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Abstract. A geometric graph is a graphG = G(V, E) drawn in the plane, where its
vertex setV is a set of points in general position and its edge setE consists of straight
segments whose endpoints belong toV . Two edges of a geometric graph are in convex
position if they are disjoint edges of a convex quadrilateral. It is proved here that a geometric
graph withn vertices and no edges in convex position contains at most 2n− 1 edges. This
almost solves a conjecture of Kupitz. The proof relies on a projection method (which
may have other applications) and on a simple result of Davenport–Schinzel sequences of
order 2.

1. Introduction

A geometric graphis a graphG = G(V, E) drawn in the plane whose vertex setV
consists of points in general position (i.e., no three are collinear) and whose edge setE
consists of straight segments whose endpoints belong toV . Consult [4] for recent results
on geometric graphs. Two segments are inconvex positionif they are disjoint edges of
a convex quadrilateral. A geometric graph is calledproper if it has two edges in convex
position. Otherwise, it is calledimproper.

The systematic study of geometric graphs was initiated by Kupitz and Perles [1].
Kupitz [2] constructed improper graphs withn vertices and 2n−2 edges forn ≥ 4. (See
Fig. 1 for an improper geometric graph on 7 vertices and 12 edges.)
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Fig. 1. An improper geometric graph on 7 vertices and 12 edges.

He made the following conjecture:

Kupitz Conjecture. An improper geometric graph with n vertices has at most2n− 2
edges.

Here the conjecture is almost solved:

Theorem. An improper geometric graph with n vertices has at most2n− 1 edges.

This result has appeared in [3]. The proof relies on a projection method and on a
simple property of Davenport–Schinzel sequences of order 2.

The second section deals with definitions and two lemmas, followed by the proof of
the theorem in the third section.

2. Definitions and Two Lemmas

For distinct pointsx andy let xy denote the segment with endpointsx andy, let `(x, y)
denote the line through these points, and let−→xy denote the ray (half-line) with apexx
and containingy. An edgexy of a geometric graph is said to be to theright (left) of edge
xz if the ray−→xy is obtained from the ray−→xz by a clockwise (counterclockwise) rotation
aboutx by a positive angle less thanπ . If there is no edge incident tox to the right (left)
of xy, thenxy is called therightmost(leftmost) edge ofx. If xy is not the rightmost or
the leftmost edge ofx, then it is called aninterior edge ofx.

A circular sequence is a sequence whose first and last term are considered adjacent. A
circular sequence from a set ofn symbols shall be called acircular Davenport–Schinzel
sequence of order 2 if no two adjacent terms are identical and if it does not contain a
circular subsequence of typeabab.

For more advanced results on Davenport–Schinzel sequences (which are not needed
here), applications, etc., we may consult [5]. We shall need a known upper bound on the
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length of such circular sequences of order 2 which is easily proved by induction onn,
the number of symbols, see [5].

Lemma 1. The length of a circular Davenport–Schinzel sequence of order2 on n
symbols for n≥ 2 is at most2n− 2.

A convex curveis the boundary of a compact convex planar set with nonempty interior.
The next technical lemma is essential to the proof of the theorem.

Lemma 2. Let Ai , Aj , Ak, Al be four points appearing in this order on a convex curve
γ . Let P, Q be two points insideγ .

Consider the four(closed) segments

P Ai , Q Aj , P Ak, Q A`, (1)

and assume that among them:

there is no segment s such that s contains only one of the points P, Q
and the line supporting s contains both of them. (2)

Then two of the four segments are in convex position.

Proof. Observe that:

If points A, B,C, D in general position lie in this order on a convex
curve, then the segmentsAB andC D are in convex position. (3)

Let ` = `(P, Q) and letl+ andl− be two half-planes such thatl+ ∩ l− = `. Let γ1 (γ2)
be the boundary of the convex hull ofl+ ∩ γ (of l− ∩ γ ). It is easy to check, using (2)
and (3) that if one of the four pointsAi , Aj , Ak, A` lies on`, then two of the segments
are in convex position. Assume therefore without loss of generality that either

Ai , Aj , andAk lie in the interior ofl+ (4)

or

Ai andAj lie in the interior ofl+

and

Ak andA` lie in the interior ofl−. (5)

In case (4), by (3) applied toγ1, eitherP Ai andQ Aj are in convex position orP Ak and
Q Aj are in convex position.

In case (5) ifP Ai , Q Aj are not in convex position andP Ak, Q A` are not in convex
position, then by (3) the order of the points onγ is Ai , Aj , A`, Ak, a contradiction.
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3. Proof of the Theorem

Let v1, . . . , vn be the vertices ofG ande the number of its edges. Assume thatG is
improper withe≥ 1. LetC be a circle containingv1, . . . , vn in its interior. For any two
verticesvi andvj joined by an edgevi vj define two points onC:

αi j = −→vi vj ∩ C and αj i = −→vj vi ∩ C.

Arrange the 2epoints onC in a circular sequence according to the order of their appear-
ance onC. Let D(G) be the circular sequence thus obtained.

Color the points ofD(G) with n colors such that

αi j receives the colori .

Pointαi j has adark color i if vi vj is an interior edge ofvj . Otherwise,αi j has alight
color i . Divide the sequenceD(G) into arcswhere an arc is a maximal subsequence of
consecutive points ofD(G) having the same colori . Note that a darki and a lighti may
belong to the same arc.

The circular sequence obtained fromD(G) by contracting each arc to one of its points
and then replacing the point by its colori is called thepattern sequenceof G, or PS(G).
See Fig. 2. for a geometric graph with four vertices and the corresponding sequences
D(G) andPS(G). Behind each pointαi j is shown its color with a superscriptd if it is
dark or` if it is light.

Here D(G) = (α41, α42, α43, α23, α12, α14, α24, α34, α32, α21). The arcs ofG are
(α41, α42, α43), (α23), (α12, α14), (α24), (α34, α32), (α21). The pattern sequence isPS(G)
= (4, 2, 1, 2, 3, 2).

We need the following two assertions:

Lemma 3. PS(G) is a circular Davenport–Schinzel sequence of order2.

Fig. 2. A geometric graph on four vertices and the derived sequence.
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Lemma 4. An arc of D(G) contains at most one point with dark color.

We have

|D(G)| = 2e= ] of light colored points+ ] of dark colored points. (6)

Each vertex ofG has at most one rightmost edge and at most one leftmost edge incident
to it, so that the number of light colored points inD(G) is bounded by 2n. By Lemmas 1,
3, and 4,

] of dark colored points≤ |PS(G)| ≤ 2n− 2.

Substitute all of the above in (6) to obtain

e≤ 2n− 1.

It remains to prove Lemmas 3 and 4.

Proof of Lemma3. If PS(G) is not a circular Davenport–Schinzel sequence of order
2, then there are four points,αau1, αbu2, αau3, αbu4 appearing in that order onC. Since
v1, . . . , vn are in general position there are no two disjoint segmentsvxvy, vzvt such that
a line through one of them contains an endpoint of the other. Therefore by Lemma 2,
two of the segments

vaαau1, vbαbu2, vaαau3, vbαbu4

are in convex position. Since every edgevxvy is contained in the segmentvxαxy, two of
the segments

vavu1, vbvu2, vavu3, vbvu4

are in convex position, a contradiction.

Proof of Lemma4. Suppose that the pointsαab, αac belong to the same arc and are dark
colored. Assume without loss of generality thatvavc is to the right ofvavb. The edges
vavb, vavc are interior edges ofvb andvc, respectively. So letvbvx be to the right ofvbva

and letvcvy be to the left ofvcva. Let st be the chord ofC that containsvbvc, so thatvb

lies invcs andvc in vbt . Let−→r be the ray with apexvb and parallel to−−→vcva.
Let α1, α2, α3, α4 be the following angles:

α1 = conv
(−−→vbαba ∪ −→r

)
, α2 = conv

(−→r ∪ −→vbs
)
,

α3 = conv
(−→vbs∪ −−→vbαab

)
and α4 = conv

(−→
vct ∪ −−→vcαac

)
.

See Fig. 3.
Sincevbvx is to the right ofvbva, vx must lie in at least one of the anglesα1 or α2

or α3. If vx ∈ α1, then the pointsαac, αxb, αab, αbx are in that order onC. Therefore
αab, αac are not on the same arc, a contradiction. Ifvx ∈ α2, thenvbvx andvcva are in
convex position, a contradiction.

Thereforevbvx is inα3 and by symmetryvcvy is inα4, implyingvbvx andvcvy are in
convex position, a contradiction.
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Fig. 3. Two dark points in an arc of an improper geometric graph are impossible.

The conjecture of Kupitz has been proved by Pavel Valtr, consult [6]. The major
contribution of [6] is that for any fixedk ≥ 3 , any geometric graph onn vertices with no
k edges such that any two of them are in convex position contains at mostO(n) edges.
Valtr also proves that any geometric graph onn vertices with nok pairwise crossing
edges contains at mostO(n logn) edges.
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