
Discrete Comput Geom 20:359–373 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

Approximate Nearest Neighbor Queries Revisited∗

T. M. Chan

Department of Mathematics and Computer Science, University of Miami,
Coral Gables, FL 33124-4250, USA
tchan@cs.miami.edu

Abstract. This paper proposes new methods to answer approximate nearest neighbor
queries on a set ofn points ind-dimensional Euclidean space. For any fixed constantd, a
data structure withO(ε(1−d)/2n logn) preprocessing time andO(ε(1−d)/2 logn) query time
achieves an approximation factor 1+ ε for any given 0< ε < 1; a variant reduces the
ε-dependence by a factor ofε−1/2. For any arbitraryd, a data structure withO(d2n logn)
preprocessing time andO(d2 logn) query time achieves an approximation factorO(d3/2).
Applications to various proximity problems are discussed.

1. Introduction

Let P be a set ofn point sites ind-dimensional spaceRd. In the well-knownpost office
problem, we want to preprocessP into a data structure so that a site closest to a given
query pointq (called thenearest neighborof q) can be found efficiently. Distances are
measured under the Euclidean metric. The post office problem has many applications
within computational geometry and from other areas such as data compression, pattern
recognition, databases, and statistics.

For d = 2, Voronoi diagrams provide an optimal solution to the problem with
O(n logn) preprocessing time,O(n) space, andO(logn) query time [20]. Unfortu-
nately, even ford = 3, no near-linear preprocessing method is known that achieves
near-logarithmic query time; the best methods, based on ray shooting [2], [19], require
O((n/m1/dd/2e)polylogn) query time for anO(m)-space structure (n < m < ndd/2e).
To obtain better performance, a number of researchers thus turned to an approximate
version of the post office problem: instead of a site with the minimum distance to the
query pointq, find a sites whose distance toq is within c times the minimum. We call

∗ A preliminary version of this work appeared inProc. 13th ACM Symposium on Computational Geometry,
pages 352–358,1997.

360 T. M. Chan

such ansac-approximate nearest neighbor of qand the numberc > 1 theapproximation
factor.

For any constantd, the approximate post office problem was solved optimally by Arya
et al. [7]: anO(n)-space structure called thebalanced box-decomposition(BBD) tree
can find(1+ ε)-approximate nearest neighbors inO(logn) time for any fixedε > 0;
this structure can be constructed inO(n logn) time. Despite its optimality, the main
drawback of Arya et al.’s method is the “constant” factors hidden in the big-Oh notation.
These factors depend on the parametersd andε. If d is held fixed andε is allowed to
vary, then the actual query time isO(ε−d logn) in the worst case. The preprocessing
does not depend onε. Even for small values ofd such as 3 and 4, searching for a
1.001-approximate nearest neighbor may be time-consuming with this method.

To obtain betterε-dependence in the query time, a different approximation method
due to Clarkson [11], which is based on an earlier randomized method of Arya and
Mount [4], can be used. With high probability Clarkson’s query algorithm requires
only O(ε(1−d)/2 logn) time, but preprocessing takesO(ε1−dn2 log(ρ/ε)) time, which
is quadratic inn. The parameterρ is related to the ratio of the distance between
the farthest pair of sites to the distance between the closest pair of sites. In Sec-
tion 2 we obtain a strict improvement of Clarkson’s result: the sameO(ε(1−d)/2 logn)
query time is obtained but with onlyO(ε(1−d)/2n logn) preprocessing time. (The space
complexity is O(ε(1−d)/2n logn) and is comparable with Clarkson’s space bound of
O(ε(1−d)/2n log(ρ/ε)).) This method uses the BBD trees of Arya et al. in a novel way.
Further reduction of theε-dependence by anε−1/2 factor is possible at the expense
of an extra logn factor in the query time. The logn factor can be removed in certain
applications, for example, in finding bichromatic closest pairs.

The above method, though efficient in low dimensions, is impractical in high di-
mensions, because constant factors grow exponentially whend varies. This exponential
dependence ond is also inherent in Arya et al.’s method and in traditional methods based
on grids (bucketing), quadtrees, andk-d trees; see Arya et al. [6] for an analysis of a
grid method. In some applications, such as vector quantization, the dimensiond may
actually be a function ofn.

To circumvent the exponential growth problem, one can demand less and settle for a
rough approximation to the post office problem. (In applications where any reasonable
metric will do, a rough approximation is just as good.) Bern [8] described an inter-
esting quadtree method to findO(

√
d)-approximate nearest neighbors inO(d2d logn)

time with O(d8dn logn) preprocessing time. Alternatively, a randomized method finds
O(d3/2)-approximate nearest neighbors inO(d log2 n) query time with high probability,
usingO(d4dn log2 n) preprocessing time. In Section 3 we improve Bern’s technique by
removing the exponential factors completely using a deterministic method: we can find
O(d3/2)-approximate nearest neighbors inO(d2 logn) query time withO(d2n logn)
preprocessing time. Applications of our technique include anO(d2n logn)-time algo-
rithm for approximating Euclidean minimum spanning trees and anO(dn logn)-time
algorithm for finding approximate closest pairs.

While this technique yields fast algorithms even in high dimensions, its major dis-
advantage is that the solutions produced are quite inexact. Since the initial draft of our
work, several recent papers, by Kleinberg [16], Indyk and Motwani [13], and Kushile-
vitz et al. [17], have appeared dealing with how to avoid the exponential dependence

Approximate Nearest Neighbor Queries Revisited 361

on d for smaller approximation factors. Among the results from the latter two papers
are randomized data structures that can find(1+ ε)-approximate nearest neighbors for a
fixed constantε > 0, with query time polynomial ind and logn and preprocessing time
polynomial ind andn (with a large exponent that depends onε).

2. Fine Approximation in Low Dimensions

In what follows,‖ · ‖ denotes the Euclidean norm and‖ · ‖∞ denotes theL∞ norm.
Givenq ∈ Rd andr > 0, B(q, r) denotes the Euclidean ball{p ∈ Rd : ‖p− q‖ ≤ r }.
For any pointp ∈ Rd, we usepi to denote thei th coordinate ofp, and we usep′ ∈
Rd−1 andp′′ ∈ Rd−2 to denote the projected points(p1, . . . , pd−1) and(p1, . . . , pd−2),
respectively. In this section we assume that the dimensiond is a fixed constant and
constants in big-Oh notation may depend ond.

2.1. Preliminaries on BBD Trees

Let P be a set ofn point sites inRd. For our purposes, aBBD treefor P is a binary tree
with O(n) nodes andO(logn) depth, satisfying the following properties. Each nodev of
the tree is associated with a cell,cell(v) ⊂ Rd. Let P(v) = P ∩ cell(v). If root denotes
the root of the tree, thenP(root) = P. If left(v) andright(v) denote the left and right
children of an internal nodev, thencell(left(v)) andcell(right(v)) have disjoint interiors,
coveringcell(v). For simplicity, we assume that no site lies on the boundary of a cell.
The cells of the tree obey the following conditions:

1. Each cell has constant complexity.
2. The number of cells with disjoint interiors and diameters at leasts, intersecting a

set of diameterr , is bounded byd1+ Cr/sed for some fixed constantC.

The first condition follows directly from Arya et al.’s construction of the BBD tree [7];
they used cells that are differences of two axis-aligned boxes. The second condition is a
consequence of theirpacking lemma[5], [7]. The construction time isO(n logn).

Lemma 2.1. Given q∈ Rd and r > 0, one can find k= O(logn) nodes of the BBD
tree, v1, . . . , vk, in O(logn) time, such that(i) each site in B(q, r) lies in some P(vi),
and(ii) each P(vi) is contained in B(q,2r).

Proof. Consider the following algorithm, based on a query algorithm by Arya and
Mount for approximate range searching [5]:

Algorithm BDD-Query(v)

1. if v = nil or cell(v) ∩ B(q, r) = ∅ then return∅
2. if cell(v) has diameter< r then return{v}
3. return BDD-Query(left(v)) ∪ BDD-Query(right(v))

362 T. M. Chan

Let {v1, . . . , vk} be the set of nodes returned by a call to BDD-Query(root). It is easy
to see that (i) holds. To show (ii), observe that, for eachvi , cell(vi) intersectsB(q, r)
and has diameter less thanr ; it follows that each point incell(vi) lies in B(q,2r).

It remains to bound the running time of BDD-Query(). We say that a nodev is
expandedif cell(v) intersectsB(q, r) and the diameter ofcell(v) is at leastr . The
packing lemma (second condition) ensures that the number of expanded nodes with
disjoint interior is bounded by a constant. Since cells of nodes on the same level of the
BBD tree have disjoint interiors, the total number of expanded nodes is at most a constant
times the depth of the tree, i.e.,O(logn). This bounds the running time as well as the
numberk of nodes returned by BDD-Query().

2.2. Two BBD-Based Data Structures

Let P be a set ofn point sites inRd and letε > 0 be fixed. We now give a data
structure forP such that given a query pointq ∈ Rd, we can quickly report a(1+ ε)-
approximate nearest neighbor ofq, i.e., a sites such that‖s− q‖ ≤ (1+ ε)‖p− q‖ for
any p ∈ P. The idea is to consider a number of coordinate systems and build BBD trees
under each one. (Kapoor and Smid [15] adopted a similar strategy, using range trees, to
obtain dynamic data structures for approximate nearest neighbor queries.) We note that
each site lies inside a certain narrow cone under some coordinate system. We show that
finding a nearest neighbor restricted to such a cone can be solved using approximate
range searching via Lemma 2.1.

Lemma 2.2. Let11 = {p ∈ Rd : ‖p′‖ ≤ δpd}, whereδ = √ε/8. With O(n logn)
preprocessing time and space, the following query can be answered in O(logn) time:
given q∈ Rd and r > 0, return a site s satisfying the inequality

min{‖s− q‖, r } ≤ (1+ ε) max{‖p− q‖, r/2} (1)

for any p∈ P with p− q ∈ 11.

Proof. Construct a BBD tree for the(d − 1)-dimensional setP′ = {p′ : p ∈ P} (for
simplicity, assume that no two sites have the same projection). For each nodev of the
tree with cellcell(v), sort the point setP(v) = {p ∈ P : p′ ∈ cell(v)} according to the
last coordinate and augment the nodev with an array storing this sorted list. The space
complexity of this augmented BBD tree isO(n logn), since the tree is of logarithmic
depth. The preprocessing time remainsO(n logn), including the sorting step.

Given pointq ∈ Rd andr > 0, we can find a siteswith the desired property as follows.
Using algorithm BDD-Query() in Lemma 2.1, findk = O(logn) nodes of the BBD tree,
v1, . . . , vk, such that (i) each projected site inB(q′, δr) lies in someP′(vi), and (ii) each
P′(vi) is contained inB(q′,2δr). Now, defines to be a site inP(v1) ∪ · · · ∪ P(vk) that
minimizes|sd − qd|.

Clearly,scan be found by performingk = O(logn) binary searches on the sorted lists
at nodesv1, . . . , vk in O(log2 n) time. To reduce the running time toO(logn), we employ
a standard technique, attributed to Lueker and Willard [20]: for each internal nodev of

Approximate Nearest Neighbor Queries Revisited 363

the BBD tree and each pointp ∈ P(v), keep pointers to the successor and predecessor
of p in the sorted lists ofleft(v) andright(v); this increases preprocessing time and space
by at most a constant factor. To answer a query using algorithm BDD-Query(), we only
need to perform one binary search at the root; given the position of the query pointq in
the sorted list at nodev, we can deduce the position ofq in the sorted list at its children
in constant time.

Let p be a site withp − q ∈ 11. It remains to show that inequality (1) holds. If
‖p− q‖ > r , then we are done. Otherwise, sincep− q ∈ 11, we have‖p′ − q′‖ ≤
δ|pd − qd| ≤ δ‖p− q‖ ≤ δr . By (i), p must belong to someP(vi), so that|sd − qd| ≤
|pd − qd| ≤ ‖p− q‖. Furthermore, by (ii), we have‖s′ − q′‖ ≤ 2δr = (√ε/2)r . Then

‖s− q‖2 = |sd − qd|2 + ‖s′ − q′‖2 ≤ ‖p− q‖2 + εr 2/2

≤ (1+ 2ε) max{‖p− q‖2, r 2/4}.

Taking square roots, we get‖s− q‖ < (1+ ε)max{‖p− q‖, r/2}, implying (1).

The set11 is a (spherical) cone of angular diameterϕ = 2 arctanδ = 2(δ). It is well
known that the spaceRd can be covered byO(ϕ1−d) cones of angular diameterϕ; for
example, in the plane, such a system of cones can be obtained by rotation over angles ofϕ j
for j = 1, . . . , d2π/ϕe (see [23]). Let{1(j)

1 } be a collection ofO(ϕ1−d) = O(ε(1−d)/2)

rotated copies of11 coveringRd. We have the following:

Theorem 2.3. With O(ε(1−d)/2n logn) preprocessing time and space, we can find a
(1+ ε)-approximate nearest neighbor of a query point q∈ Rd in O(ε(1−d)/2 logn)
time.

Proof. By changing coordinate systems, we can replace11 with the cone1(j)
1 in

Lemma 2.2 for eachj . In the preprocessing, we construct the data structure for each of
theO(ε(1−d)/2) cones. The total preprocessing time isO(ε(1−d)/2n logn). To answer the
query, we first compute a 2-approximate nearest neighbort of q in O(logn) time by
Arya et al.’s method [7]. Setr = ‖t − q‖; observe that max{‖p− q‖, r/2} = ‖p− q‖
for any p ∈ P. Let s(j) be the site returned by the query algorithm of the lemma for
the cone1(j)

1 . Then the site in{s(j)} ∪ {t} closest toq is a(1+ ε)-approximate nearest
neighbor ofq. The query time is thereforeO(ε(1−d)/2 logn).

We can slightly improve theε-dependence in the time bounds by using a different set
of cones and known techniques on planar Voronoi diagrams [20].

Lemma 2.4. Let12 = {p ∈ Rd : ‖p′′‖ ≤ δpd}, whereδ = √ε/8. With O(n logn)
preprocessing time and space, the following query can be answered in O(log2 n) time:
given q∈ Rd and r > 0, return a site s satisfying inequality(1) for any p∈ P with
p− q ∈ 12.

Proof. Construct a BBD tree for the(d − 2)-dimensional setP′′ = {p′′ : p ∈ P}. For
each nodev of the tree with cellcell(v), store the point setP(v) = {p ∈ P : p′′ ∈ cell(v)}

364 T. M. Chan

and the Voronoi diagram of the two-dimensional point set{(pd−1, pd) : p ∈ P(v)}.
The space complexity of this augmented BBD tree isO(n logn), since the tree is of
logarithmic depth. The preprocessing time isO(n log2 n) if we use anO(n logn)-time
algorithm to construct the Voronoi diagrams. We can reduce the preprocessing time to
O(n logn) if we construct these Voronoi diagrams in a bottom-up fashion, since planar
Voronoi diagrams can be transformed into three-dimensional half-space intersections,
and the intersection of two three-dimensional convex polyhedra can be be computed in
linear time [10].

Given pointq ∈ Rd andr > 0, we follow the proof of Lemma 2.2 and use algorithm
BDD-Query() in Lemma 2.1 to findk = O(logn) nodes of the BBD tree,v1, . . . , vk,
such that (i) each projected site inB(q′′, δr) lies in someP′′(vi), and (ii) eachP′′(vi) is
contained inB(q′′,2δr). We then defines to be a site inP(v1)∪· · ·∪P(vk) that minimizes
|sd−1− qd−1|2+ |sd − qd|2. This sites can be found by performingk = O(logn) point
location queries on the Voronoi diagrams at nodesv1, . . . , vk. Using an optimal method
for planar point location, we can computes in O(log2 n) time. Thatssatisfies the desired
property now follows as in the proof of Lemma 2.2.

If we ignore the(d − 1)st coordinate, then12 is a cone of angular diameterϕ in
Rd−1. We can thus coverRd with only O(ϕ2−d) = O(ε1−d/2) rotated copies{1(j)

2 } of
12. Lemma 2.4 then implies the following analogue of Theorem 2.3:

Theorem 2.5. With O(ε1−d/2n logn) preprocessing time and space, we can find a
(1+ ε)-approximate nearest neighbor of a query point q∈ Rd in O(ε1−d/2 log2 n) time.

2.3. Applications

In certain batched applications of the post office problem, we can eliminate the extra
logn factor in Theorem 2.5 by using a simple grid scheme in place of BBD trees.
Supposer is fixed and consider a uniform grid overRd where each grid cell has side
lengthr/

√
d. Create a node for each grid cell that contains a site. Letcell(v) be the grid

cell corresponding to a nodev, and letP(v) = P ∩ cell(v). The collection{P(v)} can
be computed by assigning points to grid cells, with the floor function, inO(n logn) time
using a dictionary. We have the following improvement of Lemma 2.1 for a fixedr :

Lemma 2.6. Given q∈ Rd,one can find k= O(1)nodes,v1, . . . , vk, in O(logn) time,
such that(i) each site in B(q, r) lies in some P(vi), and(ii) each P(vi) is contained in
B(q,2r).

Proof. Let v1, . . . , vk be the nodes whose grid cells intersectB(q, r). We have (i)
obviously, and (ii) follows because the diameter of each grid cell isr . SinceB(q, r) is
contained in the union of at mostd1+ 2

√
ded grid cells of side lengthr/

√
d, we have

k = O(1). The time bound follows by using a dictionary.

Approximate Nearest Neighbor Queries Revisited 365

We can improve Theorem 2.5 if a weaker type of queries involving the parameterr
is sufficient:

Theorem 2.7. Fix r . With O(ε1−d/2n logn) preprocessing time and O(ε1−d/2n) space,
the following query can be answered in O(ε1−d/2 logn) time: given q∈ Rd, return a
site s satisfying inequality(1) for any p∈ P.

Proof. In the proof of Lemma 2.4, replace BBD trees with the above grid scheme and
use Lemma 2.6 instead of Lemma 2.1.

Note: We have assumed a real-RAM model of computation that can perform integer
divisions (with the floor function). In this instance, such operations can be avoided by
using a “degraded” grid of Lenhof and Smid [18].

As an illustration, we use the above theorem to find approximate bichromatic closest
pairs: given a set ofn points where each point is colored red or blue,(p∗,q∗) is a c-
approximate closest red–blue pairif (p∗,q∗) is a red–blue pair and‖p∗−q∗‖ ≤ c‖p−q‖
for any red–blue pair(p,q).

Corollary 2.8. For any ε > 0, a (1+ ε)-approximate closest red–blue pair can be
found in O(ε1−d/2n logn) time.

Proof. First use Arya et al.’s data structures to compute a 2-approximate closest red–
blue pair(s, t) in O(n logn) time. Letr = ‖s− t‖; then max{‖p−q‖, r/2} = ‖p−q‖
for any red–blue pair(p,q). For each blue pointq, use Theorem 2.7 to find a red point
s(q) such that

min{‖s(q)− q‖, r } ≤ (1+ ε)min
p red
‖p− q‖.

Then a pair in{(s(q),q) : q blue} ∪ {(s, t)} with the smallest distance is a(1+ ε)-
approximate closest red–blue pair.

In R3 the above method runs inO(ε−1/2n logn) time and is faster than the known
exact methods [1] if 1/ε is within the order ofn2/3. We can also apply Theorem 2.7 to
approximate theHausdorff distance[20] of two (static) point sets with a similar running
time.

3. Rough Approximation in High Dimensions

In this section we assume a real-RAM model of computation that supports integer division
and base-2 integer logarithm in unit time. Constants in big-Oh notation do not depend
on the dimensiond.

366 T. M. Chan

3.1. Preliminaries on Balanced Quadtrees

The standard quadtree approach inRd is based on the idea of recursively decomposing
a box into 2d subboxes of equal size. To avoid exponential factors, we adopt a binary
variant that performs such a decomposition ind stages: a box is first split into two
subboxes of equal size by a hyperplane orthogonal to the first axis, each of which is
then split by a hyperplane orthogonal to the second axis, etc. This suggests the following
definition: aquadtree boxis a setB ⊆ [0,2)d of the form

B =
[

a1

2`
,

a1+ 1

2`

)
× · · · ×

[
ai

2`
,

ai + 1

2`

)
×
[

ai+1

2`
,

ai+1+ 2

2`

)
× · · · ×

[
ad

2`
,

ad + 2

2`

)
for some` ∈ N, i ∈ {0,1, . . . ,d − 1}, and integersa1, . . . ,ad. The number̀ is called
the levelof B. We say thatB is of stage d̀ + i . Note that the diameter ofB is less than
21−`√d.

In order to build a tree that is balanced with quadtree boxes, we use the following
lemma due to Arya et al. [7]:

Lemma 3.1. Given an n-point set P⊂ [0,2)d, there exists a quadtree box B such that
both point sets P∩B and P\B have cardinality at most2n/3.Furthermore, if the points
in P have been sorted along each of the d coordinates, then B can be constructed in
O(dn) time.

Proof. Define a sequence of quadtree boxesB0, B1, . . . iteratively as follows. LetB0 =
[0,2)d, which is a quadtree box of stage 0. Given a quadtree boxBk−1 of stagek−1 (k ≥
1), write Bk−1 as the disjoint union of two quadtree boxes of stagek. One of the two
boxes contains at least|P ∩ Bk−1|/2 of the points ofP. Let Bk be this box.

Now, consider the smallest indexk with |P ∩ Bk| ≤ 2n/3; we know such ak exists
since the diameters ofB0, B1, . . . converge to 0. Then|P ∩ Bk| ≥ |P ∩ Bk−1|/2> n/3
and so|P\Bk| ≤ 2n/3. This proves the existence of the quadtree boxB. The proof
can be made constructive using integer logarithms to yield the specified time bound, as
shown by Arya et al. [7] (their algorithm is called “centroid shrink”).

For our purposes, abalanced quadtreefor the point setP is a binary tree with
O(n) nodes andO(logn) depth, satisfying the following properties. Each nodev of
the tree stores a quadtree boxB(v) and each leaf stores a site. LetP(v) be the set
of sites stored in the leaves of the subtree rooted atv. If root denotes the root of the
tree, thenP(root) = P. If left(v) andright(v) denote the left and right children of an
internal nodev, then P(left(v)) = P(v) ∩ B(v) and P(right(v)) = P(v)\B(v). By
applying Lemma 3.1 recursively, we see that such a tree exists and can be constructed
in O(dn logn) time after an initial sorting phase ofO(dn logn) time.

3.2. A Quadtree-Based Data Structure

Let P be a set ofn point sites inRd. Following an approach of Bern [8], we now show
that balanced quadtrees can be used to answer approximate nearest neighbor queries

Approximate Nearest Neighbor Queries Revisited 367

on P. The idea is to consider a certain set of vectors{v(j)} and build balanced quadtrees
for the translateP + v(j) for each j . Bern showed that using a set of 2d vectors, an
O(
√

d)-approximate nearest neighbor of any query point can be found. Alternatively,
using a set ofO(t logn) random vectors,O(d3/2)-approximate nearest neighbors with
probability 1− O(1/nt) can be found. We show that a set ofO(d) carefully chosen
vectors actually suffices to yield approximation factorO(d3/2).

We first need some definitions. Givenx ∈ R andr > 0, let x div r = bx/r c and
x modr = x− bx/r cr . Given a pointp ∈ Rd, let p div r = (p1 div r, . . . , pd div r) and
p modr = (p1 modr, . . . , pd modr). We say that two pointsp,q ∈ Rd belong to the
same r-grid cellif and only if p div r = q div r . We say that a pointp is α-central in its
r-grid cell if and only if, for eachi = 1, . . . ,d, we haveαr ≤ pi modr < (1− α)r , or,
equivalently,(pi + αr)modr ≥ 2αr .

Observation 3.2. Let p,q ∈ Rd. If q isα-central in its r-grid cell and‖p−q‖∞ ≤ αr ,
then p and q belong to the same r-grid cell.

Our key lemma is the following:

Lemma 3.3. Suppose d is even. Letv(j) = (j/(d + 1), . . . , j/(d + 1)) ∈ Rd. For any
point p∈ Rd and r = 2−` (` ∈ N), there exists j∈ {0,1, . . . ,d} such that p+ v(j) is
(1/(2d + 2))-central in its r-grid cell.

Proof. Suppose, on the contrary, thatp + v(j) is not (1/(2d + 2))-central for any
j = 0,1, . . . ,d. Then, for eachj , there is an indexi (j) ∈ {1, . . . ,d} with(

pi (j) + j

d + 1
+ r

2d + 2

)
modr <

r

d + 1
,

or equivalently, by multiplying both sides by(d + 1)2`,

((d + 1)2`pi (j) + 2` j + 1
2)mod(d + 1) < 1.

By the pigeonhole principle, there exist two distinct indicesj, j ′ ∈ {0,1, . . . ,d}with
i (j) = i (j ′). Lettingz= (d+1)2`pi (j)+ 1

2, we have(z+2` j)mod(d+1) < 1 as well
as(z+ 2` j ′)mod(d + 1) < 1. This is possible only if 2` j ≡ 2` j ′ (mod(d + 1)). Since
2` andd + 1 are relatively prime, we must havej = j ′: a contradiction!

We now give a data structure for answering nearest neighbor queries with anO(d3/2)

approximation factor for evend. (For oddd, replaced by d + 1.) If the L∞ metric is
used instead of the Euclidean metric, the approximation factor reduces toO(d).

Theorem 3.4. Suppose d is even. Let c = 4d3/2 + 4d1/2 + 1. With O(d2n logn)
preprocessing time and O(d2n) space, we can find a c-approximate nearest neighbor of
a query point q∈ Rd in O(d2 logn) time.

368 T. M. Chan

Proof. We may assume that the givenn-point setP is contained in [0,1)d. Let p∗ ∈ P
be an exact nearest neighbor of the query pointq, and letr = 2−` (` ∈ N) be such that

r

4d + 4
< ‖p∗ − q‖ ≤ r

2d + 2
.

(If ‖p∗ − q‖ > 1/(2d + 2), then any site is ac-approximate nearest neighbor.)
Suppose thatq is (1/(2d + 2))-central in itsr -grid cell, and suppose that a balanced

quadtree forP is available. Consider the following query algorithm, which runs in
O(d logn) time and returns a set ofO(logn) sites:

Algorithm Quad-Query(v)

1. if v is a leaf then return{the site inv}
2. if q ∈ B(v) then
3. return Quad-Query(left(v))
4. else return Quad-Query(right(v)) ∪ {s(v)}

wheres(v) is any site fromP(left(v))

We prove that ifp∗ ∈ P(v), then Quad-Query(v) contains ac-approximate nearest
neighbor ofq. By line 1, the statement is true ifv is a leaf. Ifv is an internal node, we
consider four cases:

Case1: q ∈ B(v), p∗ ∈ B(v). Thenp∗ ∈ P(left(v)) = P(v) ∩ B(v), and, inductively,
we may assume that the set Quad-Query(left(v)) from line 3 contains ac-approximate
nearest neighbor ofq.

Case2: q 6∈ B(v), p∗ 6∈ B(v). Thenp∗ ∈ P(right(v)) = P(v)\B(v), and, inductively,
we may assume that the set Quad-Query(right(v)) from line 4 contains ac-approximate
nearest neighbor ofq.

Case3: q ∈ B(v), p∗ 6∈ B(v). Suppose thatB(v) is of level `′. Then the two points
p∗ andq do not belong to the same(2−`

′
)-grid cell. However, by Observation 3.2, they

belong to the samer -grid cell with r = 2−`. We must havè ′ > `, implying that the
diameter ofB(v) is less than 21−`

′√
d ≤ r

√
d. Then any sites ∈ P(left(v)) from the set

returned in line 3 is ac-approximate nearest neighbor ofq:

‖s− q‖ < r
√

d < (4d3/2+ 4d1/2) ‖p∗ − q‖.

Case4: q 6∈ B(v), p∗ ∈ B(v). As in Case 3, we can argue that the diameter ofB(v) is
at mostr

√
d. Then the sites(v) ∈ P(left(v)) found in line 4 is ac-approximate nearest

neighbor ofq:

‖s(v)−q‖ ≤ ‖s(v)−p∗‖+‖p∗−q‖ < r
√

d+‖p∗−q‖ < (4d3/2+4d1/2+1) ‖p∗−q‖.

We conclude that Quad-Query(root) returns a set ofO(logn) sites containing ac-
approximate nearest neighbor ofq, under the assumption thatq is (1/(2d + 2))-central
in its r -grid cell. This assumption can be removed as follows. By Lemma 3.3, we know

Approximate Nearest Neighbor Queries Revisited 369

thatq+ v(j) is (1/(2d + 2))-central in itsr -grid cell for somej ∈ {0,1, . . . ,d}. During
preprocessing, build a balanced quadtree for the point setP+ v(j) for each j . The total
preprocessing time for thed+1 trees isO(d2n logn). By answering a query forq+v(j)

on the point setP + v(j) for each j , we obtain a set ofO(d logn) sites containing a
c-approximate nearest neighbor ofq, and we can return the closest point toq in this set.
The query time is thereforeO(d2 logn).

3.3. Applications

One application of our technique is the construction of sparse Euclidean spanner graphs.
A t-spannerof P is a subgraph of the complete Euclidean graph ofP, with the property
that the shortest path length between any pair of pointsp,q ∈ P is bounded byt‖p−q‖.
The numbert > 1 is called thestretch factor. We show how to construct a spanner of
sizeO(dn logn) with anO(d3/2) stretch factor by modifying the proof of Theorem 3.4.
Most previous algorithms (e.g., [9], [21], and [22]) can find spanners with stretch factor
arbitrarily close to 1 but have exponential dependence ond in their running time.

Theorem 3.5. Suppose d is even. Let t = 8d3/2 + 8d1/2 + 1. A t-spanner with
O(dn logn) edges can be constructed in O(d2n logn) time.

Proof. Given a balanced quadtree forP ⊂ [0,1)d, consider the following procedure,
which runs inO(n logn) time and returns a graph withO(n logn) edges:

Algorithm Spanner(v)

1. if v is a leaf then return∅
2. return Spanner(left(v)) ∪ Spanner(right(v)) ∪ {{s(v), p} : p ∈ P(v)}

wheres(v) is any site fromP(left(v))

Given a pairp,q ∈ P, let r = 2−` (` ∈ N) be such that

r

4d + 4
< ‖p− q‖ ≤ r

2d + 2
.

Suppose thatq is (1/(2d + 2))-central in itsr -grid cell. We prove that ifp,q ∈ P(v),
then the shortest path length betweenp andq in Spanner(v) is at mostt‖p− q‖:
Case1: p,q ∈ B(v). Thenp,q ∈ P(left(v)), and the claim follows by induction.

Case2: p,q 6∈ B(v). Thenp,q ∈ P(right(v)), and the claim follows by induction.

Case3: p 6∈ B(v), q ∈ B(v). As in Case 3 of the proof of Theorem 3.4, we can show
that the diameter ofB(v) is at mostr

√
d. Then the pathp, s(v),q in Spanner(v) has

370 T. M. Chan

length

‖p− s(v)‖ + ‖s(v)− q‖ ≤ ‖p− q‖ + 2‖s(v)− q‖
≤ ‖p− q‖ + 2r

√
d

≤ (8d3/2+ 8d1/2+ 1) ‖p− q‖.

Case4: p ∈ B(v), q 6∈ B(v). Similar to Case 3.

We conclude that Spanner(root) contains a path betweenp andq of length at most
t‖p − q‖, under the assumption thatq is (1/(2d + 2))-central in itsr -grid cell. We
can remove this assumption by constructing balanced quadtrees forP + v(j) for j ∈
{0, . . . ,d}, using Lemma 3.3, and taking the union of the resultingd + 1 graphs.

Note: It follows from the proof that thespanner diameter[3] of our graph is 2.

The following is an application to the approximation of Euclidean minimum spanning
trees. By well-known reductions, we have similar results for related problems such as
Euclidean traveling salesman tours and minimum Euclidean Steiner trees.

Corollary 3.6. Suppose d is even. Let t = 8d3/2 + 8d1/2 + 1. A Euclidean spanning
tree with weight at most t times the weight of the Euclidean minimum spanning tree can
be constructed in O(d2n logn) time.

Proof. Let G be the spanner graph from Theorem 3.5. Construct a minimum spanning
tree ofG—for instance, by a Fibonacci-heap implementation of Prim’s algorithm—in
O(dn logn) time. It is easy to check that this tree satisfies the desired property.

For application to the approximation of bichromatic closest pairs (see Section 2.3), we
can reduce theO(d2) factor in the running time toO(d) by a different strategy without
the use of quadtrees. We begin with a lemma that shows how to translate any point set
so that at least half of the points become central in their grid cells.

Lemma 3.7. Given a set P⊂ Rd of n> d points and r> 0, a vectorv ∈ Rd can be
found in O(dn) time, such that there are at least n/2 points p∈ P with the property
that p+ v is (1/4d)-central in its r-grid cell.

Proof. Replace each pointp ∈ P with p modr ; this does not affect the condition of
the lemma and ensures thatP ⊂ [0, r)d. Fix i ∈ {1, . . . ,d}. For eachp ∈ P, the number
pi div(r/2d) lies in{0,1, . . . ,2d−1}. Thus, there exists an indexki ∈ {0,1, . . . ,2d−1}
such that|{p ∈ P : pi div(r/2d) = ki }| ≤ n/2d. Such aki can be found inO(n+ d)
time for eachi .

Now, we claim that the vector

v = − r

2d
(k1, . . . , kd)− r

4d
(1, . . . ,1)

satisfies the desired condition. To see this, observe that ifp+ v is not(1/4d)-central in
its r -grid cell, then we have(pi − rki /2d)modr < r/2d for somei ; this implies that

Approximate Nearest Neighbor Queries Revisited 371

pi div(r/2d) = ki . By our choice ofki , there are at mostn/2d points with this property
for eachi = 1, . . . ,d, so at most half of the points are not(1/4d)-central.

An alternative (nondeterministic) way to prove the above lemma is to pick the vectorv

uniformly at random from [0, r)d. Straightforward calculations (e.g., see [8]) reveal that
the probability thatp+ v is (1/4d)-central for a fixed pointp is greater than 1/2.

The above lemma combined with prune-and-search gives a linear-time method for a
decision version of the approximate bichromatic closest-pair problem. A solution to the
closest-pair problem then follows by binary search.

Lemma 3.8. Let P⊂ Rd be a set of n> d points, where each point is colored red or
blue.Let r > 0be such that there exists a red–blue pair(p∗,q∗)with‖p∗−q∗‖∞ ≤ r/4d.
Suppose that the points have been sorted along each of the d coordinates. In O(dn) time,
we can find a red–blue pair(p,q) with ‖p− q‖ ≤ r

√
d.

Proof. Find a vectorv satisfying the condition of Lemma 3.7. Replace each pointp ∈ P
by its translatep+v; this transformation does not affect distances between points and en-
sures that there are at mostn/2 points in the set̂P = {p ∈ P : p is not(1/4d)-central in
its r -grid cell}.

Since we have the sorted order of the multiset{pi div r : p ∈ P} for eachi = 1, . . . ,d,
a radix sort yields a lexicographical ordering of the multiset{p div r : p ∈ P} in O(dn)
time. With this ordering, we can assign each point to itsr -grid cell in O(dn) time. If
there exists a cell containing both a red point and a blue point, then their distance is at
mostr

√
d and we have found a pair.

If no pair is found by this process, then neitherp∗ norq∗ is (1/4d)-central in itsr -grid
cell, for otherwisep∗ andq∗ would belong to the samer -grid cell by Observation 3.2.
Therefore, we can solve the problem recursively for the point setP̂. The overall running
time is bounded byO(dn+ dn/2+ dn/4+ · · ·) = O(dn).

Theorem 3.9. Let n> d and c= 4d3/2. A c-approximate closest red–blue pair can
be found in O(dn logn) time.

Proof. Let X be the set ofN = dn real numbers formed by the coordinates of the
given points. Letr ∗ be theL∞ distance of the closest red–blue pair; thenr ∗ ∈ X − X.
We consider the problem of findingr ∗ using calls to a decision procedureD(r), which
determines whetherr ∗ ≤ r for a given parameterr . Clearly, O(log N) calls toD is
sufficient by binary search if we have precomputed the Cartesian differenceX − X in
O(N2) time. Standard techniques can be used to bring down the quadratic overhead to
O(N log N) using an implicit binary search that performs repeated weighted-median
computation; for example, see [12], [14], and [18].

Although we do not have an efficient implementation ofD, Lemma 3.8 gives a
procedurẽD(r) that can successfully find a red–blue pair(p,q) with ‖p− q‖ ≤ r

√
d

if r ∗ ≤ r/4d. To decide whetherr ∗ ≤ r for a givenr , we call D̃(4dr). If D̃(4dr) is
unsuccessful in finding a pair, then we know thatr ∗ > r . Otherwise, we tentatively

372 T. M. Chan

assume thatr ∗ ≤ r and add the returned pair to a setA. With O(log N) calls toD̃, we
can then find a (possibly incorrect) valuer0 for r ∗.

If all of our tentative decisions are correct, thenr ∗ = r0, and a call toD̃(4dr0)

yields a pair(p0,q0) with ‖p0 − q0‖ ≤ 4d3/2r ∗. Otherwise, we have made a mistake
for somer ; that is, r ∗ > r but D̃(4dr) successfully finds a pair(p,q) ∈ A with
‖p − q‖ ≤ 4d3/2r < 4d3/2r ∗. In any case,A ∪ {(p0,q0)} contains ac-approximate
closest red–blue pair, and we can return a pair with the smallest distance in this
set. SincẽD can be implemented inO(dn) time, the running time of the algorithm is
O(dn log N).

In closing, we mention an implementation of a dictionary for points in high dimensions
that tolerates small errors. LetP be a set ofn points inRd such that every two points
are of distance at leastδ apart. In a query, we wish to find a point inP that is within
distanceε from a given query point, assuming that thetoleranceε is much less thanδ. A
simple solution to this problem is to use a uniform grid: locate theδ-grid cell containing
the query point and examine all of its 3d − 1 neighboring grid cells (with a little care,
the number 3d can be reduced to 2d). We can remove the exponential dependence by
observing that ifq is α-central in itsδ-grid cell andε ≤ αδ, then neighboring cells
need not be explored. The centrality assumption can be enforced by considering various
translates ofP with Lemma 3.3. Only simple data structures are needed, and insertions
and deletions of points can be easily handled.

4. Conclusions

We have examined ways of reducing “constant factors” in previous approaches to ap-
proximate nearest neighbor queries on a set ofn points. For any fixed dimensiond and
approximation factor 1+ ε, we obtain constants that areO(ε(1−d)/2) or O(ε1−d/2). For
any dimension and a sufficiently large approximation factor, we obtain constants that are
polynomial in the dimension. The time and space bounds of our methods are optimal or
near-optimal in terms ofn.

One open problem for low dimensions is to reduce theε-dependence even further, if
possible, while keepingO(n polylogn) space andO(polylogn) query time. Reducing
the space complexity to linearity in Theorems 2.3 and 2.5 would be interesting. Another
problem is to derive our high-dimensional results in Section 3 using only algebraic
operations (without integer divisions and logarithms).

References

1. P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning trees and
bichromatic closest pairs.Discrete Comput. Geom., 6:407–422, 1991.

2. P. K. Agarwal and J. Matouˇsek. Ray shooting and parametric search.SIAM J. Comput., 22:764–806, 1993.
3. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: short, thin, and lanky. In

Proc. 27th ACM Symp. Theory of Computing, pages 489–498, 1995.
4. S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions. InProc. 4th

ACM–SIAM Symp. Discrete Algorithms, pages 271–280, 1993.

Approximate Nearest Neighbor Queries Revisited 373

5. S. Arya and D. M. Mount. Approximate range searching. InProc. 11th ACM Symp. Computational
Geometry, pages 172–181, 1995.

6. S. Arya, D. M. Mount, and O. Narayan. Accounting for boundary effects in nearest neighbor searching.
Discrete Comput. Geom., 16:155–176, 1996.

7. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate
nearest neighbor searching. InProc. 5th ACM–SIAM Symp. Discrete Algorithms, pages 573–582, 1994.

8. M. Bern. Approximate closest-point queries in high dimensions.Inform. Process. Lett., 45:95–99, 1993.
9. P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higher

dimensions. InProc. 4th ACM–SIAM Symp. Discrete Algorithms, pages 291–300, 1993.
10. B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.SIAM J. Comput.,

21:671–696, 1992.
11. K. L. Clarkson. An algorithm for approximate closest-point queries. InProc. 10th ACM Symp. Computa-

tional Geometry, pages 160–164, 1994.
12. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms.J. Assoc. Comput. Mach.,

34:200–208, 1987.
13. P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality.

To appear inProc. 30th ACM Symp. Theory of Computing, 1998.
14. D. B. Johnson and T. Mizoguchi. Selecting theK th element inX +Y andX1+ X2+ · · · + Xm. SIAM J.

Comput., 7:147–153, 1978.
15. S. Kapoor and M. Smid. New techniques for exact and approximate dynamic closest-point problems.

SIAM J. Comput., 25:775–796, 1996.
16. J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. InProc. 29th ACM Symp.

Theory of Computing, pages 599–608, 1997.
17. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high

dimensional spaces. To appear inProc. 30th ACM Symp. Theory of Computing, 1998.
18. H. P. Lenhof and M. Smid. Sequential and parallel algorithms for thek closest pairs problem.Internat. J.

Comput. Geom. Appl., 5:273–288, 1995.
19. J. Matouˇsek and O. Schwarzkopf. On ray shooting in convex polytopes.Discrete Comput. Geom., 10:215–

232, 1993.
20. F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York,

1985.
21. J. S. Salowe. Construction of multidimensional spanner graphs, with applications to minimum spanning

trees. InProc. 7th ACM Symp. Computational Geometry, pages 256–261, 1991.
22. P. M. Vaidya. A sparse graph almost as good as the complete graph on points ink dimensions.Discrete

Comput. Geom., 6:369–381, 1991.
23. A. C. Yao. On constructing minimum spanning trees ink-dimensional spaces and related problems.SIAM

J. Comput., 11:721–736, 1982.

Received May28, 1997,and in revised form March4, 1998.

