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Abstract. We give a simple combinatorial algorithm that computes a piecewise-linear
approximation of a smooth surface from a finite set of sample points. The algorithm uses
Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algo-
rithm correct by showing that for densely sampled surfaces, where density depends on a
local feature size function, the output is topologically valid and convergent (both pointwise
and in surface normals) to the original surface. We briefly describe an implementation of
the algorithm and show example outputs.

1. Introduction

The problem of reconstructing a surface from scattered sample points arises in many ap-
plications such as computer graphics, medical imaging, and cartography. In this paper we
consider the specific reconstruction problem in which the input is a set of sample$oints
drawn from a smooth two-dimensional manifMdembedded in three dimensions, and
the desired output is a triangular mesh with vertex set equithat faithfully represents
W. We give a provably correct combinatorial algorithm for this problem. That is, we give
a condition on the input sample points, such that if the condition is met the algorithm
gives guaranteed results: a triangular mesh with position and surface normals within a
small error tolerance diV. The algorithm relies on the well-known constructions of the
Delaunay triangulation and the Voronoi diagram.

This paper is an extension of previous work by Amenta et al. [1] on reconstructing
curves in two dimensions. Our previous work defined a planar graph on the sample
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points called thecrust The crust is the set of edges in the Delaunay triangulation of
the sample points that can be enclosed by circles empty not only of sample points, but
also of Voronoi vertices. The crust comes with a guarantee: if the curve is well-sampled,
then the crust contains exactly the edges between sample points adjacent on the curve.
Our notion of well-sampled, which involves the medial axis of the curve, is sensitive to
local geometry. Hence our algorithm, unlike other algorithms for this problem, allows
highly nonuniform sampling, dense in detailed areas yet sparse in featureless areas. Any
provably correct algorithm must impose some sampling density requirement, similar to
the Nyquist limit in spectral analysis.

The extension to three dimensions in this paper requires both new algorithmic ideas
and new proof techniques. Most notably the algorithm uses only a subset of the Voronoi
vertices to remove Delaunay triangles. The algorithm picks only two Voronoi vertices—
called poles—per sample point: the farthest vertices of the point’s cell on each side
of the surface. With this modification, the straightforward generalization of our two-
dimensional algorithm now works. Delaunay triangles with circumspheres empty of
poles give a piecewise-linear surface pointwise convergeWt.tdhe poles also enable
further filtering on the basis of triangle normals. Adding this filtering gives a piecewise-
linear surface that converges\d both pointwise and in surface normals (and hence in
area). We believe that poles may be useful in other algorithms, perhaps whenever one
wishes to estimate a surface normal or tangent plane.

This paper is organized as follows. Section 2 describes previous work on surface
reconstruction. Section 3 gives our algorithm. Section 4 states our theoretical guarantees,
and Section 5 gives their proofs. Section 6 shows some example outputs.

2. Previous Work

Previous work on the reconstruction problem falls into two camps: computer graphics and
computational geometry. The algorithms in use in computer graphics typically compute
an approximating surface, that is, a surface passing close by, rather than exactly through,
the original sample points. The algorithms devised by computational geometers typically
compute an interpolating surface, that is, a surface passing through the sample points,
usually a carefully chosen subset of the Delaunay triangulation.

The first and most widely known reconstruction algorithm in the computer graphics
community is the work of Hoppe et al. [18]-[20]. This algorithm estimates a tangent
plane at each sample using theearest neighbors, and uses the distance to the plane of
the closest sample point as a signed distance function. The zero set of this function is then
contoured by a continuous piecewise-linear surface using the marching cubes algorithm.
A later algorithm by Curless and Levoy [11] is designed for data samples collected by
a laser range scanner. This algorithm sums anisotropically weighted contributions from
the samples to compute a signed distance function, which is then discretized on voxels to
eliminate the marching cubes step. These algorithms appear to be successful in practice,
but have no provable guarantees. Indeed there exist arbitrarily dense sets of samples, for
example ones with almost collinear nearest neighbor sets, for which the algorithm of
Hoppe et al. would fail.

The most famous computational geometry construction for associating a polyhedral
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shape with an unorganized set of points is thehape of Edelsbrunner et al. [13],
[14]. Like our reconstructed surface, theshape is a subcomplex of the Delaunay
triangulation. A Delaunay simplex (edge, face, etc.) belongs tertbhape ofSif its
circumsphere has radius at mastThe major drawback of using-shapes for surface
reconstruction is that the optimal valuenolepends on the sampling density, which often
varies over different parts of the surface. For uniformly sampled surfaces, however,
shapes are workable. Bernardini et al. [5] folleashape-based reconstruction with a
clean-up phase to resolve sharp dihedral angles. Edelsbrunner and Raindrop Geomagic
Inc. report that they have since developed another, proprietary reconstruction algorithm.

An early algorithm due to Boissonnat [7] is related to ours. He proposed a sculpting
heuristic for selecting a subset of Delaunay tetrahedra to represent a solid object. The
heuristic is motivated by the observation that “typical” Delaunay tetrahedra have circum-
spheres approximating maximal empty balls centered at points of the medial axis; our
algorithm relies on this same observation. Boissonnat’s algorithm, however, overlooks
the fact that even dense sample sets can give Delaunay tetrahedra with circumspheres
that are arbitrarily far from the medial axis; indeed it is this second observation which
motivates our definition of poles. Goldak et al. [17] made a similar oversight, asserting
incorrectly that the Voronoi diagram vertices asymptotically approach the medial axis
as the sampling density goes to infinity.

Along with the relation between Delaunay circumcenters and the medial axis, our
algorithm uses another important idea already found in the literature retected
Voronoi diagramis the intersection of the three-dimensional Voronoi diagram of the
sample points with the surfad®’. We call a Delaunay triangle good triangleif it is
dual to a vertex of the restricted Voronoi diagram. We use a theorem of Edelsbrunner and
Shah [15] to show that when the sampling is sufficiently dense these good triangles do in
fact produce a topologically correct reconstruction. Unfortunately, without knowing
we can only produce a superset of the good triangles. In the case in Whiglknown,

Chew [9] used the good triangles to produce a “surface Delaunay triangulation.”

Finally, for the two-dimensional problem of reconstructing a curve in the plane, there
has been a flurry of recent algorithms with provable guarantees. Figueiredo and Miranda
Gomes [16] prove that the Euclidean minimum spanning tree can be used to reconstruct
uniformly sampled curves in the plane. Bernardini and Bajaj [4] provextfslitapes also
reconstruct uniformly sampled curves in the plane. Attali [3] gives yet another provably
correct reconstruction algorithm for uniformly sampled curves in the plane, using a sub-
graph of the Delaunay triangulation in which each edge is included or excluded according
to the angle between the circumcircles on either side. Finally, the paper by ourselves and
Eppstein [1] showed that both the crust and ghskeleton [21] (another empty-region
planar graph) correctly reconstruct curves even in the case of nonuniform sampling. Our
two-dimensional results are in this way strictly stronger than those of the other authors.

3. Description of the Algorithm

We start by reviewing the algorithm of Amenta et al. [1] for the problem of reconstructing
curves inR?. Let W be a smooth (twice differentiable) curve embedde®inand letS
be a set of sample points frovd. LetV denote the vertices of the Voronoi diagrantof
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Thecrustof Scontains exactly the edges of the Delaunay triangulati@wf with both
endpoints fromS. Saying this another way, the crust contains exactly those Delaunay
edges around which it is possible to draw a circle empty of Voronoi verticesidfa
sufficiently dense sample, this simple algorithm constructs a polygonal approximation
of W (Theorem 1 in Section 4 below).

The straightforward generalization of this algorithm fails for the task of reconstructing
a smooth two-dimensional manifold embedded in three dimensions. The problem is that
the Voronoi center of four roughly cocircular samples may fall very close to the surface,
thereby punching holes in the crust.

The fix is to consider only thgoles The poles of a sample poistre the two farthest
vertices of its Voronoi cell, one on each side of the surface. Since the algorithm does
not know the surface, only the sample points, it chooses the poles by first choosing the
farthest Voronoi vertex regardless of direction (or a fictional pole at infinity in the case
of an unbounded Voronoi cell), and then choosing the farthest in the opposite half-space.
See step 2 in Fig. 1. Lemma 6 in Section 5 shows that this method is indeed correct
for well-sampled surfaces. Denoting the polesfhywe define therustof Sto be the
triangles of the Delaunay triangulation 80 P, all of whose vertices are members®f

Steps 1-4 compute the crust (which we shall sometimes catathecrustto dis-
tinguish it from the more finished versions). The crust has a relatively weak theoretical
guarantee: it is pointwise convergenMbas the sampling density increases. Step 5 pro-
duces an output with a stronger guarantee: convergence both pointwise and in surface
normals. Step 6 thins the set of output triangles to produce a piecewise-linear manifold.

Step 5 removes triangles based on the directions of their surface normals bleet
a triangle of the crust and lstbe its vertex of maximum angle. Step 5 removes

1. Compute the Voronoi diagram of the sample poRits

2. For each sample poist

(a) If sdoes not lie on the convex hull & let p* be the vertex o¥or(s)
farthest froms.

(b) If sdoes lie on the convex hull &, let p* be a point at infinite distance
outside the convex hull with the direction st equal to the average
of the outward normals of hull faces meetingsat

(c) Among all vertice of Vor(s) such that” ptspmeasures more than
/2, choose the farthest frosto bep~.

3. Let P denote all polesp* and p~, except thosep*’s at infinite distance.
Compute the Delaunay triangulation 8fJ P.

4. (Voronoi Filtering) Keep only those triangles in which all three vertices are
sample points.

5. (Filtering by Normal) Remove each triandi€or which the normal td” and
the vector to the* pole at a vertex o form too large an angle (greater than
o0 for the largest-angle vertex af, greater than@/2 for the other vertices of
T).
6. (Trimming) Orient triangles and poles (inside and outside) consistently, and
extract a piecewise-linear manifold without boundary.

Fig. 1. The surface reconstruction algorithm.
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the angle between the normal Toand the vector from any one df's vertices to its
first-chosen pole is too large. The definition of “too large” depends on which vertex of
T is under consideration: for the vertex with the largest angle, too large means greater
than an input parameter, and for the other two vertices it means greater thay23
Angles are unsigned angles in the ranget?]. As stated in Theorem 5, the choice of

0 is connected with the sampling density. If the user of our algorithm does not have an
estimate of the sampling density (the parametigr Definition 3 below), then the user

can slowly decreasg, backing off when holes start to appear in the surface, similar to
choosing a surface from the spectrunweshapes [14].

Step 6 ensures that the reconstructed surface is a manifold; before this final step,
the computed surface will resemble the original surface geometrically, but may have
some extra triangles enclosing small bubbles and pockets. The problem once again is
cocircular samples: all four faces of a flat tetrahedron may make it past steps 4 and 5.

Step 6 first orients all triangles. Start with any sample psioh the convex hull of
S. Call the direction tgp™ ats the outsideand the direction tg~ theinside Pick any
triangleT incident tos, and define the outside sideDfto be the one visible from points
on thesp' ray. Orient the poles of the other verticesTofo agree with this assignment.
Orient each triangle sharing a vertex withso that they agree on the orientations of
their shared poles, and continue by breadth-first search until all poles and triangles have
been oriented. Theorem 5 below guarantees that this orientation is consistent.

We can now extract a piecewise-linear two-dimensional manifold from the crust.
Define asharpedge to be an edge which has a dihedral angle greater ih@t&tween
a successive pair of incident triangles in the cyclic order around the edge. In other words,
a sharp edge has all its triangles within a small wedge. We consider an edge bounding
only one triangle to have a dihedral of 2s0 such an edge is necessarily sharp.

Step 6 trims off pockets by greedily removing triangles with sharp edges. Now the
remaining triangles form a “quilted” surface, in which each edge bounds at least two
triangles, with consistent orientations. Finally, Step 6 extracts the outside of this quilted
surface by a breadth-first search on triangles.

4. Theoretical Guarantees

What sets our algorithm apart from previous algorithms are its theoretical guarantees.
We begin with the required sampling density, which is defined with respect to the medial
axis.

Definition 1. Themedial axisof a manifoldW embedded ifRY is the closure of the
set of points ifRY with more than one nearest neighbor\dh

Figure 2 gives an example of the medial axi®#f) in R3, the medial axis is generally
a two-dimensional surface. Note that we allow the surfatéo have more than one
connected component.

Definition 2. Thelocal feature size LF&) at a pointp onW is the Euclidean distance
from p to (the nearest point of) the medial axis.
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Fig. 2. The medial axis of a smooth curve.

Definition 3. SetS c W is anr-sampleof W if no point p on W is farther than
r - LFS(p) from a point ofS.

Definition 4. Thepolesof a samples are the two farthest Voronoi vertices fr@ynone
on either side ofV.

Notice that the notion of -sample does not assume any global—or even local—
uniformity. Further notice that to prove an algorithm correct, we must place some con-
dition on the set of sample poin& or else the original surface could be any surface
passing througB. Our paper on curve reconstruction [1] proved the following theoretical
guarantee.

Theorem 1[1]. If Sisanr-sample ofacurve R?forr < 0.40,thenthe crustincludes
all the edges between pairs of sample points adjacent alonf ®/is an r-sample for
r < 0.25,then the crust includes exactly those edges

To state our results for the three-dimensional problem, we must define a generalization
of adjacency. Consider the Voronoi diagram of the sample p8irithis Voronoi diagram
induces a cell decomposition on surfagecalled therestricted Voronoi diagramthe
boundaries of the cells di¥ are simply the intersections @ with the three-dimensional
Voronoi cell boundaries. We call a triangle with vertices frBagood trianglefitis dual
to a vertex of the restricted Voronoi diagram; good triangles are necessarily Delaunay
triangles. Our first three-dimensional result shows that good triangles deserve their name.
To our knowledge, our proof of this result is the first proof that the three-dimensional
Delaunay triangulation of a sufficiently dense set of samples contains a piecewise-linear
surface homeomaorphic .

Theorem 2. If S is an r-sample of W for r< 0.1, then the good triangles form a
polyhedron homeomorphic to W

Our next two theorems state the theoretical guarantees for the three-dimensional (raw)
crust.
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Theorem 3. If S is an r-sample for r< 0.1, then the crust includes all the good
triangles

Theorem 4. If S is an r-sample for r< 0.06, then the crust lies within a fattened
surface formed by placing a ball of radi&s LFS(q) around each point g W.

Step 5 adds another guarantee: convergence in surface normals. The raw crust some-
times includes small skinny triangles with normals that deviate significantly from the
surface normals. For example, the insides of the sausages shown on the left in Figure 15
have a sort of washboard texture. Convergence in surface normal ensures that the area
of the trimmedy-crust converges to that of the surface.

Theorem 5. Assume Sisanr-sample and@et 4r.Let T be atriangle of thé-crust
and let t be a point on TThe angle between the normal to T and the normal to W at
the point pc W closest to t measures(QT) radians

5. Proofs

In this section we give the proofs of the theoretical guarantees. We first prove some basic
geometric consequences of our definitions and hypotheses. The proofs of Theorems 2
and 3 will then be straightforward, albeit somewhat tedious. The proofs of Theorems 4
and 5 will require some additional ideas and constructions.

We start by defining some terminology. At each pgnt W, there are two maximal
tangentmedial ballscentered at points of the medial axis. The vectors fipto the
centers of its medial balls are normalMé andW does not intersect the interiors of the
medial balls. Sinc&FS(p) is at most the radius of the smaller medial bsl,is also
confined between the two tangent balls of radieS( p). We call these theangent balls
at p; we shall use the tangent balls to bound the curvatul® af terms ofLFS(p). We
call a maximal empty ball centered at a Voronoi vert&oeonoi ball and the Voronoi
ball centered at a polegolar ball.

Next we set some notation. We udép, q) to denote the Euclidean distance frgm
to q. We uselZ psq to denote the measure of angieqin radians.

Our first lemma is a Lipschitz condition for théS(p) function.

Lemma 1. Forany two points p and q i3, | LFS(p) — LFS(q)| < d(p, Q).

Proof. LFS(p) > LFS(q) —d(p, q), since the ball of radiusFS(q) aroundq contains
the ball of radiud. FS(q) — d(p, q) aroundp and contains no point of the medial axis.

Similarly, LFS(q) > LFS(p) — d(p, q). O

Our second lemma shows that the line segment between two nearby points on the
surface must be nearly parallel to the surface.
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Fig. 3. The angle betweepq and the normal t&V at p must be nearlyr/2.

Lemma 2. For any two points p and g on W with(d, q) < p LFS(p), the smaller
angle between the line segment pg and the surface normal at p is atrdg¢ast
arcsinp/2).

Proof. SurfaceW, and hence poird, lies between the tangent balls of raditES(p)
at p. The angle in question, marked in Fig. 3, is minimized whdies right on one of
the tangent balls as in the figure. This position gives the angle claimed in the ldhma.

Our third lemma is a sort of Lipschitz condition for the direction of surface normals,
which can be regarded as a function fréhto the two-dimensional sphere.

Lemma 3. Forany two points p and g on W with(d, q) < o min{LFS(p), LFS(q)},
foranyp < % the angle between the normals to W at p and at g is at mo&t— 3p).

Proof. We parameterize the line segmeug by length. Letp(t) denote the point on
pg with parameter valué and let f (t) denote the nearest point fi{t) on the surface
W. In other words,f (t) is the point at which an expanding sphere centerquitfirst
touchesWV. Point f (t) is unique, because otherwipét) would be a point of the medial
axis, contradictingl(p, q) < o LFS(p).

Letn(t) denote the unit normal t&/ at f (t), and let|n’(t)| denote the magnitude of
the derivative with respect tg that is, the rate at which the normal turng ggows. The
change in normal betwegmandq is at mostfpcl [n’(t)] dt, which is at most(p, q) -
max|n’(t)].

The surfacaV passes between the tangent balls of ratEeS(f (t)) at f (t), so the
greater of the two principal curvatures &tt) is no more than the curvature of these
tangent balls. The rate at which the normal changes Wit is at most the greater
principal curvature, and hende (t)| is at most the rate at which the normal turns (as a
function oft) on one of these tangent balls. Referring to Fig. 4, we see that

dt > (LFS(f (1)) —d(f(t), p(t))) - sinde.
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C>
A q

w p(t) dt
]

"

Fig. 4. Bounding|n/(t)| in terms of the radiutFS( f (t)) andd( f (t), p(t)).

Now sindd approachedd asé goes to zero, so

()] = do/dt < 1/(LFS(f(t)) —d(f(t), p(1))).
We have

d(f ), pt)) < d(pt), p) < pLFS(p)
and

d(f(®), p) = d(f(®), pt)) +d(pt), p) < 2pLFS(p),

so, by Lemma 1LFS(f(t)) > (1 — 2p) LFS(p). Altogether we obtain majn'(t)| <
1/((1 — 3p) LFS(p)), which yields the lemma. O

The next lemma shows that the cells of the Voronoi diagrars afe long (part a)
and skinny (part b). We lefor(s) denote the closure of the Voronoi cell gfthat is, all
points at least as close $ms to any other sample point. We ignore the degenerate case
thatVor(s) is unbounded on both sides 3f.

Lemma4. Lets be asample point from anr-sample S

(a) On either side of W at,some point of Vais) has distance at least LES) from s.
(b) Theintersection of Vi@s) and W is contained in a ball of radiys/(1—r)) LFS(s)
about s

Proof. On either side oV ats, the centec of the tangent ball of radiusFS(s) lies
within Vor(s), and hence (a) holds. For part (b), lete Vor(s) N W. Sinces is the
closest sample point tp, d(p,s) < rLFS(p) < r(LFS(s) + d(p, s)) by Lemma 1.
Sod(p,s) < (r/(1—r))LFS(s). O

The next lemma shows that these long skinny Voronoi cells are nearly perpendicular
to the surface.
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Fig. 5. The vector frons to a distant point infor(s), such as a pole, must be nearly normal to the surface.

Lemmab. Lets be asample point from an r-sampleL8t v be any point in Vogs)
such that dv, s) > v LFS(s) for v > 0. The angle at s between the vectontand the
normal to the surfacéoriented in the same directidts at mostarcsin(r /v(1 —r)) +
arcsir(r/(1 —r)).

Proof. Let B, be the Voronoi ball centered an Let B, be the medial ball touching
on the same side of the surfa®é and letm be its center. Lep be the angle between
the segmentsv andsm, that is, the angle referred to in the lemma. Bgtbe the ball of
radiusLFS(s), tangent toN ats, but lying on the opposite side & from B,; let p be
the center oB,. The surfacéV passes betwee,, and B, ats, and does not intersect
the interior of either of them, as shown in Fig. 5.

Sincep andv lie on opposite sides diV, line segmenpv must intersecW at least
once. Let be the intersection point closestpoNo sample point can lie in eith@;, or
B,, so the nearest sample pointganust bes. SinceB, has radiud. FS(s), d(q, s) >
sin(a) LFS(s), wheree is the angle/spg We are interested in anglévsm which is
¢ = o + B. SinceB, has radius at leastLFS(s), d(q, s) > v sin(8) LFS(s), wherep
is the angle/svq. SinceSis anr-sampled(q, s) must be less thar /(1 —r)) LFS(s).
Combining the inequalities, we obtain< arcsinr/(1—r)) andg < arcsinr /v(1—r)),
which together give the bound @n O

Together Lemmas 4(a) and 5 show that the vector from a sample point to its first pole
p* is a good approximation to the surface normal. This observation may have wider
applicability; for example, the Voronoi diagram and the poles could be used to obtain

provably reliable estimates of tangent planes in the algorithm of Hoppe et al.

Our nextlemma shows that Step 2 of the crust algorithm does indeed correctly identify

the second pole~. Recall thatp~ is defined to be the farthest Voronoi vertex fram
on the opposite side of the unknown surface frpm

Lemma 6. Lets be a sample point from an r-sample S witk r%. The second pole
p~— of s is the farthest Voronoi vertaxof s such that the vectowshas negative dot
product with s
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Proof. By Lemma 4(a)d(s, p~) > LFS(s), so by Lemma 5 the angle betwesp"
andsp is at leastr — 4arcsinr/(1 —r)) > 1.78 > =m/2, hencesp - spt < 0.
Lemma 5 also shows that for any Voronoi veriern the same side &/ as p™, with
d(s, v) > LFS(s), the angle betweesv andsp' is at most 4 arcsim/(1 —r)) < 7 /4.
Hence any farther froms than p~ must havesv - sp™ > 0. O

Our next lemma bounds the angle between the normal to a good triangle and the
surface normals at its vertices.

Lemma 7. LetT beagood triangle and lets be a vertex of T with angle at leA3t
and choose 1< 1.

(a) The angle between the normal to T and the normal to W at s is at most
arcsin/3r/(1—r)).

(b) The angle between the normal to T and the normal to W at any other vertex of
T is at moser /(1 — 7r) + arcsin+/3r /(1 —1)).

Proof. For part (a), leC be the circumcircle off and letpc be its radius. Consider
the tangent balls of radiusFS(s) tangent toW at s on either side ofV. These balls

intersect the plane df in twin disks of common radiugg, tangent at poirng, as shown

in Fig. 6. Our first aim is to boungdg in terms ofpc.

Since the balls of radiusFS(s) are empty of sample points, the twin disks cannot
contain vertices of. In order to maximizepg relative topc, we assume that the twin
disks pass through the verticesTofand that the angle atmeasures exactly /3. Now
it is not hard to show thatg is maximized exactly wheit is equilateral: if we move
s away from the midpoint of the arc covered by the twin disks, keeping the twin disks
passing through the vertices ®f the radiuspg decreases, untd reaches one of the
other vertices o andpg = pc. Since the worst-case configuration is equilat@rave
can conclude thatg < +/3pc.

We can bound these radii in terms loFS(s). Let u denote the restricted Voronoi
diagram vertex dual t@ . Sinceu lies on the line through the center Gfnormal to the
plane ofC, pc < d(u, s). By Lemma 4(b)d(u, s) < (r /(1 —r)) LFX(s), so altogether
ps < V3 LFS(s)/(1—r).

Fig. 6. Bounding the angle between the normal to the triangle and the normal to the surdace at
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Now to find the angle between the normallt@nd the normal t&V ats, we consider
one of the tangent balB ats. Let m denote the center @ and letv denote the center
of the twin disk of radiusg that is the intersection d with the plane ofT, as shown
in Fig. 6. The segmergmis normal tow ats and the segmemtw is normal toT, so
the angle we would like to bound i$smwv. The trianglesm is right, with hypotenuse
of lengthLFS(s) and leg opposite/smw of length pg < +/3r LFS(s)/(1 — r). Hence
|Z/smw| < arcsiny/3r /(1 —r)).

For part (b), les’ be one of the other vertices ©f SinceT is a good triangles and
s’ are neighbors in the restricted Voronoi diagram. pdte a point on the boundary of
both restricted Voronoi diagram cells. Then

d(p,s) <rLFS(p) < 1rTr min {LFS(s), LFS(s)} .

Sod(s, ) < (2r/(1—r)) min{LFS(s), LFS(s")}. Applying Lemma 3 withp = 2r /(1 —
r), the angle between the normalswbat s ands’ is at most 2/(1 — 7r) forr < % O

We need one more lemma for the proof of Theorem 2. This lemma is a topological
result concerning the medial axis that should be independently useful.

Lemma 8. If a ball B intersects surface W in more than one connected component
then B contains a point of the medial axis of W

Proof. AssumeB N W has more than one connected componentclist the center
of B and letp be the nearest point AW to c. If pis not unique, thew is a point of the
medial axis and we are done. Lggbe the nearest point in a connected component
of B N W that does not contaip. Imagine a point’ moving fromc towardq along
segmentg. Throughout this journey’ is closer taq than to any point outsidB, so the
closest point oW to ¢’ must be some point d N W. At the beginning of the journey,
the closest point t@’ is p and at the end it ig, so at some criticat’ the closest point
must change connected components. Suchsaa point of the medial axis. O

We now give the proof of Theorem 2: the good triangles form a polyhedron homeo-
morphic toW. The proof relies on the lemmas above along with a result of Edelsbrunner
and Shah [15].

Proof of Theoren2. The theorem of Edelsbrunner and Shabh tells us that it suffices to
show thatS has the followingclosed-ball propertythe closure of eack-dimensional
face, 1< k < 3, of the Voronoi diagram of intersects/ in either the empty set or in
a closedk — 1)-dimensional topological ball.

Let s be a sample point and 1&br(s) be its Voronoi cell. Let the direction of the
normal toW ats be vertical.

We begin by showing that in the vicinity & the surfaceW is nearly horizontal;
this fact will be useful in establishing the closed-ball property for each value of
Lemma 4(b) shows thator(s) N W is small, fitting inside a balB arounds of radius
(r/(1—r)) LFS(s). Since such a small ball cannot intersect the medial axis, Lemma 8
implies thatW N B has a single connected component. Lemma 3 witAr /(1 —r)
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shows thatV N B is nearly horizontal, more precisely, the normal¥on B is nowhere
farther tharr /(1 — 4r) < % radians from vertical.

Now we consider an edgeof Vor(s), that is, the cask = 1. If e has nonempty
intersection withW, theneis normal to the good triangl€ dual to its intersection point.
By Lemma 7(b)e must be within 2/(1 — 7r) + arcsir(+~/3r /(1 —r)) radians from the
normal toW ats. Forr < 0.1, this expression is less thar®Qsoe is within 0.9 radians
from vertical, and consequently can intersétbnly once within ballB.

Next consider a facd of Vor(s), that is, the cas& = 2. Facef is contained in
planeH, the perpendicular bisector efand another sample poist, wheress is an
edge of a good triangl€. PlaneH must contain a vector parallel to the normallgfso
again Lemma 7(b) shows that the angle betweand the surface normalstand hence
betweenf and the surface normalsis at most 0 radians. So we cafl nearly vertical

Each connected component 6N W is an arc of a curve, with endpoints on edges
of f that are dual to good triangles and hence nearly vertical. Assume for the sake of
contradiction thatthere are at least two such connected components, and consider any line
segment connecting a point on one component with a point on another\®isg W is
small, Lemma 2 implies that each of these line segmenisdgy horizontalspecifically
within 0.2 radians of horizontal far < 0.1. Hence we can sort the arcs bin W left
to right acrossf, as shown in Fig. 7(a). Lgbq be a line segment connecting the right
endpoint of one arc with the left endpoint of the next arc. Segmaqit nearly horizontal
so it must leavef as it crosses the nearly vertical edgé/of(s) at p and reenterf atq,
a contradiction to the fact thdt is convex.

Finally considenor(s) itself, the casd& = 3. LetC be Vor(s) N W. Now C cannot
have a handle becau¥¥ is nearly horizontal everywhere within bal. We assume,
however, thalC is not a topological disk, again aiming for a contradictionClthas
no handles and is not a topological disk, then either it has more than one connected
component or it is a topological disk with holes.

(a) ®)

Fig. 7. Two impossible situations: (a) Fadeof Vor(s) intersectsWV in two arcs. (b)W N Vor(s) is a disk
with a hole.
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Consider the projectio@’ of C onto a horizontal plane. Since each pair of points in
C are connected by a nearly horizontal segment, this projection is one-to-on€, and
is a planar shape homeomorphicQolf C' has more than one connected component,
leto be the shortest segment connecting two different components, arjddgtbe the
endpoints ot . OtherwiseC’ has a hole. Select some poinin a hole, letb’ be the line
segment connecting to the nearest poirtf; in C’. The line supporting’ intersect<C’
again on the other side afin a pointcds,. We leto be the segmen;, ds.

Segment is perpendicular to the boundary Gf atq;. Let P be the vertical plane
througho, and letq, g, be the points inP N C whose vertical projections ag, 5,
respectively. The poird; is either a vertex o€ or an edge point, and thus lies in either
an edge or a facet ofor(s), respectively.

Consider the case in which lies in a facetf of Vor(s). Facetf is nearly vertical, and
sinceP is perpendicular t€” atqy, itis nearly perpendicular t6 atg;, and f intersects
P in a nearly vertical line aty;. In the other casey; is contained in a nearly vertical
edgee of Vor(s). We consider the plan® containing both botle and the horizontal line
perpendicular ta;, g, atq;. Q meetsP in a nearly vertical line. Note that we had to
chooseP carefully, since two nearly vertical planes which acgnearly perpendicular
might meet in a nearly horizontal line.

In either case, examining the situationfn we find that in the neighborhood gf,
the interior ofgy, g, is separated from the interior ¥6r(s) N P by a nearly vertical line.
However, bothy; andg, belong toVor(s) N P, contradicting the the fact thabr(s) is
convex. O

Next we give a proof of Theorem 3: the raw crust contains all the good triangles.
The intuition behind this proof is that restricted Voronoi cells are small and poles are far
away, so that the ball centered at a ventiesf the restricted Voronoi diagram, passing
through the three sample points whose cells meet atust be empty of poles.

Proof of Theoren3. LetT be a triangle dual to a vertax of the restricted Voronoi
diagram. Consider the bali, centered om with boundary passing through the vertices
of T. SinceT is a Delaunay triangleB, contains no point ofs in its interior. SinceS

is anr-sample ofW forr < 1, the radius oBy is less tham LFS(u). By the definition

of LFS, even the larger baB;, of radiusLFS(u) centered om cannot contain a point of
the medial axis.

Now assume thaB, contains a pole of a sample poins. We will show that under
this assumption, first, th&, must contain a point of the medial axis, and, second, that
the polar ballB, must be contained iB/,, thereby giving a contradiction. In particular,
B, must contain the centen of the medial ballB,, ats that is on the same side ¥
asv. Notice thatm necessarily lies inor(s) and ball By, has radius at leadtFS(s),
while the radius oB, is at least that 0B, (by Lemma 4(a)). By Lemma $/msv| <
2arcsin= (r/(1—r)), which is less than.@3 forr < 0.1. A calculation shows thd,
must contain the medial axis poimt

Sincev lies in By, the radius 0B, is no greater than the distance frero the nearest
vertex of T, which is at mostPLFS(u) sinceSis anr -sample. Sincd(u, v) < r LFS(u),
ball B, lies entirely withinB], since 3 LFS(u) < LFS(u). O
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Fig. 8. (a) The Delaunay balBt of a triangle intersecting the spindle must contain a big patch of surface
W. (b) Spindles of sample points fuse so that all triangles must lie clogé to

We now move on to the proof of Theorem 4, which says that all crust triangles lie
within a fattened surface surroundilig. Let s be a sample point and letbe a pole of
s. We shall define a forbidden region inside polar d&j] which cannot be penetrated
by large crust triangles.

Let B be the tangent ball of radiusF S(s) ats on the same side & asv, and let
B,, be the tangent ball on the other side, wwthpassing between them. LBtbe the
ball concentric withB;, with radius(1 — r) LFS(s), as shown in Fig. 8(a). Notice that
Lemma 4(a) shows that the radiusBf is at least that oB.

Definition 5. Thereflectionof a pointt throughB, is the pointt’ along rayvt such
that line segmertt’ is divided into equal halves by the boundaryByf Thespindleof
sis{t € B, | segmentt’ intersectsB }, that is, all points irB, whose reflection lies in
or beyondB.

The spindle is shaded in Fig. 8(a). Our plan is to show that large crust triangles are
confined between the union of spindles on each sid& ek shown in Fig. 8(b). (Small
crusttriangles lie within the fattened surface simply due to their size.) We start by proving
two lemmas about spindles: they are indeed forbidden regions, and they have relatively
flat bottoms, meaning that their width does not shrink with shrinking

Lemma9. No crust triangle T whose Delaunay ballrBhas radius greater than
5r LFS(s) can penetrate the spindle of s

Proof. Assume is a point insideB, on a crust triangld with Delaunay balBy. We
first assert thaBt contains the reflection poirtt. Let H be the plane containing the
intersection of the boundaries 8 and By. Since the vertices of lie on Bt outside
B,, T must be contained in the closed half-space bounde#i ot containingu. It
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Fig. 9. (a) Br must contain reflection poitt. (b) The family of possibleéBr circles.

(@)

suffices to prove this assertion (tHa¢ containgt’) for the case in which lies right on
H, since for anyt in the interior of the half-space, segmetitis a subsegment of the
segment connecting a point ¢hand its reflection.

We may also assume that b8 passes through, since if we replacd with the
ball that touches and has the same intersection wih the part ofBy outsideB,
shrinks (making things harder for our lemma).

Now consider any plane containing liné. Balls B, and By intersect this plane in
circles and plandl intersects in a line containing the mutual chord of these circles. See
Fig. 9(a).

Assume without loss of generality that the cross sectioB,0 the unit circle with
centerv = (0, 1). Lett = (0O, y;). Denote the center and radius®f’s cross section by
(X, y) andp. Sincet lies along the mutual chord, it has eqpaiwer distanceo (0, 1)
and(x, y):

Q-2 =1=x"+(y -y’ - o
Substituting(1 — y)? for p? — x2, we obtain

V-2 =(y—y?— (1-y)?

which simplifies toy = (1 — 2y;) /(2 — 2y;). Thus the centers of all possibBg circles
lie on the same horizontal line, as shown in Fig. 9(b).

Any Bt passes through the reflection @ 1) across the horizontal line, the point
(0,(1—-2y)/(1—wy)—1).Foranyvalueofy <1,(1—2y)/1—w)—1< -V, S0
Bt containg’ = (0, —V;).

Thus if the original point lies within the spindle o§, thenBt must intersecB, the
ball concentric withB,. Aiming for a contradiction, assume ttiadoes indeed lie within
the spindle ofs. ThenBr penetrates each @&, and B, deeply, at least LFS(s) into
each of these balls. Consider the dB} bounded by the circle that is the intersection
of the boundaries oBr and B, as shown in Fig. 10. Since the radiuskxf is at least
5r LFS(s), the radius oB; atleast.FS(s) > 15 LFS(s), andBr cuts at least LFS(s)
into B, we can calculate th&, has radius at least® LFS(s). There is an analogous
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Fig. 10. If Bt does penetrate the spindlemfthen there must be a poiathat has no sample points near it.

disk D,, bounded by the intersection of the boundarieBoand B+, with radius at least
2.5r LFS(s).

We now assert that there exists a pa@irt WN (Bt UB,), withd(c, s) < v/2LFS(s),
such that the ball of radius® LFS(s) aroundc contains no sample points. Surfage
is confined betweeB,, andB;}, and hence must cro& U B,. So some point of W
inside By U B, must be at least distance52 LFS(s) from the boundary oBr U B,. It
remains to determine how farcan lie froms; note thatBr need not pass through By
must, however, intersect both the spindls ahd some point on the northern hemisphere
of B (takings as the north pole), 8¢/ must cros8Br U B, within v/2LFS(s) of s (since
the radius ofB is less tharLFS(s)).

Now sinced(c,s) < LFS(s), LFS(c) < (1 + +/2) LFS(s). However,c is at least
2.5r LFS(s) from the nearest sample, so we have obtained a contradictidhlieing
r-sampled. O

The nextlemma shows that spindles have flat bottoms. Recall that a spindle is induced
in Voronoi ball B, by the ballB of radius(1 — r) LFS(s) concentric with the tangent
ball B, on the opposite side af/. In this lemma we assume thBtand B, have equal
radius, although in fadB, is always at least a little larger th&@h It is not hard to confirm
that this assumption gives an upper bound: a laBjgust gives a larger, flatter spindle.
Referring to Fig. 11, recall thatis the center oB,, mis the center 0B, and define
to be the point at which segmestn (the axis of symmetry of the spindle) intersects the
boundary ofB,.

Lemma 10. Assume that B and Bare unit balls and that the distance between them
is at mosts < 0.06.Lett be a point outside B and outside the spindle induced by B in
B,. Let p be the closest point on B tolt |[Zomp < 0.20,then dt, p) < § + |Zomg.
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Fig. 11. The spindle curves gradually, sanust be close t@.

Proof. Assumev has coordinate), 1). The worst case for the lemma occurs wilen
assumes its maximum value, as lar§eneans a higher and narrower spindle, thereby
maximizingd(t, p) relative tos + |Zompg. So assumen has coordinate, —1.06).
Draw the 020-radian ray with origirm and the 032-radian ray with origirv as
shown in Fig. 11. The rays intersect at a poirwith coordinates abou®.259 0.218).
By computing the distances to the boundarieBp&ndB along rayvx, we can confirm
thatx lies inside the spindle. Thus the boundary of the spindle lies brlowthe 020-
radian ray with origirm. Assumet and p are at the extremal positions allowed by the
lemma, so thatis on the boundary of the spindle antbmp = 0.20. The distance from
x to mis less than 252, sod(t, p) — § < 0.192 < |Zomp. Sinced(t, p) decreases
with |Zomp, this inequality also applies to pointsnd p such thaiZomp < 0.20 as
well. O

We are now in a position to finish the proof of the theorem: all crust triangles lie
within the fattened surface formed by placing a ball of radiukFs5(q) around each
pointg € W.

Proof of Theorend. Let By be the Delaunay ball of the crust triangle containing point
t. Lets be the sample point neardgstf By has radius less tham BFS(s), then there is
nothing to prove, sinceitself could be they of the theorem.

So assumér has radius at least 8FS(s). Let B,, B;;, andB be respectively the
polar ball ofs, the tangent ball of radiusFS(s) on the opposite side diV, and the
concentric ball with radius reduced by FS(s) as in Fig. 12. Leb ando’ be the points
of lune B;, N B, closest to the centers &, andB,, respectively. Points andm belong
to Vor(s), and hence, so do@s So by Lemma 4(b)i(s, o) <r LFS(s)/(1—r). Since
B, has radius at least that &;,, d(s, 0) < d(s, 0).

Let p and p’ be the closest points toon B and B, respectively, and laj be the
point of W on line pt closest tat. Henced(t, q) < d(p, t). By an argument analogous
to that used foro, d(s, p’) < rLFS(s)/(1 —r), and so by the triangle inequality,
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Fig. 12. Crust pointt must be near surface poigt

d(o, p’) < 2r LFS(s)/(1 —r). SoZomp < arcsin2r /(1 —r)), which, forr < 0.06, is
less than 20 radians. The set-up satisfies the hypotheses of Lemma 10, only with radii
scaled by(1 —r) LFS(s).

By Lemma 9t must lie between the spindle aig,. Applying Lemma 10,

d(t, p) <rLFS(s) + [Zomp (1 —r)LFS(s).
We now use the fact th&@omp < arcsin2r /(1 —r)) < 3r, to obtain
dit, p) <rLFS(s) +3r(1—r)LFS(s) < 4r LFS(s).

Finally, since agaim € Vor(s), we haved(s, q) < r LFS(s)/(1 —r), so, by Lemma 1,
LFS(q) > (1 — 2r)LFS(s)/(1 —r), and henceBLFS(q) > d(t, p) > d(t, Q). O

Theorem 4 establishes that crust triangles are close to the surface, but not necessarily
flat on the surface. Step 5 of the algorithm removes triangles whose surface normals differ
too much from the vectors to the poles at their vertices, ensuring that the normals of the
resultingd-crust triangles are close to surface normals at the sample points. To establish
that thed-crust normals converge everywhere to the surface normals, we need to extend
this guarantee to the interiors of @lcrust triangles. This extension is immediate for
small triangles, but takes some work for large ones.TLéte a triangle of thé-crust
with & = 4r, lett be a point onTl, and letp be the closest point tbon W. Theorem 5
states that the angle between the normdl and the normal t&V at p measure©(,/r)
radians.

The proof shows that a large crust triangle (of s@é/rLF S(s))) must have a
very large circumsphere (of siZe(L FS(s)/+/)) so that any nearby patch of surface
cannot twist away without penetrating the circumsphere deeply, a contradiction since
the circumsphere must be empty of samples.

Proof of Theorend. First, we establish the easier claim that at each sample goint
the normals to incidert-crust triangles do not deviate by more than= O(r) radians
from the normal tdN. This statement follows from the fact that Step 5 of the algorithm
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Fig. 13. Repeated use of Lemma 5 shows that if trianDlis largeBr must be enormous.

removes each triangle arousdvhose normal forms an angle larger thanwiith the
vector to the pole. By Lemma 5, the pole vector in turn deviates from the norridl to
ats by at most 2 arcsim/(1 —r)), so thatyy < 7r forr < 0.06.

Now lett be any point on &@-crust triangleT, and letp be the closest point oW to
t. By Theorem 4d(t, p) < 5r LFS(p). Let s denote the closest vertex @ftot, letC
denote the radius df s circumcircle, and lep be the radius of’s Delaunay ballBr.

If C < /rLFS(s), thend(s, p) is O(/r), and Theorem 5 follows from Lemma 3 and
the bound ony.

So assum€ and hence is at least,/r LFS(s). Let ¢ denote the angle between the
normal toW ats and the vector frons to the centew of By. Lemma 5 withv > /r
implies thaty < 2,/r /(1 —r) radians. Next le§ denote the angle between the normal
to T ats and the vector frons to v, as shown in Fig. 13. Anglé < ¢ + v, wherey,
as above, is the angle between the normal to the surfacarat the normal td . Since
¥ = O(r), we can conclude that< 3./r.

Now C = psing, sop = C/sin§ > LFS(s)/3. Thus the assumption th&tis large
(at least,/r LFS(s)) shows thap must be very large (at leakES(s)/3). However, we
can now do better; we return to Lemma 5 with= % This time we obtain an upper
bound ofO(r) ong ands, and a lower bound & (LFS(s)/+/r) on p. (Sadly, we cannot
repeat this trick to inflate indefinitely, sincey remainsO(r).)

Notice that sincé is O(r), the plane containing cuts a small spherical cap @y,
one subtending a solid angle of or®(r). This means thal itself is small with respect
to Br; the pointt € T can be at mosO(rp) from the nearest vertex, bounding (by
Lemma 1)LFS(t) < O(rp) + LFS(s), which is O(/F p). Sincet is within 5r LFS(p)
of p, LFS(p) is O(/Tp) as well.

Now assume that the normal W at p deviates from the normal t& by Q(/1),
and consider the tangent balls of radiuSS(p) at p. The pointp is close—within
O(r LFS(p))—to the surface ofBr, while the radius ofBy is much larger— =
O(LFS(p)/+/r)—than the radius of the tangent balls @t For some small enough
value ofr, the tangent balls interse8 in circular patches of radiu® (,/r) LFS(p).
As in the proof of Lemma 9W is confined between these two balls, so there must be
a similar-size patch oV inside By, and hence empty of sample points, which gives a
contradiction toS being arr -sample. This contradiction establishes Theorem 5.0
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6. Implementation and Examples

Manolis Kamvysselis, an undergraduate from Massachusetts Institute of Technology,
implemented steps 1-4 of the crust algorithm during a summer at Xerox PARC. We
used Clarkson'$ull program [10] for Delaunay triangulation, agkeomview[22] to
visualize and print the results. We used vertices from pre-existing polyhedral models as
inputs. A companion paper [2] reports on our experimental findings.

The only tricky part of the implementation was the handling of degeneracies and near
degeneracies. Our test examples, many of which started from approximately gridded
sample points, included numerous quadruples of points supporting slivers. Kamvysselis
incorporated an explicit tolerance parametpthe circumcenter of quadruples within
¢ of cocircularity was computed by simply computing the circumcenter of a subset of
three. This hack did not affect the overall algorithm, as these centers are never poles.
Running time was only a little more than the time for two three-dimensional Delaunay
triangulations. Notice that the Delaunay triangulation in step 3 involves at most three
times the original number of vertices.

Figure 14 shows an especially advantageous example for our algorithm, a well-spaced
point set on a smooth surface. Even though our algorithm is not designed for surfaces with
boundary, it achieves perfect reconstruction on this example. Of course, the trimming
step should not be used in reconstructing a surface with boundary.

Figure 15 shows an effect of undersampling. (We say we hadersampledf the
sample set is not ansample for a sufficiently smaitl.) In this example, the raw crust
contains all the good triangles, along with some extra triangles. The extra triangles
turn separated sausages into link sausages, and as mentioned above roughen the inside

Fig. 14. A reconstructed minimal surface along with the poles of sample points. The crust contains exactly
the original triangles. (Sample points courtesy of Hugues Hoppe.)
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Fig. 15. The raw crust contains some extra triangles linking the sausages; this defect is corrected by step 5.
Sample points courtesy of Paul Heckbert.)

surfaces of the sausages. Both of these defects are corrected by step 5, filtering by
normals. Figure 16 shows another effect of undersampling: missing triangles around the
chest and hooves. Some sample points are not opposed by samples on the other side of
these roughly cylindrical surfaces; hence Voronoi cells extend too far and poles filter out
some good triangles. An-sample for a sufficiently smatl would be very dense near

the hooves, which include some rather sharp corners.

7. Conclusions and Future Work

In this paper we have given an algorithm for reconstructing an interpolating surface
from sample points in three dimensions. The algorithm is simple enough to analyze,
easy enough to implement, and practical enough for actual use.

(a) (b)

Fig. 16. (a) The pig sample set contains 3511 points. (b) A close-up of the front feet shows an effect of
undersampling. (Sample points courtesy of Tim Baker.)
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Our previous paper [1] gave two provably good algorithms for reconstructing curves
in two dimensions, one using Voronoi filtering as in this paper, and the other usifig the
skeleton. Itis interesting to ask whether phakeleton can be generalized to the problem
of surface reconstruction. (We know that the most straightforward generalization of the
B-skeleton does not work.)

Another interesting question concerns the generalization of Voronoi filtering to higher
dimensionsManifold learningis the problem of reconstructing a smog&tdimensional
manifold embedded iR¢. This problem arises in modeling unknown dynamical systems
from experimental observations [8]. Even if Voronoi filtering can be generalized to this
problem, its running time for the important case in whick< d would not be competitive
with algorithms that compute triangulations onlykidlimensional subspaces [8], rather
than inRY.

Along with the two theoretical open questions outlined above, there are several quite
practical directions for further research on our algorithms. What is the empirical max-
imum value ofr for which our algorithm gives reliable results? We believe that the
value ofr < 0.06 in Theorem 4 is much smaller than necessary. Is the crust useful in
simplification and compression of polyhedra? Can the crust be extended to inputs with
creases and corners, such as machine parts? Can the crust be modified for the problem of
reconstruction from cross sections, in which the input is more structured than scattered
points?
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