Discrete Comput Geom 20:359-373 (1998)

Geometry

© 1998 Springer-Verlag New York Inc.

Approximate Nearest Neighbor Queries Revisitetl

T. M. Chan

Department of Mathematics and Computer Science, University of Miami,
Coral Gables, FL 33124-4250, USA
tchan@cs.miami.edu

Abstract. This paper proposes new methods to answer approximate nearest neighbor
queries on a set of points ind-dimensional Euclidean space. For any fixed consdaat

data structure witlD (¢2-9/2nlog n) preprocessing time and(¢*~9/2logn) query time
achieves an approximation factortle for any given O< ¢ < 1; a variant reduces the
e-dependence by a factor ef /2. For any arbitrand, a data structure witld(d?nlogn)
preprocessing time and(d? logn) query time achieves an approximation fac@d®?).
Applications to various proximity problems are discussed.

1. Introduction

Let P be a set of point sites ind-dimensional spacRY. In the well-knownpost office
problem we want to preprocesB into a data structure so that a site closest to a given
query pointq (called thenearest neighboof q) can be found efficiently. Distances are
measured under the Euclidean metric. The post office problem has many applications
within computational geometry and from other areas such as data compression, pattern
recognition, databases, and statistics.

For d = 2, Voronoi diagrams provide an optimal solution to the problem with
O(nlogn) preprocessing timeQ(n) space, andD(logn) query time [20]. Unfortu-
nately, even fod = 3, no near-linear preprocessing method is known that achieves
near-logarithmic query time; the best methods, based on ray shooting [2], [19], require
O((n/mY4/21y polylogn) query time for anO(m)-space structuren(< m < nf%/21),

To obtain better performance, a number of researchers thus turned to an approximate
version of the post office problem: instead of a site with the minimum distance to the
query pointq, find a sites whose distance tq is within ¢ times the minimum. We call

* A preliminary version of this work appearedmnoc. 13th ACM Symposium on Computational Geometry
pages 352-358,1997.

360 T. M. Chan

such ars ac-approximate nearest neighbor oéqd the number > 1 theapproximation
factor.

For any constard, the approximate post office problem was solved optimally by Arya
et al. [7]: anO(n)-space structure called thmlanced box-decompositigBBD) tree
can find(1 + ¢)-approximate nearest neighbors@tlogn) time for any fixeds > 0;
this structure can be constructed@(nlogn) time. Despite its optimality, the main
drawback of Arya et al.'s method is the “constant” factors hidden in the big-Oh notation.
These factors depend on the parameteande. If d is held fixed and is allowed to
vary, then the actual query time @(¢~%logn) in the worst case. The preprocessing
does not depend on. Even for small values ofl such as 3 and 4, searching for a
1.001-approximate nearest neighbor may be time-consuming with this method.

To obtain bettee-dependence in the query time, a different approximation method
due to Clarkson [11], which is based on an earlier randomized method of Arya and
Mount [4], can be used. With high probability Clarkson’s query algorithm requires
only O(e®9/2|ogn) time, but preprocessing tak&(s1~9n?log(p/¢)) time, which
is quadratic inn. The parametep is related to the ratio of the distance between
the farthest pair of sites to the distance between the closest pair of sites. In Sec-
tion 2 we obtain a strict improvement of Clarkson’s result: the s@e~9/2logn)
query time is obtained but with onl@ (¢ *~9/2nlogn) preprocessing time. (The space
complexity is O(¢1~9/2nlogn) and is comparable with Clarkson’s space bound of
0(e*92nlog(p/e)).) This method uses the BBD trees of Arya et al. in a novel way.
Further reduction of the-dependence by as'/? factor is possible at the expense
of an extra logh factor in the query time. The lagfactor can be removed in certain
applications, for example, in finding bichromatic closest pairs.

The above method, though efficient in low dimensions, is impractical in high di-
mensions, because constant factors grow exponentially d/karies. This exponential
dependence atis also inherentin Arya et al.'s method and in traditional methods based
on grids (bucketing), quadtrees, akdl trees; see Arya et al. [6] for an analysis of a
grid method. In some applications, such as vector quantization, the dimehsnaty
actually be a function orfi.

To circumvent the exponential growth problem, one can demand less and settle for a
rough approximation to the post office problem. (In applications where any reasonable
metric will do, a rough approximation is just as good.) Bern [8] described an inter-
esting quadtree method to fir@i(+/d)-approximate nearest neighbors@id2° logn)
time with O(d8%nlogn) preprocessing time. Alternatively, a randomized method finds
O(d¥2)-approximate nearest neighborsxid log? n) query time with high probability,
usingO(d4nlog? n) preprocessing time. In Section 3 we improve Bern’s technique by
removing the exponential factors completely using a deterministic method: we can find
O(d*?)-approximate nearest neighbors@(d?logn) query time withO(d?nlogn)
preprocessing time. Applications of our technique included&d?n logn)-time algo-
rithm for approximating Euclidean minimum spanning trees an@®é#nlogn)-time
algorithm for finding approximate closest pairs.

While this technique vyields fast algorithms even in high dimensions, its major dis-
advantage is that the solutions produced are quite inexact. Since the initial draft of our
work, several recent papers, by Kleinberg [16], Indyk and Motwani [13], and Kushile-
vitz et al. [17], have appeared dealing with how to avoid the exponential dependence

Approximate Nearest Neighbor Queries Revisited 361

ond for smaller approximation factors. Among the results from the latter two papers
are randomized data structures that can finé ¢)-approximate nearest neighbors for a
fixed constant > 0, with query time polynomial il and logn and preprocessing time
polynomial ind andn (with a large exponent that dependss)n

2. Fine Approximation in Low Dimensions

In what follows, || - || denotes the Euclidean norm afid ||, denotes thé ., norm.
Giveng € R% andr > 0, B(q, r) denotes the Euclidean bdlh € R : |[p—q|l <r}.
For any pointp € RY, we usep; to denote théth coordinate ofp, and we usey’ e
R4~ andp” € RY4? to denote the projected pointpy, . .., Pe—1) and(pi, ..., Pd—2),
respectively. In this section we assume that the dimendiga fixed constant and
constants in big-Oh notation may dependdon

2.1. Preliminaries on BBD Trees

Let P be a set of point sites inRY. For our purposes, BBD treefor P is a binary tree
with O(n) nodes and (log n) depth, satisfying the following properties. Each nodd

the tree is associated with a calell(v) c RY. Let P(v) = P N cell(v). If root denotes

the root of the tree, theR (root) = P. If left(v) andright(v) denote the left and right
children of an internal node thencell(left(v)) andcell(right(v)) have disjoint interiors,
coveringcell(v). For simplicity, we assume that no site lies on the boundary of a cell.
The cells of the tree obey the following conditions:

1. Each cell has constant complexity.
2. The number of cells with disjoint interiors and diameters at Igdstersecting a
set of diameter, is bounded by1 + Cr/s]¢ for some fixed constar@.

The first condition follows directly from Arya et al.’s construction of the BBD tree [7];
they used cells that are differences of two axis-aligned boxes. The second condition is a
consequence of theiracking lemmd5], [7]. The construction time i©(nlogn).

Lemma2.1. Givenqge R%andr > 0, one can find k= O(logn) nodes of the BBD
treg vy, ..., vk, in O(logn) timeg such that(i) each site in Bq, r) lies in some Rv;),
and(ii) each Ruj) is contained in Bq, 2r).

Proof. Consider the following algorithm, based on a query algorithm by Arya and
Mount for approximate range searching [5]:

Algorithm BDD-Query(v)

1. if v = nil or cell(v) N B(q, r) = @ then returry
2. if cell(v) has diametek r then return{v}
3. return BDD-Quergeft(v)) U BDD-Queryright(v))

362 T. M. Chan

Let{vs, ..., v} be the set of nodes returned by a call to BDD-Quergt). It is easy
to see that (i) holds. To show (ii), observe that, for eactcell(vi) intersectsB(q, r)
and has diameter less thanit follows that each point ircell(v;) lies in B(q, 2r).

It remains to bound the running time of BDD-QuéryWe say that a node is
expandedf cell(v) intersectsB(q,r) and the diameter ofell(v) is at leastr. The
packing lemma (second condition) ensures that the number of expanded nodes with
disjoint interior is bounded by a constant. Since cells of nodes on the same level of the
BBD tree have disjoint interiors, the total number of expanded nodes is at most a constant
times the depth of the tree, i.€,(logn). This bounds the running time as well as the
numberk of nodes returned by BDD-Quey O

2.2. Two BBD-Based Data Structures

Let P be a set ofn point sites inRY and lete > 0 be fixed. We now give a data
structure forP such that given a query poigte RY, we can quickly report &1 + ¢)-
approximate nearest neighborgfi.e., a sitessuch thafls—q|| < (1+¢)||p —q|l for

anyp € P. Theidea s to consider a number of coordinate systems and build BBD trees
under each one. (Kapoor and Smid [15] adopted a similar strategy, using range trees, to
obtain dynamic data structures for approximate nearest neighbor queries.) We note that
each site lies inside a certain narrow cone under some coordinate system. We show that
finding a nearest neighbor restricted to such a cone can be solved using approximate
range searching via Lemma 2.1.

Lemma2.2. LetA; = {p € RY: ||p/|| < 8pg}, wheres = /e/8. With O(nlogn)
preprocessing time and spadée following query can be answered inI6gn) time
given ge R and r > 0, return a site s satisfying the inequality

min{lis—qll, r} = (1+¢) maxiip—qll, r/2})

forany pe P with p—qg € A;.

Proof. Construct a BBD tree for thed — 1)-dimensional seP’ = {p’ : p € P} (for
simplicity, assume that no two sites have the same projection). For each raddie
tree with cellcell(v), sort the point seP(v) = {p € P : p’ € cell(v)} according to the
last coordinate and augment the nadeith an array storing this sorted list. The space
complexity of this augmented BBD tree @(nlogn), since the tree is of logarithmic
depth. The preprocessing time rema@@ logn), including the sorting step.

Given poinigy € R%andr > 0, we can find a sitewith the desired property as follows.
Using algorithm BDD-Querg) in Lemma 2.1, fink = O(logn) nodes of the BBD tree,
v1, ..., Uk, Such that (i) each projected siteltq’, 5r) lies in someP’(v;), and (ii) each
P’(v) is contained irB(q’, 26r). Now, defines to be a site inP(v1) U - - - U P(vy) that
minimizes|sy — qql-

Clearly,s can be found by performirig= O(logn) binary searches on the sorted lists
atnodewy, . .., vk in O(log? n) time. To reduce the running time @(log n), we employ
a standard technique, attributed to Lueker and Willard [20]: for each internahnofie

Approximate Nearest Neighbor Queries Revisited 363

the BBD tree and each poipt e P(v), keep pointers to the successor and predecessor
of pinthe sorted lists dift(v) andright(v); this increases preprocessing time and space
by at most a constant factor. To answer a query using algorithm BDD-Qu@ny only
need to perform one binary search at the root; given the position of the querygpnint
the sorted list at node, we can deduce the position @fn the sorted list at its children
in constant time.

Let p be a site withp — g € Aj. It remains to show that inequality (1) holds. If
Ilp —qll > r, then we are done. Otherwise, singe- q € A1, we have||p’ — d'| <
81pa — qal < 8llp—4qll < é8r.By (i), pmust belong to somP (v;), so thatsy — qq| <
P — dal < | p — qll. Furthermore, by (ii), we havis’ — q'|| < 26r = (/e/2)r. Then

Is—ql? = Iss —qal> + IS —d'lI?> < llp—qll® + er?/2
< (1+2¢) max{|lp — qll?, r?/4}.

Taking square roots, we gi$ — q|| < (1+e)max{||p —qll,r/2}, implying (1). O

The setA; is a (spherical) cone of angular diameges 2 arctars = ©(3). Itis well
known that the spac&? can be covered b (¢*~9) cones of angular diameter, for
example, inthe plane, such asystem of cones can be obtained by rotation over apgles of
forj =1,...,[27/¢] (see [23]). LefA!’} be a collection o (¢!~9) = O(¢1-9/2)
rotated copies of; coveringRY. We have the following:

Theorem 2.3. With O(¢*~%/2nlogn) preprocessing time and spaage can find a
(1+ ¢)-approximate nearest neighbor of a query pointegR? in O(eX~9/2logn)
time

Proof. By changing coordinate systems, we can replagewith the coneA(l” in
Lemma 2.2 for eaclj. In the preprocessing, we construct the data structure for each of
the O(¢1-9/2) cones. The total preprocessing tim&igs2-9/2n logn). To answer the
query, we first compute a 2-approximate nearest neighlobrg in O(logn) time by
Arya et al's method [7]. Set = ||t — q||; observe thatmaXp —qll, r/2} = |p —qll
foranyp € P. Let s\ pe the site returned by the query algorithm of the lemma for
the coneA(l”. Then the site iffs} U {t} closest tag is a (1 + ¢)-approximate nearest
neighbor ofg. The query time is therefor®(¢1~%/2logn). O

We can slightly improve the-dependence in the time bounds by using a different set
of cones and known techniques on planar Voronoi diagrams [20].

Lemma2.4. LetA; = {p e RY: |p’| < 8pq}, wheres = /e/8. With O(nlogn)
preprocessing time and spadhe following query can be answered inl6g? n) time
given ge RY and r > 0, return a site s satisfying inequalitl) for any p e P with
p—qe A

Proof. Construct a BBD tree for th@ — 2)-dimensional seP” = {p” : p € P}. For
each node ofthe tree with celtell(v), store the pointsd®(v) = {p € P : p” € cell(v)}

364 T. M. Chan

and the Voronoi diagram of the two-dimensional point §g%-1, ps) : P € P(v)}.
The space complexity of this augmented BBD tre®ig1logn), since the tree is of
logarithmic depth. The preprocessing timedgn log? n) if we use anO(nlogn)-time
algorithm to construct the Voronoi diagrams. We can reduce the preprocessing time to
O(nlogn) if we construct these Voronoi diagrams in a bottom-up fashion, since planar
Voronoi diagrams can be transformed into three-dimensional half-space intersections,
and the intersection of two three-dimensional convex polyhedra can be be computed in
linear time [10].

Given pointq € RY andr > 0, we follow the proof of Lemma 2.2 and use algorithm
BDD-Query) in Lemma 2.1 to findk = O(logn) nodes of the BBD treeys, ..., v,
such that (i) each projected siteB{q”, ér) lies in someP”(v;), and (ii) eachP” (v;) is
containedirB(q”, 26r). We then definsto be a site irP (v1)U- - -UP (vk) that minimizes
|S4—1 — Qd—1]% + |Sq — da|?. This sites can be found by performing = O(logn) point
location queries on the Voronoi diagrams at nodgs. . , vk. Using an optimal method
for planar point location, we can compwtim O(log? n) time. Thats satisfies the desired
property now follows as in the proof of Lemma 2.2. O

If we ignore the(d — 1)st coordinate, them; is a cone of angular diameterin
RI-1, We can thus coveR? with only O(p?-9) = O(e19/2) rotated copiesA S’} of
A,. Lemma 2.4 then implies the following analogue of Theorem 2.3:

Theorem 2.5. With O(s'~92nlogn) preprocessing time and spgose can find a
(1+ ¢)-approximate nearest neighbor of a query poirg R in O (192 log? n) time.

2.3. Applications

In certain batched applications of the post office problem, we can eliminate the extra
logn factor in Theorem 2.5 by using a simple grid scheme in place of BBD trees.
Suppose is fixed and consider a uniform grid ovBf where each grid cell has side
lengthr /+/d. Create a node for each grid cell that contains a sitecéliw) be the grid

cell corresponding to a node and letP(v) = P N cell(v). The collection{ P(v)} can

be computed by assigning points to grid cells, with the floor functio@ nlogn) time

using a dictionary. We have the following improvement of Lemma 2.1 for a fixed

Lemma 2.6. Givenqge RY onecanfindk= O(1) nodesuvy, ..., v, in O(logn) time,
such thaf(i) each site in Bg, r) lies in some Pv;), and(ii) each Ruvj) is contained in
B(q, 2r).

Proof. Let vy, ..., v be the nodes whose grid cells inters&tg, r). We have (i)
obviously, and (ii) follows because the diameter of each grid cell &nceB(q,r) is
contained in the union of at mogt + 2./d1¢ grid cells of side length/+/d, we have
k = O(1). The time bound follows by using a dictionary. |

Approximate Nearest Neighbor Queries Revisited 365

We can improve Theorem 2.5 if a weaker type of queries involving the parameter
is sufficient:

Theorem 2.7. Fixr.With O(s*9/2nlogn) preprocessing time and @*~9/2n) space
the following query can be answered in€~%?logn) time given q e RY, return a
site s satisfying inequalitfl) for any pe P.

Proof In the proof of Lemma 2.4, replace BBD trees with the above grid scheme and
use Lemma 2.6 instead of Lemma 2.1.

Note We have assumed a real-RAM model of computation that can perform integer
divisions (with the floor function). In this instance, such operations can be avoided by
using a “degraded” grid of Lenhof and Smid [18]. O

As an illustration, we use the above theorem to find approximate bichromatic closest
pairs: given a set ofi points where each point is colored red or blgg%, g*) is ac-
approximate closest red—-blue péi p*, g*) is ared-blue pair antp* —g*|| < ¢l p—q|l
for any red-blue paitp, q).

Corollary 2.8. For anye > 0, a (1 + ¢)-approximate closest red—blue pair can be
found in O(e'~92nlogn) time

Proof. First use Arya et al.’s data structures to compute a 2-approximate closest red—
blue pair(s, t) in O(nlogn) time. Letr = ||s—t||;thenmaX||p—qll, r/2} = lp—qll

for any red-blue pai¢p, q). For each blue poirg, use Theorem 2.7 to find a red point
s(g) such that

min{[is(o) —qll, r} < A+e)minjip—ql.
p red

Then a pair in{(s(q), q) : qblue} U {(s, t)} with the smallest distance is@ + ¢)-
approximate closest red—blue pair. O

In R3 the above method runs @ (s~Y?nlogn) time and is faster than the known
exact methods [1] if As is within the order oh?23. We can also apply Theorem 2.7 to
approximate thélausdorff distanc§0] of two (static) point sets with a similar running
time.

3. Rough Approximation in High Dimensions

Inthis section we assume areal-RAM model of computation that supports integer division
and base-2 integer logarithm in unit time. Constants in big-Oh notation do not depend
on the dimensionl.

366 T. M. Chan
3.1. Preliminaries on Balanced Quadtrees

The standard quadtree approackRfhis based on the idea of recursively decomposing

a box into 2 subboxes of equal size. To avoid exponential factors, we adopt a binary
variant that performs such a decompositiondirstages: a box is first split into two
subboxes of equal size by a hyperplane orthogonal to the first axis, each of which is
then split by a hyperplane orthogonal to the second axis, etc. This suggests the following
definition: aquadtree bos a setB C [0, 2)¢ of the form

B_|& a+1 8 a+1 1 &+1+2 ag ag+2

Sl e) T) e T) e T
forsomet e N,i € {0,1,...,d — 1}, and integersy, ..., a4. The numbek¥ is called
thelevelof B. We say thaB is of stage d + i. Note that the diameter @ is less than
21-t/d.

In order to build a tree that is balanced with quadtree boxes, we use the following
lemma due to Arya et al. [7]:

Lemma 3.1. Given an n-pointset R= [0, 2)9, there exists a quadtree box B such that
both point sets P\ B and P\ B have cardinality at mosn/3. Furthermorg if the points

in P have been sorted along each of the d coordindteen B can be constructed in
O(dn) time

Proof. Define a sequence of quadtree bokgsB;, . . . iteratively as follows. LeBy =
[0, 2)¢, which is a quadtree box of stage 0. Given a quadtreeBpoxof stagek — 1 (k >
1), write Bx_; as the disjoint union of two quadtree boxes of stag®ne of the two
boxes contains at leag? N By_;1]/2 of the points ofP. Let Bk be this box.
Now, consider the smallest indéwith |P N By| < 2n/3; we know such & exists
since the diameters @y, By, ... converge to 0. ThefP N By| > |P N Bx_1]/2 > n/3
and so|P\Bg| < 2n/3. This proves the existence of the quadtree BoxThe proof
can be made constructive using integer logarithms to yield the specified time bound, as
shown by Arya et al. [7] (their algorithm is called “centroid shrink”). O

For our purposes, halanced quadtredor the point setP is a binary tree with
O(n) nodes andO(logn) depth, satisfying the following properties. Each nadef
the tree stores a quadtree bBxv) and each leaf stores a site. LB{v) be the set
of sites stored in the leaves of the subtree rooted &t root denotes the root of the
tree, thenP(root) = P. If left(v) andright(v) denote the left and right children of an
internal nodev, then P(left(v)) = P(v) N B(v) and P(right(v)) = P(v)\B(v). By
applying Lemma 3.1 recursively, we see that such a tree exists and can be constructed
in O(dnlogn) time after an initial sorting phase @ (dnlogn) time.

3.2. A Quadtree-Based Data Structure

Let P be a set oh point sites inRY. Following an approach of Bern [8], we now show
that balanced quadtrees can be used to answer approximate nearest neighbor queries

Approximate Nearest Neighbor Queries Revisited 367

on P. The idea is to consider a certain set of vectof$'} and build balanced quadtrees
for the translateP + v for eachj. Bern showed that using a set df 2ectors, an
O(v/d)-approximate nearest neighbor of any query point can be found. Alternatively,
using a set ofd(t logn) random vectorsQ (d*?)-approximate nearest neighbors with
probability 1— O(1/n%) can be found. We show that a set©fd) carefully chosen
vectors actually suffices to yield approximation fac®d®?).

We first need some definitions. Givane R andr > 0, letxdivr = [x/r | and
xmodr = x — [x/r |r. Given a pointp € RY, let pdivr = (p;divr, ..., pgdivr) and
pmodr = (pymodr, ..., pg modr). We say that two pointp, g € RY belong to the
same r-grid celif and only if pdivr = qdivr. We say that a poinp is «¢-central in its
r-grid cell if and only if, foreach = 1, ..., d, we havexr < p; modr < (1— a)r, or,
equivalently,(p; + ar) modr > 2ar.

Observation 3.2. Let p, g € RY.Ifqisa-centralinitsr-grid celland| p—q|o < ar,

then p and gq belong to the same r-grid cell O
Our key lemma is the following:
Lemma 3.3. Supposed is evebetv) = (j/(d+1),...,j/(d + 1)) € RY. Forany

point pe R4 andr = 2-¢ (¢ € N), there exists je {0, 1, ..., d} such that p+ v is
(1/(2d + 2))-central in its r-grid cell

Proof. Suppose, on the contrary, thpt+ v is not (1/(2d + 2))-central for any
j =0,1,...,d. Then, for eaclj, there is an indek(j) € {1, ..., d} with

. j r r
(p'(”+ d+1+2d+2)mOdlr S d+r
or equivalently, by multiplying both sides kig + 1)2°,
(d+D2piy +2°) + Hmodd + 1) < 1.

By the pigeonhole principle, there exist two distinct indigeg’ € {0, 1, ..., d} with
i(j) =i(j").Lettingz = (d+1)2°pi(j, + 3, we have(z+2‘j) modd + 1) < 1 as well
as(z+2%)") modd + 1) < 1. This is possible only if 2j = 2¢j’ (mod(d + 1)). Since
2% andd + 1 are relatively prime, we must haye= j’: a contradiction! O

We now give a data structure for answering nearest neighbor queries Wittdat)
approximation factor for eved. (For oddd, replaced by d + 1.) If the L, metric is
used instead of the Euclidean metric, the approximation factor reduc2&ijo

Theorem 3.4. Suppose d is evethet ¢ = 4d¥? 4 4d¥/? + 1. With O(d?nlogn)
preprocessing time and @2n) spacewe can find a c-approximate nearest neighbor of
a query point ge RY in O(d?logn) time,

368 T. M. Chan

Proof. We may assume that the givespoint setP is contained in [01)%. Let p* € P
be an exact nearest neighbor of the query pgjrand letr = 2=¢ (¢ e N) be such that

r . r

agra P =517

(If | p* — qll > 1/(2d + 2), then any site is a-approximate nearest neighbor.)
Suppose thaj is (1/(2d + 2))-central in itsr -grid cell, and suppose that a balanced

qguadtree forP is available. Consider the following query algorithm, which runs in

O(dlogn) time and returns a set @ (logn) sites:

Algorithm Quad-Quergw)

1. if v is aleaf then returfthe site inv}

2. if q € B(v) then

3. return Quad-Quereft(v))

4. else return Quad-Quedinjght(v)) U {s(v)}
wheres(v) is any site fromP (left(v))

We prove that ifp* € P(v), then Quad-QueKy) contains ac-approximate nearest
neighbor ofg. By line 1, the statement is trueifis a leaf. Ifv is an internal node, we
consider four cases:

Casel:q € B(v), p* € B(v). Thenp* € P(left(v)) = P(v) N B(v), and, inductively,
we may assume that the set Quad-Qudefy(v)) from line 3 contains &-approximate
nearest neighbor af.

Case2:q ¢ B(v), p* € B(v). Thenp* € P(right(v)) = P(v)\B(v), and, inductively,
we may assume that the set Quad-Queégit(v)) from line 4 contains a-approximate
nearest neighbor af.

Case3: g € B(v), p* &€ B(v). Suppose thaB(v) is of level ¢’. Then the two points
p* andq do not belong to the sam@~*)-grid cell. However, by Observation 3.2, they
belong to the same-grid cell withr = 27¢, We must have > ¢, implying that the
diameter ofB(v) is less than 2¢'\/d < r+/d. Then any sits € P(left(v)) from the set
returned in line 3 is @-approximate nearest neighborapf

Is—qll <r+/d < (4d%?+ 4d"?) || p* — q.
Case4: q € B(v), p* € B(v). As in Case 3, we can argue that the diameteB@f) is

at mostr /d. Then the sites(v) € P(left(v)) found in line 4 is ac-approximate nearest
neighbor ofg:

Is)—qll < Is@)—p*ll+Ip*—qll < rv/d+[p*—ql < (4d*?+4dY?+1) || p*—q]|.

We conclude that Quad-Quérgot) returns a set oD (logn) sites containing a-
approximate nearest neighboragfunder the assumption thais (1/(2d + 2))-central
in itsr-grid cell. This assumption can be removed as follows. By Lemma 3.3, we know

Approximate Nearest Neighbor Queries Revisited 369

thatq 4+ v is (1/(2d + 2))-central in itsr -grid cell for somej € {0, 1, ..., d}. During
preprocessing, build a balanced quadtree for the poir set)) for eachj. The total
preprocessing time for thie+ 1 trees iSO (d?n log n). By answering a query fay+ v
on the point seP + v for eachj, we obtain a set 0D(d logn) sites containing a
c-approximate nearest neighboragfand we can return the closest poington this set.
The query time is therefor®(d? logn). O

3.3. Applications

One application of our technique is the construction of sparse Euclidean spanner graphs.
A t-spannerof P is a subgraph of the complete Euclidean grapPR pfvith the property

that the shortest path length between any pair of pgintse P is bounded by| p—q]|.

The numbet > 1 is called thestretch factor We show how to construct a spanner of
sizeO(dnlogn) with an O(d¥?) stretch factor by modifying the proof of Theorem 3.4.
Most previous algorithms (e.qg., [9], [21], and [22]) can find spanners with stretch factor
arbitrarily close to 1 but have exponential dependence wrtheir running time.

Theorem 3.5. Suppose d is everet t = 8d%? 4 8dY/2 + 1. A t-spanner with
O(dnlogn) edges can be constructed in(@nlogn) time

Proof. Given a balanced quadtree fBrc [0, 1), consider the following procedure,
which runs inO(nlogn) time and returns a graph witB(nlogn) edges:

Algorithm Spannefv)

1. if vis a leaf then returd
2. return Spannéleft(v)) U Spannefright(v)) U {{s(v), p}: p € P(v)}
wheres(v) is any site fromP (left(v))

Given a pairp, g € P, letr = 2=¢ (¢ € N) be such that

<llp—=all =

4d + 4 2d +2

Suppose thaq is (1/(2d + 2))-central in itsr-grid cell. We prove that ifp, g € P(v),
then the shortest path length betwgeandq in Spannefv) is at most | p — q|:

Casel: p,q € B(v). Thenp, q € P(left(v)), and the claim follows by induction.
Case2: p,q ¢ B(v). Thenp, g € P(right(v)), and the claim follows by induction.

Case3: p € B(v), q € B(v). As in Case 3 of the proof of Theorem 3.4, we can show
that the diameter oB(v) is at mostr v/d. Then the pattp, s(v), q in Spanne) has

370 T. M. Chan

length

< llp—ql + 2|sw) —qll
<lp—ql +2rvd
< (8d¥2+8dY2+ 1) p—ql.

P —=sI + lis(v) —qll

Cased: p € B(v), q & B(v). Similar to Case 3.

We conclude that Spanrewot) contains a path betwegmandq of length at most
tilp — qll, under the assumption thetis (1/(2d + 2))-central in itsr-grid cell. We
can remove this assumption by constructing balanced quadtre@-foo)) for | <
{0, ..., d}, using Lemma 3.3, and taking the union of the resulting 1 graphs.

Note It follows from the proof that thepanner diametef3] of our graphis 2. O

The following is an application to the approximation of Euclidean minimum spanning
trees. By well-known reductions, we have similar results for related problems such as
Euclidean traveling salesman tours and minimum Euclidean Steiner trees.

Corollary 3.6. Suppose d is evehet t = 8d%2 + 8d%/2 + 1. A Euclidean spanning
tree with weight at most t times the weight of the Euclidean minimum spanning tree can
be constructed in @?nlogn) time

Proof. LetG be the spanner graph from Theorem 3.5. Construct a minimum spanning
tree of G—for instance, by a Fibonacci-heap implementation of Prim’s algorithm—in
O(dnlogn) time. It is easy to check that this tree satisfies the desired property.[]

For application to the approximation of bichromatic closest pairs (see Section 2.3), we
can reduce th®©(d?) factor in the running time t®(d) by a different strategy without
the use of quadtrees. We begin with a lemma that shows how to translate any point set
so that at least half of the points become central in their grid cells.

Lemma 3.7. Given a set Pc RY of n > d points and r> 0, a vectorv € RY can be
found in O(dn) time such that there are at least/@ points pe P with the property
that p+ v is (1/4d)-central in its r-grid cell

Proof. Replace each point € P with pmodr; this does not affect the condition of
the lemma and ensures thatc [0, r)d. Fixi € {1, ..., d}. Foreachp € P, the number
pi div(r/2d) liesin{0, 1, ..., 2d—1}. Thus, there exists an ind&x< {0, 1, ...,2d—1}
such that{p € P : pj div(r/2d) = ki}| < n/2d. Such ak; can be found irO(n + d)
time for eachi.

Now, we claim that the vector

r
4d
satisfies the desired condition. To see this, observe thpatib is not(1/4d)-central in
its r-grid cell, then we haveép, — rki/2d) modr < r/2d for somei; this implies that

v = _Zr_d(kl""’kd)_ a...1

Approximate Nearest Neighbor Queries Revisited 371

pi div(r /2d) = k;. By our choice ok;, there are at most/2d points with this property
foreachi = 1,...,d, so at most half of the points are ndy4d)-central. O

An alternative (nondeterministic) way to prove the above lemma is to pick the wector
uniformly at random from [0r)9. Straightforward calculations (e.g., see [8]) reveal that
the probability thatp + v is (1/4d)-central for a fixed poinp is greater than /2.

The above lemma combined with prune-and-search gives a linear-time method for a
decision version of the approximate bichromatic closest-pair problem. A solution to the
closest-pair problem then follows by binary search.

Lemma 3.8. Let P c RY be a set of n> d points where each point is colored red or
blue Letr > Obe suchthatthere exists ared—blue pait, q*) with | p*—q*|c < r/4d.
Suppose that the points have been sorted along each of the d coording&d n) time,
we can find a red—blue paiip, q) with |p — q|| < r+/d.

Proof. Find avectop satisfying the condition of Lemma 3.7. Replace each poiatP
by its translategp+ v; this transformation does not affect distances between points and en-
sures that there are at mogR points in the seP = {p € P: pisnot(1/4d)-central in
its r-grid cell}.

Since we have the sorted order of the mult{jgedivr : p € P}foreach =1,...,d,
aradix sort yields a lexicographical ordering of the multigedivr : p € P}in O(dn)
time. With this ordering, we can assign each point ta itgrid cell in O(dn) time. If
there exists a cell containing both a red point and a blue point, then their distance is at
mostr /d and we have found a pair.

If no pair is found by this process, then neitigmorqg* is (1/4d)-central in its -grid
cell, for otherwisep* andq* would belong to the samegrid cell by Observation 3.2.
Therefore, we can solve the problem recursively for the poinPs&he overall running
time is bounded byp(dn+ dn/2+dn/4+ ---) = O(dn). O

Theorem 3.9. Letn> d and c= 4d%2. A c-approximate closest red—blue pair can
be found in Qdnlogn) time

Proof. Let X be the set ofN = dn real numbers formed by the coordinates of the
given points. Let * be thel ,, distance of the closest red—blue pair; thére X — X.
We consider the problem of findirrg using calls to a decision proceduf¥r), which
determines whethar* < r for a given parameter. Clearly, O(log N) calls toD is
sufficient by binary search if we have precomputed the Cartesian diffedéreeX in
O(N?) time. Standard techniques can be used to bring down the quadratic overhead to
O(NlogN) using an implicit binary search that performs repeated weighted-median
computation; for example, see [12], [14], and [18].

Although we do not have an efficient implementation7of Lemma 3.8 gives a
procedurd)(r) that can successfully find a red—blue p@it q) with |p — q| < rv/d
if r* < r/4d. To decide whether* < r for a givenr, we CaIID(4dr) If D(4dr) is
unsuccessful in finding a pair, then we know that> r. Otherwise, we tentatively

372 T. M. Chan

assume that* < r and add the returned pair to a getWith O(log N) calls toD, we
can then find a (possibly incorrect) valugfor r*. ~

If all of our tentative decisions are correct, theh = rg, and a call toD(4drg)
yields a pair(po, go) with [|po — ggll < 4d%*?r*. Otherwise, we have made a mistake
for somer; that is,r* > r but D(4dr) successfully finds a paifp,q) € A with
lp—qll < 4d¥%r < 4d*?r*. In any caseA U {(po, Qo)} contains ac-approximate
closest red-blue pair, and we can return a pair with the smallest distance in this
set. SinceD can be implemented i@ (dn) time, the running time of the algorithm is
O(dnlog N). O

In closing, we mention an implementation of a dictionary for points in high dimensions
that tolerates small errors. L& be a set oh points inRY such that every two points
are of distance at leastapart. In a query, we wish to find a point b1 that is within
distances from a given query point, assuming that tbéerances is much less thaé. A
simple solution to this problem is to use a uniform grid: locatestigeid cell containing
the query point and examine all of it§ 3- 1 neighboring grid cells (with a little care,
the number 8 can be reduced to?®2 We can remove the exponential dependence by
observing that ifg is «-central in its§-grid cell ande < «d, then neighboring cells
need not be explored. The centrality assumption can be enforced by considering various
translates oP with Lemma 3.3. Only simple data structures are needed, and insertions
and deletions of points can be easily handled.

4. Conclusions

We have examined ways of reducing “constant factors” in previous approaches to ap-
proximate nearest neighbor queries on a set pdints. For any fixed dimensiahand
approximation factor 3 ¢, we obtain constants that a@e*~9/2) or O(s1~9/2). For
any dimension and a sufficiently large approximation factor, we obtain constants that are
polynomial in the dimension. The time and space bounds of our methods are optimal or
near-optimal in terms af.

One open problem for low dimensions is to reducestitependence even further, if
possible, while keepin® (n polylogn) space and(polylogn) query time. Reducing
the space complexity to linearity in Theorems 2.3 and 2.5 would be interesting. Another
problem is to derive our high-dimensional results in Section 3 using only algebraic
operations (without integer divisions and logarithms).

References

1. P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning trees and
bichromatic closest pair®iscrete ComputGeom, 6:407-422, 1991.

2. P.K. Agarwal and J. Mat@aek. Ray shooting and parametric sea®M J Comput, 22:764-806, 1993.

3. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: short, thin, and lanky. In
Proc. 27th ACM SympTheory of Computingpages 489-498, 1995.

4. S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensionBrodn4th
ACM-SIAM SympDiscrete Algorithmspages 271-280, 1993.

Approximate Nearest Neighbor Queries Revisited 373

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Arya and D. M. Mount. Approximate range searching.Poc. 11th ACM SympComputational
Geometrypages 172-181, 1995.

S. Arya, D. M. Mount, and O. Narayan. Accounting for boundary effects in nearest neighbor searching.
Discrete ComputGeom, 16:155-176, 1996.

. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate

nearest neighbor searching. fnoc. 5th ACM—SIAM SympDiscrete Algorithmspages 573-582, 1994.

. M. Bern. Approximate closest-point queries in high dimensiém®rm. ProcessLett, 45:95-99, 1993.
. P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higher

dimensions. IrProc. 4th ACM-SIAM SymDiscrete Algorithmspages 291-300, 1993.

B. Chazelle. An optimal algorithm for intersecting three-dimensional convex poly!&idsl.] Compuit,
21:671-696, 1992.

K. L. Clarkson. An algorithm for approximate closest-point querie®rait. 10th ACM SympComputa-

tional Geometrypages 160-164, 1994.

R. Cole. Slowing down sorting networks to obtain faster sorting algorittimadssoc Comput Mach,
34:200-208, 1987.

P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality.
To appear irProc. 30th ACM SympTheory of Computingl998.

D. B. Johnson and T. Mizoguchi. Selecting tth elementinX + Y and X1 + X2 + - -+ + Xm. SIAM J
Comput, 7:147-153, 1978.

S. Kapoor and M. Smid. New techniques for exact and approximate dynamic closest-point problems.
SIAM J Comput, 25:775-796, 1996.

J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensioRsodn2%th ACM Symp
Theory of Computingpages 599-608, 1997.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high
dimensional spaces. To appeaFroc. 30th ACM SympTheory of Computingl998.

H. P. Lenhof and M. Smid. Sequential and parallel algorithms fok tesest pairs probleninternat J.
Comput Geom Appl,, 5:273-288, 1995.

J. Matosék and O. Schwarzkopf. On ray shooting in convex polytopesrete CompuiGeom, 10:215—

232, 1993.

F. P. Preparata and M. . Sham@&mputational GeometryAn Introduction Springer-Verlag, New York,

1985.

J. S. Salowe. Construction of multidimensional spanner graphs, with applications to minimum spanning
trees. InProc. 7th ACM SympComputational Geometrpages 256—261, 1991.

P. M. Vaidya. A sparse graph almost as good as the complete graph on péiisniensions.Discrete
Comput Geom, 6:369-381, 1991.

A. C. Yao. On constructing minimum spanning tredls-gimensional spaces and related proble8iaM

J. Comput, 11:721-736, 1982.

Received Mag8, 1997 ,and in revised form March, 1998.

