≺ is not transitive
in general; it is transitive among a family of sets that have the samexy-projection. If
furthermore every family in the set is asurface, i.e., every vertical line misses the set or
meets it at one point, then¹ is transitive.

A subdivision Pin R3 is a set of compact convex polyhedralcellsso that every face
of every cell is in the subdivision and so that the intersection of two cells is a face of
both. Cells of dimension 0, 1, and 2 arevertices, edges, andfacets, respectively.|P| is
the union of the cells ofP. An embeddingof a subdivisionP into a subdivisionQ is a
mappingσ that maps each cell ofP into a subdivision contained inQ so that if f is a
face of f ′, thenσ( f ) ⊆ σ( f ′).

To simplify notation somewhat, we extendd and≺ to subdivisions. Thus for subdi-
visionsP andQ, P ≺ Q means|P| ≺ |Q| andd(P, Q) meansd(|P|, |Q|).

Throughout this paper we assume that subdivisions inR3 do not include cells of
dimension 3. Furthermore, we assume that every subdivision is in general position,
specifically, that no edge or facet is parallel to a coordinate axis and that no vertex has
a coordinate that is an integer multiple of1

2. The general position assumption simplifies
presentation; it is not hard to remove (either explicitly or for example by an infinitesimal
symbolic rigid motion).

Theorem 2.1. Let P be a subdivision inR3 with a total of n cells; setκ = 3
2. There is

a subdivision Q and an embeddingσ of P into Q so that:

(1) For each cell f of P, dH( f, σ ( f )) < κ.
(2) Each vertex coordinate of Q is an integral multiple of1/2d2+log2 ne.
(3) If cells f, f ′ of P satisfy f¹ f ′, thenσ( f ) ¹ σ( f ′).
(4) Q can be computed in time O(n4) and has O(n4) cells.

This theorem follows from the discussion below, in particular Lemmas 6.2, 6.5, 6.6, and
Corollary 7.4 below. At a high level, the algorithm required for step (4) has three steps.

1. Subdivide the vertices and edges ofP, forming a set of vertices and edgesP∗

(Section 4).
2. Orthogonally projectP∗ onto thexy-plane, snap-round, and triangulate the convex

hull of the resulting subdivision. LetT be the resulting triangulation.
3. For each cellf in P, lift Tf (the image of f in T) to a subdivisionQf ⊂ R3

(Section 6).

3. Definitions

There are many symbols defined in this paper. For reference, most are summarized in
Appendix 8.

A pixel is an open unit square in thexy-plane centered at an integer point; pixel(q)
is the pixel containing pointq. A voxelis an open unit cube inR3 centered at an integer
point; voxel(q) is the voxel containing pointq. A column(of voxels) is all voxels whose
centers have the samex- andy-coordinates; column(q) is the column containingq.
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Let A be a subdivision in thexy-plane. A pixel ishot (with respect toA) if it contains
a vertex. Thesnap-rounding(with respect toA) of an edgeeof A is the polygonal chain
connecting the centers of the hot pixels met bye in the same order as met bye; similarly,
thesnap-roundingof a vertex ofA is the center of the hot pixel containing it. A basic fact
[10] is that two polygonal chains that result from snap-rounding intersect only at vertices
and edges of both chains. Thesnap-roundingof A is obtained by replacing each edge
and vertex ofA with its snap-rounding with respect toA; it is a polygonal subdivision
whose vertices are hot pixel centers, i.e., integer points, and whose edges connect integer
points.

Let πxy be orthogonal projection onto thexy-plane, and similarly forπxz andπyz.
A set A ⊂ R3 is over a set P in the xy-plane if πxy(A) = P. If A is a surface
with p ∈ πxy(A), then Ap is the point ofA over p (i.e., πxy(Ap) = p). If A and B
are surfaces over the same set, then max(A, B) is the pointwise maximum (viewed as
functions of thexy-plane), and min(A, B) is the pointwise minimum. IfA, B,C are
surfaces over the same set withA º B, then snap(C, [ A, B]) is min(A,max(B,C)).
Clearly, A º snap(C, [ A, B]) º B.

Suppose a setP in the xy-plane is fixed. We define symbolic sets> (top) and⊥
(bottom) satisfying⊥ ≺ A ≺ > for any other setA over P. We have for example
min(A,>) = A = max(A,⊥); we define min and max of an empty collection to be>
and⊥, respectively.

Two edgescrossif they intersect at a point interior to at least one of the edges.

Proposition 3.1. Suppose T⊂ R3 is convex, {s1, . . . , sk} ⊂ R3 is a finite set of points
with convex hull S, andκ ≥ 0. If d(si , T) ≤ κ for i = 1, . . . , k, then d(S, T) ≤ κ.

Proof. Any point in S can be expressed as
∑
αi si with 0 ≤ αi ≤ 1 and

∑
αi = 1.

For eachsi , there is a pointti ∈ T so thatd(si , ti ) ≤ κ. Clearly,
∑
αi ti ∈ T and

d(
∑
αi si ,

∑
αi ti ) is the maximum absolute value of any coordinate of

∑
αi (si − ti ),

which is bounded byκ since
∑
αi = 1,αi ≥ 0, and the absolute value of each coordinate

of si − ti is bounded byκ.

4. Snap-Rounding Edges

Defineρ(q) to be the center of the voxel containingq, and extendρ to edges:ρ(qq′) is
the edgeρ(q)ρ(q′). The mappingρ is the obvious extension of snap-rounding to three
dimensions (ignoring snapping to hot voxels, which is unimportant here). Unfortunately,
ρ may cause two edges to cross. We now define a refinementP∗ of the vertices and edges
of P and a modificationτ of ρ so that no two edges inτ(P∗) cross.

4.1. The Subdivision P∗

Leteande′ be two edges ofP whosexy-projections cross at a pointp. An xy-intersection
point (of P) is either point one or e′ that meets the line throughp parallel to thez-axis.
The definition of anxz- or yz-intersection point is similar.
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The subdivisionP∗ results from subdividing the edges ofP. At any point in the
process,̂e denotes the subdivision of edgee of P; any voxel containing a vertex is ahot
voxel; and any column of voxels containing a hot voxel is ahot column. There are two
steps in the subdivision:

1. Subdivide the edges ofP at all xy-, xz-, andyz-intersection points ofP.
2. For each edgee of P, split ê by each hot columnC it meets:ê must meetC in a

consecutive set of voxels;ê is split by C by further subdividinĝe at any point in
the first voxel (ifê does not yet have a vertex in the first voxel) and similarly by
subdividingê in the last voxel.

Splitting by hot columns has an easy consequence: for any edgee of P, the snap-
rounding ofπxy(ê) with respect toπxy(P∗) is identical to the snap rounding ofπxy(ê)
with respect tôe. Henceforth we use a superscript “*” for edges and vertices ofP∗. For
e∗ an edge ofP∗, we writes(e∗) for the snap-rounding ofπxy(e∗). It is immediate that
if d∗,e∗ are edges ofP∗, thenρ(d∗) crossesρ(e∗) only if s(d∗) = s(e∗).

Lemma 4.1. P∗ has O(n3) vertices; there are O(n2) hot columns and O(n3) hot
voxels.

Proof. Clearly, there are at mostO(n2) xy-, xz-, andyz-intersection points, and only
O(n) vertices ofP. Splitting edges by hot columns adds no new hot columns, hence
there areO(n2) hot columns. For each edgeeof P and for each hot column, there are at
most two vertices added whenê is split by the column. Hence there areO(n3) vertices
altogether.

As mentioned earlier,T is a triangulation of the convex hull ofs(P∗). Consider
the edgesE∗ in P∗ bounding a facetf of P. The projectionπxy(E∗) forms a simple
cycle, but the snap-roundings(E∗) need not. However, it is not hard to see thats(E∗)
consists of some number of simple cycles connected by polygonal chains. LetTf be the
subtriangulation ofT consisting of the vertices and edges ofs(E∗) plus any vertices,
edges, and triangles ofT interior to the simple cycles ins(E∗).

Forv a vertex ofT , e an edge ofT , and1 a triangle ofT , define

P∗e = {e∗ ∈ P∗: s(e∗) = e},
P∗v = {v∗ ∈ P∗: s(v∗) = v},
Fe = { f ∈ P∗: e∈ Tf },
F1 = { f ∈ P∗: 1 ∈ Tf },

wherev∗ ande∗ are vertices and edges ofP∗, respectively, andf is a facet ofP.

4.2. The Mappingτ

Lemma 4.2. Let e be an edge of T. If d∗,e∗ ∈ P∗e andρ(d∗), ρ(e∗) cross, then either
there is an endpointw of ρ(d∗) with d(w,e∗) < κ or an endpointw′ of ρ(e∗) with
d(w′,d∗) < κ.
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The proof of this lemma is rather intricate, so it is deferred to Appendix A.

Lemma 4.3. Let e be an edge of T. There is a mappingτ defined on P∗e so that:

(1) For all edges e∗ ∈ P∗e , τ(e∗) is an edge over e with endpoints among the endpoints
of ρ(P∗e ).

(2) For all edges e∗, d(τ (e∗),e∗) < κ.
(3) τ(P∗e ) is noncrossing.
(4) τ can be computed in time quadratic in the size of P∗

e .

Proof. We defineτ inductively, adding edges ofP∗e one by one in arbitrary order. The
addition of an edge may change the definition ofτ on other edges as well; however,
properties (1)–(3) of the lemma statement are maintained. For the following, recall that
Ap is the point ofA that hasxy-projectionp.

So supposeτ has been defined on a subsetS of P∗e ande∗ is the next edge. If no
edge ofτ(S) crossesρ(e∗), then simply defineτ(e∗) = ρ(e∗). Otherwise, sinceτ(S) is
noncrossing, we can assume up to a symmetric argument that every edgeτ(d∗) crossing
ρ(e∗) hasτ(d∗)u Â ρ(e∗)u andτ(d∗)v ≺ ρ(e∗)v.

Let q be the highest (in≺) endpoint overu of an edge inτ(S) ∪ {ρ(e∗)} so that
d(q,e∗) < κ; similarly let r be the lowest endpoint overv of an edge inτ(S) ∪ {ρ(e∗)}
so thatd(q,e∗) < κ. Clearly,ρ(e∗)u ¹ q andr ¹ ρ(e∗)v. If it is is possible to choose
q′ overu in the intervalρ(e∗)u · · ·q andr ′ overv in the intervalr · · · ρ(e∗)v so thatq′r ′

does not cross an edge ofτ(S), defineτ(e∗) to q′r ′. Note that it is always possible to
chooseq′ andr ′ among the endpoints ofτ(S) ∪ {ρ(e∗)} and that the distance fromq′

andr ′ to e∗ is less thanκ.
Otherwise some subsetS′ of the edges inS crossesqr . Clearly, for anyd∗ ∈ S′,

τ(d∗)u Â q andτ(d∗)v ≺ r . See Fig. 5.
We claim that, for any edgeτ(d∗) ∈ S′, eitherd(q,d∗) < κ or d(r,d∗) < κ. If

ρ(d∗)u ¹ q, then sinceq ¹ τ(d∗)u, certainlyd(q,d∗) < d(τ (d∗)u,d∗) < κ. Similarly
if ρ(d∗)v º r , thend(r,d∗) < κ. Otherwiseρ(d∗)u Â q º ρ(e∗)u andρ(d∗)v ≺ r ¹
ρ(e∗)v, soρ(d∗) crossesρ(e∗). See Fig. 5. The hypothesis of Lemma 4.2 holds with
d∗ ande∗. By the definitions ofq andr , d(ρ(d∗)u,e∗) ≥ κ andd(ρ(d∗)v,e∗) ≥ κ.
Hence Lemma 4.2 implies eitherd(ρ(e∗)v,d∗) < κ or d(ρ(e∗)u,d∗) < κ, so either
d(q,d∗) < κ or d(r,d∗) < κ.

Fig. 5. Definition of τ on new edgee∗.
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Let Q be the set of edgesd∗ ∈ S′ so thatd(q,d∗) < κ, and R = S′\Q. Define
τ(e∗) = qr ; for d∗ ∈ Q, redefineτ(d∗)u = q; and, ford∗ ∈ R, redefineτ(d∗)v = r . It
is easy to check thatτ satisfies conditions (1)–(3). The running time is immediate.

Henceforth we letτ be defined on all edges ofP∗, by choosing a definition onP∗e
separately for each edgee of T , using Lemma 4.3. Since there can beO(n2) edgese in
T , andO(n) edges inP∗e , computation ofτ takes timeO(n4).

We remark that there is no guarantee thatτ(e∗) andρ(e∗) have the same endpoints
or indeed thatd(e∗, τ (e∗)) ≤ κ. In Section 6 we guarantee both properties by in effect
augmentingτ(e∗) to a polygonal chain using vertical edges connecting its endpoints to
the endpoints ofρ(e∗).

5. Lifting Triangle Edges

The roundingσ( f ) of a facet f is defined from a liftingl f of the vertices, edges, and
triangles ofTf . The definitions ofσ andl f appear in Section 6 below. This section defines
an auxiliary lifting functionl f1(e) required to definel f (1). For e an edge of1 ∈ Tf ,
l f1(e) is an edge overe; it will form part of the boundary ofl f (1).

The lifted edges{l f1(e): f ∈ F1} must satisfy three properties: each edgel f1(e)
must be close tof ; the edges must respect vertical order (i.e.,f ¹ f ′ must imply
l f1(e) ¹ l f ′1(e)), and no pair of lifted edges may cross. These properties are the main
result of this section (Lemma 5.3). The definition ofl f1(e) and the proof of the properties
are rather technical; on first reading it may be appropriate to skip to Section 6.

Section 5.1 below gives important technical tools for the rest of the section: “covering
order” on the facets inF1 and the “snapping lemma.” Covering order is used to order
the choices of{l f1(e): f ∈ F1}. Suppose facetf follows facet f ′ in covering order
andl f ′1(e) has been chosen to be close tof ′. If, say, f ≺ f ′, then the snapping lemma
guarantees that it is possible to choosel f1(e) so that bothl f1(e) ¹ l f ′1(e) andl f1(e) is
close to f . In order to make the snapping lemma appropriately transitive, it is necessary
to have a careful definition of what it means for an edge to be close to a facet (“the edge
approximates the facet”).

5.1. The Order< and the Snapping Lemma

Let edgeeof T have endpointsuandv. DefineRe to be the convex hull ofπxy(P∗e ), less the
interior of pixel(u) and pixel(v), unioned withπxy(P∗e ). See Fig. 6. Notice that there are
no intersections among the boundaries of{πxy( f ): f ∈ F1} within Re except possibly
at the endpoints of edges ofπxy(P∗e ). Facet f ∈ Fe covers eif no edge inP∗e boundsf ;
it is easy to check thatRe ⊆ πxy( f ). A facet f covers facet f′ at e if πxy( f ′) ∩ Re ⊆
πxy( f )∩ Re. For any two facetsf, f ′ ∈ Fe, either f covers f ′ ate, or f ′ covers f ate.

Suppose thate is an edge of triangle1 of T . Thecovering order< on the facets inF1
is any total order so thatf < f ′ implies f ′ coversf ate. (The order depends on botheand
1, but to keep the notation simple we do not make this dependence explicit.) The order<

can be described as follows. Assume that1 lies to the left of thee, directed from endpoint
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Fig. 6. Re is the shaded region plus the portion of the edges inside pixel(u) and pixel(v).

u to endpointv; direct all edges inP∗e from pixel(u) to pixel(v). If facets f0, f1 ∈ F1
have bounding edgese∗0,e

∗
1 ∈ P∗e , then f0< f1 if e∗0 is to the left ofe∗1; all facets covering

e appear at the end of the order< , and are ordered arbitrarily among themselves.
We remark that there may be facets inFe that are not inF1 for either of the two

possible triangles1 incident toe; these facets do not appear in the covering order. Such
facets necessarily have two edges inP∗e , both of which project and snap-round toe. Such
edges (and edges inP∗e not incident to any facet) are important for the definition ofσ( f )
and are discussed in Section 6.3 below.

For a setS⊂ R3, let V(S) be all points on all vertical lines throughS. Let fA be a
facet of P, let e be an edge ofT with endpointsu andv, and letA be an edge overe.
EdgeA approximates fA at e if d(Au, fA ∩ V(Re)) < κ andd(Av, fA ∩ V(Re)) < κ.
Clearly, if A approximatesfA at e, then, by Proposition 3.1,d(A, fA) < κ. Also, if
e∗ ∈ P∗e is a boundary edge of facef , thend(τ (e∗),e∗) < κ by Lemma 4.3, andτ(e∗)
approximatesf ate.

Lemma 5.1(Snapping Lemma). Let edge e bound triangle1of T.Suppose fA, fB, fC

∈ F1 with fA º fC º fB, A, B,C are edges over e approximating fA, fB, fC, respec-
tively, A º B,and fC covers fA and fB.Thensnap(C, [ A, B])also approximates fC at e.

Proof. We claim max(B,C) approximatesfC ate; a similar result holds for min, from
which the lemma follows. Letu be an endpoint ofe. We showd(max(Bu,Cu), fC ∩
V(Re)) < κ. If Cu º Bu, there is nothing to prove, so supposeCu ≺ Bu.

Let TB andTC be the cubes of sidelength 2κ centered atBu andCu, respectively, and
T = V(TB) (clearly alsoT = V(TC)). See Fig. 7.

SinceB approximatesfB, there is a pointb ∈ fB ∩ V(Re) ∩ TB. Since fC º fB

and fC covers fB at e, there is a pointc ∈ fC with c º b; clearly, c ∈ T . SinceC
approximatesfC, there is a pointc′ ∈ fC ∩ V(Re) ∩ TC. Since fC ∩ V(Re) ∩ T is
path-connected, there is a path infC ∩ V(Re) ∩ T from c to c′. Sincec is above the
bottom facet ofTB, c′ is below the top facet ofTC, andTB º TC, some point of the path
meetsTB. Henced(Bu, fC) < κ.

5.2. Default Edges

Let ebe an edge ofTf with endpointsu andv and with some triangle incident. We define
thedefault lifting of edge e for facet f, cf (e), which is to be used in the absence of other
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Fig. 7. Proof of Lemma 5.1, side view.TB is a solid square,TC is dashed.

constraints. Ife is a boundary edge ofTf , then there is a unique edgee∗ ∈ P∗e bounding
facet f , and we simply definecf (e) = τ(e∗).

The definition ofcf (e) is more complex ife is an interior edge ofTf . Clearly, f covers
e and no edge inP∗e meetsf .

Define lowf (e) to be the edgêuv̂, whereû is the center of the lowest voxelX in
column(u) so thatX ∩ f ∩ V(Re) is not empty, and similarly for̂v. A pair of distinct
edges(a∗,b∗) in P∗e is a bracketing pairif a∗ Â f and f Â b∗, τ(a∗) º τ(b∗) and
no edgeτ(d∗), d∗ ∈ P∗e , lies betweenτ(a∗) andτ(b∗) (possiblyτ(a∗) = τ(b∗)). The
existence of a bracketing pair can be seen by indexing the edges ofP∗e = {e∗0, . . . ,e∗k} so
thatτ(e∗0) º τ(e∗1) º · · · º τ(e∗k). Either f Â e∗0, and the pair(>,e∗0) suffices (with the
definitionτ(>) = >); or e∗k Â f , and the pair(e∗k,⊥) suffices; or there isi so that an
ei Â f and f Â ei+1, and the pair(ei+1,ei ) suffices. It is possible that there are several
bracketing pairs. Define

cf (e) = snap(low f (e), [τ(a
∗), τ (b∗)]),

where(a∗,b∗) is a bracketing pair chosen so that(τ (a∗), τ (b∗)) is minimal in≺ among
bracketing pairs. SetCe = {cf (e): f ∈ F1}.

Lemma 5.2. Let f be a facet of P and let e be an edge of Tf .

(1) cf (e) approximates f at e.
(2) If f , f ′ cover e and f¹ f ′, then cf (e) ¹ cf ′(e).
(3) τ(P∗e ) ∪ Ce is noncrossing.

Proof. (1) If e is a bounding edge ofTf , then the claim is immediate. Otherwisee is
an interior edge ofTf and

cf (e) = snap(low f (e), [τ(a
∗), τ (b∗)]),

for some bracketing pair(a∗,b∗). Let a∗ andb∗ be incident to facesfa and fb, respec-
tively. It is easy to check that lowf (e) approximatesf . Clearly,τ(a∗) approximatesfa,
τ(b∗) approximatesfb, and f covers fa and fb (sincee is not a bounding edge ofTf ).
Part (1) is thus immediate from Lemma 5.1.
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(2) We haveRe ⊆ πxy( f ), Re ⊆ πxy( f ′), and f ≺ f ′, so lowf (e) ¹ low f ′(e). Let
a∗f ,b

∗
f anda∗f ′ ,b

∗
f ′ be bracketing pairs forf and f ′, respectively. We claimτ(a∗f ) ¹ τ(a∗f ′)

andτ(b∗f ) ¹ τ(b∗f ′), from whichcf (e) ¹ cf ′(e) follows easily. Clearly,τ(a∗f ) º τ(b∗f ).
It cannot be thatτ(b∗f ) Â τ(a∗f ′), for a∗f ′ Â f ′ º f and f would have a bracketing
pair below(a∗f ,b

∗
f ), contradicting minimality. No edge ofτ(P∗e ) lies betweenτ(a∗f ) and

τ(b∗f ), so it must be thatτ(a∗f ′) º τ(a∗f ). Similarly, τ(b∗f ′) º τ(b∗f ).
(3) By the definition of “snap,” no edgecf (e) crosses an edge ofτ(P∗e ). Also, clearly,

if f and f ′ have distinct bracketing pairs, thencf (e) andcf ′(e) do not cross. Iff and f ′

have the same bracketing pair, thencf (e) andcf ′(e) do not cross because lowf (e) and
low f ′(e) do not cross.

5.3. Lifting Triangle Edges

Let e be an edge of triangle1 of T . For facetsf ∈ F1 in the order< , simultaneously
and inductively defineaf1(e) (theconstraint from above), bf1(e) (theconstraint from
below), andl f1(e) (the lifting of edge e of1 in f ), as follows:

af1(e) = min
{
l f ′1(e): f ′ < f and f ′ Â f

}
,

bf1(e) = max
{
l f ′1(e): f ′ < f and f ′ ≺ f

}
,

l f1(e) = snap
(
cf (e), [af1(e),bf1(e)]

)
.

We haveaf1(e) º bf1(e) by Lemma 5.3(1) below.
The definition is illustrated schematically in Fig. 8. For this configuration, we have

l f01(e) = snap
(
τ(e∗0), [>,⊥]

) = τ(e∗0),
l f11(e) = snap

(
τ(e∗1), [>, l f01(e)]

) = τ(e∗0),
l f21(e) = snap

(
τ(e∗2), [l f01(e),⊥]

) = τ(e∗0),
l f31(e) = snap

(
cf3(e), [l f01(e), l f21(e)]

) = τ(e∗0).
F1′ contains onlyf3, andl f31′(e) = cf3(e).

Fig. 8. Definition of l f1(e), side view.1 is incident to the left and1′ to the right. Vertical dotted lines
outline the area that projects and snap-rounds toe.
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Lemma 5.3. Let e be an edge of triangle1 of T with edge e, and let f, f ′ ∈ F1.

(1) af1(e) º bf1(e).
(2) If f ¹ f ′, then lf1(e) ¹ l f ′1(e).
(3) l f1(e) approximates f at e.
(4) l f1(e) ∈ τ(P∗e ) ∪ Ce.

Proof. (1), (2) We prove both simultaneously by induction on< . If af1(e) = > or
bf1(e) = ⊥, af1(e) º bf1(e) is immediate. Otherwiseaf1(e) = l f01(e) andbf1(e) =
l f11(e) for some facetsf0 º f º f1, so by induction hypothesisaf1(e) º bf1(e).
For (2), supposef ¹ f ′; without loss of generality assumef ′ < f . Then by definition
l f ′1(e) º af1(e) º l f1(e).

(3) Sincel f1(e) is defined in the order< , the claim follows from an easy induction
using Lemma 5.1.

(4) By Lemma 5.2,τ(P∗e ) ∪ Ce is noncrossing, so the “snap” in the definition of
l f1(e) results in an element ofτ(P∗e ) ∪ Ce.

Fore an edge ofT , defineLe = Ce∪ {l f1(e): 1 is incident toe and f ∈ P1}. Le is
all of the edges that have been defined overe.

Corollary 5.4. Le is noncrossing.

Proof. Lemmas 5.3(4) and 5.2(3), using the fact that the construction ofCe does not
depend upon the choice of triangle incident toe.

6. The SubdivisionQ

In this section we define the subdivisionQ and the embeddingσ of P into Q required
by Theorem 2.1. This section also contains the definitions ofl f for the vertices, edges,
and triangles ofT .

6.1. Vertices and Edges

Let v∗ be a vertex ofP∗. Defineσ(v∗) = ρ(v∗) (recallρ(v∗) is the center of the voxel
containingv∗).

Letv be a vertex ofT . Thevertical carrier V C(v) is the vertical chain of edges through
ρ(P∗v ), i.e. all edges connecting two vertices ofρ(P∗v ) that are adjacent in vertical order.

Let e∗ ∈ P∗e , where edgee in T has endpointsu and v. Defineσ(e∗) to be the
subdivision consisting ofτ(e∗), the subchain ofV C(u) connectingτ(e∗)u toρ(e∗)u and
the subchain ofV C(v) connectingτ(e∗)v to ρ(e∗)v. Extendσ to edgese of P:

σ(e) =
⋃

e∗∈P∗, e∗⊆e

σ(e∗).

Clearly,σ(e) is a subdivision.



608 S. Fortune

Lemma 6.1. If w,w′ are vertices or edges of P andw ¹ w′, thenσ(w) ¹ σ(w′).

Proof. The claim is immediate for two vertices. Supposew is a vertex andw′ is an
edge; the symmetric case is similar. Thenσ(w′) contains a vertical chain of edges from
the center of the first voxel in column(w)met byw′ to the center of the last such voxel.
Sincew ≺ w′, ρ(w) is below or on the chain, andσ(w) ¹ σ(w′). The case of two edges
is similar.

Let ebe an edge ofT with endpointsu andv. Split each edge inL(e) at its midpoint.
Split each edge at its midpoint. These edges together withV C(u) andV C(v) form a
planar graph (in the plane throughV C(u) andV C(u)). Thevertical carrier V C(e) is
an arbitrary triangulation of this graph.

6.2. Triangles

Let 1 be a triangle ofTf with verticesa,b, c. Consider the edgesl f1(ab), l f1(ac),
l f1(bc). There is no guarantee that these edges are pairwise incident (of course both
l f1(ab) andl f1(ac) are incident to vertices overa, and similarly for the other pairs).
We form a (three-dimensional) polygon froml f1(ab), l f1(ac), l f1(bc) by adding the
vertical subchain ofL(a) connectingl f1(ab)a to l f1(ac)a (if they are not equal) and
similarly for theb andc endpoints. Thelifting of1 for facet f, l f (1), is a triangulation
of this polygon, described as follows.

Split edgesl f1(ab), l f1(ac), l f1(bc) at their respective midpointsmab, mac, mbc,
and add the three edges connecting midpoints. This forms a central trianglemabmacmbc

and three polygons, where, for example, thea-polygon(of f ) consists of edgemabmac,
the two subedges ofl f1(ab) andl f1(ac) with endpoints overa, and possibly a vertical
chain overa. See Fig. 9.

For pointsp,q ∈ R3 andα ∈ R, let α[ p,q] be the point(1− α)p + αq, i.e., the
point a fractionα of the way fromp to q.

Thea-indexof f is the number of distinct pairs(l f ′1(ab), l f ′1(ac)), where f ′ º f .
Let α f = i /2dlog2 ne, wherei is thea-index of f ; clearly, 0< α f < 1. First assume

Fig. 9. Definition ofv f for triangle1 of Tf with verticesa,b, c.
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l f1(ac)a º l f1(ab)a. Setv f = α f [ 1
2[l f1(ac)a,mab],mac]. See Fig. 9. Triangulate the

a-polygon of f with v f , i.e., connectv f to mac, mab, and any vertex on the chain from
l f1(ab)a to l f1(ac)a. If l f1(ab)a Â l f1(ac)a, the construction is similar, withmab and
mac interchanged andl f1(ab)a substituting forl f1(ac)a. The other two polygons are
triangulated in a similar fashion.

Lemma 6.2. Let1 be a triangle of T and f, f ′ ∈ F1.

(1) d(l f (1), f ) < κ.
(2) If f ¹ f ′, then lf (1) ¹ l f ′(1).
(3) Every vertex coordinate of lf (1) is an integral multiple of1/2dlog2 ne+2.
(4) l f (1) has O(n) cells.

Proof. (1) Let1have verticesa,b, c. Every vertex ofl f (1) is within the convex hull of
{l f1(ab), l f1(ac), l f1(bc)}. The claim follows using Lemma 5.3(1) and Proposition 3.1.

(2) We can assume thatl f1(ac)a º l f1(ab)a. Using Lemma 5.3(2), we must have

l f ′1(ac)a º l f1(ac)a and l f ′1(ab)a º l f1(ab)a.

If l f ′1(ab)a Â l f1(ac)a, then the result is immediate, since the convex hull of{l f1(ab),
l f1(ac)} and the convex hull of{l f ′1(ab), l f ′1(ac)} have disjoint interiors. Hence we
can assume that

l f ′1(ac)a º l f1(ac)a º l f ′1(ab)a º l f1(ab)a.

Let i f andi f ′ be thea-indices of f and f ′, respectively. Ifi f = i f ′ , then thea-polygons for
f and f ′ are identical. Otherwise,i f > i f ′ since f ¹ f ′. Let s be the edge connecting
v f ′ to the midpoint ofl f ′1(ac); clearly, we haveπxy(v f ) ∈ πxy(s) sinceα f > α f ′ .
Furthermore, we havev f ≺ s, sincel f1(ab) ¹ l f ′1(ab) andl f1(ac) ¹ l f ′1(ac) with
inequality holding in at least one case.l f (1) ¹ l f ′(1) follows easily.

(3), (4) Immediate.

6.3. Vertical Ordering

It is tempting to defineσ( f ) = ⋃1∈Tf
l f (1). By Lemma 6.2(2), this definition would

preserve or collapse vertical order (in the sense of Theorem 2.1) among lifted triangles.
However, order would not necessarily be preserved between lifted triangles and rounded
edges or vertices. To see why, letebe an edge ofTf with two triangles1and1′ incident. It
is possible that there is an isolated edgee∗ ∈ P∗e with no facet ofP incident (or similarly
an edgee∗ of facet f ∈ Pe\(P1 ∪ P1′), i.e., f has two edges projecting and snap-
rounding toe). It is furthermore conceivable thate∗ ≺ f but that bothl f1(e) ≺ τ(e∗)
andl f1′(e) ≺ τ(e∗). With the tempting definition above, the vertical order betweene∗

and f would not be preserved by rounding. The solution, given below, is specially to
definel f (e) as a (triangulated) vertical polygon, and includel f (e) in σ( f ). Similarly, for
a vertexv ∈ T , l f (v) is defined as a vertical chain. We remark that in consequenceσ( f )
may not be a 2-manifold; it may include vertical chains and polygons over vertices and
edges ofT .
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For a facetf , let Ef (v) be all endpoints of edges{l f1(e): e,1 ∈ T} overv (clearly,
edgee must be incident tov and1). Define

af (v) = min
({σ(v∗): v∗ ∈ P∗v andv∗ º f } ∪ Ef (v)

)
,

bf (v) = max
({σ(v∗): v∗ ∈ P∗v andv∗ ¹ f } ∪ Ef (v)

)
.

Informally,af (v) is the lowest snap-rounding overv of a vertex on or abovef ; similarly,
Bf (v) is the highest snap-rounding overv of a vertex on or belowf . Easilyaf (v) ¹
bf (v). The lifting of vertexv for facet f, l f (v), is the subchain ofV C(v) connecting
af (v) andbf (v).

For a facetf and an edgeeof Tf , let Ef (e) = {l f1(e): 1 incident toe in Tf }. Clearly,
there are are zero, one, or two edges inEf (e) as there are zero, one, or two triangles
incident toe in Tf . Define

af (e) = min
({τ(e∗): e∗ ∈ P∗e ande∗ º f } ∪ Ef (e)

)
,

bf (e) = max
({τ(e∗): e∗ ∈ P∗e ande∗ ¹ f } ∪ Ef (e)

)
.

Notice that ifEf (e) is empty, then there must be some edge ofe∗ ∈ P∗e incident to f , so
af (e) andbf (e) are distinct from⊥ and>, respectively. Thelifting of edge e for facet
f , l f (e), is all edges and verticesw of V C(e) satisfyingbf (e) º w andw º af (e).

Lemma 6.3. Supposew is a vertex or edge of T,w∗ ∈ P∗w, and f is a facet of P. Then
w∗ ¹ f impliesσ(w∗) ¹ l f (w) andw∗ º f impliesσ(w∗) º l f (w).

Proof. By construction.

Lemma 6.4. Let f be a facet of P and letw be a vertex or edge of Tf . Then d(l f (w), f )
≤ κ.

Proof. Similar to the proof of Lemma 5.1.

For each facetf of P, define

σ( f ) =
⋃
w∈Tf

l f (w),

wherew varies over vertices, edges, and triangles. It is easy to check thatσ( f ) is a
subdivision.

Lemma 6.5. If f , f ′ are cells of P and f≺ f ′, thenσ( f ) ¹ σ( f ′).

Proof. The lemma follows from Lemmas 6.1 and 6.3 if one off and f ′ is a vertex
or edge. So suppose both are facets. For each triangle1 in both Tf andTf ′ , l f (1) ¹
l f ′(1) by Lemma 6.2. Supposee is an edge in bothTf and Tf ′ . If there is a triangle
1 in both Tf and Tf ′ incident toe, Lemma 6.2 again impliesl f (e) ¹ l f ′(e). Other-
wise, up to symmetry, there is an edgee∗ ∈ P∗e bounding f with e∗ ¹ f ′, so, by
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Lemma 6.3,σ(e∗) ¹ l f ′(e). Sincee∗ ¹ f , σ(e∗) ⊆ l f (e), andl f (e) ¹ l f ′(e). A similar
argument shows that ifv is a vertex in bothTf and Tf ′ , then l f (v) ¹ l f ′(v). Hence
σ( f ) ¹ σ( f ′).

6.4. The Subdivision Q

Let

Q =
⋃

f

σ( f ),

where f varies over all facets ofP. It is easy to check thatQ is a subdivision and that
σ is an embedding ofP into Q.

Lemma 6.6. Q has O(n4) cells and can be computed in time O(n4).

Proof. For each facetf of P, Tf hasO(n2) triangles1. By Lemma 6.2,l f (1) has
O(n) cells. Henceσ( f ) hasO(n3) cells, for a total ofO(n4) over all facets off . Q can
easily be computed in the same time.

7. Hausdorff Distance

It is immediate from Lemmas 6.2 and 6.4 thatd(σ ( f ), f ) ≤ κ. In this section we
show thatd( f, σ ( f )) ≤ κ, implying dH(σ ( f ), f ) ≤ κ and completing the proof of
Theorem 2.1. This part of the proof has a topological flavor.

To illustrate the proof, we first give a one-dimensional analogue. Suppose we have a
line segmentE = e0ek and a polygonal chainC = c0c1, c1c2, . . . , ck−1ck satisfying

1. d(ci , E) < κ, and
2. d(e0, c0) < κ andd(ek, ck) < κ.

See Fig. 10. Note that condition 1 immediately impliesd(C, E) < κ using Proposi-
tion 3.1; we wish to establishd(E,C) < κ (which is clearly false without condition 2).

Fig. 10. C is the chainc0c1, . . ., ck−1ck; edgeE is e0ek.
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The proof is sketched as follows, using the same terminology as the two-dimensional
case below. Fori = 1, . . . , k−1, chooseei as the point ofE closest toci , thend(ci ,ei ) <

κ for all i = 0, . . . , k. Let A be a chain ofk (abstract) edges,A = a0a1, . . . ,ak−1ak. We
can viewC andE as embeddingsϕC andϕE of A, i.e.,ϕC(ai ) = ci andϕE(ai ) = ei .
Then we have easily (compare Lemma 7.3)

(a) ϕE(A) ⊂ E andϕE(A) covers E, i.e.,ϕE maps the endpoints ofA to the endpoints
of E.

(b) EmbeddingsϕE andϕC areclose, i.e.,d(ϕC(ai ), ϕE(ai )) < κ for i = 0, . . . , k.

Item (a) implies thatE = ϕE(A) (compare Lemma 7.1) while (b) implies thatdH(ϕE(A),
ϕC(A)) < κ (compare Lemma 7.2); these two assertions together yield the desired
conclusion.

We now return to the two-dimensional case. Anabstract triangle,1abc, is a cyclically
ordered set of distinctabstract vertices a,b, c (so1abc= 1bca= 1cab 6= 1acb);
1abchasdirected edges ab, bc, andca. An abstract triangulation Ais a set of abstract
triangles so that for each directed edgeab, there is a unique triangle with directed edge
ba. An abstract triangulationA hasboundary∂A = {a0a1,a1a2, . . . ,aka0} if there is a
distinguished vertexi (thepoint at infinity) so that1ia1a0, . . ., 1iakak−1, 1ia0ak are
exactly the triangles that havei as a vertex. Anembeddingϕ of an abstract triangulation
is a mapping from vertices (except the point at infinity) intoR3. Embeddingϕ extends
to edges, triangles, and all ofA: ϕ(ab) = ϕ(a)ϕ(b), ϕ(1abc) is the convex hull of
{ϕ(a), ϕ(b), ϕ(c)}, andϕ(A) =⋃1∈A ϕ(1). Embeddingϕ may map two vertices to the
same point ofR3, cause two triangles to intersect, etc.

Let ϕ be an embedding of triangulationA with boundary∂A and let f be a facet of
P; ϕ covers f if ϕ(v) ∈ f for all verticesv ∈ A; ϕ(∂A) = ∂ f ; and for distinct edges
e,e′ of ∂A, ϕ(e) andϕ(e′) have disjoint interiors.

Lemma 7.1. Letϕ be an embedding of A. If ϕ covers f, then f = ϕ(A).

Proof. Clearly,ϕ(A) ⊆ f . For the converse, letp ∈ f . Choose a directed linel through
p in the plane off so thatl avoids all vertices ofϕ(A). Choose an arbitrary orientation
of the plane throughf . Consider the directed graph whose nodes are the triangles1 of
A so thatϕ(1) ∩ l 6= ∅ and whose arcs are directed from1abc to1acd if a lies to the
left of l andc to its right. Clearly, each triangle has indegree at most one and outdegree at
most one. There is a unique edge in∂A that contains the first point ofl ∩ f ; hence there is
a unique triangle10 of indegree 0. Similarly, there is a unique triangle1k of outdegree
0. Hence there is a path of triangles10,11, . . . , 1k. Consider the edgesei = ϕ(1i )∩ l .
Consecutive edges share endpoints, so the union of the edges isl ∩ f . Hencep ∈ ei ,
somei , andp ∈ ϕ(1i ) ⊆ f .

An embeddinĝϕ of A iscloseto embeddingϕ if, for all verticesv of A, d(ϕ̂(v), ϕ(v))
< κ.

Lemma 7.2. If embeddingsϕ, ϕ̂ of A are close, then dH(ϕ(A), ϕ̂(A)) < κ.
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Proof. Immediate using Proposition 3.1.

Lemma 7.3. For each facet f of P, there is an abstract triangulation A and close
embeddingsϕ, ϕ̂ so thatϕ̂ covers f andϕ(A) ⊆ σ( f ).

Proof. We first assume thatTf has at least one triangle and that every edge ofTf is
incident to a triangle.A is obtained by pasting together various subtriangulations, using
Tf as a guide. For each triangle1 in Tf , A has an abstract copy ofl f (1), i.e., a set
of abstract triangles with the same incidence structure asl f (1); ϕ maps each abstract
vertex to the corresponding vertex ofl f (1). A contains an abstract copy ofσ(∂ f ), i.e.,
an abstract cycle formed from a copy ofσ(e) for each edgee in ∂ f ; ϕ maps each abstract
vertex to the corresponding vertex ofσ(∂ f ). The boundary ofA is formed by an abstract
copy of∂ f ; ϕmaps each abstract vertex to the image underσ of the corresponding vertex
of ∂ f . (Each edge in the boundary ofA forms a triangle with the point at infinity.)

The abstract copies are connected together as follows. For each internal edgeebetween
two triangles1 and1′, the abstract copies ofl f1(e) and l f1′(e) are connected with
intermediate abstract triangles (see Fig. 11). Similarly,e is a boundary edge ofTf and
is incident to a triangle1, the abstract copies ofσ(e) and l f1(e) are connected by
intermediate abstract triangles. For each vertexv of Tf , the vertices ofA that are abstract
copies ofv have been connected to form a cycle; this cycle is now triangulated. Finally,
the cycles formed by abstract copies of∂ f andσ(∂( f )) are connected: each copy of a
vertexv ∈ ∂ f is connected by an edge to the copy ofσ(v) ∈ σ(∂( f )), and each copy of
an edgee∈ ∂ f is connected by intermediate triangles to the copy ofσ(e) ∈ σ(∂( f )).

Clearly, we haveϕ(A) ⊆ σ( f ). Defineϕ̂ on ∂A by mapping the copy of a vertex
v ∈ ∂ f to v; defineϕ̂ elsewhere by mapping abstract vertexu ∈ A to the closest point
on f to ϕ(u). Clearly,ϕ̂ covers f and is close toϕ.

If Tf has an edgeewithout incident triangles, the approach is similar, using an abstract
copy ofl f (e). The case thatTf consists of a single vertex can be handled trivially.

Fig. 11. Abstract triangulationA. Outer solid cycle is copy of∂ f ; middle solid cycle is copy ofσ(∂( f ); inner
polygons are copies ofl f (1) andl f (1

′) (internal edges not shown). Dotted edges are connecting triangulation
edges.
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Corollary 7.4. If f is a facet of P, then dH( f, σ ( f )) < κ.

Proof. Immediate from Lemmas 7.1–7.3.

8. Discussion

It may be possible to improve the worst-case bounds given in Theorem 2.1. For example,
the O(n4) bound on the size ofQ could be an artifact of vertical projection; perhaps
an O(n3) bound could be obtained by using different projection directions in different
places, each tuned to the local configuration. Obtaining a worst-case bound belowO(n3)

seems very challenging. It would be desirable to remove the extradlog2 ne+2 bits needed
for vertex coordinates; again, this may be an artifact of vertical projection. Finally, it
would be desirable to guarantee that the rounded image of a facet at least was locally a
2-manifold.

A programmer would probably prefer a simple rounding algorithm, even at the ex-
pense of degraded worst-case bounds, as long as the typical-case bounds are reason-
able. One reason that the rounding algorithm is complicated is the need to avoid edge
crossings. Milenkovic [17] suggests rounding existing vertices to integer coordinates.
If two rounded edges cross, then a vertex of intersection is added, with coordinates
computed exactly. This would require a constant-factor increase in the bit-length of
some vertex coordinates, and hence of some predicate evaluations. However, the max-
imum required bit-length is still bounded, and perhaps the increased-length calcula-
tions are relatively infrequent. Perhaps this approach can lead to a practical rounding
algorithm.

Appendix A. Proof of Lemma 4.2

Proof. Let e have endpointsu and u′, let e∗ have endpointsE and E′, and letd∗

have endpointsD andD′, whereD, E ∈ column(u) andD′, E′ ∈ column(u′). By the
definition of P∗, bothd∗ ande∗ each intersect only a single voxel of column(u) and
a single voxel of column(u′). By clipping d∗ ande∗ slightly, we can assume thatD
and E lie on a bounding facet of column(u) and D′ and E′ lie on a bounding facet of
column(u′).

We write, e.g.,Dx for thex-coordinate ofD. Without loss of generality we can assume
Dx < D′x, Dy < D′y, Dz < D′z, and sinceρ(d∗) andρ(e∗) cross, we can assume that
Ez > Dz andE′z < D′z. It cannot be thatuy = u′y, for thenD, D′, E, E′ would lie on
facets of column(u) and column(u′) parallel to thexz-plane, andπxz(d∗) andπxz(e∗)
would cross, which is impossible by the construction ofP∗. Similarly,ux 6= u′x, and we
can assume thatux < u′x anduy < u′y. ThusD and E must either lie on thexz-facet
of column(u), that is, the facet of column(u) parallel to thexz-plane on the+y side of
column(u), or theyz-facet on the+x side. Similarly,D′ andE′ lie either on thexz-facet
on the−y side of column(u′) or theyz-facet on the−x side.

The proof now splits into two rather different cases, depending on whetherEz < E′z
or Ez > E′z.
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Fig. 12. Case 1 of the proof of Lemma 4.2.

Case1: Ez < E′z. We haveDz < Ez < E′z < D′z. By the construction ofP∗, πxz(d∗)
andπxz(e∗) do not cross. We assumeπxz(e∗) º πxz(d∗); the other case is symmetric,
as will be evident momentarily. See Fig. 12. Sinceπxz(e∗) º πxz(d∗) andD′z > E′z, we
must haveD′x > E′x. HenceD′ lies on thexz-facet of column(u′). The plane through
the xz-facet intersectse∗ at some point withz-coordinate belowD′z (since this is true
for all points ofe∗), henceπyz(d∗) º πyz(e∗). By a similar argument,D lies on the
yz-facet of column(u). E andE′ could be on either facet of column(u) and column(u′),
respectively. See also Fig. 2. (The caseπxz(e∗) ¹ πxz(d∗) would be symmetric, with
πyz(d∗) ¹ πyz(e∗).)

Assume that the angleα between they-axis and the line throughπxy(d∗) is at most
π/4; we showd(ρ(E),d∗) ≤ κ. (The caseα ∈ [π/4, π/2] impliesd(ρ(E′),d∗) ≤ κ.)
Let V be the point ofd∗ with the samey-coordinate asE; certainlyVz > Ez. We have
d(πxy(E), πxy(D)) < 1 andd(πxy(E), πxy(V)) < 1 since|Ey−Dy| < 1 andα < π/4.
We also haveDz < Ez < Vz; let W be the point on edgeDV with the samez-coordinate
asE. By Proposition 3.1,d(πxy(E), πxy(W)) < 1, thusd(E,W) < 1, d(E,d∗) < 1,
andd(ρ(E),d∗) < 3

2 = κ.

Case2: E′z < Ez. We cannot haveE′x = D′x, elseπxy(d∗) andπxy(e∗) would cross.
SupposeE′x > D′x. Then we haveE′ on the xz-facet of column(u′). Furthermore,
Ez > E′z andπxz(e∗) º πxz(d∗), sinceπxz(d∗) andπxz(e∗) do not cross. We cannot also
haveD′ on thexz-facet of column(u′), elseπyz(d∗) andπyz(e∗) would cross. Hence
D′y > E′y. See Fig. 13. (The caseE′x < D′x would be symmetric, leading toD′y < E′y
andD′ andE′ interchanging facets of column(u′).)

Let Ê be the point one∗ with thez-coordinateD′z and letD̂ be the point ond∗ with
thez-coordinateE′z. ThenÊx > D′x > D̂x andD̂y > E′y > Êy.

The remainder of the argument occurs in thexy-plane (Fig. 14). We have

min
(

D̂y − Êy, Êx − D̂x

)
< 1

sinced(πxy(D̂), πxy(e∗)) < 1 andπxy(e∗) has positive slope in thexy-plane. Hence we
have eitherd(D̂, column(u′)) < 1 ord(Ê, column(u′)) < 1. It correspondingly follows
that eitherd(ρ(E′),d∗) ≤ 3

2 = κ or d(ρ(D′),e∗) ≤ 3
2 = κ.
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Fig. 13. Case 2 of the proof of Lemma 4.2. Solid outlines are column(u′).

Fig. 14. Case 2 of the proof of Lemma 4.2. Projection onto thexy-plane. The solid square is pixel(u).
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Appendix B. Symbol Cross-Reference

Symbol Section Comment

d(·, ·) 2 L∞ distance (asymmetric for sets)
dH(·, ·) 2 Hausdorff distance (symmetric for sets)
≺,¹ 2 Vertical order
πxy 2 Projection on thexy plane
Ap 2 The point ofA with xy-projectionp
P 2 Original subdivision
Q 2 Rounded subdivision
κ 2 The distance bound (3

2)
σ 2, 6 Embedding ofP into Q
>,⊥ 3 Symbolic sets at top and bottom of vertical order
ρ 4 (Naive) three-dimensional snap-rounding
P∗ 4.1 Refinement of edges and vertices ofP
e∗ 4.1 (Refined) edge ofP∗

Tf 4.1 Triangulation of snap-rounding of projection off
P∗e 4.1 Edges ofP∗ that project and snap-round toe
P∗v 4.1 Vertices ofP∗ that project and snap-round tov
Fe 4.1 Facetsf of P that havee∈ Tf

F1 4.1 Facetsf of P that have1 ∈ Tf

τ 4.1 Modified snap rounding on edges
cf (e) 5.2 Default choice for edgesl f1(e)

Le 5.3 All defined edges overe
V C 6.1 Vertical carrier

l f1(e) 6.2 Lifting of edgee of 1 for facet f
l f (1) 6.2 Lifting of triangle1 for facet f
l f (e) 6.3 Lifting of edgee for facet f
l f (v) 6.3 Lifting of vertexv for facet f
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