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Abstract. We give a simple combinatorial algorithm that computes a piecewise-linear
approximation of a smooth surface from a finite set of sample points. The algorithm uses
Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algo-
rithm correct by showing that for densely sampled surfaces, where density depends on a
local feature size function, the output is topologically valid and convergent (both pointwise
and in surface normals) to the original surface. We briefly describe an implementation of
the algorithm and show example outputs.

1. Introduction

The problem of reconstructing a surface from scattered sample points arises in many ap-
plications such as computer graphics, medical imaging, and cartography. In this paper we
consider the specific reconstruction problem in which the input is a set of sample pointsS
drawn from a smooth two-dimensional manifoldW embedded in three dimensions, and
the desired output is a triangular mesh with vertex set equal toSthat faithfully represents
W. We give a provably correct combinatorial algorithm for this problem. That is, we give
a condition on the input sample points, such that if the condition is met the algorithm
gives guaranteed results: a triangular mesh with position and surface normals within a
small error tolerance ofW. The algorithm relies on the well-known constructions of the
Delaunay triangulation and the Voronoi diagram.

This paper is an extension of previous work by Amenta et al. [1] on reconstructing
curves in two dimensions. Our previous work defined a planar graph on the sample
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points called thecrust. The crust is the set of edges in the Delaunay triangulation of
the sample points that can be enclosed by circles empty not only of sample points, but
also of Voronoi vertices. The crust comes with a guarantee: if the curve is well-sampled,
then the crust contains exactly the edges between sample points adjacent on the curve.
Our notion of well-sampled, which involves the medial axis of the curve, is sensitive to
local geometry. Hence our algorithm, unlike other algorithms for this problem, allows
highly nonuniform sampling, dense in detailed areas yet sparse in featureless areas. Any
provably correct algorithm must impose some sampling density requirement, similar to
the Nyquist limit in spectral analysis.

The extension to three dimensions in this paper requires both new algorithmic ideas
and new proof techniques. Most notably the algorithm uses only a subset of the Voronoi
vertices to remove Delaunay triangles. The algorithm picks only two Voronoi vertices—
called poles—per sample point: the farthest vertices of the point’s cell on each side
of the surface. With this modification, the straightforward generalization of our two-
dimensional algorithm now works. Delaunay triangles with circumspheres empty of
poles give a piecewise-linear surface pointwise convergent toW. The poles also enable
further filtering on the basis of triangle normals. Adding this filtering gives a piecewise-
linear surface that converges toW both pointwise and in surface normals (and hence in
area). We believe that poles may be useful in other algorithms, perhaps whenever one
wishes to estimate a surface normal or tangent plane.

This paper is organized as follows. Section 2 describes previous work on surface
reconstruction. Section 3 gives our algorithm. Section 4 states our theoretical guarantees,
and Section 5 gives their proofs. Section 6 shows some example outputs.

2. Previous Work

Previous work on the reconstruction problem falls into two camps: computer graphics and
computational geometry. The algorithms in use in computer graphics typically compute
an approximating surface, that is, a surface passing close by, rather than exactly through,
the original sample points. The algorithms devised by computational geometers typically
compute an interpolating surface, that is, a surface passing through the sample points,
usually a carefully chosen subset of the Delaunay triangulation.

The first and most widely known reconstruction algorithm in the computer graphics
community is the work of Hoppe et al. [18]–[20]. This algorithm estimates a tangent
plane at each sample using thek nearest neighbors, and uses the distance to the plane of
the closest sample point as a signed distance function. The zero set of this function is then
contoured by a continuous piecewise-linear surface using the marching cubes algorithm.
A later algorithm by Curless and Levoy [11] is designed for data samples collected by
a laser range scanner. This algorithm sums anisotropically weighted contributions from
the samples to compute a signed distance function, which is then discretized on voxels to
eliminate the marching cubes step. These algorithms appear to be successful in practice,
but have no provable guarantees. Indeed there exist arbitrarily dense sets of samples, for
example ones with almost collinear nearest neighbor sets, for which the algorithm of
Hoppe et al. would fail.

The most famous computational geometry construction for associating a polyhedral
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shape with an unorganized set of points is theα-shape of Edelsbrunner et al. [13],
[14]. Like our reconstructed surface, theα-shape is a subcomplex of the Delaunay
triangulation. A Delaunay simplex (edge, face, etc.) belongs to theα-shape ofS if its
circumsphere has radius at mostα. The major drawback of usingα-shapes for surface
reconstruction is that the optimal value ofα depends on the sampling density, which often
varies over different parts of the surface. For uniformly sampled surfaces, however,α-
shapes are workable. Bernardini et al. [5] followα-shape-based reconstruction with a
clean-up phase to resolve sharp dihedral angles. Edelsbrunner and Raindrop Geomagic
Inc. report that they have since developed another, proprietary reconstruction algorithm.

An early algorithm due to Boissonnat [7] is related to ours. He proposed a sculpting
heuristic for selecting a subset of Delaunay tetrahedra to represent a solid object. The
heuristic is motivated by the observation that “typical” Delaunay tetrahedra have circum-
spheres approximating maximal empty balls centered at points of the medial axis; our
algorithm relies on this same observation. Boissonnat’s algorithm, however, overlooks
the fact that even dense sample sets can give Delaunay tetrahedra with circumspheres
that are arbitrarily far from the medial axis; indeed it is this second observation which
motivates our definition of poles. Goldak et al. [17] made a similar oversight, asserting
incorrectly that the Voronoi diagram vertices asymptotically approach the medial axis
as the sampling density goes to infinity.

Along with the relation between Delaunay circumcenters and the medial axis, our
algorithm uses another important idea already found in the literature. Therestricted
Voronoi diagramis the intersection of the three-dimensional Voronoi diagram of the
sample points with the surfaceW. We call a Delaunay triangle agood triangleif it is
dual to a vertex of the restricted Voronoi diagram. We use a theorem of Edelsbrunner and
Shah [15] to show that when the sampling is sufficiently dense these good triangles do in
fact produce a topologically correct reconstruction. Unfortunately, without knowingW,
we can only produce a superset of the good triangles. In the case in whichW is known,
Chew [9] used the good triangles to produce a “surface Delaunay triangulation.”

Finally, for the two-dimensional problem of reconstructing a curve in the plane, there
has been a flurry of recent algorithms with provable guarantees. Figueiredo and Miranda
Gomes [16] prove that the Euclidean minimum spanning tree can be used to reconstruct
uniformly sampled curves in the plane. Bernardini and Bajaj [4] prove thatα-shapes also
reconstruct uniformly sampled curves in the plane. Attali [3] gives yet another provably
correct reconstruction algorithm for uniformly sampled curves in the plane, using a sub-
graph of the Delaunay triangulation in which each edge is included or excluded according
to the angle between the circumcircles on either side. Finally, the paper by ourselves and
Eppstein [1] showed that both the crust and theβ-skeleton [21] (another empty-region
planar graph) correctly reconstruct curves even in the case of nonuniform sampling. Our
two-dimensional results are in this way strictly stronger than those of the other authors.

3. Description of the Algorithm

We start by reviewing the algorithm of Amenta et al. [1] for the problem of reconstructing
curves inR2. Let W be a smooth (twice differentiable) curve embedded inR2, and letS
be a set of sample points fromW. Let V denote the vertices of the Voronoi diagram ofS.
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Thecrustof Scontains exactly the edges of the Delaunay triangulation ofS∪V with both
endpoints fromS. Saying this another way, the crust contains exactly those Delaunay
edges around which it is possible to draw a circle empty of Voronoi vertices. IfS is a
sufficiently dense sample, this simple algorithm constructs a polygonal approximation
of W (Theorem 1 in Section 4 below).

The straightforward generalization of this algorithm fails for the task of reconstructing
a smooth two-dimensional manifold embedded in three dimensions. The problem is that
the Voronoi center of four roughly cocircular samples may fall very close to the surface,
thereby punching holes in the crust.

The fix is to consider only thepoles. The poles of a sample points are the two farthest
vertices of its Voronoi cell, one on each side of the surface. Since the algorithm does
not know the surface, only the sample points, it chooses the poles by first choosing the
farthest Voronoi vertex regardless of direction (or a fictional pole at infinity in the case
of an unbounded Voronoi cell), and then choosing the farthest in the opposite half-space.
See step 2 in Fig. 1. Lemma 6 in Section 5 shows that this method is indeed correct
for well-sampled surfaces. Denoting the poles byP, we define thecrustof S to be the
triangles of the Delaunay triangulation ofS∪ P, all of whose vertices are members ofS.

Steps 1–4 compute the crust (which we shall sometimes call theraw crust to dis-
tinguish it from the more finished versions). The crust has a relatively weak theoretical
guarantee: it is pointwise convergent toW as the sampling density increases. Step 5 pro-
duces an output with a stronger guarantee: convergence both pointwise and in surface
normals. Step 6 thins the set of output triangles to produce a piecewise-linear manifold.

Step 5 removes triangles based on the directions of their surface normals. LetT be
a triangle of the crust and lets be its vertex of maximum angle. Step 5 removesT if

1. Compute the Voronoi diagram of the sample pointsS.

2. For each sample points:

(a) If s does not lie on the convex hull ofS, let p+ be the vertex ofVor(s)
farthest froms.

(b) If sdoes lie on the convex hull ofS, let p+ be a point at infinite distance
outside the convex hull with the direction ofsp+ equal to the average
of the outward normals of hull faces meeting ats.

(c) Among all verticesp of Vor(s) such that∠p+spmeasures more than
π/2, choose the farthest froms to be p−.

3. Let P denote all polesp+ and p−, except thosep+’s at infinite distance.
Compute the Delaunay triangulation ofS∪ P.

4. (Voronoi Filtering) Keep only those triangles in which all three vertices are
sample points.

5. (Filtering by Normal) Remove each triangleT for which the normal toT and
the vector to thep+ pole at a vertex ofT form too large an angle (greater than
θ for the largest-angle vertex ofT , greater than 3θ/2 for the other vertices of
T).

6. (Trimming) Orient triangles and poles (inside and outside) consistently, and
extract a piecewise-linear manifold without boundary.

Fig. 1. The surface reconstruction algorithm.
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the angle between the normal toT and the vector from any one ofT ’s vertices to its
first-chosen pole is too large. The definition of “too large” depends on which vertex of
T is under consideration: for the vertex with the largest angle, too large means greater
than an input parameterθ , and for the other two vertices it means greater than 3θ/2.
Angles are unsigned angles in the range [0, π/2]. As stated in Theorem 5, the choice of
θ is connected with the sampling density. If the user of our algorithm does not have an
estimate of the sampling density (the parameterr in Definition 3 below), then the user
can slowly decreaseθ , backing off when holes start to appear in the surface, similar to
choosing a surface from the spectrum ofα-shapes [14].

Step 6 ensures that the reconstructed surface is a manifold; before this final step,
the computed surface will resemble the original surface geometrically, but may have
some extra triangles enclosing small bubbles and pockets. The problem once again is
cocircular samples: all four faces of a flat tetrahedron may make it past steps 4 and 5.

Step 6 first orients all triangles. Start with any sample points on the convex hull of
S. Call the direction top+ at s theoutsideand the direction top− the inside. Pick any
triangleT incident tos, and define the outside side ofT to be the one visible from points
on thesp+ ray. Orient the poles of the other vertices ofT to agree with this assignment.
Orient each triangle sharing a vertex withT so that they agree on the orientations of
their shared poles, and continue by breadth-first search until all poles and triangles have
been oriented. Theorem 5 below guarantees that this orientation is consistent.

We can now extract a piecewise-linear two-dimensional manifold from the crust.
Define asharpedge to be an edge which has a dihedral angle greater than 3π/2 between
a successive pair of incident triangles in the cyclic order around the edge. In other words,
a sharp edge has all its triangles within a small wedge. We consider an edge bounding
only one triangle to have a dihedral of 2π , so such an edge is necessarily sharp.

Step 6 trims off pockets by greedily removing triangles with sharp edges. Now the
remaining triangles form a “quilted” surface, in which each edge bounds at least two
triangles, with consistent orientations. Finally, Step 6 extracts the outside of this quilted
surface by a breadth-first search on triangles.

4. Theoretical Guarantees

What sets our algorithm apart from previous algorithms are its theoretical guarantees.
We begin with the required sampling density, which is defined with respect to the medial
axis.

Definition 1. Themedial axisof a manifoldW embedded inRd is the closure of the
set of points inRd with more than one nearest neighbor onW.

Figure 2 gives an example of the medial axis inR2; inR3, the medial axis is generally
a two-dimensional surface. Note that we allow the surfaceW to have more than one
connected component.

Definition 2. Thelocal feature size LFS(p) at a pointp onW is the Euclidean distance
from p to (the nearest point of) the medial axis.
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Fig. 2. The medial axis of a smooth curve.

Definition 3. Set S ⊂ W is an r -sampleof W if no point p on W is farther than
r · LFS(p) from a point ofS.

Definition 4. Thepolesof a samples are the two farthest Voronoi vertices froms, one
on either side ofW.

Notice that the notion ofr -sample does not assume any global—or even local—
uniformity. Further notice that to prove an algorithm correct, we must place some con-
dition on the set of sample pointsS, or else the original surface could be any surface
passing throughS. Our paper on curve reconstruction [1] proved the following theoretical
guarantee.

Theorem 1[1]. If S is an r-sample of a curve inR2 for r ≤ 0.40,then the crust includes
all the edges between pairs of sample points adjacent along W. If S is an r-sample for
r ≤ 0.25, then the crust includes exactly those edges.

To state our results for the three-dimensional problem, we must define a generalization
of adjacency. Consider the Voronoi diagram of the sample pointsS. This Voronoi diagram
induces a cell decomposition on surfaceW called therestricted Voronoi diagram: the
boundaries of the cells onW are simply the intersections ofW with the three-dimensional
Voronoi cell boundaries. We call a triangle with vertices fromSagood triangleif it is dual
to a vertex of the restricted Voronoi diagram; good triangles are necessarily Delaunay
triangles. Our first three-dimensional result shows that good triangles deserve their name.
To our knowledge, our proof of this result is the first proof that the three-dimensional
Delaunay triangulation of a sufficiently dense set of samples contains a piecewise-linear
surface homeomorphic toW.

Theorem 2. If S is an r-sample of W for r≤ 0.1, then the good triangles form a
polyhedron homeomorphic to W.

Our next two theorems state the theoretical guarantees for the three-dimensional (raw)
crust.
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Theorem 3. If S is an r-sample for r≤ 0.1, then the crust includes all the good
triangles.

Theorem 4. If S is an r-sample for r≤ 0.06, then the crust lies within a fattened
surface formed by placing a ball of radius5r LFS(q) around each point q∈ W.

Step 5 adds another guarantee: convergence in surface normals. The raw crust some-
times includes small skinny triangles with normals that deviate significantly from the
surface normals. For example, the insides of the sausages shown on the left in Figure 15
have a sort of washboard texture. Convergence in surface normal ensures that the area
of the trimmedθ -crust converges to that of the surface.

Theorem 5. Assume S is an r-sample and setθ = 4r . Let T be a triangle of theθ -crust
and let t be a point on T. The angle between the normal to T and the normal to W at
the point p∈ W closest to t measures O(

√
r ) radians.

5. Proofs

In this section we give the proofs of the theoretical guarantees. We first prove some basic
geometric consequences of our definitions and hypotheses. The proofs of Theorems 2
and 3 will then be straightforward, albeit somewhat tedious. The proofs of Theorems 4
and 5 will require some additional ideas and constructions.

We start by defining some terminology. At each pointp ∈ W, there are two maximal
tangentmedial ballscentered at points of the medial axis. The vectors fromp to the
centers of its medial balls are normal toW, andW does not intersect the interiors of the
medial balls. SinceLFS(p) is at most the radius of the smaller medial ball,W is also
confined between the two tangent balls of radiusLFS(p). We call these thetangent balls
at p; we shall use the tangent balls to bound the curvature ofW in terms ofLFS(p). We
call a maximal empty ball centered at a Voronoi vertex aVoronoi ball, and the Voronoi
ball centered at a pole apolar ball.

Next we set some notation. We used(p,q) to denote the Euclidean distance fromp
to q. We use|∠psq| to denote the measure of anglepsq in radians.

Our first lemma is a Lipschitz condition for theLFS(p) function.

Lemma 1. For any two points p and q inR3, |LFS(p)− LFS(q)| ≤ d(p,q).

Proof. LFS(p) ≥ LFS(q)−d(p,q), since the ball of radiusLFS(q) aroundq contains
the ball of radiusLFS(q)− d(p,q) aroundp and contains no point of the medial axis.
Similarly, LFS(q) ≥ LFS(p)− d(p,q).

Our second lemma shows that the line segment between two nearby points on the
surface must be nearly parallel to the surface.
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Fig. 3. The angle betweenpq and the normal toW at p must be nearlyπ/2.

Lemma 2. For any two points p and q on W with d(p,q) ≤ ρ LFS(p), the smaller
angle between the line segment pq and the surface normal at p is at leastπ/2 −
arcsin(ρ/2).

Proof. SurfaceW, and hence pointq, lies between the tangent balls of radiusLFS(p)
at p. The angle in question, marked in Fig. 3, is minimized whenq lies right on one of
the tangent balls as in the figure. This position gives the angle claimed in the lemma.

Our third lemma is a sort of Lipschitz condition for the direction of surface normals,
which can be regarded as a function fromW to the two-dimensional sphere.

Lemma 3. For any two points p and q on W with d(p,q) ≤ ρmin{LFS(p), LFS(q)},
for anyρ < 1

3, the angle between the normals to W at p and at q is at mostρ/(1− 3ρ).

Proof. We parameterize the line segmentpq by length. Letp(t) denote the point on
pq with parameter valuet and let f (t) denote the nearest point top(t) on the surface
W. In other words,f (t) is the point at which an expanding sphere centered atp(t) first
touchesW. Point f (t) is unique, because otherwisep(t) would be a point of the medial
axis, contradictingd(p,q) ≤ ρ LFS(p).

Let n(t) denote the unit normal toW at f (t), and let|n′(t)| denote the magnitude of
the derivative with respect tot , that is, the rate at which the normal turns ast grows. The
change in normal betweenp andq is at most

∫
pq |n′(t)|dt, which is at mostd(p,q) ·

maxt |n′(t)|.
The surfaceW passes between the tangent balls of radiusLFS( f (t)) at f (t), so the

greater of the two principal curvatures atf (t) is no more than the curvature of these
tangent balls. The rate at which the normal changes withf (t) is at most the greater
principal curvature, and hence|n′(t)| is at most the rate at which the normal turns (as a
function oft) on one of these tangent balls. Referring to Fig. 4, we see that

dt ≥ (LFS( f (t))− d( f (t), p(t))) · sindθ.
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Fig. 4. Bounding|n′(t)| in terms of the radiusLFS( f (t)) andd( f (t), p(t)).

Now sindθ approachesdθ asθ goes to zero, so

|n′(t)| = dθ/dt ≤ 1/(LFS( f (t))− d( f (t), p(t))).

We have

d( f (t), p(t)) ≤ d(p(t), p) ≤ ρ LFS(p)

and

d( f (t), p) ≤ d( f (t), p(t))+ d(p(t), p) ≤ 2ρ LFS(p),

so, by Lemma 1,LFS( f (t)) ≥ (1− 2ρ)LFS(p). Altogether we obtain maxt |n′(t)| ≤
1/((1− 3ρ)LFS(p)), which yields the lemma.

The next lemma shows that the cells of the Voronoi diagram ofS are long (part a)
and skinny (part b). We letVor(s) denote the closure of the Voronoi cell ofs, that is, all
points at least as close tos as to any other sample point. We ignore the degenerate case
thatVor(s) is unbounded on both sides ofW.

Lemma 4. Let s be a sample point from an r-sample S.

(a) On either side of W at s, some point of Vor(s) has distance at least LFS(s) from s.
(b) The intersection of Vor(s)and W is contained in a ball of radius(r/(1−r ))LFS(s)

about s.

Proof. On either side ofW at s, the centerc of the tangent ball of radiusLFS(s) lies
within Vor(s), and hence (a) holds. For part (b), letp ∈ Vor(s) ∩ W. Sinces is the
closest sample point top, d(p, s) ≤ r L FS(p) ≤ r (L FS(s) + d(p, s)) by Lemma 1.
Sod(p, s) ≤ (r/(1− r ))LFS(s).

The next lemma shows that these long skinny Voronoi cells are nearly perpendicular
to the surface.
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Fig. 5. The vector froms to a distant point inVor(s), such as a pole, must be nearly normal to the surface.

Lemma 5. Let s be a sample point from an r-sample S. Let v be any point in Vor(s)
such that d(v, s) ≥ ν LFS(s) for ν > 0. The angle at s between the vector tov and the
normal to the surface(oriented in the same direction) is at mostarcsin(r/ν(1− r )) +
arcsin(r/(1− r )).

Proof. Let Bv be the Voronoi ball centered onv. Let Bm be the medial ball touchings
on the same side of the surfaceW, and letm be its center. Letϕ be the angle between
the segmentssv andsm, that is, the angle referred to in the lemma. LetBp be the ball of
radiusLFS(s), tangent toW ats, but lying on the opposite side ofW from Bm; let p be
the center ofBp. The surfaceW passes betweenBm andBp at s, and does not intersect
the interior of either of them, as shown in Fig. 5.

Sincep andv lie on opposite sides ofW, line segmentpv must intersectW at least
once. Letq be the intersection point closest top. No sample point can lie in eitherBp or
Bv, so the nearest sample point toq must bes. SinceBp has radiusLFS(s), d(q, s) ≥
sin(α)LFS(s), whereα is the angle∠spq. We are interested in angle∠vsm, which is
ϕ = α + β. SinceBv has radius at leastν LFS(s), d(q, s) ≥ ν sin(β)LFS(s), whereβ
is the angle∠svq. SinceS is anr -sample,d(q, s)must be less than(r/(1− r ))LFS(s).
Combining the inequalities, we obtainα ≤ arcsin(r/(1−r )) andβ ≤ arcsin(r/ν(1−r )),
which together give the bound onϕ.

Together Lemmas 4(a) and 5 show that the vector from a sample point to its first pole
p+ is a good approximation to the surface normal. This observation may have wider
applicability; for example, the Voronoi diagram and the poles could be used to obtain
provably reliable estimates of tangent planes in the algorithm of Hoppe et al.

Our next lemma shows that Step 2 of the crust algorithm does indeed correctly identify
the second polep−. Recall thatp− is defined to be the farthest Voronoi vertex froms
on the opposite side of the unknown surface fromp+.

Lemma 6. Let s be a sample point from an r-sample S with r≤ 1
4. The second pole

p− of s is the farthest Voronoi vertexv of s such that the vector sv has negative dot
product with sp+.
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Proof. By Lemma 4(a),d(s, p−) ≥ LFS(s), so by Lemma 5 the angle betweensp+

and sp− is at leastπ − 4 arcsin(r/(1 − r )) ≥ 1.78 > π/2, hencesp− · sp+ < 0.
Lemma 5 also shows that for any Voronoi vertexv on the same side ofW as p+, with
d(s, v) ≥ LFS(s), the angle betweensv andsp+ is at most 4 arcsin(r/(1− r )) ≤ π/4.
Hence anyv farther froms than p− must havesv · sp+ > 0.

Our next lemma bounds the angle between the normal to a good triangle and the
surface normals at its vertices.

Lemma 7. Let T be a good triangle and let s be a vertex of T with angle at leastπ/3,
and choose r< 1

7.

(a) The angle between the normal to T and the normal to W at s is at most
arcsin(

√
3r/(1− r )).

(b) The angle between the normal to T and the normal to W at any other vertex of
T is at most2r/(1− 7r )+ arcsin(

√
3r/(1− r )).

Proof. For part (a), letC be the circumcircle ofT and letρC be its radius. Consider
the tangent balls of radiusLFS(s) tangent toW at s on either side ofW. These balls
intersect the plane ofT in twin disks of common radiusρB, tangent at points, as shown
in Fig. 6. Our first aim is to boundρB in terms ofρC.

Since the balls of radiusLFS(s) are empty of sample points, the twin disks cannot
contain vertices ofT . In order to maximizeρB relative toρC, we assume that the twin
disks pass through the vertices ofT and that the angle ats measures exactlyπ/3. Now
it is not hard to show thatρB is maximized exactly whenT is equilateral: if we move
s away from the midpoint of the arc covered by the twin disks, keeping the twin disks
passing through the vertices ofT , the radiusρB decreases, untils reaches one of the
other vertices ofT andρB = ρC. Since the worst-case configuration is equilateralT , we
can conclude thatρB ≤

√
3ρC.

We can bound these radii in terms ofLFS(s). Let u denote the restricted Voronoi
diagram vertex dual toT . Sinceu lies on the line through the center ofC normal to the
plane ofC, ρC ≤ d(u, s). By Lemma 4(b),d(u, s) ≤ (r/(1− r ))LFS(s), so altogether
ρB ≤

√
3r LFS(s)/(1− r ).

Fig. 6. Bounding the angle between the normal to the triangle and the normal to the surface ats.
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Now to find the angle between the normal toT and the normal toW ats, we consider
one of the tangent ballsB ats. Let m denote the center ofB and letv denote the center
of the twin disk of radiusρB that is the intersection ofB with the plane ofT , as shown
in Fig. 6. The segmentsm is normal toW at s and the segmentmv is normal toT , so
the angle we would like to bound is∠smv. The trianglesmv is right, with hypotenuse
of lengthLFS(s) and leg opposite∠smv of lengthρB ≤

√
3r LFS(s)/(1− r ). Hence

|∠smv| ≤ arcsin(
√

3r/(1− r )).
For part (b), lets′ be one of the other vertices ofT . SinceT is a good triangle,s and

s′ are neighbors in the restricted Voronoi diagram. Letp be a point on the boundary of
both restricted Voronoi diagram cells. Then

d(p, s) ≤ r LFS(p) ≤ r

1− r
min

{
LFS(s),LFS(s′)

}
.

Sod(s, s′) ≤ (2r/(1− r ))min{LFS(s),LFS(s′)}. Applying Lemma 3 withρ = 2r/(1−
r ), the angle between the normals toW ats ands′ is at most 2r/(1− 7r ) for r < 1

7.

We need one more lemma for the proof of Theorem 2. This lemma is a topological
result concerning the medial axis that should be independently useful.

Lemma 8. If a ball B intersects surface W in more than one connected component,
then B contains a point of the medial axis of W.

Proof. AssumeB ∩W has more than one connected component. Letc be the center
of B and letp be the nearest point onW to c. If p is not unique, thenc is a point of the
medial axis and we are done. Letq be the nearest point toc in a connected component
of B ∩ W that does not containp. Imagine a pointc′ moving fromc towardq along
segmentcq. Throughout this journey,c′ is closer toq than to any point outsideB, so the
closest point onW to c′ must be some point ofB ∩W. At the beginning of the journey,
the closest point toc′ is p and at the end it isq, so at some criticalc′ the closest point
must change connected components. Such ac′ is a point of the medial axis.

We now give the proof of Theorem 2: the good triangles form a polyhedron homeo-
morphic toW. The proof relies on the lemmas above along with a result of Edelsbrunner
and Shah [15].

Proof of Theorem2. The theorem of Edelsbrunner and Shah tells us that it suffices to
show thatS has the followingclosed-ball property: the closure of eachk-dimensional
face, 1≤ k ≤ 3, of the Voronoi diagram ofS intersectsW in either the empty set or in
a closed(k− 1)-dimensional topological ball.

Let s be a sample point and letVor(s) be its Voronoi cell. Let the direction of the
normal toW ats be vertical.

We begin by showing that in the vicinity ofs, the surfaceW is nearly horizontal;
this fact will be useful in establishing the closed-ball property for each value ofk.
Lemma 4(b) shows thatVor(s) ∩W is small, fitting inside a ballB arounds of radius
(r/(1− r ))LFS(s). Since such a small ball cannot intersect the medial axis, Lemma 8
implies thatW ∩ B has a single connected component. Lemma 3 withν = r/(1− r )
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shows thatW ∩ B is nearly horizontal, more precisely, the normal toW ∩ B is nowhere
farther thanr/(1− 4r ) ≤ 1

6 radians from vertical.
Now we consider an edgee of Vor(s), that is, the casek = 1. If e has nonempty

intersection withW, thene is normal to the good triangleT dual to its intersection point.
By Lemma 7(b),e must be within 2r/(1− 7r )+ arcsin(

√
3r/(1− r )) radians from the

normal toW ats. Forr ≤ 0.1, this expression is less than 0.9, soe is within 0.9 radians
from vertical, and consequently can intersectW only once within ballB.

Next consider a facef of Vor(s), that is, the casek = 2. Face f is contained in
planeH , the perpendicular bisector ofs and another sample points′, wheress′ is an
edge of a good triangleT . PlaneH must contain a vector parallel to the normal ofT , so
again Lemma 7(b) shows that the angle betweenh and the surface normal ats, and hence
betweenf and the surface normal ats is at most 0.9 radians. So we callf nearly vertical.

Each connected component off ∩W is an arc of a curve, with endpoints on edges
of f that are dual to good triangles and hence nearly vertical. Assume for the sake of
contradiction that there are at least two such connected components, and consider any line
segment connecting a point on one component with a point on another. SinceVor(s)∩W is
small, Lemma 2 implies that each of these line segments isnearly horizontal, specifically
within 0.2 radians of horizontal forr ≤ 0.1. Hence we can sort the arcs off ∩W left
to right acrossf , as shown in Fig. 7(a). Letpq be a line segment connecting the right
endpoint of one arc with the left endpoint of the next arc. Segmentpq is nearly horizontal
so it must leavef as it crosses the nearly vertical edge ofVor(s) at p and reenterf atq,
a contradiction to the fact thatf is convex.

Finally considerVor(s) itself, the casek = 3. LetC beVor(s) ∩W. Now C cannot
have a handle becauseW is nearly horizontal everywhere within ballB. We assume,
however, thatC is not a topological disk, again aiming for a contradiction. IfC has
no handles and is not a topological disk, then either it has more than one connected
component or it is a topological disk with holes.

Fig. 7. Two impossible situations: (a) Facef of Vor(s) intersectsW in two arcs. (b)W ∩ Vor(s) is a disk
with a hole.
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Consider the projectionC′ of C onto a horizontal plane. Since each pair of points in
C are connected by a nearly horizontal segment, this projection is one-to-one, andC′

is a planar shape homeomorphic toC. If C′ has more than one connected component,
let σ be the shortest segment connecting two different components, and letq′1,q

′
2 be the

endpoints ofσ . Otherwise,C′ has a hole. Select some pointx in a hole, letσ ′ be the line
segment connectingx to the nearest pointq′1 in C′. The line supportingσ ′ intersectsC′

again on the other side ofx in a pointq′2. We letσ be the segmentq′1,q
′
2.

Segmentσ is perpendicular to the boundary ofC′ at q′1. Let P be the vertical plane
throughσ , and letq1,q2 be the points inP ∩ C whose vertical projections areq′1,q

′
2,

respectively. The pointq1 is either a vertex ofC or an edge point, and thus lies in either
an edge or a facet ofVor(s), respectively.

Consider the case in whichq1 lies in a facetf of Vor(s). Facetf is nearly vertical, and
sinceP is perpendicular toC′ atq′1, it is nearly perpendicular toC atq1, and f intersects
P in a nearly vertical line atq1. In the other case,q1 is contained in a nearly vertical
edgeeof Vor(s). We consider the planeQ containing both botheand the horizontal line
perpendicular toq1,q2 at q1. Q meetsP in a nearly vertical line. Note that we had to
chooseP carefully, since two nearly vertical planes which arenotnearly perpendicular
might meet in a nearly horizontal line.

In either case, examining the situation inP, we find that in the neighborhood ofq1,
the interior ofq1,q2 is separated from the interior ofVor(s)∩ P by a nearly vertical line.
However, bothq1 andq2 belong toVor(s) ∩ P, contradicting the the fact thatVor(s) is
convex.

Next we give a proof of Theorem 3: the raw crust contains all the good triangles.
The intuition behind this proof is that restricted Voronoi cells are small and poles are far
away, so that the ball centered at a vertexu of the restricted Voronoi diagram, passing
through the three sample points whose cells meet atu, must be empty of poles.

Proof of Theorem3. Let T be a triangle dual to a vertexu of the restricted Voronoi
diagram. Consider the ballBu centered onu with boundary passing through the vertices
of T . SinceT is a Delaunay triangle,Bu contains no point ofS in its interior. SinceS
is anr -sample ofW for r < 1, the radius ofBu is less thanr LFS(u). By the definition
of LFS, even the larger ballB′u of radiusLFS(u) centered onu cannot contain a point of
the medial axis.

Now assume thatBu contains a polev of a sample points. We will show that under
this assumption, first, thatBv must contain a point of the medial axis, and, second, that
the polar ballBv must be contained inB′u, thereby giving a contradiction. In particular,
Bv must contain the centerm of the medial ballBm at s that is on the same side ofW
asv. Notice thatm necessarily lies inVor(s) and ballBm has radius at leastLFS(s),
while the radius ofBv is at least that ofBm (by Lemma 4(a)). By Lemma 5,|∠msv| ≤
2 arcsin= (r/(1− r )), which is less than 0.23 for r ≤ 0.1. A calculation shows thatBv
must contain the medial axis pointm.

Sincev lies in Bu, the radius ofBv is no greater than the distance fromv to the nearest
vertex ofT , which is at most 2r LFS(u) sinceSis anr -sample. Sinced(u, v) ≤ r LFS(u),
ball Bv lies entirely withinB′u since 3r LFS(u) ≤ LFS(u).
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Fig. 8. (a) The Delaunay ballBT of a triangle intersecting the spindle must contain a big patch of surface
W. (b) Spindles of sample points fuse so that all triangles must lie close toW.

We now move on to the proof of Theorem 4, which says that all crust triangles lie
within a fattened surface surroundingW. Let s be a sample point and letv be a pole of
s. We shall define a forbidden region inside polar ballBv, which cannot be penetrated
by large crust triangles.

Let B+m be the tangent ball of radiusL FS(s) ats on the same side ofW asv, and let
B−m be the tangent ball on the other side, withW passing between them. LetB be the
ball concentric withB−m with radius(1− r )LFS(s), as shown in Fig. 8(a). Notice that
Lemma 4(a) shows that the radius ofBv is at least that ofB.

Definition 5. The reflectionof a pointt throughBv is the pointt ′ along rayvt such
that line segmentt t ′ is divided into equal halves by the boundary ofBv. Thespindleof
s is { t ∈ Bv | segmentt t ′ intersectsB }, that is, all points inBv whose reflection lies in
or beyondB.

The spindle is shaded in Fig. 8(a). Our plan is to show that large crust triangles are
confined between the union of spindles on each side ofW as shown in Fig. 8(b). (Small
crust triangles lie within the fattened surface simply due to their size.) We start by proving
two lemmas about spindles: they are indeed forbidden regions, and they have relatively
flat bottoms, meaning that their width does not shrink with shrinkingr .

Lemma 9. No crust triangle T whose Delaunay ball BT has radius greater than
5r LFS(s) can penetrate the spindle of s.

Proof. Assumet is a point insideBv on a crust triangleT with Delaunay ballBT . We
first assert thatBT contains the reflection pointt ′. Let H be the plane containing the
intersection of the boundaries ofBv andBT . Since the vertices ofT lie on BT outside
Bv, T must be contained in the closed half-space bounded byH not containingv. It
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Fig. 9. (a) BT must contain reflection pointt ′. (b) The family of possibleBT circles.

suffices to prove this assertion (thatBT containst ′) for the case in whicht lies right on
H , since for anyt in the interior of the half-space, segmentt t ′ is a subsegment of the
segment connecting a point onH and its reflection.

We may also assume that ballBT passes throughv, since if we replaceBT with the
ball that touchesv and has the same intersection withH , the part ofBT outsideBv
shrinks (making things harder for our lemma).

Now consider any plane containing linevt . Balls Bv and BT intersect this plane in
circles and planeH intersects in a line containing the mutual chord of these circles. See
Fig. 9(a).

Assume without loss of generality that the cross section ofBv is the unit circle with
centerv = (0,1). Let t = (0, yt ). Denote the center and radius ofBT ’s cross section by
(x, y) andρ. Sincet lies along the mutual chord, it has equalpower distanceto (0,1)
and(x, y):

(1− yt )
2− 1= x2+ (y− yt )

2− ρ2.

Substituting(1− y)2 for ρ2− x2, we obtain

yt
2− 2yt = (y− yt )

2− (1− y)2,

which simplifies toy = (1− 2yt )/(2− 2yt ). Thus the centers of all possibleBT circles
lie on the same horizontal line, as shown in Fig. 9(b).

Any BT passes through the reflection of(0,1) across the horizontal line, the point
(0, (1− 2yt )/(1− yt )− 1). For any value ofyt < 1, (1− 2yt )/(1− yt )− 1< −yt , so
BT containst ′ = (0,−yt ).

Thus if the original pointt lies within the spindle ofs, thenBT must intersectB, the
ball concentric withB−m. Aiming for a contradiction, assume thatt does indeed lie within
the spindle ofs. ThenBT penetrates each ofBv and B−m deeply, at leastr LFS(s) into
each of these balls. Consider the diskDm bounded by the circle that is the intersection
of the boundaries ofBT andB−m, as shown in Fig. 10. Since the radius ofBT is at least
5r LFS(s), the radius ofB−m at leastLFS(s) ≥ 15r LFS(s), andBT cuts at leastr LFS(s)
into B−m, we can calculate thatDm has radius at least 2.5r LFS(s). There is an analogous
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Fig. 10. If BT does penetrate the spindle ofs, then there must be a pointc that has no sample points near it.

disk Dv, bounded by the intersection of the boundaries ofBv andBT , with radius at least
2.5r LFS(s).

We now assert that there exists a pointc ∈ W∩(BT ∪Bv), with d(c, s) ≤ √2LFS(s),
such that the ball of radius 2.5r LFS(s) aroundc contains no sample points. SurfaceW
is confined betweenB−m andB+m, and hence must crossBT ∪ Bv. So some pointc of W
insideBT ∪ Bv must be at least distance 2.5r LFS(s) from the boundary ofBT ∪ Bv. It
remains to determine how farc can lie froms; note thatBT need not pass throughs. BT

must, however, intersect both the spindle ofsand some point on the northern hemisphere
of B (takings as the north pole), soW must crossBT ∪ Bv within

√
2LFS(s) of s (since

the radius ofB is less thanLFS(s)).
Now sinced(c, s) ≤ LFS(s), LFS(c) ≤ (1 + √2)LFS(s). However,c is at least

2.5r LFS(s) from the nearest sample, so we have obtained a contradiction toW being
r -sampled.

The next lemma shows that spindles have flat bottoms. Recall that a spindle is induced
in Voronoi ball Bv by the ballB of radius(1− r )LFS(s) concentric with the tangent
ball B−m on the opposite side ofW. In this lemma we assume thatB andBv have equal
radius, although in factBv is always at least a little larger thanB. It is not hard to confirm
that this assumption gives an upper bound: a largerBv just gives a larger, flatter spindle.
Referring to Fig. 11, recall thatv is the center ofBv, m is the center ofB, and defineo
to be the point at which segmentvm (the axis of symmetry of the spindle) intersects the
boundary ofBv.

Lemma 10. Assume that B and Bv are unit balls, and that the distance between them
is at mostδ ≤ 0.06.Let t be a point outside B and outside the spindle induced by B in
Bv. Let p be the closest point on B to t. If |∠omp| ≤ 0.20, then d(t, p) ≤ δ + |∠omp|.
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Fig. 11. The spindle curves gradually, sot must be close toB.

Proof. Assumev has coordinates(0,1). The worst case for the lemma occurs whenδ

assumes its maximum value, as largerδ means a higher and narrower spindle, thereby
maximizingd(t, p) relative toδ + |∠omp|. So assumem has coordinates(0,−1.06).

Draw the 0.20-radian ray with originm and the 0.32-radian ray with originv as
shown in Fig. 11. The rays intersect at a pointx with coordinates about(0.259,0.218).
By computing the distances to the boundaries ofBv andB along rayvx, we can confirm
thatx lies inside the spindle. Thus the boundary of the spindle lies belowx on the 0.20-
radian ray with originm. Assumet and p are at the extremal positions allowed by the
lemma, so thatt is on the boundary of the spindle and|∠omp| = 0.20. The distance from
x to m is less than 1.252, sod(t, p) − δ ≤ 0.192≤ |∠omp|. Sinced(t, p) decreases
with |∠omp|, this inequality also applies to pointst and p such that|∠omp| < 0.20 as
well.

We are now in a position to finish the proof of the theorem: all crust triangles lie
within the fattened surface formed by placing a ball of radius 5r LFS(q) around each
pointq ∈ W.

Proof of Theorem4. Let BT be the Delaunay ball of the crust triangle containing point
t . Let s be the sample point nearestt . If BT has radius less than 5r LFS(s), then there is
nothing to prove, sinces itself could be theq of the theorem.

So assumeBT has radius at least 5r LFS(s). Let Bv, B−m, andB be respectively the
polar ball ofs, the tangent ball of radiusLFS(s) on the opposite side ofW, and the
concentric ball with radius reduced byr LFS(s) as in Fig. 12. Leto ando′ be the points
of luneB−m ∩ Bv closest to the centers ofB−m andBv, respectively. Pointsv andm belong
to Vor(s), and hence, so doeso′. So by Lemma 4(b),d(s,o′) ≤ r LFS(s)/(1− r ). Since
Bv has radius at least that ofB−m, d(s,o) ≤ d(s,o′).

Let p and p′ be the closest points tot on B and B−m, respectively, and letq be the
point of W on line pt closest tot . Henced(t,q) ≤ d(p, t). By an argument analogous
to that used foro′, d(s, p′) ≤ r LFS(s)/(1 − r ), and so by the triangle inequality,
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Fig. 12. Crust pointt must be near surface pointq.

d(o, p′) ≤ 2r LFS(s)/(1− r ). So∠omp′ ≤ arcsin(2r/(1− r )), which, forr ≤ 0.06, is
less than 0.20 radians. The set-up satisfies the hypotheses of Lemma 10, only with radii
scaled by(1− r )LFS(s).

By Lemma 9,t must lie between the spindle andBm. Applying Lemma 10,

d(t, p) ≤ r LFS(s)+ |∠omp|(1− r )LFS(s).

We now use the fact that|∠omp| ≤ arcsin(2r/(1− r )) ≤ 3r , to obtain

d(t, p) ≤ r LFS(s)+ 3r (1− r )LFS(s) ≤ 4r LFS(s).

Finally, since againq ∈ Vor(s), we haved(s,q) ≤ r LFS(s)/(1− r ), so, by Lemma 1,
LFS(q) ≥ (1− 2r )LFS(s)/(1− r ), and hence 5r LFS(q) ≥ d(t, p) ≥ d(t,q).

Theorem 4 establishes that crust triangles are close to the surface, but not necessarily
flat on the surface. Step 5 of the algorithm removes triangles whose surface normals differ
too much from the vectors to the poles at their vertices, ensuring that the normals of the
resultingθ -crust triangles are close to surface normals at the sample points. To establish
that theθ -crust normals converge everywhere to the surface normals, we need to extend
this guarantee to the interiors of allθ -crust triangles. This extension is immediate for
small triangles, but takes some work for large ones. LetT be a triangle of theθ -crust
with θ = 4r , let t be a point onT , and letp be the closest point tot on W. Theorem 5
states that the angle between the normal toT and the normal toW at p measuresO(

√
r )

radians.
The proof shows that a large crust triangle (of sizeO(

√
r L FS(s))) must have a

very large circumsphere (of sizeO(L FS(s)/
√

r )) so that any nearby patch of surface
cannot twist away without penetrating the circumsphere deeply, a contradiction since
the circumsphere must be empty of samples.

Proof of Theorem5. First, we establish the easier claim that at each sample points,
the normals to incidentθ -crust triangles do not deviate by more thanψ = O(r ) radians
from the normal toW. This statement follows from the fact that Step 5 of the algorithm
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Fig. 13. Repeated use of Lemma 5 shows that if triangleT is largeBT must be enormous.

removes each triangle arounds whose normal forms an angle larger than 4r with the
vector to the pole. By Lemma 5, the pole vector in turn deviates from the normal toW
ats by at most 2 arcsin(r/(1− r )), so thatψ ≤ 7r for r ≤ 0.06.

Now let t be any point on aθ -crust triangleT , and letp be the closest point onW to
t . By Theorem 4,d(t, p) ≤ 5r LFS(p). Let s denote the closest vertex ofT to t , let C
denote the radius ofT ’s circumcircle, and letρ be the radius ofT ’s Delaunay ballBT .
If C ≤ √r LFS(s), thend(s, p) is O(

√
r ), and Theorem 5 follows from Lemma 3 and

the bound onψ .
So assumeC and henceρ is at least

√
r LFS(s). Let ϕ denote the angle between the

normal toW at s and the vector froms to the centerv of BT . Lemma 5 withν ≥ √r
implies thatϕ ≤ 2

√
r /(1− r ) radians. Next letδ denote the angle between the normal

to T at s and the vector froms to v, as shown in Fig. 13. Angleδ ≤ ϕ + ψ , whereψ ,
as above, is the angle between the normal to the surface ats and the normal toT . Since
ψ = O(r ), we can conclude thatδ ≤ 3

√
r .

Now C = ρ sinδ, soρ = C/ sinδ ≥ LFS(s)/3. Thus the assumption thatC is large
(at least

√
r LFS(s)) shows thatρ must be very large (at leastLFS(s)/3). However, we

can now do better; we return to Lemma 5 withν = 1
3. This time we obtain an upper

bound ofO(r ) onϕ andδ, and a lower bound ofÄ(LFS(s)/
√

r ) onρ. (Sadly, we cannot
repeat this trick to inflateρ indefinitely, sinceψ remainsO(r ).)

Notice that sinceδ is O(r ), the plane containingT cuts a small spherical cap onBT ,
one subtending a solid angle of onlyO(r ). This means thatT itself is small with respect
to BT ; the pointt ∈ T can be at mostO(rρ) from the nearest vertexs, bounding (by
Lemma 1)LFS(t) ≤ O(rρ) + LFS(s), which is O(

√
rρ). Sincet is within 5r LFS(p)

of p, LFS(p) is O(
√

rρ) as well.
Now assume that the normal toW at p deviates from the normal toT by Ä(

√
r ),

and consider the tangent balls of radiusLFS(p) at p. The point p is close—within
O(r LFS(p))—to the surface ofBT , while the radius ofBT is much larger—ρ =
O(LFS(p)/

√
r )—than the radius of the tangent balls atp. For some small enough

value ofr , the tangent balls intersectBT in circular patches of radiusÄ(
√

r )LFS(p).
As in the proof of Lemma 9,W is confined between these two balls, so there must be
a similar-size patch ofW insideBT , and hence empty of sample points, which gives a
contradiction toSbeing anr -sample. This contradiction establishes Theorem 5.
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6. Implementation and Examples

Manolis Kamvysselis, an undergraduate from Massachusetts Institute of Technology,
implemented steps 1–4 of the crust algorithm during a summer at Xerox PARC. We
used Clarkson’sHull program [10] for Delaunay triangulation, andGeomview[22] to
visualize and print the results. We used vertices from pre-existing polyhedral models as
inputs. A companion paper [2] reports on our experimental findings.

The only tricky part of the implementation was the handling of degeneracies and near
degeneracies. Our test examples, many of which started from approximately gridded
sample points, included numerous quadruples of points supporting slivers. Kamvysselis
incorporated an explicit tolerance parameterε; the circumcenter of quadruples within
ε of cocircularity was computed by simply computing the circumcenter of a subset of
three. This hack did not affect the overall algorithm, as these centers are never poles.
Running time was only a little more than the time for two three-dimensional Delaunay
triangulations. Notice that the Delaunay triangulation in step 3 involves at most three
times the original number of vertices.

Figure 14 shows an especially advantageous example for our algorithm, a well-spaced
point set on a smooth surface. Even though our algorithm is not designed for surfaces with
boundary, it achieves perfect reconstruction on this example. Of course, the trimming
step should not be used in reconstructing a surface with boundary.

Figure 15 shows an effect of undersampling. (We say we haveundersampledif the
sample set is not anr -sample for a sufficiently smallr .) In this example, the raw crust
contains all the good triangles, along with some extra triangles. The extra triangles
turn separated sausages into link sausages, and as mentioned above roughen the inside

Fig. 14. A reconstructed minimal surface along with the poles of sample points. The crust contains exactly
the original triangles. (Sample points courtesy of Hugues Hoppe.)
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Fig. 15. The raw crust contains some extra triangles linking the sausages; this defect is corrected by step 5.
Sample points courtesy of Paul Heckbert.)

surfaces of the sausages. Both of these defects are corrected by step 5, filtering by
normals. Figure 16 shows another effect of undersampling: missing triangles around the
chest and hooves. Some sample points are not opposed by samples on the other side of
these roughly cylindrical surfaces; hence Voronoi cells extend too far and poles filter out
some good triangles. Anr -sample for a sufficiently smallr would be very dense near
the hooves, which include some rather sharp corners.

7. Conclusions and Future Work

In this paper we have given an algorithm for reconstructing an interpolating surface
from sample points in three dimensions. The algorithm is simple enough to analyze,
easy enough to implement, and practical enough for actual use.

Fig. 16. (a) The pig sample set contains 3511 points. (b) A close-up of the front feet shows an effect of
undersampling. (Sample points courtesy of Tim Baker.)
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Our previous paper [1] gave two provably good algorithms for reconstructing curves
in two dimensions, one using Voronoi filtering as in this paper, and the other using theβ-
skeleton. It is interesting to ask whether theβ-skeleton can be generalized to the problem
of surface reconstruction. (We know that the most straightforward generalization of the
β-skeleton does not work.)

Another interesting question concerns the generalization of Voronoi filtering to higher
dimensions.Manifold learningis the problem of reconstructing a smoothk-dimensional
manifold embedded inRd. This problem arises in modeling unknown dynamical systems
from experimental observations [8]. Even if Voronoi filtering can be generalized to this
problem, its running time for the important case in whichk¿ d would not be competitive
with algorithms that compute triangulations only ink-dimensional subspaces [8], rather
than inRd.

Along with the two theoretical open questions outlined above, there are several quite
practical directions for further research on our algorithms. What is the empirical max-
imum value ofr for which our algorithm gives reliable results? We believe that the
value ofr ≤ 0.06 in Theorem 4 is much smaller than necessary. Is the crust useful in
simplification and compression of polyhedra? Can the crust be extended to inputs with
creases and corners, such as machine parts? Can the crust be modified for the problem of
reconstruction from cross sections, in which the input is more structured than scattered
points?
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