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Abstract. Let P be a polyhedral subdivision iR® with a total ofn faces. We show that
there is an embedding of the vertices, edges, and facetdointo a subdivisiorQ, where
every vertex coordinate @ is an integral multiple of 2'°% "2 For each faced of P, the
Hausdorff distance in the,, metric betweenf ando (f) is at most%. The embedding
preserves or collapses vertical order on faceB oThe subdivisionQ hasO(n*) vertices
in the worst case, and can be computed in the same time.

1. Introduction

Geometric algorithms are usually described in the “real-number RAM” model of com-
putation, where arithmetic operations on real numbers have unit cost. A programmer
implementing a geometric algorithm must find some substitution for real arithmetic.
The substitution of exact arithmetic on a subset of the reals, say the integers or the
rationals, avoids the difficulties that can arise from naive substitution of floating-point
arithmetic [4], [12], [14], [15]. The substitution is not trivial, since the required arithmetic
bit-length usually exceeds the native arithmetic bit-length of most computer hardware,
and some form of software arithmetic is required.

Recent research has made the use of software exact arithmetic for geometric algo-
rithms much more attractive. A predicate on geometric data is determined by the sign
of an arithmetic expression in the coordinates of the data. A promising strategy for
sign-evaluation is adaptive-precision arithmetic [6], [13], [20], where the expression is
evaluated to higher and higher precision until its sign is known, i.e., until the magnitude
of the expression exceeds an error bound. Low precision, even floating-point, suffices
most of the time, since most instances of geometric predicates are easy. In addition,
for some basic predicates like the sign of a determinant, there are alternative evaluation
strategies that require arithmetic with relatively low precision [1]-[3].
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Exact arithmetic would be more useful if high-level geometric rounding algorithms
were available. Virtually any geometric construction that produces new geometric data
increases the bit-length of geometric coordinates. For example, suppose points are rep-
resented with homogeneous integer coordinates. The plane through three such points has
coefficients whose bit-lengths are about three times the point coordinate bit-lengths; the
point of intersection of three such planes has coordinate bit-length about nine times that
of the original points. Thus a solid modeler, which implements boolean operations and
rigid motions on polyhedra, might produce a polyhedron with high coordinate bit-length
even if the original polyhedra had short coordinate bit-length. Typically an application
requires only a low-precision approximation, not the exact answer. Hence there is a
need for high-level rounding, which replaces a geometric structure with high bit-length
coordinates with an approximating structure with short bit-length coordinates. It does
not suffice to round each coordinate independently, since such rounding is a geometric
perturbation, and may introduce inconsistencies between geometric and combinatorial
information. Furthermore, some change in combinatorial structure is inevitable; indeed,
in certain cases it is NP-hard to determine if it is possible to round to low-precision
without changing combinatorial structure [19].

Satisfactory high-level rounding algorithms are known for polygonal subdivisions in
two dimensions. One such algorithm is snap-rounding [10]. Fix a polygonal subdivision,
with arbitrary-precision coordinates. gixelis a unit square in the plane centered at a
point with integer coordinates; a pixel ot if it contains a vertex of the subdivision.
Snap-rounding replaces each vertex by the center of the pixel containing the vertex, and
each edge by the polygonal chain through the centers of the hot pixels met by the edge,
in the same order as met by the edge. The snap-rounded subdivision approximates the
original subdivision in the sense that each vertex and edge of the original subdivision has
an image in the snap-rounded arrangement whose Hausdorff distance is étimtbm
L. metric. Snap-rounding may change the combinatorial structure of the subdivision,
for example, vertices and edges may collapse together, but some combinatorial ordering
information is preserved [10].

This paper presents a generalization of snap-rounding to polyhedral subdivisions in
three dimensions. Fix a polyhedral subdivisiBrwith a total ofn vertices, edges, and
facets. We show that there is a polyhedral subdivigposo that each vertex coordinate
is an integer multiple of A2/°%"1+2 Each facef of P has an image (f) in Q so
that the Hausdorff distance betweérando () is at mostg. As with snap-rounding
in two dimensions,f ando (f) may have different combinatorial structures: an edge
may be replaced with a polygonal chain, and a facet with a triangulation. Two vertices
may collapse together; the polygonal chains for two edges or the triangulations for two
facets may collapse together or overlap partially, perhaps in several places. However,
vertical order is preserved (or collapsed): if facés vertically above facd’ (i.e., there
is a line parallel to the-axis meeting both faces, and the intersection wittas higher
z-coordinate), thew (f) is above (or overlapsy (f’). In the worst cas&® hasO(n*)
vertices and can be computed in tir9gn*).

As is the case with snap-rounding in two dimensions, the Hausdorff distance between
a facetf and its imager (f) can be reduced by scaling coordinates. For example, for
k > 0, the Hausdorff distance can be reduced to at réosrk, by multiplying every
coordinate oP by 2, rounding as above, and then dividing every coordinate of the result
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by 2. Of course, coordinates are now integral multiples &#1°9"1+2_ Alternatively,
the same procedure with= —([logn] + 2) guarantees an approximating subdivision
with integer coordinates, although with Hausdorff distance boundeahby 6

Though the algorithm in this paper demonstrates the theoretical possibility of three-
dimensional snap-rounding, it is not immediately practical. One concern is the discour-
agingly large bound on the number of new vertices. The algorithm as described always
adds all vertices that might potentially be needed; a variant algorithm might add ver-
tices only as necessatry. It is plausible that for typical subdivision instances—not chosen
by an adversary—the number of new vertices will be acceptable. Another concern is
the complexity of the algorithm. Snap-rounding in two dimensions is essentially a lo-
cal algorithm, with the rounding of each vertex and edge determined simply from the
set of hot pixels. Unfortunately, as is seen below, the three-dimensional algorithm re-
quires more complicated global information. Devising a simple, practical, and efficient
three-dimensional rounding algorithm is a significant open problem.

Other Work Greene and Yao were the first to suggest a rounding scheme for polygonal
subdivisions in two dimensions [8]. Hobby [11] and Greene [9] give algorithms to
compute the snap-rounding of the arrangement formed by a set of intersecting edges.
Guibas and Marimount [10] show how to maintain the snap-rounded arrangement of
edges under insertion and deletion of edges; they also give elementary proofs of basic
topological properties of snap-rounding. Goodrich et al. [7] give improved algorithms
to snap-round a set of intersecting edges, in the case when there are many intersections
within a pixel. Milenkovic [18] suggests a “shortest-path” geometric rounding scheme
that sometimes introduces fewer bends than snap-rounding.

Goodrich et al. [7] propose a scheme for snap-rounding a set of edges in three di-
mensions after first adding as vertices the points of “closest encounter” between nearby
edges. Milenkovic [16] sketches a scheme for rounding a polyhedral subdivision in
three dimensions (in fact, any dimension). Unfortunately, both schemes have the prop-
erty that rounded edges can cross (see below), which violates any notion of topological
consistency.

Fortune [5] suggests a high-level rounding algorithm for polyhedra in three dimen-
sions. His algorithm assumes that a polyhedron is presented by the equations of its
face planes (and the combinatorial incidence structure of faces), not the coordinates of
vertices as assumed by snap-rounding. His algorithm does not appear to extend from
polyhedra to polyhedral subdivisions.

The Challenges of Three-Dimensional Snap-Roundifighe obvious way to snap-round

a vertex in three dimensions is to replace it with the center of the voxel containing it. (A
voxelis a unit cube centered at an integer point.) Itis less clear how to snap-round edges
and facets.

Snap-rounding a set of edges in three dimensions requires the addition of new vertices,
unlike the situation in two dimensions. Consider two transverse nearby edges. Rounding
the endpoints to voxel centers perturbs the edges, and hence the edges may change
orientation or cross. We can attempt to prevent this by adding a vertex in the interior of
each edge near the other edge; then either the two new vertices are in the same voxel
and snap-round together, or they are in different voxels and the snap-rounded edges will
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Fig.1. Verticesa anda’ project to the same pixel in they-plane, as dé andb’. Hence in three dimensions,
the snap-rounding aib crosses the snap-roundingasb’.

not cross. Clearly, it might be necessary to add quadratically many vertices, if the edges
form a “cross-hatch” pattern.

Snap-rounding with facets as well is more problematic. If a vartemd a faceff are
nearby, we can add a new vertexo f to ensure that and f are properly separated or
collapsed. However, this requires thiate triangulated, which introduces new edges.
Potentially these edges are close to old edges, which could require new vertices, and
it is not immediate that the process is finite. We can attempt to ensure termination by
projecting nearby edges onto a facet, and then triangulating the facet compatibly with
the projection. The actual rounding algorithm is a formalization of this idea.

Overview of the Rounding Algorithm The rounding algorithm is based on the following
general outline. Orthogonally project all edges of the subdivifiamto thexy-plane,
form the arrangement, snap-round, and compute a triangulBtibach facetf of P has
an imageT; that forms a subtriangulatiofy of T. The rounding of facef is obtained
by lifting T; to a polygonal surface (f) that approximated . By considering each
cylinder over a vertex, edge, or triangle bfseparately, we can ensure that the lifting
preserves (or collapses) the vertical order on face®.of

The first step of the actual algorithm is to determine the roundlig@y of each edge
eof P; recall thato (e) in general can be a polygonal chain. This step is nontrivial, since
we must prevent crossings among the resulting edges (see Fig. 1). To prevent crossings,
we subdivide the edges &fby all xy-, xz-, andy z-intersection points. (If the orthogonal
projections of ande€’ into thexz-plane cross at a point, andl is the line parallel to the
y-axis throughp, thenen| ande N1 arexz-intersection pointyWhile this subdivision
prevents most crossings, it is not quite sufficient to prevent all crossings. In Fig. 2 the

Fig.2. The endpoints of* andd* lie on column boundaries (or extend slightly inside). The roundin@s)
andp (e*) cross, although thry-, xz-, andy z-projections ofd* ande* do not.
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Fig. 3. Side view. Edgee is above faceff ande’ is below. Hence the rounding of facétmust contain the
vertical interval from the rounding @fto the rounding of'.

Xy-, Xz-, andy z-projections ofd* ande* are all disjoint, but their snap-roundings cross.
Fortunately, the configuration of Fig. 2 is almost the only way this can happen, and we
can show that there is a slight modification of snap-rounding that does avoid crossings.
For example, in Fig. 2 the modified snap-roundinglbfs a two-edge polygonal chain,
connecting a snap-rounded endpointdéfto the snap-rounded endpoint &f on the
same vertical line, and then to the other snap-rounded endpodtit &fe show that
the distance between an edge and its modified snap-rounding increases slightly, to at
most%. (The configuration in Fig. 2 can be modified to show that the “close encounter”
subdivision of Goodrich et al. [7] does not prevent edge crossings.) Section 4 below
describes the subdivision and modification of snap-rounding.

The second step of the actual algorithm is to Tiftto its imageo (). The lifting
must respect constraints on vertical order among facets and edges; for example, if facet
f is vertically above edge, theno ( f) must be above or containe). These constraints
can be somewhat complex. In the schematic view in Fig. 3, fahdstbelow edgee of
facetg and above edg€ of facetq'. If o (e) ando (€') have the samey-projection with
o (€¢) aboveo (e), theno (f) must contain the entire vertical interval betwesei®) and
o (€) (as doo (g) ando (g'), in this case).

The lifting o (f) is determined by merging the lifted images of each vertex, edge, and
triangle ofT . For a vertex of T, its lifting | (v) may just be a vertex; however, it could
be a vertical chain of edges if there are verticeandv” of P so thatv’ is abovef, v”
is below f, o (v') is belowo (v”), and boths (v') ando (v”) project and snap-round to
v. Similarly, the liftingl; (e) of an edgee of T may just be an edge or it may contain
the vertical interval between two edges whageprojection snap-rounds ®

The liftingl+ (A) of atriangleA of T; is more complicated. Itis defined in terms of the
lifting It (e) for each edge of A. The liftingl A (€) is just an edge witk y-projection
e; it will form part of the boundary of; A (e). It must satisfy three properties: it must be
close tof, it must not cross any other lifted edge, and it must respect vertical order with
other lifted edges (i.e., if is vertically belowf’ , thenl¢ A (€) must be below; A ().
The last property is crucial to establishing that the lifted trianbléA) respect vertical
order. Satisfying all three properties requires some care (see Section 5).
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Fig. 4. The liftings of triangleabcfor facetsf and f’ have boundarg; aghs c; andajagby cs/, respectively.

There are two naively plausible properties of the definitiot @fthat do not hold.
First, if A and A" are both incident te and in T, then there is no guarantee that
l:a(e) = lta(e) (though they do not cross). However, this causes no difficulty (since
I+ (e) contains both; A (e) andl A (€)).

The second untrue property causes more difficulty. Suppobkas vertices, b, c.
There is no guarantee that, sby, (ab) is incident tol; A (ac) (though both meet the
vertical line througha). Hencel (A) must be a triangulation of the polygon formed
bylta(ab), It (bc), andl; A (ac), and perhaps edges along the vertical lines thraygh
b, andc. See Fig. 4. It is easy to triangulate the polygon using a central vertex whose
Xy-projection is within triangleA. However, a vertical boundary edge may be shared
among several different liftings. To ensure that there are no crossings among edges,
each central vertex must have distinct coordinates. Since there m&yrhecentral
vertices, coordinates that are integer multiples of rouglilydre necessary. This leads
to the additionaflogn]+2 bits needed for vertex coordinates. More details of the lifting
appear in Section 6.

Naively the rounded subdivisio® has at mosO(n®) faces: the triangulatiof has
O(n?) triangles, so for each facétthe roundings ( f) consists of0(n?) lifted triangles
{I+ (A)}. However, in the worst case each lifted trianigleA) may consist oD (n) faces,
since there could be linearly many vertices on the vertical edges of its boundary. Hence
Q hasO(n*) faces.

2. The Main Theorem

For pointsa, b € R®and setsA, B ¢ R?,d(a, b) is theL ,, distance betweemandb (the
L, distance is used exclusively in this papetja, B) is inf,cg d(a, b); andd(A, B)

is sup.a d(a, B). Note thatd is symmetric for points, but not in general for sets. The
Hausdorff distance gl A, B) is maxd(A, B), d(B, A)).

The direction parallel to the-axis is thevertical direction. Two set#A, B c R? are
vertically ordered A< B (read “A is belowB") if there is a vertical line meeting both
A andB, and, for every vertical liné meetingA andB, ANl is belowB NI, i.e., the
z-coordinate of every point oA N1 is less than the-coordinate of every point iB N1.
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SetsA andB satisfy A < Bifthere is a vertical line meeting both, and, for every vertical
line meeting bothANI is below or intersectB Nl. As is well known < is not transitive

in general; it is transitive among a family of sets that have the sayr@rojection. If
furthermore every family in the set issarface i.e., every vertical line misses the set or
meets it at one point, ther is transitive.

A subdivision Pin R? is a set of compact convex polyhedcalisso that every face
of every cell is in the subdivision and so that the intersection of two cells is a face of
both. Cells of dimension 0, 1, and 2 arertices edges andfacets respectively| P| is
the union of the cells oP. An embeddingf a subdivisionP into a subdivisiorQ is a
mappingo that maps each cell d? into a subdivision contained i) so that if f is a
face of f/, theno (f) C o (f/).

To simplify notation somewhat, we extedcand < to subdivisions. Thus for subdi-
visionsP andQ, P < Q meangP| < |Q| andd(P, Q) meandd(|P|, |Q]).

Throughout this paper we assume that subdivision®3rdo not include cells of
dimension 3. Furthermore, we assume that every subdivision is in general position,
specifically, that no edge or facet is parallel to a coordinate axis and that no vertex has
a coordinate that is an integer multiple%)f‘l'he general position assumption simplifies
presentation; it is not hard to remove (either explicitly or for example by an infinitesimal
symbolic rigid motion).

Theorem 2.1. Let P be a subdivision i3 with a total of n cellssetx = %’ There is
a subdivision Q and an embeddiagof P into Q so that

(1) Foreachcell f of Pdy(f,o(f)) <«.

(2) Each vertex coordinate of Q is an integral multiplelg®/2+°% "1,
(3) Ifcells f, f’ of P satisfy f< f’, theno(f) <o (f).

(4) Q can be computed in time @) and has Qn*) cells

This theorem follows from the discussion below, in particular Lemmas 6.2, 6.5, 6.6, and
Corollary 7.4 below. At a high level, the algorithm required for step (4) has three steps.

1. Subdivide the vertices and edgeshfforming a set of vertices and edgP$
(Section 4).

2. Orthogonally projecP* onto thexy-plane, snap-round, and triangulate the convex
hull of the resulting subdivision. Lét be the resulting triangulation.

3. For each cellf in P, lift T; (the image off in T) to a subdivisionQ; c R3
(Section 6).

3. Definitions

There are many symbols defined in this paper. For reference, most are summarized in
Appendix 8.

A pixelis an open unit square in they-plane centered at an integer point; pixpl
is the pixel containing poing. A voxelis an open unit cube iR* centered at an integer
point; voxelq) is the voxel containing poirg. A column(of voxels) is all voxels whose
centers have the same andy-coordinates; columig) is the column containing.



600 S. Fortune

Let A be a subdivision in they-plane. A pixel ishot (with respect tad) if it contains
a vertex. Thesnap-roundingwith respect toA) of an edgee of A is the polygonal chain
connecting the centers of the hot pixels metliy the same order as met bysimilarly,
thesnap-roundingf a vertex ofA is the center of the hot pixel containing it. A basic fact
[10] is that two polygonal chains that result from snap-rounding intersect only at vertices
and edges of both chains. Thaap-roundingf A is obtained by replacing each edge
and vertex ofA with its snap-rounding with respect # it is a polygonal subdivision
whose vertices are hot pixel centers, i.e., integer points, and whose edges connect integer
points.

Let nxy be orthogonal projection onto they-plane, and similarly forr,, andmy,.

A set A c R3is over a setP in the xy-plane if mxy(A) = P. If Ais a surface
with p € mxy(A), then A, is the point of A over p (i.e., mxy(Ap) = p). If AandB
are surfaces over the same set, then (AaB) is the pointwise maximum (viewed as
functions of thexy-plane), and mitA, B) is the pointwise minimum. IfA, B, C are
surfaces over the same set with> B, then snafC, [ A, B]) is min(A, maxB, C)).
Clearly, A > snagC, [A, B]) > B.

Suppose a seP in the xy-plane is fixed. We define symbolic sets(top) and_L
(bottom) satisfyingl. < A < T for any other setA over P. We have for example
min(A, T) = A = max(A, 1); we define min and max of an empty collection to'be
and_L, respectively.

Two edge<rossif they intersect at a point interior to at least one of the edges.

Proposition 3.1. Suppose Tc R3is convex{s;, ..., &} C R3is a finite set of points
with convex hull Sandx > 0.1fd(s, T) <k fori=1,...,k thendS T) <«.

Proof. Any point in S can be expressed @S ajs with0 < o < 1 and) o = 1.
For eachs, there is a point; € T so thatd(s,t) < «. Clearly,} «iti € T and
dQ_«is, Y «it) is the maximum absolute value of any coordinat oty (s — ti),
whichis bounded by since} " «; = 1, > 0, and the absolute value of each coordinate
of § — tj is bounded by. O

4. Snap-Rounding Edges

Definep(q) to be the center of the voxel containiggand extengb to edgesp(qq’) is

the edgeo(q)p(q'). The mapping is the obvious extension of snap-rounding to three
dimensions (ignoring snapping to hot voxels, which is unimportant here). Unfortunately,
p may cause two edges to cross. We now define a refineRtenitthe vertices and edges

of P and a modificatiort of p so that no two edges in(P*) cross.

4.1. The Subdivision P

Leteande’ be two edges dP whosexy-projections cross at a poipt An xy-intersection
point (of P) is either point ore or € that meets the line through parallel to thez-axis.
The definition of arxz- or yz-intersection point is similar.
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The subdivisionP* results from subdividing the edges Bf At any point in the
processé denotes the subdivision of edgef P; any voxel containing a vertex istet
voxel; and any column of voxels containing a hot voxel lsoacolumn. There are two
steps in the subdivision:

1. Subdivide the edges &f at all xy-, xz-, andyz-intersection points oP.

2. For each edge of P, split & by each hot columg it meets:é must meeC in a
consecutive set of voxel§;is split by C by further subdividingg at any point in
the first voxel (ifé does not yet have a vertex in the first voxel) and similarly by
subdividingé in the last voxel.

Splitting by hot columns has an easy consequence: for any @d§é, the snap-
rounding ofryy (&) with respect taryy(P*) is identical to the snap rounding af(é)
with respect t@. Henceforth we use a superscript “*” for edges and vertice3*of~or
e* an edge ofP*, we writes(e*) for the snap-rounding of,y(e*). It is immediate that
if d*, e* are edges oP*, thenp (d*) crosses (€*) only if s(d*) = s(e*).

Lemma4.1. P* has Qn®) vertices there are Qn?) hot columns and @?®) hot
voxels

Proof. Clearly, there are at mo€(n?) xy-, xz-, andyz-intersection points, and only
O(n) vertices of P. Splitting edges by hot columns adds no new hot columns, hence
there areD(n?) hot columns. For each edgef P and for each hot column, there are at
most two vertices added whéis split by the column. Hence there a&n®) vertices
altogether. O

As mentioned earlierT is a triangulation of the convex hull «f( P*). Consider
the edge<E* in P* bounding a facetff of P. The projectionryy(E*) forms a simple
cycle, but the snap-roundiref E*) need not. However, it is not hard to see théE*)
consists of some number of simple cycles connected by polygonal chaing. betthe
subtriangulation ofl consisting of the vertices and edgessoE*) plus any vertices,
edges, and triangles af interior to the simple cycles is(E*).

Forv a vertex ofT, ean edge ofl, andA a triangle ofT, define

Py (e € P*: s(e*) =€},
Py = {v' e P*: s(v*) = v},
Fe = {f € P". ec T¢},
Fr = {f € P A eT¢},

wherev* ande* are vertices and edges Bf, respectively, and is a facet ofP.

4.2. The Mappingr

Lemma4.2. Lete be anedge of Tfd*, e € P andp(d*), p(€*) cross then either
there is an endpoint of p(d*) with d(w, €) < « or an endpointw’ of p(e*) with
dw’, d*) < «.
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The proof of this lemma is rather intricate, so it is deferred to Appendix A.

Lemma 4.3. Lete be an edge of Trhere is a mapping defined on P so that

(1) Foralledgesé € Py, (e*) is an edge over e with endpoints among the endpoints
of p(P}).

(2) For all edges &, d(z(e%), €*) < «.

(3) ©(PY) is noncrossing

(4) t can be computed in time quadratic in the size gf P

Proof. We definer inductively, adding edges &% one by one in arbitrary order. The
addition of an edge may change the definitionrafn other edges as well; however,
properties (1)—(3) of the lemma statement are maintained. For the following, recall that
A, is the point ofA that hasxy-projectionp.

So suppose has been defined on a sub&eof P} ande* is the next edge. If no
edge oft (S) crossew (e*), then simply define (e*) = p(e*). Otherwise, since(S) is
noncrossing, we can assume up to a symmetric argument that every(@dgerossing
p(€°) hast(d*)y > p(e")y andz(d*), < p(€%),.

Let g be the highest (in<) endpoint overu of an edge inc(S) U {p(e*)} so that
d(q, €) < «; similarly letr be the lowest endpoint overof an edge irc (S) U {p(e*)}
so thatd(q, €*) < «. Clearly,p(e*)y < g andr < p(e*),. Ifitis is possible to choose
g’ overu in the intervalp (%), - - - g andr’ overv in the intervak - - - p(e*), so thatg’r’
does not cross an edge ofS), definer(e*) to q'r’. Note that it is always possible to
chooseq’ andr’ among the endpoints af(S) U {p(€*)} and that the distance fromnf
andr’ to e* is less tharx.

Otherwise some subs& of the edges irs crossegyr. Clearly, for anyd* € S,
7(d*)y > qandt(d*), < r. See Fig. 5.

We claim that, for any edge(d*) € S, eitherd(q, d*) < « ord(r,d*) < «. If
o(d*)y < q, then sincey < 7(d*),, certainlyd(q, d*) < d(z(d*)y, d*) < «. Similarly
if p(d*), > r, thend(r, d*) < k. Otherwiseo(d*), > q = p(e*), andp(d*), <r <
0 (€%),, S0 p(d*) crosseso(e*). See Fig. 5. The hypothesis of Lemma 4.2 holds with
d* ande*. By the definitions ofg andr, d(p(d*)y, €) > « andd(p(d*),, €*) > «.
Hence Lemma 4.2 implies eithéi(p(e*),, d*) < « or d(p(e*)y, d*) < «, so either
d(q,d*) <k ord(r,d*) < «.

. o
u v

Fig. 5. Definition of r on new edge*.
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Let Q be the set of edged* € S so thatd(q, d*) < «, andR = S\Q. Define
(") = gr; for d* € Q, redefiner (d*), = q; and, ford* € R, redefiner (d*), =r. It
is easy to check that satisfies conditions (1)—(3). The running time is immediatél

Henceforth we let be defined on all edges &*, by choosing a definition of;
separately for each edgef T, using Lemma 4.3. Since there can®é?) edgese in
T, andO(n) edges inP;, computation ot takes timeO(n%).

We remark that there is no guarantee th@*) and p(e¢*) have the same endpoints
or indeed thatl(e*, t(e*)) < «. In Section 6 we guarantee both properties by in effect
augmenting (e*) to a polygonal chain using vertical edges connecting its endpoints to
the endpoints op (e*).

5. Lifting Triangle Edges

The roundings (f) of a facetf is defined from a liftind; of the vertices, edges, and
triangles ofT; . The definitions o0& andl; appear in Section 6 below. This section defines
an auxiliary lifting functionl; 5 (e) required to definés (A). Fore an edge ofA € Ty,

It (e) is an edge oveg; it will form part of the boundary of; (A).

The lifted edgedlsa(e): f € Fa} must satisfy three properties: each etlgge)
must be close tof; the edges must respect vertical order (ife.x f’ must imply
l:a(e) < lt4(€), and no pair of lifted edges may cross. These properties are the main
result of this section (Lemma 5.3). The definitionof(e) and the proof of the properties
are rather technical; on first reading it may be appropriate to skip to Section 6.

Section 5.1 below gives important technical tools for the rest of the section: “covering
order” on the facets ik, and the “snapping lemma.” Covering order is used to order
the choices ofl;A(e): f € FA}. Suppose facef follows facet f’ in covering order
andl¢/4 (e) has been chosen to be closeftolf, say, f < f’, then the snapping lemma
guarantees that it is possible to chobsge) so that both o (€) < 114 (e) andls A (€) is
close tof. In order to make the snapping lemma appropriately transitive, it is necessary
to have a careful definition of what it means for an edge to be close to a facet (“the edge
approximates the facet”).

5.1. The Order«d and the Snapping Lemma

Letedgeeof T have endpoints andv. DefineRe to be the convex hull of,, (PJ), less the

interior of pixe(u) and pixel(v), unioned withrr, (Pg). See Fig. 6. Notice that there are

no intersections among the boundarie$ofy(f): f € Fa} within Re except possibly

at the endpoints of edges ofy(P;). Facetf e Fe covers &f no edge inP; boundsf;

it is easy to check thaR. C myy(f). A facet f covers facet fat eif myy (f )N Re €

xy(T) N Re. For any two facetd, f’ € Fe, either f coversf’ ate, or f’ coversf ate.
Suppose thatis an edge of triangle of T. Thecovering order< on the facets itir5

is any total order so thét< f’implies f’ coversf ate. (The order depends on batland

A, but to keep the notation simple we do not make this dependence explicit.) Thesorder

can be described as follows. Assume thdies to the left of the, directed from endpoint
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Fig. 6. Reis the shaded region plus the portion of the edges inside(pixehd pixe(v).

u to endpointv; direct all edges irP; from pixel(u) to pixel(v). If facets fo, f1 € Fa
have bounding edge, €] € PZ, thenfy < f1 if € is to the left ofe]; all facets covering
e appear at the end of the ordar, and are ordered arbitrarily among themselves.

We remark that there may be facetskg that are not inF, for either of the two
possible trianglea incident toe; these facets do not appear in the covering order. Such
facets necessarily have two edge®ih both of which project and snap-roundedsuch
edges (and edges R not incident to any facet) are important for the definitiorof )
and are discussed in Section 6.3 below.

For a setS ¢ R3, let V(S) be all points on all vertical lines through Let f be a
facet of P, let e be an edge of with endpointsu andv, and letA be an edge oves.
EdgeA approximates £ at eif d(Ay, faNV(Re)) < k andd(A,, faNV(R)) < «.
Clearly, if A approximatesfa at e, then, by Proposition 3.1J(A, fa) < «. Also, if
e* € P is a boundary edge of fack, thend(z(€*), €) < « by Lemma 4.3, and (e*)
approximates ate.

Lemma 5.1(Snapping Lemma). Letedge e bound triangls of T. Suppose £, fg, fc
€ Fa with fo > fc = fg, A, B, C are edges over e approximating, ffg, fc, respec-
tively, A = B,and fz covers fiand fs. ThensnagC, [ A, B]) also approximatescfate.

Proof. We claim maxB, C) approximated¢ ate; a similar result holds for min, from
which the lemma follows. Leti be an endpoint oé. We showd(max(By, C,), fc N
V(Re)) < «. If Cy = By, there is nothing to prove, so suppdsg< B,.

Let Tg andT¢ be the cubes of sidelengtikh 2entered aB, andC,, respectively, and
T = V(Tg) (clearly alsoT = V (T¢)). See Fig. 7.

Since B approximatesfg, there is a poinb € fg N V(R N Tg. Since fc > fg
and fc covers fg at e, there is a point € fc with ¢ > b; clearly,c € T. SinceC
approximatesfc, there is a point’ € fc N V(R) N Tc. Sincefc N V(R) N T is
path-connected, there is a pathfa N V(Re) N T from c to ¢'. Sincec is above the
bottom facet ofTg, ¢ is below the top facet ofc, andTg > Tc, some point of the path
meetsTg. Henced(By, fc) < «. O

5.2. Default Edges

Letebe an edge of; with endpointss andv and with some triangle incident. We define
thedefault lifting of edge e for facet, £; (€), which is to be used in the absence of other
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fe

- fB

Fig. 7. Proof of Lemma 5.1, side vieWs is a solid squarelc is dashed.

constraints. leis a boundary edge df, then there is a unique edgé e P; bounding
facet f, and we simply define; () = t(€%).

The definition ofc (e) is more complex i€is an interior edge of; . Clearly, f covers
eand no edge P} meetsf.

Define low (e) to be the edgéiv, wherel is the center of the lowest vox&{ in
columnu) so thatX N f N V(Re) is not empty, and similarly fof. A pair of distinct
edges(a*, b*) in P} is abracketing pairif a* > f and f > b*, r(a*) > z(b*) and
no edger (d*), d* € PZ, lies betweerr(a*) andz(b*) (possiblyz(a*) = z(b*)). The
existence of a bracketing pair can be seen by indexing the eddris-ef{ef, . . ., g} so
thatt(ef) > t(€]) > --- > 1(€f). Either f > €}, and the pai(T, &) suffices (with the
definitiont(T) = T); oref > f, and the paire;, L) suffices; or there is so that an
e > fandf > g1, and the paifg .1, ) suffices. It is possible that there are several
bracketing pairs. Define

¢t (e) = snagilows (e), [z (@"), T(b")]),
where(a*, b*) is a bracketing pair chosen so thiata*), t (b*)) is minimal in< among
bracketing pairs. S&@. = {ct(e): f € Fa}.
Lemmab.2. Let f be afacetof P andlete be anedge pf T

(1) cs(e) approximates f ate
(2) If f, f’ covere and fx f’,then g (e) < ¢t (e).
(3) ©(PZ) U Ceis noncrossing

Proof. (1) If eis a bounding edge ofF;, then the claim is immediate. Otherwisés
an interior edge ofiy and

¢t (€) = snaglows (e), [z(@"), T(b")]),

for some bracketing paiia*, b*). Leta* andb* be incident to faces, and f,, respec-
tively. It is easy to check that lowe) approximates . Clearly,t (a*) approximated,,
7(b*) approximatesf,, and f coversf, and f, (sincee is not a bounding edge df).
Part (1) is thus immediate from Lemma 5.1.
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(2) We haveRe C myy(f), Re € mxy(f'), andf < f’, so low (e) < lows (e). Let
af, bf andayf,, bj, be bracketing pairs fof and f’, respectively. We claim(ay) < t(af)
andr(bf) < = (bf,), from whichcs (e) < ¢ (e) follows easily. Clearlyz (af) > t(b).
It cannot be that (b}) > (af), foraf, > f’ > f and f would have a bracketing
pair below(af, by), contradicting minimality. No edge af(Py) lies betweerr (af) and
7(bf), so it must be that (af,) > t(af). Similarly, t(bf,) > 7(b}).

(3) By the definition of “snap,” no edgs (e) crosses an edge of P"). Also, clearly,
if f andf’have distinct bracketing pairs, then(e) andcy. (e) do not cross. Iff and f’
have the same bracketing pair, thgrie) andct (e) do not cross because leye) and
lows (e) do not cross. O

5.3. Lifting Triangle Edges

Let e be an edge of triangla of T. For facetsf € F, in the order<, simultaneously
and inductively define; A (e) (the constraint from above bs 4 (€) (the constraint from
below), andl; A (e) (thelifting of edge e ofA in f), as follows:
asa(e) = min{lya(e): f'< fandf’ > f},
bra(e) = max{lya(e): f' < fandf’ < f},
lta(e) = snap(cs(e), [ara(e), bra(e)]).
We havea;s A (€) > bsa(e) by Lemma 5.3(1) below.
The definition is illustrated schematically in Fig. 8. For this configuration, we have
lta(®) = snap(z (), [T, L]) = t(&p),
lt,a(®) = snap(t(e), [T, la()]) = t(eh),
l,a(e) = snap(t(e), [1,a (), L]) = (&),
l;a(®) = snap(cr,(8), [It,a (@), I (8)]) = T(€5).
Fa- contains onlyfs, andl,x (€) = c,(€).

A A’

Fig. 8. Definition of I 5 (), side view.A is incident to the left and\’ to the right. Vertical dotted lines
outline the area that projects and snap-rounds to
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Lemma5.3. Lete be an edge of triangles of T with edge eand let f f’ € Fa.

(1) ara(e) > bra(e).

(2) If f < f/,thenka(e) <lsa(€).
(3) Ita(e) approximates f ate
(4) lsa(e) € T(PF) U Ce.

Proof. (1), (2) We prove both simultaneously by inductionanlf a;a(e) = T or
bra(e) = L, asa(e) = bra(e) is immediate. Otherwisas o (€) = l1,4(€) andbs A (e) =
I1,a(e) for some facetsfo = f > f1, so by induction hypothesi; A (e) > bra(e).
For (2), supposd =< f’; without loss of generality assunfé < f. Then by definition
lf'a(€) = asa(e) > lta(e).

(3) Sincel¢a(e) is defined in the orde#, the claim follows from an easy induction
using Lemma 5.1.

(4) By Lemma 5.27(P;) U Ce is noncrossing, so the “snap” in the definition of
It a(€) results in an element af(P}) U Ce. O

Forean edge ofl, defineLe = Co U {l1a(€): Aisincidenttoeand f € Pa}. Leis
all of the edges that have been defined @rer

Corollary 5.4. L is noncrossing

Proof. Lemmas 5.3(4) and 5.2(3), using the fact that the constructi@y afoes not
depend upon the choice of triangle incideneto |

6. The SubdivisionQ

In this section we define the subdivisiGhand the embedding of P into Q required
by Theorem 2.1. This section also contains the definitiorig @dr the vertices, edges,
and triangles ofl.

6.1. Vertices and Edges

Let v* be a vertex ofP*. Defines (v*) = p(v*) (recall o (v*) is the center of the voxel
containingv™*).

Letv be avertex off . Thevertical carrier V C(v) is the vertical chain of edges through
p(P), i.e. all edges connecting two verticesadfP,") that are adjacent in vertical order.
Let e € P, where edgee in T has endpoints and v. Defineo (€*) to be the
subdivision consisting of (e¢*), the subchain 0¥ C(u) connecting (%), to p(€*), and

the subchain o¥ C(v) connectingr (¢*), to p(€*),. Extends to edges of P:

o(e) = U o (€9).

e*cP* e*Ce

Clearly,o (e) is a subdivision.
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Lemma6.1. If w, w’ are vertices or edges of P and < w’, theno (w) < o (w’).

Proof. The claim is immediate for two vertices. Suppaseés a vertex andv’ is an
edge; the symmetric case is similar. Thefw’) contains a vertical chain of edges from
the center of the first voxel in coluni®) met byw’ to the center of the last such voxel.
Sincew < w’, p(w) is below or on the chain, and(w) < o (w’). The case of two edges
is similar. O

Lete be an edge of with endpointas andv. Split each edge ih (e) at its midpoint.
Split each edge at its midpoint. These edges together Wiiu) andV C(v) form a
planar graph (in the plane throughC(u) andV C(u)). Thevertical carrier V C(e) is
an arbitrary triangulation of this graph.

6.2. Triangles

Let A be a triangle ofT; with verticesa, b, c. Consider the edgdsa (ab), lt4(ac),
I:a(bc). There is no guarantee that these edges are pairwise incident (of course both
Ita(ab) andl; A (ac) are incident to vertices over, and similarly for the other pairs).
We form a (three-dimensional) polygon frdy (ab), I A (ac), 114 (bc) by adding the
vertical subchain of_(a) connecting ¢ (ab), to I+ 4(ac), (if they are not equal) and
similarly for theb andc endpoints. Thdifting of A for facet f, I; (A), is a triangulation
of this polygon, described as follows.

Split edgeda(ab), l1a(ac), l1a(bc) at their respective midpoint®,p, My, My,
and add the three edges connecting midpoints. This forms a central tmaggig.myc
and three polygons, where, for example, éhpolygon(of f) consists of edgenaymse,
the two subedges of » (ab) andl; 5 (ac) with endpoints ovea, and possibly a vertical
chain overa. See Fig. 9.

For pointsp, q € R® anda € R, leta[p, q] be the point(1 — «)p + aq, i.e., the
point a fractionx of the way fromp to g.

Thea-indexof f is the number of distinct pairés 5 (ab), I+ 4 (ac)), wheref’ > f.
Letas = i/2'°%"1 wherei is thea-index of f; clearly, 0 < o < 1. First assume

lfA(aC)a
lfA(ab)a o

Fig. 9. Definition of vs for triangle A of T with verticesa, b, c.
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l1a(@0a > la(@b)a. Setvy = ¢ %[Im(ac)a, Map], Mac]. See Fig. 9. Triangulate the
a-polygon of f with v¢, i.e., connecb; to mye, Myp, and any vertex on the chain from
lta(@b)a tolsa(ac)a. If la(ab)a > l1a(ac)a, the construction is similar, withn,, and

M, interchanged ant 5 (ab); substituting forl; 5 (ac)a. The other two polygons are

triangulated in a similar fashion.

Lemma 6.2. LetA be atriangle of T and ,ff’ € Fx.

Q) dds(A), f) < «.

(2) If f < f/,thenk(A) <1¢/(A).

(3) Every vertex coordinate of {A) is an integral multiple ofl/2/1°%"+2,
(4) 1+ (A) has Q(n) cells

Proof. (1) LetA have vertices, b, c. Every vertex of; (A) is within the convex hull of
{lsa(@ab), ¢ a(ac), s a(bc)}. The claim follows using Lemma 5.3(1) and Proposition 3.1.
(2) We can assume thity (ac)a > lta(ab)a. Using Lemma 5.3(2), we must have

l[f'a(@C)a = la(@0C)a and lpa(@ab)a = Ira(ab)a.

If I/4(@b)a > l1a(acC)a, then the result is immediate, since the convex hujl gf(ab),
I:a(ac)} and the convex hull ofls/ 4 (ab), It/ (ac)} have disjoint interiors. Hence we
can assume that

lt'a(@C)a = lta(aC)a = l1a(ab)a = |1 A (@b)a.

Leti¢ andi¢ be thea-indices off and f’, respectively. If; = i¢,, thenthe-polygons for
f and f’ are identical. Otherwisé; > i sincef < f’. Lets be the edge connecting
v to the midpoint ofi¢/4 (ac); clearly, we haveryy(vi) € mxy(S) sinceas > ag.
Furthermore, we have; < s, sincelsa(ab) < lta(ab) andlsa(ac) < lya(ac) with
inequality holding in at least one casg(A) < |+ (A) follows easily.

(3), (4) Immediate. O

6.3. \ertical Ordering

It is tempting to definer (f) = (J,.1, 1(A). By Lemma 6.2(2), this definition would
preserve or collapse vertical order (in the sense of Theorem 2.1) among lifted triangles.
However, order would not necessarily be preserved between lifted triangles and rounded
edges or vertices. To see why,ddte an edge of; with two trianglesA andA’ incident. It

is possible that there is an isolated edye P} with no facet ofP incident (or similarly

an edgee* of facet f € P.\(Pa U Pa/), i.e., f has two edges projecting and snap-
rounding toe). It is furthermore conceivable that < f but that botH; A () < (%)
andl¢a () < T(€%). With the tempting definition above, the vertical order between

and f would not be preserved by rounding. The solution, given below, is specially to
definel; (e) as a (triangulated) vertical polygon, and incliige) in o (f). Similarly, for
avertexv € T, I (v) is defined as a vertical chain. We remark that in consequette

may not be a 2-manifold; it may include vertical chains and polygons over vertices and
edges ofT .
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For a facetf, let E (v) be all endpoints of edgdk: A (€): e, A € T} overv (clearly,
edgee must be incident te andA). Define

a;(v) = min({o(*): v* € P} andv* = f}U Ef(v)),
br (v) = max({o(v*): v* € P;andv* < f} U E¢(v)).

Informally, as (v) is the lowest snap-rounding ovepf a vertex on or abové; similarly,
B: (v) is the highest snap-rounding ovenf a vertex on or belowf. Easilyas (v) <
bt (v). Thelifting of vertexv for facet f, I (v), is the subchain 0¥ C(v) connecting
as (v) andbs (v).

For afacetf and an edgeof Tg, letE; (e) = {lta(€): Aincidenttoein T;}. Clearly,
there are are zero, one, or two edge£ine) as there are zero, one, or two triangles
incident toe in T;. Define

as (e)
bs (e)

min ({z(e"): € € P ande® = f} U Ef(e)),
max({r(e"): " € P} ande* < f} U E;(e)).

Notice that ifE; (e) is empty, then there must be some edge*of P} incidenttof, so
as (e) andbs (e) are distinct fromlL and T, respectively. Théifting of edge e for facet
f,l¢(e), is all edges and vertices of VV C(e) satisfyingb; (e) = w andw > as (e).

Lemma 6.3. Supposev is a vertex or edge of Jw* € P, and f is a facet of PThen
w* < f implieso (w*) < I (w) andw* = f implieso (w*) > | (w).

Proof. By construction. O

Lemma 6.4. Let f be afacetof P and let be avertex or edge of TThen dl¢ (w), f)
<k.

Proof.  Similar to the proof of Lemma 5.1. O

For each facef of P, define

a(f)y=J lrw),

wETf

wherew varies over vertices, edges, and triangles. It is easy to checls tHatis a
subdivision.

Lemma6.5. If f, f"are cells of P and f< f’,theno(f) <o (f’).

Proof. The lemma follows from Lemmas 6.1 and 6.3 if onefofind f’ is a vertex
or edge. So suppose both are facets. For each triangteboth T; and T¢/, I+ (A) <

l+(A) by Lemma 6.2. Supposeis an edge in botfi; andT;.. If there is a triangle
A in both T and T incident toe, Lemma 6.2 again impliek (e) < Il (e). Other-
wise, up to symmetry, there is an edge € Py bounding f with e < f’, so, by
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Lemma 6.3p(e*) < l;/(e). Sincee* < f,o(e*) C ls(e), andls(e) < l;(e). A similar
argument shows that if is a vertex in bothl; and T/, thenl¢ (v) =< It+(v). Hence
o(f) <o(f). O

6.4. The Subdivision Q

Let
Q=Jo(h,

f

where f varies over all facets oP. It is easy to check thaD is a subdivision and that
o is an embedding of into Q.

Lemma6.6. Q has Qn*) cells and can be computed in time(i@).

Proof. For each facef of P, T hasO(n?) trianglesA. By Lemma 6.2)(A) has
O(n) cells. Hencer ( f) hasO(n®) cells, for a total ofO(n*) over all facets off . Q can
easily be computed in the same time. O

7. Hausdorff Distance

It is immediate from Lemmas 6.2 and 6.4 thilb (f), f) < «. In this section we
show thatd(f, o (f)) < «, implying dy(o(f), f) < « and completing the proof of
Theorem 2.1. This part of the proof has a topological flavor.

To illustrate the proof, we first give a one-dimensional analogue. Suppose we have a
line segmenE = eye and a polygonal chai@ = cocy, C1Co, . . ., Ck_1Ck Satisfying

1. d(¢, E) <«, and
2. d(ep, Gg) < k andd(e, ¢k) < k.

See Fig. 10. Note that condition 1 immediately impligE, E) < « using Proposi-
tion 3.1; we wish to establisth(E, C) < « (which is clearly false without condition 2).

Fig. 10. Cis the chaircocy, . . ., Ck—1Ck; edgeE is epex.
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The proof is sketched as follows, using the same terminology as the two-dimensional
casebelow. Far=1, ..., k—1, choose as the point oE closestta;, thend(c, g) <
kforalli =0,..., k. Let Abe achain ok (abstract) edged\ = apay, ..., ax_1ax. We
can viewC and E as embeddinggc andgg of A, i.e.,¢oc(a) = ¢ andye(g) = €.

Then we have easily (compare Lemma 7.3)

(8) ¢e(A) C Eandpe(A) covers Ei.e.,pe maps the endpoints éfto the endpoints
of E.
(b) Embeddingge andgc areclose i.e.,d(¢c(a), ¢e(a)) <k fori =0,...,k.

Item (a) implies thaE = g (A) (compare Lemma 7.1) while (b) implies thdat(¢e (A),
oc(A)) < « (compare Lemma 7.2); these two assertions together yield the desired
conclusion.

We now return to the two-dimensional case.a&ustract triangle Aabg, is a cyclically
ordered set of distinabstract vertices ab, ¢c (so Aabc = Abca = Acab # Aach);
Aabchasdirected edges glibc, andca. An abstract triangulation As a set of abstract
triangles so that for each directed edd® there is a unique triangle with directed edge
ba. An abstract triangulatio hasboundaryd A = {aga;, a;ay, . . ., akap} if there is a
distinguished vertek (the point at infinity) so thatAia;ay, ..., Aiakak_1, Aiagax are
exactly the triangles that haveas a vertex. Ammbedding of an abstract triangulation
is a mapping from vertices (except the point at infinity) ifith Embeddingp extends
to edges, triangles, and all &: ¢(ab) = ¢(@)¢(b), p(Aabg) is the convex hull of
{p(@), p(b), p(0)}, andp(A) = (. ¢(A). Embeddings may map two vertices to the
same point oR3, cause two triangles to intersect, etc.

Let ¢ be an embedding of triangulatichwith boundaryd A and letf be a facet of
P; ¢ covers fif p(v) € f for all verticesv € A; (3 A) = af ; and for distinct edges
e, € of A, p(e) andp(€) have disjoint interiors.

Lemma7.1. Letgp be an embedding of Af ¢ covers f then f= p(A).

Proof. Clearly,p(A) C f.Forthe converse, lgt € f.Choose adirected linghrough

p in the plane off so that avoids all vertices op(A). Choose an arbitrary orientation

of the plane through . Consider the directed graph whose nodes are the triangtds

A so thatp(A) NI # @ and whose arcs are directed frakabcto Aacdif a lies to the

left of | andcto its right. Clearly, each triangle has indegree at most one and outdegree at
most one. There is a unique edg@ i that contains the first point 6f f ; hence there is

a unique triangle\o of indegree 0. Similarly, there is a unique triangig of outdegree

0. Hence there is a path of triangl&sg, A4, ..., Ak. Consider the edges = ¢p(A;) NI.
Consecutive edges share endpoints, so the union of the edgesfisHencep € g,
somei, andp € ¢(A;) C f. O

An embedding of Ais closeto embedding if, for all verticesv of A, d(¢(v), ¢(v))
<K.

Lemma 7.2. If embeddings, ¢ of A are closethen d;(¢(A), p(A)) < k.
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Proof. Immediate using Proposition 3.1. O

Lemma 7.3. For each facet f of Pthere is an abstract triangulation A and close
embedding®, ¢ so thatg covers f andp(A) C o (f).

Proof. We first assume thaf; has at least one triangle and that every edg&;as
incident to a triangleA is obtained by pasting together various subtriangulations, using
T¢ as a guide. For each triangke in T;, A has an abstract copy 6f(A), i.e., a set
of abstract triangles with the same incidence structulle @s); ¢ maps each abstract
vertex to the corresponding vertexlef A). A contains an abstract copy efdf), i.e.,
an abstract cycle formed from a copycofe) for each edgein 9f ; ¢ maps each abstract
vertex to the corresponding vertexaofd f ). The boundary of\ is formed by an abstract
copy ofdf ; ¢ maps each abstract vertex to the image uadgfithe corresponding vertex
of af . (Each edge in the boundary &fforms a triangle with the point at infinity.)
The abstract copies are connected together as follows. For each internabetigeen
two trianglesA and A’, the abstract copies &f A (e) andls A (e) are connected with
intermediate abstract triangles (see Fig. 11). Similarkg, a boundary edge af; and
is incident to a trianglen, the abstract copies af(e) andls(e) are connected by
intermediate abstract triangles. For each vertekT;, the vertices ofA that are abstract
copies ofv have been connected to form a cycle; this cycle is now triangulated. Finally,
the cycles formed by abstract copiesddf ando (3(f)) are connected: each copy of a
vertexv € df is connected by an edge to the copy@b) € o(d(f)), and each copy of
an edgee € 9f is connected by intermediate triangles to the copy @) € o (3(f)).
Clearly, we havep(A) C o(f). Defineg on d A by mapping the copy of a vertex
v € of to v; defineg elsewhere by mapping abstract vertex A to the closest point
on f to ¢(u). Clearly,¢ coversf and is close t@.
If T+ has an edgewithoutincident triangles, the approach is similar, using an abstract
copy ofls (e). The case thaf; consists of a single vertex can be handled triviallyI

Fig. 11. Abstract triangulatiorh. Outer solid cycle is copy dff ; middle solid cycle is copy af (3( f); inner
polygons are copies ¢f (A) andl; (A’) (internal edges not shown). Dotted edges are connecting triangulation
edges.
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Corollary 7.4. If f is afacet of Bthen q;(f,o(f)) < «.

Proof. Immediate from Lemmas 7.1-7.3. O

8. Discussion

It may be possible to improve the worst-case bounds givenin Theorem 2.1. For example,
the O(n*) bound on the size of could be an artifact of vertical projection; perhaps

an O(n®) bound could be obtained by using different projection directions in different
places, each tuned to the local configuration. Obtaining a worst-case bound®eidw
seems very challenging. It would be desirable to remove the griyan]+2 bits needed

for vertex coordinates; again, this may be an artifact of vertical projection. Finally, it
would be desirable to guarantee that the rounded image of a facet at least was locally a
2-manifold.

A programmer would probably prefer a simple rounding algorithm, even at the ex-
pense of degraded worst-case bounds, as long as the typical-case bounds are reason-
able. One reason that the rounding algorithm is complicated is the need to avoid edge
crossings. Milenkovic [17] suggests rounding existing vertices to integer coordinates.
If two rounded edges cross, then a vertex of intersection is added, with coordinates
computed exactly. This would require a constant-factor increase in the bit-length of
some vertex coordinates, and hence of some predicate evaluations. However, the max-
imum required bit-length is still bounded, and perhaps the increased-length calcula-
tions are relatively infrequent. Perhaps this approach can lead to a practical rounding
algorithm.

Appendix A. Proof of Lemma 4.2

Proof. Let e have endpointsi and U/, let € have endpoint€ and E’, and letd*
have endpoint® andD’, whereD, E € column(u) andD’, E’ € column(u’). By the
definition of P*, bothd* ande* each intersect only a single voxel of colucah and
a single voxel of columgu’). By clipping d* ande* slightly, we can assume th&
and E lie on a bounding facet of colunin) and D’ and E’ lie on a bounding facet of
column(u).

We write, e.g.Dy for thex-coordinate oD. Without loss of generality we can assume
Dy < Dy, Dy < D;, D; < D,, and sincep(d*) andp(€e*) cross, we can assume that
E; > D; andE, < D. It cannot be thatiy = u’y, for thenD, D’, E, E' would lie on
facets of columfu) and columiu’) parallel to thexz-plane, andr,,(d*) andmy,(€*)
would cross, which is impossible by the constructiorPof Similarly, uy # u;, and we
can assume that, < uj anduy < u/y. ThusD and E must either lie on thexz-facet
of column(u), that is, the facet of columin) parallel to thexz-plane on thety side of
column(u), or theyz-facet on thetx side. Similarly,D’ andE’ lie either on thexz-facet
on the—y side of columiiu’) or theyzfacet on the-x side.

The proof now splits into two rather different cases, depending on whether E,,
orE; > E,.
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Fig. 12. Case 1 of the proof of Lemma 4.2.

Casel: E; < E,. We haveD, < E, < E] < DJ. By the construction oP*, mx,(d*)
andry,(€*) do not cross. We assumg,(€*) > my,(d*); the other case is symmetric,
as will be evident momentarily. See Fig. 12. Singg(e*) > ny,(d*) andD, > E., we
must haveD] > E;. HenceD’ lies on thexzfacet of columiiu’). The plane through
the xz-facet intersectg* at some point witlz-coordinate belowD), (since this is true
for all points ofe*), henceny,(d*) > my,(e*). By a similar argumentD lies on the
yz-facet of columiiu). E andE’ could be on either facet of colurtun and columiiu’),
respectively. See also Fig. 2. (The casg(e*) < mx,(d*) would be symmetric, with
ﬂyz(d*) = JTyz(e*)-)

Assume that the angte between they-axis and the line throughyy(d*) is at most
/4; we showd(p(E), d*) < «. (The casex € [/4, w/2] impliesd(p(E’), d*) < «.)
Let V be the point ofd* with the samey-coordinate ak; certainlyV, > E,. We have
d(mxy(E), mxy(D)) < landd(myy(E), mxy(V)) < 1sincelEy,— Dy| < L ande < /4.
We also havd, < E, < V;; let W be the point on edgBV with the same-coordinate
as E. By Proposition 3.1d(mxy(E), mxy(W)) < 1, thusd(E, W) < 1,d(E,d*) < 1,
andd(p(E), d") < 3 =«.

Case2: E, < E;. We cannot hav&, = Dy, elsemyy(d*) andmyy(e*) would cross.
SupposeE; > Dy. Then we haveE’ on the xzfacet of columiau’). Furthermore,
E; > E, andny,(€*) > my,(d*), sinceny,(d*) andny,(e*) do not cross. We cannot also
have D’ on thexzfacet of columriu’), elsery,(d*) andny,(e*) would cross. Hence
Dy > E|. See Fig. 13. (The cade, < D; would be symmetric, leading tB] < E|
andD’ andE’ interchanging facets of colunur).)

Let E be the point ore* with the z-coordinateD), and letD be the point ord* with
thez-coordinateE,. ThenE, > D} > Dy andDy > E/ > E,.

The remainder of the argument occurs in theplane (Fig. 14). We have

min(lﬁy —Ey, Ex— I5X) <1
sinced(nxy(lﬁ), Tyy(€%)) < 1 andmyy(€*) has positive slope in they-plane. Hence we

have eithed (D, columnu’)) < 1 ord(E, columnu’)) < 1. It correspondingly follows
that eitherd(p(E’), d*) < 2 =k ord(p(D"), €") < 2 =«. O
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Fig. 13. Case 2 of the proof of Lemma 4.2. Solid outlines are col@fn

...

Fig. 14. Case 2 of the proof of Lemma 4.2. Projection ontoxlyeplane. The solid square is pixa).
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Appendix B.  Symbol Cross-Reference

Symbol Section Comment
d¢, ) 2 L., distance (asymmetric for sets)
du (-, ) 2 Hausdorff distance (symmetric for sets)
<, < 2 Vertical order
TTxy 2 Projection on thexy plane
Ap 2 The point ofA with xy-projectionp
P 2 Original subdivision
Q 2 Rounded subdivision
K 2 The distance bound]
o 2,6 Embedding oP into Q
T, L 3 Symbolic sets at top and bottom of vertical order
P 4 (Naive) three-dimensional snap-rounding
P* 4.1 Refinement of edges and verticedof
et 4.1 (Refined) edge d?*
Ts 4.1 Triangulation of snap-rounding of projection bf
P 4.1 Edges oP* that project and snap-round ¢o
P 4.1 Vertices ofP* that project and snap-round &0
Fe 4.1 Facetsf of P that havee € T¢
Fa 4.1 Facetsf of P that haveA € T;
T 4.1 Modified snap rounding on edges
cs(e) 5.2 Default choice for edgés, (€)
Le 5.3 All defined edges over
VC 6.1 Vertical carrier
IPNG) 6.2 Lifting of edgee of A for facet f
l£(A) 6.2 Lifting of triangleA for facet f
It (e 6.3 Lifting of edgee for facet f
I+ (v) 6.3 Lifting of vertexv for facet f
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