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Abstract. In this paper we study the problem of flipping edges in triangulations of poly-
gons and point sets. One of the main results is that any triangulation of a 1Isgtorfits

in general position contains at legsh — 4)/2] edges that can be flipped. We also prove
that O(n + k?) flips are sufficient to transform any triangulation ofrasgon withk reflex
vertices into any other triangulation. We produce exampl@sgins with triangulation¥
andT’ such that to transforr® into T’ requires2(n?) flips. Finally we show that if a set

of n points hask convex layers, then any triangulation of the point set can be transformed
into any other triangulation using at madikn) flips.

1. Introduction

Given a triangulatiorm of a setP of points on the plane, an edgef T is flippableif
it is adjacent to two triangles whose union is a convex quadrilat&rBly flipping ewe
mean the operation of removirggfrom T and replacing it by the other diagonal Gf
In this way we obtain a new triangulatidri of P, and we say thal’ has been obtained
from T by means of dlip.
There are several reasons that make the study of flips in triangulations interesting.
The first one is the existence of a simple greedy algorithm that constructs the Delaunay
triangulation of a point set in general position by successive flips, starting from an
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arbitrary triangulation of the point set (see [5], [9], and also [3] for a generalization of
this result to higher dimensions). In this algorithm the iteration of local improvements
produces a global optimum. A consequence of this success has been the use of flips
in algorithms for finding triangulations that are at least approximate optima for criteria
such as maximum angle, maximum vertex degree, total edge length, and minimum ratio
between the area of the incircle and the area of the triangle [2].

Another motivation for studying flips comes from the existence of a bijection between
triangulations of a convegn 4 2)-gon and binary trees withinternal nodes. Under this
bijection, flipping an edge in a triangulation corresponds preciselyrtdation in the
corresponding binary tree [12] (see also [15] and [8]). Finally, we mention that the flip
operation also appears in other kinds of triangulations; for instance, in the work of Avis
[1] for enumerating rooted triangulations up to isomorphism, or in that of Pocchiola and
Vegter [13] for computing the visibility graph of a set of objects in the plane.

Given a collection of point$, = {v1, ..., vy} we define the graplst(P,), the
graph of triangulations oP,, to be the graph such that the vertices3f(P,) are the
triangulations ofP,, two triangulations being adjacent if one can be obtained from the
other by flipping an edge. Triangulations of polygons, flipping edges in them, and their
corresponding graphs of triangulations are defined in an analogous way.

In [15] Sleator et al. showed that the diameter of the gr@ptof triangulations of a
convexn-gon is equal to & — 10 for n sufficiently large (the upper bounch2- 6 for all
nis easy). In [12] Lucas proved th&, is Hamiltonian, and Lee [10] realiz&dl, as the
skeleton of arin — 3)-polytope. Some properties of these graphs are also studied in [8],
where it is also shown that the graph of triangulations of a simple polygon is connected
and has diameted(n?).

One of the main results in this paper is that any triangulation of@wint set contains
atleastf(n — 4) /2] edges that can be flipped, and that this bound is tight. The remaining
results concern mainly the diameter of graphs of triangulations. In Section 2 we give some
preliminaries. In Section 3 we give a new simple proof that the graph of triangulations
of a polygon is connected, that its diameter is bounded by twice the size of the visibility
graph of the polygon, and that the diamete®ig1?), wheren is the number of vertices.

The proof of the latter result follows the analysis of the greedy flip algorithm to compute
the Constrained Delaunay Triangulation of a planar straight line graph [2]. We use in
the proof the upper bound @(n + k) for spiral polygons withn vertices k of them

being reflex, proved by Hanke [6]. We give examples showing that the diameter can be
Q(n?). We also show that the diameter is sensitive to geometric features of the polygon:
we prove an upper bound @ (n + k?), wherek is the number ofeflexvertices of the
polygon.

In Section 4 we study triangulations of point sets on the plane. After proving the
aforementioned result on the number of edges that can be flipped, we show that there are
sets ofn points such that the diameter of their graph of triangulatiogx(is?). A similar
result appears in [5], but there only a restricted class of flips is allowed to transform
one triangulation into another one. On the other hand, the quadratic upper bound for
the diameter in Section 2 can be easily modified to the case of point sets. In fact, we
prove a stronger result, namely that the diameted{&n), wherek is the number of
convex layers of the point set. We conclude in Section 5 with some remarks and open
problems.
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A tool we use repeatedly is the insertion of a Setf suitable edges into a given
triangulation, i.e., to perform a sequence of edge flips until we reach a new triangulation
containingS. This operationis related to, but different from, #age-insertion technique
described in [4], which consists in adding a new edge the current triangulation,
deleting edges that crogs and retriangulating the resulting polygonal region in both
sides ofe.

2. Preliminaries

Let P, = {v1, ..., vy} be a collection of points on the plane.tdangulation of R is a
partitioning of the convex hulConu P,) of P, into a set of triangle¥ = {ti, ..., tn}
with disjoint interiors such that the vertices of each triarigtéf T are points of?,. The
elements of, are called the vertices df and the edges of the trianglgs. .., t, of T
are called the edges @f The degreel(v;) of a vertexv; of T is the number of edges of
T that havev; as an endpoint. We say that an edgef T is flippableif e is contained
in the boundary of two triangles andt; of T andC = t; Ut; is a convex quadrilateral.
By flipping ewe mean the operation of removiegrom T and replacing it by the other
diagonal ofC. See Fig. 1.

Given two triangulation§’ andT” of P,, we say that they are at distarnkcé their
distance inGt (P,) isk, i.e., there is a set of triangulatioiis = T/, ..., Tx = T” such
thatT; 1 can be obtained fror; by flipping an edge of iti = 0, ...,k — 1. We also
say thafT’ can betransformednto T” by flipping k edges.

Throughout this papeR, denotes point sets ar@, polygons. The vertices d,
are always assumed to be labetgd. . ., v, in clockwise order. We assume that no three
consecutive vertices are collinear. When the internal angle; vi _; is less thanr we
say thaty; is convex, otherwise we say it is reflex.

LetT be atriangulation of a polygo@,, and lety; andv; be vertices ofQ,, such that
the line segment; v; connecting them is not an edgelofWe say that; vj can be inserted
in T by flippingk — 1 edges if there is a sequence of triangulatidns Ty, ..., Tx such
thatv;v; is an edge ofly, andTi1 can be obtained fror; by flipping an edge of it,
i =1,...,k—1.We saythatavertax of Q, isexternalfitlies in the convex hull 0fQ,.

Thevisibility graphof Q, is the graph with vertex sét, ..., vy}. Two verticesy
andv; of Q, are adjacent in the visibility graph @, if the line segment joining them

has no point exterior tQ.
u

Fig. 1. Two triangulations of a point set. The second one is obtained from the first one by flipping ydge
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3. Triangulations of Polygons

The main result of this section is Theorem 3.3, an upper bound on the diameter of
the graph of triangulationG1 (Q,) of a simple polygorQ,, sensitive to the number of
reflex vertices of),,. The ingredients of this proof are (a) an upper bound on the diameter
proportional to the size of the visibility graph, for which we provide a new simple proof;
(b) the insertion in a linear number of flips of theer convex hulbf the polygon, i.e.,

the shortest polygonal chain that goes through all reflex vertices oftjus; and (c) a
linear upper bound on the flip-distance between triangulations of spiral polygons due to
Hanke [6]. We also prove in this section that there exigonsH, such that the diameter

of Gt (Hp) is Q(n?).

We first show that the graph of triangulatioBs (Q,) of a simple polygonQ,, is
connected and that the diameter is at most twice the number of edges of the visibility
graph ofQy. This fact can also be derived from the analysis of the greedy algorithm for
computing the Constrained Delaunay Triangulation [2].

Consider the two verticeg_; andv;; of Q, adjacent to a vertey;. The shortest
polygonal chain joining; _; to v; 4 totally contained irQ, will be denoted byP, _1 ;1.

We now prove:

Lemma 3.1. Let Q, be a simple polyganet v; be a convex vertex of Qand let T be
a triangulation of Q.. Then we can insert all the edges of ;1 into T using exactly
as many flips as the number of edges ohdt in R_1 1, intersecting P_11.

Proof. Suppose that at least one edgef P,_1;,1 is not inT. Consider the polygon
P. formed by the union of all triangles df intersected by, and consider the chain of
vertices ofP; joining the endpoints aé. At least one of these vertices, sayis a convex
vertex of P, and thus the edge joining to w can be flipped, decreasing the number of
edges ofT that intersece by one. Our result now follows (see Fig. 2). O

Theorem 3.2. The graph of triangulations &(Q,) of a simple polygon Qis con-
nected Moreovey the diameter of G(Qp) is at most twice the number of edges of the
visibility graph of Q,.

Fig. 2. Inserting the chaif?_1 P ;1.
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Proof. Let v; be an external vertex of, and letT; and T, be two triangulations
of Qn. Sincev; is convex, by Lemma 3.1 we can insert in eachTpfand T, all the
edges of _1j 1 to obtain two new triangulations andT; of Q,. Delete fromQ, the
subpolygon bounded by the vertices®f 1 j .; andv;. This will result in a collection of
simple polygons with disjoint interiors. Each of these polygons has two triangulations
induced byT, and T, respectively, and fewer vertices th&p. The connectivity of
Gt (Qp) follows by induction on the number of vertices @f,.

To prove the second part of our result, we simply notice that each edge of the visibility
graph ofQp incident tov; may be used twice; the first time while insertiRg 1 ;1 into
T; and the second time when we ins@&t., ;1 into T,. Once we delete; from Qp,
these edges are not used again, and our result follows. Our argument gives a diameter of
twice the number of edges of the visibility graph@f. O

The bound on the diameter &+ (Qn) given in Theorem 3.2 can, in general, be bad.
For example, whe®,, is a convex polygon, the visibility graph @, hasO(n?) edges,
while the diameter oGt (Qp) is at most 2n — 3). On the positive side, if the visibility
graph ofQ, has few edges, Theorem 3.2 gives us a method to transform one triangulation
into another using few flips. Notice that if the visibility graph @f, has few edges, it
has many reflex vertices. Thus the question of studying the tradeoffs in the diameter of
Gt (Qn) and the number of reflex vertices @, becomes relevant. We prove here that
if Q is a polygon withk reflex vertices, then the diameter®$ (Q,) is O(n+k?), i.e.,
the diameter of the graph of trangulations@f depends mainly on its reflex vertices;
convex vertices hardly matter.

Theorem 3.3. Let Q, be a simple polygon with k reflex vertic&hen the diameter of
Gt(Qn) is O(n + K?).

Several definitions and lemmas will be needed before we can prove Theorem 3.3.
Let T be a triangulation of a polygo®, and letv;v; be an internal visibility edge not
belonging toT; vjv; splits the polygon into two subpolygorfg’ and Q”. We call V'
(resp.V”) the set of vertices ilQ’ (resp.Q”) which are end-points of edges dfthat
crossviv;. When all the vertices iV’ or in V" are convex we say thatv; is aproper
diagonalwith respect tor .

The following lemma will prove useful:

Lemma 3.4. Letv;v; be a proper diagonal of a triangulation T of a polygon, Q’hen
if viv;j is intersected by t edges of ¥ v; can be inserted in T using at mdAtflips.

Proof. Letv;vj be a proper diagonal with respect to a triangulafiorssume without
loss of generality that for each edgef T intersectingy; vj, the end vertex oé below
vivj is a convex vertex oQ,. See Fig. 3.

Let Q; ; be the subpolygon d®, obtained by joining all the triangles dfintersected
by vivj and consider the triangulatiol’ of Q; ; induced byT in Q; j. Suppose that
vivj is intersected by edges ofT’, t > 1. We now show that by flipping at most two
edges ofl " we can obtain a new triangulation in whigty; is intersected by— 1 edges.
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Fig. 3. wvjvj is a proper diagonal.

Letus, ..., uy be the vertices 0Q; j betweerw; andv; in the clockwise direction. At
least one of these vertices, say is a convex vertex o®; j; otherwisev; andv; would

not be visible inQ,. If in T’, vertexu; is adjacent to exactly one element in the chain
vit1, - . -, Vj—1, then the edge connecting themilincan be flipped, reducing by one the
number of edges that intersagi;. If u; is adjacent to at least three verticesQf; in
Vigl, ..., Vj—1, SAYVs_1, Vs, anduvs;1, then we can flip the edge v insertingus_1vs1
and our result follows. Suppose then thais adjacent to exactly two vertices, say
andvsyq, iNvi4g, ..., vj_1. See Fig. 4. Notice that sincgis convex, we can flipi vs 1.
Next flip utvs, and the number of edges intersecting; has gone down by one. Our
result now follows. O

A polygon Qy, is called a spiral polygon if the vertices @, can be labeleds, .. .,
Us, Ust1, - - -, Un SUCh thaby, . .., vs are reflex vertices dD, andvs 4, . . . , vy are convex
vertices ofQ,. We quote the following result obtained by Hanke [6].

Lemma 3.5. Let Q, be a spiral polygon with k reflex verticeBhen the diameter of
G1(Qp) isat most2(n + k — 4).

This result was proved by selecting a target triangulati@defined recursively, and
showing that it can be reached from any other triangulation with at megt — 4 flips.

Fig. 4. Proof of Lemma 3.5.
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Fig. 5. PolygonRis dashed.

The method is based on locally progressing from any given triangulation tovgard
exploiting the recursive definition af.

Suppose next th&, hask reflex vertices labeled,, ..., v, suchthat; < --- <.
Foreachj =1, ..., kletRj be the shortest polygonal chain containe®injoining v,
to vj;,,, addition taken mod. Finally, letR = Ry U - - - U R¢. See Fig. 5. Then we have
the following lemma:

Lemma 3.6. Any internal visibility edge of Qcrosses at most two edges afNore-
over if e is an edge of R and T is any triangulation of, €ther e is an edge of T ore
is a proper diagonal with respect to.T

Proof. Every segment iR belongs to a shortest paly between reflex verticas, and

vi;,, Which are “consecutive,” i.e., a counterclockwise traversal of the boundaryffom
tov;;,, encounters only convex vertices. Hence if we consRjeas a path oriented from

vj, tov;,,,, all the vertices strictly to the right side of the path are convex, and the second
part of the statement is obvious.

For the first claim, letab be an internal visibility edge crossing three segments
U1v1, Uovo, Ugvz from R with the u; on one side ofib and thev; on other sideusv,
crossing between the other two (see Fig. 6). We consider the case with six different
extreme points (all the possibilities are handled similarly); they partition the boundary
into six portions which we denote/{, u), [us, Up), ..., [vs, v1), closed at the origin
and open at the end, in counterclockwise order. Now we provaughatcannot belong
to any R if v, is in [vy, up), then R is inside the subpolygom; - - - uyvy; if v;, is
in [ug, up) U [uz, uz), thenRy is insideba- - -uy ---Up---uz--- by if v, is in [ug, v3),
thenRj is insideus - - - vaus; and finally if vj; is in [vs, v2) U [v2, v1), thenR; is inside
b~-~U3~-~U2---U1-~-ab. O

We now prove:

Lemma 3.7. LetT be any triangulation of Q Then all the edges of R can be inserted
in T using Qn) flips.
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Fig. 6. Proof of Lemma 3.6.

Proof. According to Lemma 3.6, the diagonals DfcrossR at most twice. Let be
the number of diagonals that cro$stwice. We show that there always exists a flip
that removes one of them. Hence, they can all be removed sdiliygs, and clearly
s < n. Let thenuv be a diagonal crossinB twice, and observe that sinceandv are
convex verticesyv is flippable. Letw be a vertex such thatvw is a triangle ofT. If
w is reflex, then we can flipiv obtaining a new diagonabw’ that crosse®R at most
once. Otherwise, eitherw or vw crossesR twice. Suppose it isiw, and letx # v be
such thatuwx is a triangle ofT. If x is reflex we flipuw and we are done as before.
Iterating the process we eventually find a reflex vertex and we flip the corresponding
diagonal.

We can now assume that no diagonallotrossesR twice. For every edge of R
consider the polygo®. formed by the union of all the triangles ®fthat cross. Since
e is the only diagonal of that belongs tdR and is a proper diagonal with respect to
the triangulation induced oR., we can apply Lemma 3.4 to the polyg®a to insert
e without creating new crossings witR. Summing up, at mostr2flips are needed to
insertRin T. O

We can now finish the proof of Theorem 3.3.

Proof of Theoren8.3. LetT andT’ be any two triangulations a@,. By Lemma 3.7,
by flipping O(n) edges, we can transform each of them into triangulatiGrend T,
respectively, ofQ, such that each of them contains all the edgeR.0fhe edges oR
induce a partition of),, into a set of polygons of two types:

(a) A set of at mosk convex or spiral polygon®?, ..., Q™, m < k, bounded by
edges ofQ, and edges oR.

(b) A set of polygonsR, ..., R; bounded by the edges & such that the total
number of edges of these polygons is at most
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Fig. 7. A triangulation of the polygoris.

Notice that the total number of edges bound®@y ..., Q™ is at most + k. Both
T1 and T induce triangulations o', ..., Q™ which may be different. Since each
Q',...,QMis a spiral or a convex polygon, by Lemma 3.5 the triangulations in-
duced byT; in Q?, ..., Q™ can be transformed into those inducedigyn QL ....,QM
using at mosO(n) flips. Since the total number of edges bounding all the polygons in
R;. ..., R is at mostk, then by Theorem 3.2 or [8] the triangulations induced in them
by T; andT; can be transformed into each other with at mogk?) flips. The proof is
now finished. |

We close this section by producing a polygbiy with 2n vertices such that the
diameter ofG T (H,) is exactly(n — 1)2.

Consider the polygon withr2verticesH, = {p1,..., Pn, 01, ..., 0n} Such that
{p1,..., pn} lie on a convex curve{q, ..., gn} lie on a concave curve, and the line
joining p to p;, 1 <i < j < n, leaves all the elements {dy, .. ., g,} below it, and all
the elements ofpy, .. ., pn} lie above any line joining; tog;, 1 <i < j < n;seeFig.7.

Any triangulationT of H, can be encoded as follows: Each trianglef T has either
two vertices in{py, ..., pn} Or two vertices inq, ..., gn}. In the first case, assign a 1
tot;; in the second case,is assigned a 0. See Fig. 7.

If we read the numbers assigned to the triangle§ dfom left to right, we ob-
tain an ordered sequence of zeros and ones; this sequence is the code assigned to our
triangulation.

The triangulation ofH, presented in Fig. 7 receives the code 01011100. It is clear
that each triangulation dfl, is thus assigned a unique sequence containirdl zeros
andn — 1 ones. Clearly, each sequencenof 1 zeros andh — 1 ones also defines a
unique triangulation oH,, and thus we have a one-to-one correspondence between the
set of triangulations oH,, and the set of binary sequences contaiming 1 zeros and
n — 1 ones. Flippings can be easily identified within this encoding. An internal edge of
a triangulationT can be flipped if the triangles &f containing it have been assigned
a 1 and 0. Moreover, a flip of simply corresponds to a transpositiohao0O with an
adjacent 1 in the code df.

Consider the triangulationg andT, of H,, that receive the encodings 1.1 100...0
and 00...011...1. Itis now clear that to transforify to T, we needn — 1)? flips. We
have just obtained:

Theorem 3.8. The diameter of G(H,) is exactly(n — 1)2.
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We remark that a similar construction can be found in [5]. However, in our case the
points are in general position and we are not restricted to Delaunay flips.

4. Triangulations of Point Sets

The main results in this section are a tight bound on the number of edges that can be
flipped in any triangulation of a point set in general position, and an upper bound on the
diameter of the graph of triangulations of a point Bgtthat is sensitive to the number
of convex layers oP,. The basic ingredient for the second result is a lemma on how to
insert the second convex layer Bf into any triangulation.

We start by answering the following question: Given a triangulafiaf a collection
P = {v1, ..., vy} Of n points on the plane, how many edgesTofre flippable? We
show:

Theorem 4.1. Any triangulation of a collection Pof n points on the plane in general
position contains at leagtn — 4)/2] flippable edgesMoreoverthe bound is tight

Observe that the general position assumption is clearly necessary, since otherwise it
is easy to construct triangulations where no edge can be flipped, for example by inserting
n — 3 points in one of the sides of a triangle.

Some definitions are needed before we can prove Theorem 411 blesd triangulation
of P,. We divide the set of edges af into two subsetsF (T) containing all flippable
edges ofT, andNF(T), the set of not flippable edges of Clearly all the edges of
contained in the boundary &fony P,) are not flippable. We orient the edgeaf NF(T)
according to the following rules:

(R1) Ifeisanedge o€onvu P,), orientit in the clockwise direction arou@bny P,)
of P,.

(R2) If e=uvis notinConuP,), consider the quadrilater@l formed by the union
of the two triangles ofl containinge. SinceC is not convex, it follows that one
of the end vertices dof, sayv, is a reflex vertex o€ while u is a convex vertex
of C. Orientefromu tov.

The following observation will be useful:
Observation 1. The angle ofC atv is greater tham.

Consider any vertex of T. Letd™ (v;) be the number of edgesv; in NF(T) oriented
fromv; tov;. Notice thad(v;) is the total number of edges dfincident withv;, whereas
d~ (vj) involves only edges of in NF(T). We now prove:

Lemma4.2. Letv; be any vertex of TThen d (v;) < 3. Moreoverif d(vi) > 4in
T, then d (v;) < 2. Furthermoreg if d~(v;) = 2, the two edges oriented towarg are
consecutive edges around
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Proof Itis clear that ify; is in Con\P,), thend™(v;) = 1. Suppose then that is in
the interior ofConu P,). Two cases arise:

(&) d(v;) =3inT. In this case, all the edges ®fincident withv; are nonflippable
and are oriented towang. It follows thatd—(vj) = 3.

(b) d(vj) > 3inT. Inthis case itis trivial to verify using Observation 1 that no more
than two edges o6 can be oriented toward and that ifd~(v;) = 2, then the
two edges oriented towargl must be consecutive edges incidentito O

We are now ready to prove Theorem 4.1.

Proof of Theorend.1. LetP, be a point set on the plane, [Etbe a triangulation of
Pn, and letS be the set of elements &, with degree 3 inl that are not in the convex
hull of P,.

By adding a pointw in the exterior ofCon\ P,) and joining it with a set oflisjoint
curvesto all the vertices o€ony P,), we obtain a triangulation of the plane witht- 1
points which by Euler’s theorem containg-3 3 edges. (Notice that in this triangulation,
the triangular regions outside 6bnv P,) are bounded by two curves and aline segment.)
We classify the edges incident to as nonflippable edges and orient them franto
their other vertexirConu P,). Next orient all nonflippable edges ©faccording to (R1)
and (R2). Notice that with these orientatiods,(v;) = 2 for all the elements oP, of
ConvuPRy).

Remove fromT all the elements ofs. Notice that we remove exactly§ edges
of T which are not flippable. Notice that what remains is still a triangulafiérof
P, — S+ {w}, which by Euler's formula containg P, — S|+ 1) —4=2(n—|S]) — 2
triangles. Moreover, any elementof P, — S+ {w} that is not on the convex hull of
Pn, has degree at least 4T and by Lemma 4.2 hat (v;) < 2. Let Q be the set of
vertices of P, — S+ {w} that haved— (v;) = 2. Then by Lemma 4.2 we can associate
to every vertex; of Q in the interior ofConu P,) a trianglet (v;) of T which is also a
triangle inT, bounded by two oriented edges, and the trianglgs are all different. See
Fig. 8. To each vertey; of T’ in the convex hull ofP, we can also associate a different
“triangle” of T" among those having as one of their vertices.

That is, to each vertex af’, exceptw and the vertices of with d=(v;) < 2, we can
associate a different triangle @f that contains no element & Clearly, the number
of edges ofT that can be flipped is minimized when all the vertiegsiot in S have
d~(vi) = 2. In this case, we have associated exagctly | S| triangles to vertices of.

As T' has 2 — 2|§| — 2 triangles, at most — |S| — 2 of them contained points &in

t (vl_)

T I

Fig. 8. T’is obtained froml' by removing vertices of degree 3.
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T

Fig. 9. Only (n — 2)/4 edges, the thick ones, are flippable.

T,thatis,|S| < n—|F — 2,i.e,|S < (n—2)/2. Using this inequality, the number of
flippable edges is

@Bn-3) -39 -2(n—-|S)=n—[§-3=(n—-4/2,

and this concludes the first part of our proof.

We now show that our bound is tight. We give two different examples. Our first
example is obtained as follows: Take any collectiomgioints that are the vertices of a
convex polygorQn, on the plane and any triangulatidrof it. Next, add to the interior of
each triangle o an extra vertex adjacent to its three vertices. We obtain a triangulation
of a set with 2n — 3 points such that the only edges that can be flipped arethe3
internal edges of . If n = 2m — 2, thenm — 3 = (n — 4)/2.

For an example with only three points on the convex hull, see Fig. 9. Clearly the
example can be generalized to angf the form & + 4. O

The same problem can be posed for triangulations of polygons, taking the number of
reflex vertices as a parameter. Observe that the indegree of a convex vertex is zero, and
the indegree of a reflex vertex is at most two. Hence, the same method as in the previous
proof gives the following result (actually, it is easy to construct examples where the
bound below is tight):

Theorem 4.3. Any triangulation of a polygon Qwith n vertices k of them being
reflex contains at least - 3 — 2k diagonals that can be flipped

Now we turn to the problem of bounding the diameteGaf(P,) for a point setP,.
First we give a lower bound.

Theorem 4.4. There are collections R of 2n points on the plane such that the diameter
of Gt (P,y) is greater than(n — 1)2.

Proof. Let Py, be the set of vertices of the polyg@yp, presented in Section 3. Notice
that any triangulation oP,, will necessarily include the edges @k,. Our result now
follows by extending the triangulations f2, at distance&n — 1)? to triangulations of
ConvuPyp). O
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The proof of Theorem 3.2 extends easily showing that the gréah®,) are con-
nected and have diametérn?). However, we present a finer bound on the diameter, in
the spirit of Theorem 3.3. Given a point set, tanvex layerare obtained as follows:
remove the convex hull (the first layer) and repeat the operation with the remaining point
set, until no point is left. We next show that the diameteGgf(P,) is sensitive to the
number of convex layers.

Theorem 4.5. Let R, be a collection of n points on the plarend let k be the number
of convex layers in P Then the diameter of & P,) is O(kn).

The proof of the theorem needs the following lemma.

Lemma4.6. Let T be any triangulation of 2 Then the edges of the second convex
layer can be inserted in T using (@) flips.

Proof. LetC; = Comw(P,) and letC, be the first and second convex layers, respec-
tively. Observe that an edge dfcan cros<C, at most twice. If it crosseS, twice, then
the two endpoints belong ©;, and if it crosse€, only once, then exactly one of the
endpoints belong t€;. Lets be the number of edges that cr&gstwice. We first show
that they can all be removed withflips (clearlys < n). Indeed, letuv be an edge of
T crossingC; twice, and letw be a vertex such thatvw is a triangle ofT. If w is not
in Cq, the we can flipuv obtaining a new edge that crosg&sat most once. Otherwise,
eitheruw or vw crosse<; twice. As in the proof of Lemma 3.7, we iterate the process
until we find a suitable edge to flip.

We can now assume that no edgdafrosse<, twice. For every edgeof C,, let P
be the polygon formed by the union of all the triangles that ceoggply Lemma 3.4
to Pe, to inserte without creating new crossings wit,. We conclude tha€, can be
inserted with a linear number of flips. O

Proof of Theorend.5. LetT andT’ be any two triangulations d#,. The above lemma
says that we can insert the second convex lay&afto T andT’ usingO(n) flips ob-
taining two new triangulation$; andT;. LetCy = {v1, ..., vg} andCy = {uy, ..., Up}
be the first and second convex layers and assume, without loss of generalitythat
does not crose;.

We can retriangulate the polygon betweé&nandC, as follows. Sincei;v; behaves
as a proper diagonal, we can insert it botiTjrand T, with O(n) flips using Lemma 3.7.
ThenQ = v1vy - - - vqU1U1Up - - - UpU1v1 iS @ spiral polygon. By Lemma 3.5, the triangu-
lations induced byf; andT; in Q can be transformed into each other wiitin) flips.
Finally repeat the process insi@g and since is the number of convex layers, the result
follows. O

5. Final Remarks

To conclude, we remark that it is possible to give a proof similar to that of Theorem 3.2
to show that the graph of triangulations of a polygon with holes, or more generally of
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planar straight line graphss defined in [2], is connected and the diameter is at most
quadratic. The details are different in several respects, but to avoid being repetitive we
omit the proof.

We remark here for readers familiar witbgular triangulations [11] that our results
are for arbitrary triangulations of point sets, not for regular triangulations. We recall that
regular triangulations are known to have at least3 flips; moreover, some of the flips
allowed for regular triangulations are not allowed in our case.

A problem that has received attention in the past is to compute or to approximate
a shortest path between two triangulations of the same point set using flips [7], [14].
Our work in this paper is combinatorial in nature, however, our lower bound examples
provide worst cases for such algorithms.

Finally, as an open problem, it would be interesting to improve the bound in Theo-
rem 4.5 and to obtain, for instance, a bound & + k?).
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