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Abstract. In this paper we study the problem of flipping edges in triangulations of poly-
gons and point sets. One of the main results is that any triangulation of a set ofn points
in general position contains at leastd(n− 4)/2e edges that can be flipped. We also prove
that O(n+ k2) flips are sufficient to transform any triangulation of ann-gon withk reflex
vertices into any other triangulation. We produce examples ofn-gons with triangulationsT
andT ′ such that to transformT into T ′ requiresÄ(n2) flips. Finally we show that if a set
of n points hask convex layers, then any triangulation of the point set can be transformed
into any other triangulation using at mostO(kn) flips.

1. Introduction

Given a triangulationT of a setP of points on the plane, an edgee of T is flippableif
it is adjacent to two triangles whose union is a convex quadrilateralC. By flipping ewe
mean the operation of removinge from T and replacing it by the other diagonal ofC.
In this way we obtain a new triangulationT ′ of P, and we say thatT ′ has been obtained
from T by means of aflip.

There are several reasons that make the study of flips in triangulations interesting.
The first one is the existence of a simple greedy algorithm that constructs the Delaunay
triangulation of a point set in general position by successive flips, starting from an
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arbitrary triangulation of the point set (see [5], [9], and also [3] for a generalization of
this result to higher dimensions). In this algorithm the iteration of local improvements
produces a global optimum. A consequence of this success has been the use of flips
in algorithms for finding triangulations that are at least approximate optima for criteria
such as maximum angle, maximum vertex degree, total edge length, and minimum ratio
between the area of the incircle and the area of the triangle [2].

Another motivation for studying flips comes from the existence of a bijection between
triangulations of a convex(n+2)-gon and binary trees withn internal nodes. Under this
bijection, flipping an edge in a triangulation corresponds precisely to arotation in the
corresponding binary tree [12] (see also [15] and [8]). Finally, we mention that the flip
operation also appears in other kinds of triangulations; for instance, in the work of Avis
[1] for enumerating rooted triangulations up to isomorphism, or in that of Pocchiola and
Vegter [13] for computing the visibility graph of a set of objects in the plane.

Given a collection of pointsPn = {v1, . . . , vn} we define the graphGT (Pn), the
graph of triangulations ofPn, to be the graph such that the vertices ofGT (Pn) are the
triangulations ofPn, two triangulations being adjacent if one can be obtained from the
other by flipping an edge. Triangulations of polygons, flipping edges in them, and their
corresponding graphs of triangulations are defined in an analogous way.

In [15] Sleator et al. showed that the diameter of the graphGn of triangulations of a
convexn-gon is equal to 2n− 10 forn sufficiently large (the upper bound 2n− 6 for all
n is easy). In [12] Lucas proved thatGn is Hamiltonian, and Lee [10] realizedGn as the
skeleton of an(n− 3)-polytope. Some properties of these graphs are also studied in [8],
where it is also shown that the graph of triangulations of a simple polygon is connected
and has diameterO(n2).

One of the main results in this paper is that any triangulation of ann point set contains
at leastd(n−4)/2e edges that can be flipped, and that this bound is tight. The remaining
results concern mainly the diameter of graphs of triangulations. In Section 2 we give some
preliminaries. In Section 3 we give a new simple proof that the graph of triangulations
of a polygon is connected, that its diameter is bounded by twice the size of the visibility
graph of the polygon, and that the diameter isO(n2), wheren is the number of vertices.
The proof of the latter result follows the analysis of the greedy flip algorithm to compute
the Constrained Delaunay Triangulation of a planar straight line graph [2]. We use in
the proof the upper bound ofO(n + k) for spiral polygons withn vertices,k of them
being reflex, proved by Hanke [6]. We give examples showing that the diameter can be
Ä(n2). We also show that the diameter is sensitive to geometric features of the polygon:
we prove an upper bound ofO(n+ k2), wherek is the number ofreflexvertices of the
polygon.

In Section 4 we study triangulations of point sets on the plane. After proving the
aforementioned result on the number of edges that can be flipped, we show that there are
sets ofn points such that the diameter of their graph of triangulations isÄ(n2). A similar
result appears in [5], but there only a restricted class of flips is allowed to transform
one triangulation into another one. On the other hand, the quadratic upper bound for
the diameter in Section 2 can be easily modified to the case of point sets. In fact, we
prove a stronger result, namely that the diameter isO(kn), wherek is the number of
convex layers of the point set. We conclude in Section 5 with some remarks and open
problems.
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A tool we use repeatedly is the insertion of a setS of suitable edges into a given
triangulation, i.e., to perform a sequence of edge flips until we reach a new triangulation
containingS. This operation is related to, but different from, theedge-insertion technique
described in [4], which consists in adding a new edgee to the current triangulation,
deleting edges that crosse, and retriangulating the resulting polygonal region in both
sides ofe.

2. Preliminaries

Let Pn = {v1, . . . , vn} be a collection of points on the plane. Atriangulation of Pn is a
partitioning of the convex hullConv(Pn) of Pn into a set of trianglesT = {t1, . . . , tm}
with disjoint interiors such that the vertices of each triangleti of T are points ofPn. The
elements ofPn are called the vertices ofT and the edges of the trianglest1, . . . , tm of T
are called the edges ofT . The degreed(vi ) of a vertexvi of T is the number of edges of
T that havevi as an endpoint. We say that an edgee of T is flippableif e is contained
in the boundary of two trianglesti andtj of T andC = ti ∪ tj is a convex quadrilateral.
By flipping ewe mean the operation of removinge from T and replacing it by the other
diagonal ofC. See Fig. 1.

Given two triangulationsT ′ andT ′′ of Pn, we say that they are at distancek if their
distance inGT (Pn) is k, i.e., there is a set of triangulationsT0 = T ′, . . . , Tk = T ′′ such
that Ti+1 can be obtained fromTi by flipping an edge of it,i = 0, . . . , k − 1. We also
say thatT ′ can betransformedinto T ′′ by flippingk edges.

Throughout this paper,Pn denotes point sets andQn polygons. The vertices ofQn

are always assumed to be labeledv1, . . . , vn in clockwise order. We assume that no three
consecutive vertices are collinear. When the internal anglevi+1vi vi−1 is less thanπ we
say thatvi is convex, otherwise we say it is reflex.

Let T be a triangulation of a polygonQn, and letvi andvj be vertices ofQn such that
the line segmentvi vj connecting them is not an edge ofT . We say thatvi vj can be inserted
in T by flippingk−1 edges if there is a sequence of triangulationsT = T1, . . . , Tk such
thatvi vj is an edge ofTk, andTi+1 can be obtained fromTi by flipping an edge of it,
i = 1, . . . , k−1. We say that a vertexvi of Qn isexternalif it lies in the convex hull ofQn.

Thevisibility graphof Qn is the graph with vertex set{v1, . . . , vn}. Two verticesvi

andvj of Qn are adjacent in the visibility graph ofQn if the line segment joining them
has no point exterior toQn.

Fig. 1. Two triangulations of a point set. The second one is obtained from the first one by flipping edgexy.
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3. Triangulations of Polygons

The main result of this section is Theorem 3.3, an upper bound on the diameter of
the graph of triangulationsGT (Qn) of a simple polygonQn, sensitive to the number of
reflex vertices ofQn. The ingredients of this proof are (a) an upper bound on the diameter
proportional to the size of the visibility graph, for which we provide a new simple proof;
(b) the insertion in a linear number of flips of theinner convex hullof the polygon, i.e.,
the shortest polygonal chain that goes through all reflex vertices of then-gon; and (c) a
linear upper bound on the flip-distance between triangulations of spiral polygons due to
Hanke [6]. We also prove in this section that there existn-gonsHn such that the diameter
of GT (Hn) isÄ(n2).

We first show that the graph of triangulationsGT (Qn) of a simple polygonQn is
connected and that the diameter is at most twice the number of edges of the visibility
graph ofQn. This fact can also be derived from the analysis of the greedy algorithm for
computing the Constrained Delaunay Triangulation [2].

Consider the two verticesvi−1 andvi+1 of Qn adjacent to a vertexvi . The shortest
polygonal chain joiningvi−1 to vi+1 totally contained inQn will be denoted byPi−1,i+1.
We now prove:

Lemma 3.1. Let Qn be a simple polygon, let vi be a convex vertex of Qn, and let T be
a triangulation of Qn. Then we can insert all the edges of Pi−1,i+1 into T using exactly
as many flips as the number of edges of T, not in Pi−1,i+1, intersecting Pi−1,i+1.

Proof. Suppose that at least one edgee of Pi−1,i+1 is not inT . Consider the polygon
Pe formed by the union of all triangles ofT intersected bye, and consider the chain of
vertices ofPe joining the endpoints ofe. At least one of these vertices, sayw, is a convex
vertex ofPe, and thus the edge joiningvi tow can be flipped, decreasing the number of
edges ofT that intersecte by one. Our result now follows (see Fig. 2).

Theorem 3.2. The graph of triangulations GT (Qn) of a simple polygon Qn is con-
nected. Moreover, the diameter of GT (Qn) is at most twice the number of edges of the
visibility graph of Qn.

Fig. 2. Inserting the chainPi−1Pi+1.
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Proof. Let vi be an external vertex ofQn and letT1 and T2 be two triangulations
of Qn. Sincevi is convex, by Lemma 3.1 we can insert in each ofT1 and T2 all the
edges ofPi−1,i+1 to obtain two new triangulationsT ′1 andT ′2 of Qn. Delete fromQn the
subpolygon bounded by the vertices ofPi−1,i+1 andvi . This will result in a collection of
simple polygons with disjoint interiors. Each of these polygons has two triangulations
induced byT ′1 and T ′2, respectively, and fewer vertices thanQn. The connectivity of
GT (Qn) follows by induction on the number of vertices ofQn.

To prove the second part of our result, we simply notice that each edge of the visibility
graph ofQn incident tovi may be used twice; the first time while insertingPi−1,i+1 into
T1 and the second time when we insertPi−1,i+1 into T2. Once we deletevi from Qn,
these edges are not used again, and our result follows. Our argument gives a diameter of
twice the number of edges of the visibility graph ofQn.

The bound on the diameter ofGT (Qn) given in Theorem 3.2 can, in general, be bad.
For example, whenQn is a convex polygon, the visibility graph ofQn hasO(n2) edges,
while the diameter ofGT (Qn) is at most 2(n− 3). On the positive side, if the visibility
graph ofQn has few edges, Theorem 3.2 gives us a method to transform one triangulation
into another using few flips. Notice that if the visibility graph ofQn has few edges, it
has many reflex vertices. Thus the question of studying the tradeoffs in the diameter of
GT (Qn) and the number of reflex vertices ofQn becomes relevant. We prove here that
if Qn is a polygon withk reflex vertices, then the diameter ofGT (Qn) is O(n+ k2), i.e.,
the diameter of the graph of trangulations ofQn depends mainly on its reflex vertices;
convex vertices hardly matter.

Theorem 3.3. Let Qn be a simple polygon with k reflex vertices. Then the diameter of
GT (Qn) is O(n+ k2).

Several definitions and lemmas will be needed before we can prove Theorem 3.3.
Let T be a triangulation of a polygonQn and letvi vj be an internal visibility edge not
belonging toT ; vi vj splits the polygon into two subpolygonsQ′ and Q′′. We call V ′

(resp.V ′′) the set of vertices inQ′ (resp.Q′′) which are end-points of edges ofT that
crossvi vj . When all the vertices inV ′ or in V ′′ are convex we say thatvi vj is aproper
diagonalwith respect toT .

The following lemma will prove useful:

Lemma 3.4. Letvi vj be a proper diagonal of a triangulation T of a polygon Qn. Then
if vi vj is intersected by t edges of T, vi vj can be inserted in T using at most2t flips.

Proof. Letvi vj be a proper diagonal with respect to a triangulationT . Assume without
loss of generality that for each edgee of T intersectingvi vj , the end vertex ofe below
vi vj is a convex vertex ofQn. See Fig. 3.

Let Qi, j be the subpolygon ofQn obtained by joining all the triangles ofT intersected
by vi vj and consider the triangulationT ′ of Qi, j induced byT in Qi, j . Suppose that
vi vj is intersected byt edges ofT ′, t ≥ 1. We now show that by flipping at most two
edges ofT ′ we can obtain a new triangulation in whichvi vj is intersected byt−1 edges.
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Fig. 3. vi vj is a proper diagonal.

Let u1, . . . ,um be the vertices ofQi, j betweenvj andvi in the clockwise direction. At
least one of these vertices, sayut , is a convex vertex ofQi, j ; otherwisevi andvj would
not be visible inQn. If in T ′, vertexut is adjacent to exactly one element in the chain
vi+1, . . . , vj−1, then the edge connecting them inT ′ can be flipped, reducing by one the
number of edges that intersectvi vj . If ut is adjacent to at least three vertices ofQi, j in
vi+1, . . . , vj−1, sayvs−1, vs, andvs+1, then we can flip the edgeutvs insertingvs−1vs+1

and our result follows. Suppose then thatut is adjacent to exactly two vertices, sayvs

andvs+1, in vi+1, . . . , vj−1. See Fig. 4. Notice that sinceut is convex, we can fliputvs+1.
Next flip utvs, and the number of edges intersectingvi vj has gone down by one. Our
result now follows.

A polygon Qn is called a spiral polygon if the vertices ofQn can be labeledv1, . . . ,

vs, vs+1, . . . , vn such thatv1, . . . , vs are reflex vertices ofQn andvs+1, . . . , vn are convex
vertices ofQn. We quote the following result obtained by Hanke [6].

Lemma 3.5. Let Qn be a spiral polygon with k reflex vertices. Then the diameter of
GT (Qn) is at most2(n+ k− 4).

This result was proved by selecting a target triangulationT0 defined recursively, and
showing that it can be reached from any other triangulation with at mostn+ k− 4 flips.

Fig. 4. Proof of Lemma 3.5.
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Fig. 5. PolygonR is dashed.

The method is based on locally progressing from any given triangulation towardT0,
exploiting the recursive definition ofT0.

Suppose next thatQn hask reflex vertices labeledvi1, . . . , vi k such thati1 < · · · < i k.
For eachj = 1, . . . , k let Rj be the shortest polygonal chain contained inQn joining vi j

to vi j+1, addition taken modk. Finally, let R= R1 ∪ · · · ∪ Rk. See Fig. 5. Then we have
the following lemma:

Lemma 3.6. Any internal visibility edge of Qn crosses at most two edges of R. More-
over, if e is an edge of R and T is any triangulation of Qn either e is an edge of T or e
is a proper diagonal with respect to T.

Proof. Every segment inRbelongs to a shortest pathRj between reflex verticesvi j and
vi j+1 which are “consecutive,” i.e., a counterclockwise traversal of the boundary fromvi j

to vi j+1 encounters only convex vertices. Hence if we considerRj as a path oriented from
vi j to vi j+1, all the vertices strictly to the right side of the path are convex, and the second
part of the statement is obvious.

For the first claim, letab be an internal visibility edge crossing three segments
u1v1,u2v2,u3v3 from R with the ui on one side ofab and thevi on other side,u2v2

crossing between the other two (see Fig. 6). We consider the case with six different
extreme points (all the possibilities are handled similarly); they partition the boundary
into six portions which we denote [v1,u1), [u1,u2), . . . , [v2, v1), closed at the origin
and open at the end, in counterclockwise order. Now we prove thatu2v2 cannot belong
to any Rj : if vi j is in [v1,u1), then Rj is inside the subpolygonv1 · · ·u1v1; if vi j is
in [u1,u2) ∪ [u2,u3), then Rj is insideba · · ·u1 · · ·u2 · · ·u3 · · ·b; if vi j is in [u3, v3),
thenRj is insideu3 · · · v3u3; and finally if vi j is in [v3, v2) ∪ [v2, v1), thenRj is inside
b · · · v3 · · · v2 · · · v1 · · ·ab.

We now prove:

Lemma 3.7. Let T be any triangulation of Qn. Then all the edges of R can be inserted
in T using O(n) flips.
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Fig. 6. Proof of Lemma 3.6.

Proof. According to Lemma 3.6, the diagonals ofT crossR at most twice. Lets be
the number of diagonals that crossT twice. We show that there always exists a flip
that removes one of them. Hence, they can all be removed usings flips, and clearly
s < n. Let thenuv be a diagonal crossingR twice, and observe that sinceu andv are
convex vertices,uv is flippable. Letw be a vertex such thatuvw is a triangle ofT . If
w is reflex, then we can flipuv obtaining a new diagonalww′ that crossesR at most
once. Otherwise, eitheruw or vw crossesR twice. Suppose it isuw, and letx 6= v be
such thatuwx is a triangle ofT . If x is reflex we flipuw and we are done as before.
Iterating the process we eventually find a reflex vertex and we flip the corresponding
diagonal.

We can now assume that no diagonal ofT crossesR twice. For every edgee of R
consider the polygonPe formed by the union of all the triangles ofT that crosse. Since
e is the only diagonal ofPe that belongs toR and is a proper diagonal with respect to
the triangulation induced onPe, we can apply Lemma 3.4 to the polygonPe to insert
e without creating new crossings withR. Summing up, at most 2n flips are needed to
insertR in T .

We can now finish the proof of Theorem 3.3.

Proof of Theorem3.3. LetT andT ′ be any two triangulations ofQn. By Lemma 3.7,
by flipping O(n) edges, we can transform each of them into triangulationsT1 andT ′1,
respectively, ofQn such that each of them contains all the edges ofR. The edges ofR
induce a partition ofQn into a set of polygons of two types:

(a) A set of at mostk convex or spiral polygonsQ1, . . . , Qm, m ≤ k, bounded by
edges ofQn and edges ofR.

(b) A set of polygonsR′1, . . . , R′s bounded by the edges ofR such that the total
number of edges of these polygons is at mostk.
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Fig. 7. A triangulation of the polygonH5.

Notice that the total number of edges boundingQ1, . . . , Qm is at mostn+ k. Both
T1 and T ′1 induce triangulations ofQ1, . . . , Qm which may be different. Since each
Q1, . . . , Qm is a spiral or a convex polygon, by Lemma 3.5 the triangulations in-
duced byT1 in Q1, . . . , Qm can be transformed into those induced byT ′1 in Q1, . . . , Qm

using at mostO(n) flips. Since the total number of edges bounding all the polygons in
R′1, . . . , R′s is at mostk, then by Theorem 3.2 or [8] the triangulations induced in them
by T1 andT ′1 can be transformed into each other with at mostO(k2) flips. The proof is
now finished.

We close this section by producing a polygonHn with 2n vertices such that the
diameter ofGT(Hn) is exactly(n− 1)2.

Consider the polygon with 2n vertices Hn = {p1, . . . , pn,q1, . . . ,qn} such that
{p1, . . . , pn} lie on a convex curve,{q1, . . . ,qn} lie on a concave curve, and the line
joining pi to pj , 1≤ i < j ≤ n, leaves all the elements of{q1, . . . ,qn} below it, and all
the elements of{p1, . . . , pn} lie above any line joiningqi toqj , 1≤ i < j ≤ n; see Fig. 7.

Any triangulationT of Hn can be encoded as follows: Each triangleti of T has either
two vertices in{p1, . . . , pn} or two vertices in{q1, . . . ,qn}. In the first case, assign a 1
to ti ; in the second case,ti is assigned a 0. See Fig. 7.

If we read the numbers assigned to the triangles ofT from left to right, we ob-
tain an ordered sequence of zeros and ones; this sequence is the code assigned to our
triangulation.

The triangulation ofHn presented in Fig. 7 receives the code 01011100. It is clear
that each triangulation ofHn is thus assigned a unique sequence containingn− 1 zeros
andn − 1 ones. Clearly, each sequence ofn − 1 zeros andn − 1 ones also defines a
unique triangulation ofHn, and thus we have a one-to-one correspondence between the
set of triangulations ofHn and the set of binary sequences containingn − 1 zeros and
n− 1 ones. Flippings can be easily identified within this encoding. An internal edge of
a triangulationT can be flipped if the triangles ofT containing it have been assigned
a 1 and 0. Moreover, a flip ofT simply corresponds to a transposition of a 0 with an
adjacent 1 in the code ofT .

Consider the triangulationsT1 andT2 of Hn that receive the encodings 11. . .100. . .0
and 00. . .011. . .1. It is now clear that to transformT1 to T2 we need(n− 1)2 flips. We
have just obtained:

Theorem 3.8. The diameter of GT (Hn) is exactly(n− 1)2.
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We remark that a similar construction can be found in [5]. However, in our case the
points are in general position and we are not restricted to Delaunay flips.

4. Triangulations of Point Sets

The main results in this section are a tight bound on the number of edges that can be
flipped in any triangulation of a point set in general position, and an upper bound on the
diameter of the graph of triangulations of a point setPn that is sensitive to the number
of convex layers ofPn. The basic ingredient for the second result is a lemma on how to
insert the second convex layer ofPn into any triangulation.

We start by answering the following question: Given a triangulationT of a collection
Pn = {v1, . . . , vn} of n points on the plane, how many edges ofT are flippable? We
show:

Theorem 4.1. Any triangulation of a collection Pn of n points on the plane in general
position contains at leastd(n− 4)/2e flippable edges. Moreover, the bound is tight.

Observe that the general position assumption is clearly necessary, since otherwise it
is easy to construct triangulations where no edge can be flipped, for example by inserting
n− 3 points in one of the sides of a triangle.

Some definitions are needed before we can prove Theorem 4.1. LetT be a triangulation
of Pn. We divide the set of edges ofT into two subsets,F(T) containing all flippable
edges ofT , andNF(T), the set of not flippable edges ofT . Clearly all the edges ofT
contained in the boundary ofConv(Pn) are not flippable. We orient the edgeseof NF(T)
according to the following rules:

(R1) If e is an edge ofConv(Pn), orient it in the clockwise direction aroundConv(Pn)

of Pn.
(R2) If e= uv is not inConv(Pn), consider the quadrilateralC formed by the union

of the two triangles ofT containinge. SinceC is not convex, it follows that one
of the end vertices ofe, sayv, is a reflex vertex ofC while u is a convex vertex
of C. Oriente from u to v.

The following observation will be useful:

Observation 1. The angle ofC atv is greater thanπ .

Consider any vertexvi of T . Letd−(vi )be the number of edgesvi vj in NF(T)oriented
fromvj tovi . Notice thatd(vi ) is the total number of edges ofT incident withvi , whereas
d−(vi ) involves only edges ofT in NF(T). We now prove:

Lemma 4.2. Let vi be any vertex of T. Then d−(vi ) ≤ 3. Moreover, if d(vi ) ≥ 4 in
T , then d−(vi ) ≤ 2. Furthermore, if d−(vi ) = 2, the two edges oriented towardvi are
consecutive edges aroundvi .
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Proof. It is clear that ifvi is in Conv(Pn), thend−(vi ) = 1. Suppose then thatvi is in
the interior ofConv(Pn). Two cases arise:

(a) d(vi ) = 3 in T . In this case, all the edges ofT incident withvi are nonflippable
and are oriented towardvi . It follows thatd−(vi ) = 3.

(b) d(vi ) > 3 in T . In this case it is trivial to verify using Observation 1 that no more
than two edges ofG can be oriented towardvi and that ifd−(vi ) = 2, then the
two edges oriented towardvi must be consecutive edges incident tovi .

We are now ready to prove Theorem 4.1.

Proof of Theorem4.1. Let Pn be a point set on the plane, letT be a triangulation of
Pn, and letS be the set of elements ofPn with degree 3 inT that are not in the convex
hull of Pn.

By adding a pointw in the exterior ofConv(Pn) and joining it with a set ofdisjoint
curvesto all the vertices ofConv(Pn), we obtain a triangulation of the plane withn+ 1
points which by Euler’s theorem contains 3n−3 edges. (Notice that in this triangulation,
the triangular regions outside ofConv(Pn)are bounded by two curves and a line segment.)
We classify the edges incident tow as nonflippable edges and orient them fromw to
their other vertex inConv(Pn). Next orient all nonflippable edges ofT according to (R1)
and (R2). Notice that with these orientations,d−(vi ) = 2 for all the elements ofPn of
Conv(Pn).

Remove fromT all the elements ofS. Notice that we remove exactly 3|S| edges
of T which are not flippable. Notice that what remains is still a triangulationT ′ of
Pn− S+ {w}, which by Euler’s formula contains 2(|Pn− S| + 1)− 4= 2(n− |S|)− 2
triangles. Moreover, any elementvi of Pn − S+ {w} that is not on the convex hull of
Pn, has degree at least 4 inT , and by Lemma 4.2 hasd−(vi ) ≤ 2. Let Q be the set of
vertices ofPn − S+ {w} that haved−(vi ) = 2. Then by Lemma 4.2 we can associate
to every vertexvi of Q in the interior ofConv(Pn) a trianglet (vi ) of T ′ which is also a
triangle inT , bounded by two oriented edges, and the trianglest (vi ) are all different. See
Fig. 8. To each vertexvi of T ′ in the convex hull ofPn we can also associate a different
“triangle” of T ′ among those havingw as one of their vertices.

That is, to each vertex ofT ′, exceptw and the vertices ofT with d−(vi ) < 2, we can
associate a different triangle ofT ′ that contains no element ofS. Clearly, the number
of edges ofT that can be flipped is minimized when all the verticesvi not in S have
d−(vi ) = 2. In this case, we have associated exactlyn− |S| triangles to vertices ofQ.
As T ′ has 2n− 2|S| − 2 triangles, at mostn− |S| − 2 of them contained points ofS in

Fig. 8. T ′ is obtained fromT by removing vertices of degree 3.
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Fig. 9. Only (n− 2)/4 edges, the thick ones, are flippable.

T , that is,|S| ≤ n− |S| − 2, i.e.,|S| ≤ (n− 2)/2. Using this inequality, the number of
flippable edges is

(3n− 3)− 3|S| − 2(n− |S|) = n− |S| − 3≥ (n− 4)/2,

and this concludes the first part of our proof.
We now show that our bound is tight. We give two different examples. Our first

example is obtained as follows: Take any collection ofm points that are the vertices of a
convex polygonQm on the plane and any triangulationT of it. Next, add to the interior of
each triangle ofT an extra vertex adjacent to its three vertices. We obtain a triangulation
of a set with 2m− 3 points such that the only edges that can be flipped are them− 3
internal edges ofT . If n = 2m− 2, thenm− 3= (n− 4)/2.

For an example with only three points on the convex hull, see Fig. 9. Clearly the
example can be generalized to anyn of the form 6k+ 4.

The same problem can be posed for triangulations of polygons, taking the number of
reflex vertices as a parameter. Observe that the indegree of a convex vertex is zero, and
the indegree of a reflex vertex is at most two. Hence, the same method as in the previous
proof gives the following result (actually, it is easy to construct examples where the
bound below is tight):

Theorem 4.3. Any triangulation of a polygon Qn with n vertices, k of them being
reflex, contains at least n− 3− 2k diagonals that can be flipped.

Now we turn to the problem of bounding the diameter ofGT (Pn) for a point setPn.
First we give a lower bound.

Theorem 4.4. There are collections P2n of2n points on the plane such that the diameter
of GT (P2n) is greater than(n− 1)2.

Proof. Let P2n be the set of vertices of the polygonQ2n presented in Section 3. Notice
that any triangulation ofP2n will necessarily include the edges ofQ2n. Our result now
follows by extending the triangulations ofQ2n at distance(n− 1)2 to triangulations of
Conv(P2n).
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The proof of Theorem 3.2 extends easily showing that the graphsGT (Pn) are con-
nected and have diameterO(n2). However, we present a finer bound on the diameter, in
the spirit of Theorem 3.3. Given a point set, theconvex layersare obtained as follows:
remove the convex hull (the first layer) and repeat the operation with the remaining point
set, until no point is left. We next show that the diameter ofGT (Pn) is sensitive to the
number of convex layers.

Theorem 4.5. Let Pn be a collection of n points on the plane, and let k be the number
of convex layers in Pn. Then the diameter of GT (Pn) is O(kn).

The proof of the theorem needs the following lemma.

Lemma 4.6. Let T be any triangulation of Pn. Then the edges of the second convex
layer can be inserted in T using O(n) flips.

Proof. Let C1 = Conv(Pn) and letC2 be the first and second convex layers, respec-
tively. Observe that an edge ofT can crossC2 at most twice. If it crossesC2 twice, then
the two endpoints belong toC1, and if it crossesC2 only once, then exactly one of the
endpoints belong toC1. Let s be the number of edges that crossC2 twice. We first show
that they can all be removed withs flips (clearlys < n). Indeed, letuv be an edge of
T crossingC2 twice, and letw be a vertex such thatuvw is a triangle ofT . If w is not
in C1, the we can flipuv obtaining a new edge that crossesC2 at most once. Otherwise,
eitheruw or vw crossesC2 twice. As in the proof of Lemma 3.7, we iterate the process
until we find a suitable edge to flip.

We can now assume that no edge ofT crossesC2 twice. For every edgeeof C2, let Pe

be the polygon formed by the union of all the triangles that crosse. Apply Lemma 3.4
to Pe, to inserte without creating new crossings withC2. We conclude thatC2 can be
inserted with a linear number of flips.

Proof of Theorem4.5. LetT andT ′ be any two triangulations ofPn. The above lemma
says that we can insert the second convex layer ofPn into T andT ′ usingO(n) flips ob-
taining two new triangulationsT1 andT ′1. LetC1 = {v1, . . . , vq} andC2 = {u1, . . . ,up}
be the first and second convex layers and assume, without loss of generality, thatu1v1

does not crossC2.
We can retriangulate the polygon betweenC1 andC2 as follows. Sinceu1v1 behaves

as a proper diagonal, we can insert it both inT1 andT ′1 with O(n) flips using Lemma 3.7.
ThenQ = v1v2 · · · vqv1u1up · · ·u2u1v1 is a spiral polygon. By Lemma 3.5, the triangu-
lations induced byT1 andT ′1 in Q can be transformed into each other withO(n) flips.
Finally repeat the process insideC2 and sincek is the number of convex layers, the result
follows.

5. Final Remarks

To conclude, we remark that it is possible to give a proof similar to that of Theorem 3.2
to show that the graph of triangulations of a polygon with holes, or more generally of
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planar straight line graphsas defined in [2], is connected and the diameter is at most
quadratic. The details are different in several respects, but to avoid being repetitive we
omit the proof.

We remark here for readers familiar withregular triangulations [11] that our results
are for arbitrary triangulations of point sets, not for regular triangulations. We recall that
regular triangulations are known to have at leastn− 3 flips; moreover, some of the flips
allowed for regular triangulations are not allowed in our case.

A problem that has received attention in the past is to compute or to approximate
a shortest path between two triangulations of the same point set using flips [7], [14].
Our work in this paper is combinatorial in nature, however, our lower bound examples
provide worst cases for such algorithms.

Finally, as an open problem, it would be interesting to improve the bound in Theo-
rem 4.5 and to obtain, for instance, a bound likeO(n+ k2).
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