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Abstract. The main question discussed in this paper is how well a finite metric space of
sizen can be embedded into a graph with certain topological restrictions.

The existing constructions of graph spanners imply thatrapgint metric space can
be represented by a (weighted) graph withertices anch**°%" edges, with distances
distorted by at most. We show that this tradeoff between the number of edges and the
distortion cannot be improved, and that it holds in a much more general setting. The main
technical lemma claims that the metric space induced by an unweighted igraphirth
g cannot be embedded in a graph(even if it is weighted) of smaller Euler characteristic,
with distortion less thag/4 — g In the special case wheV (G)| = |[V(H)| andG has
strictly less edges thad , an improved bound af/3 — 1 is shown. In addition, we discuss
the caseg((G) < x(H) —1, as well as some interesting higher-dimensional analogues. The
proofs employ basic techniques of algebraic topology.

1. Introduction

The geometry of finite metric spaces and, in particular, the questions related to their
faithful representation by subsets of certain metric spaces of special interest, have been
intensively studied and developed in recent years by researchers from different areas
of Mathematics and Theoretical Computer Science. Let us mention but a few. Johnson
and Lindenstrauss [7], and Bourgain [4] study embeddings in Hilbert spaces from the
perspective of functional analysis. Motivated by questions in graph theory, Graham and
Winkler [6] consider embeddings i, cubes, etc. In Liniaét al. [8] embeddings in
low-dimensional real normed spaces are investigated and applied to the design of graph
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algorithms. In the area of distributed computing, sparse subnetworks of a given network
which faithfully represent the distances play a central role in various constructions,
e.g., design of synchronizers. Such subnetworks, calethnerswere originated by
Awerbuch [2], and Peleg and Ullman [12].

We continue this line of research and study embeddings in metric spaces induced by
weighted graphs of bounded Euler characteristic.

Let (X, d) and(Y, §) be finite metric space$X| = |Y|. Let f be a one-to-one map
from X ontoY. TheLipschitz nornof f, denoted| f ||, or simply || f ||, is

1] = max s(f9), f(t)
T s#tex dis,t)

The Lipschitz distancéor distortion) betweenX andY is

dist(X,Y) = inf |- =1,

where the infimum (actually minimum) is taken over all one-to-one maps. This distance
is akin to the Banach—Mazur distance between linear normed spaces. The Lipschitz
distance is a very natural measure for finite metric spaces, and is the one commonly used
(see, e.g., Bourgain [4]). It has the following projective property:

dist(X, aY) = dist(X, Y),

whereaY is the metric space on the same point sét agith all the distances multiplied
by« > 0. Indeed, iff is the least-distortion map frod ontoY, the same map’ from
X ontoaY has

, . 1.
I =allfl; It == ft.
o

In fact, the Lipschitz distance is closely related to the projective Hilbert metric (see, e.g.,
Bushell [5] for a beautiful application of this metric).

Let X be a finite metric space of sire The central question discussed in this paper
is how well X can be approximated by a sub&f cardinalityn of vertices (with the
induced metric) of an undirected graghwith positive weights on edges and bounded
Euler characteristic Recall that the Euler characteristic Gf is x (G) = |E(G)| —
|V (G)| + 1. In other words, we want to estimate the value of gdiist(X, S), where the
minimum is taken over all suc8 C V(G). Naturally, the answer depends &¥n

An important special case of the general question is whena metric space induced
by a graphH with n vertices ane edges. Is it possible to approximate suchy a graph
G with the same number of vertices, but strictly less edges? The later question, or more
precisely the upper bound part of it, can be answered wgsqgh spannersA t-spanner
(t > 1) of agraphH is a connected subgraghof H, such that for every, j € V

dists@, j) <t - disty(, j).

The key observation relating spanners to our framework is thattli€) < t. Indeed,
for the identity map on the verticds V +— V, ||1 || < t and|/l1 }|| = 1. Thus spanners
with few edges provide some answers to our questions. The first explicit construction
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of sparse spanners for arbitrary unweighted graphs was accomplished by Awerbuch [2],
and Peleg and Siffer [11]. A different construction appeared more recently in éfén ™
et al. [1]; it improves the constants, and works for weighted graphs as well.

Theorem 1.1[1]. Let H be an arbitrary(weighted graph with n verticesThen for
allinteger t > 1, H has a t-spanner with at most¥/! edges

Consequently, any metric spageof cardinalityn can bet-approximated by such a
graph. For the sake of completeness, here is a sketch of a short constructive proof of this
theorem, a variant of the one appearing in [1]. It emphasizes the special role played by
subgraphs of girth- t + 1. Recall that the girth of a graph is the smallest number of
edges in a cycle.

Proof. Throw away (one by one) the inessential edged#iofi.e., the edges whose
removal does not affect the distancesHn Consider the remaining edges one by one,

in order of nondecreasing weight. At each stage add the current edge to the emerging
structure if it does not close a cycle of (edge) size+ 1 there; otherwise discard it. Call

the obtained subgraph. Obviously,G has girth> t 4+ 1, and therefore, by a well-known
theorem from extremal graph theory (see, e.g., Bai®f3]),|E(G)| < n**%t, On the

other hand, the manner in whi€hwas constructed implies that every nonchosen edge

in H is approximated by some path @ with distortion< t. Consequently, the same
holds for any path irH, and the theorem follows. O

The above bound is tight (up to constants) for graph spanners. Indeldisifa
simple unweighted (i.e., unit-weighted) graph of gighany proper subgraph df
distorts the distances by at least 1. Now, for all integerg > 3, there exist (explicitly
constructible) graphs with vertices and girtty, which have more thagn'+43¢-6
edges (see Margulis [9]). The lower bound follows.

Let us return to our original question: What is the smallest possible distortion in
representing a given finite metric spa¥ey a graphG of the same size aX, but with
a bounded number of edges? More generally, what is the smallest possible distortion in
representingX by a subset of vertices (with the induced metric) of a weighted géph
of bounded Euler characteristjdG)? Theorem 1.1 provides an upper bound for this
guestion. However, the simple argument used for obtaining a lower bound for spanners
doesnotapply inthe general case, as the class of the approximating graphs is not restricted
to subgraphs oH. Nevertheless, somewhat surprisingly, we shall see that (almost) the
same lower bound holds. Weaker existential related results were obtained afeAlth”
et al. [1] (see the section on Steiner spanners).

The central result of this paper, which we shall refer to as the Main Lemma, claims that
any embedding of an unweighted gragiwith girth g in a graphG with x (G) < x(H),
has a distortion of at leagt/4 — g In the special case whel (H)| = |V (G)|, this
lower bound is improved tg/3 — 1.

The Main Lemma implies:

Theorem 1.2. Let X be a metric space associated with an unweighted graph H of
size n and girthl0 < g < n, with |E(H)| close to the maximal possible under these
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restrictions(i.e., Margulis graphs or bettgr Then X is at distance at least/4— % from
any subset of size n of any graph G withG) < In*#@-6 _n 1.

In addition to the main question, we briefly discuss the case whién < x(H) — 1.
We also discuss an interesting extension of a special case of the Main Lemma to higher
dimensions.

2. The Main Lemma: Special Case

In this section we prove the Main Lemma for the special case when the size (the number
of vertices) of the approximating graph is equal to that of the approximated. There are
two reasons for treating this important special case separately. The firstis that it permits a
clear exposition of the main ideas of the proof. Second, the result in this case is stronger.
All the graphs under discussion are undirected; the edges may have (strictly) positive
weights. In an unweighted graph all edges have a unit weight. Sometimes the graphs will
be identified with the metric spaces they induce on the verticesgiftheof a graph is
the smallest number of edges in a cycle.

Lemma 2.1. LetH be asimple unweighted connected gragptd let G be an arbitrary
(weighted graph with the same number of verticbst strictly less edge3hen

disttH,G) > g/3 — 1,

where g is the girth of H

Proof. For an arbitrary one-to-one mappirigirom V (H) to V (G), it will be shown

that necessarily f || - | f ~%|| > g/3 — 1. It will be convenient to usk for f ~1. Without

loss of generality(s is assumed to be simple, i.e., with no double edges and self-loops,
and connected. Let be the size oH andG, i.e.,V(H)| = [V(G)| = n.

Instead of discrete graphs and functions, we shall work with their continuous counter-
parts. First, let us associate our graphs with certain one-dimensional simplicial complexes
endowed with a metric. Think of each edge= (v, u) of weightw of the graph as an
interval of lengthw equipped with the usual line metric, with one endpoint identified
with the vertexv and the other withu. Edge metrics naturally induce a metric on the
entire structure. The structures obtained in this fashion #rbendG will be denotedH
andG, respectively, and called sometimes tlmatinuous HG. Note that the distances
between the vertices are preserved, i.e.qdistu) = dist; (v, u). Every path inH (and
G) has a naturally defined length. The distance between any pair of points H (or
G) is equal to the length of a shortest path connecting them (there might be several).
Such paths will be calledeodetic paths

Next, extendf andh to continuous map$: H — G andh: G — H, respectively,
in the following piecewise-linear manner: For each edge (v, u) of H mark some
geodetic pathP. = P, from f(v) to f(u) in G.Letx € H bea point inH, and
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assume that it belongs to the edgeb). Let
dists (a, x)
oO= 77—~ -
dist; (a, b)

Now f (x) is defined as the (unique) pointe Pa.py such that

distz(f (a), y) Y
dists(f(a), f(b))

Defineh analogously. Notice, that unliké andh, their continuous counterparfs h,
do not have to be one-to-one. Also, there might be more than one way to obtain the
extensions, as they depend on the choice of the geodetic paths. In ganefaheed
not be the identity function oRl anymore.

We note thatf is indeed an extension df, i.e., for any vertew € H, f(v) = f (v).
Another observation is that the Lipschitz normfofs equal to that off

1]l = max d|StG'(f(S), f(t))
s#ted  disty(s, t)

=|fl.
This follows directly from the structure i andG, and the obvious fact that fert € H
belonging to the same edge= (a, b),

dists (f(s), f(t))  dists(f (@), f (b))
dist;(s,t)  disty(a,b)

Respectively| h|| = ||h|.
Claim 2.2. Ifthere exist xy € H such that

disty (x, ) > % and  f(x) = fy).
then| f||-[lh]| > g/3 — 1.

Proof. Letv andu be the vertices closest toandy, respectively. Since the set of
vertices constitutes é—net for H, disty (v, u) > g/3 — 1. On the other hand, since

fx = f(y),
dists (f (v), f(u)) < dists(f(x), f() +dists(F(y), fw) < IflI- G+ =1f].
Combining the two inequalities we gg|| > (g/3 — 1)/ f|. O

Thus, under the conditions of Claim 2.2 the lemma is true. It remains to take care of
the case when no two points at distareeg/3 in H are mapped by to the same point.
Assume by contradiction that indedd || - |h| < g/3 — 1. Since| f|| = || f||
and||h| = ||h|l, the same also applies {of | - ||h|l. Let T be a mapping fronH to
itself, defined byT (x) = h o f(x). Clearly, T is continuous. It will be shown thaf is
homotopic to identity, which, together with some basic facts from algebraic topology,
contradicts the conditiofE(H)| > |[E(G)|.
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Claim 2.3. Forany x e H, the distance between x and) is < g/2.

Proof Suppose thak belongs to the edge of H, and f(x) belongs to the edge
¢ = (u, v) of G. By definition of f, there exist pointg, q € e such thai lies between
them, andf (p) = u, f(q) = v. (If f(x) is a vertex ofG, the proof is simplified). Let
P. C H be the geodetic path to which the edge G is mapped byr. The endpoints of
P. are the vertice(u) andh(v). By definition, T (x) = h o f(x) belongs to this path.

Sincep andh(u) are mapped byf to the same point, the distance between them
is, by our first assumption, smaller thgp3. The same applies tpandh(v).

The distance betwednu) andh(v) is bounded byg/3 — 1. Indeed,

disty (h(u), h(v)) _ disty (hw), h(v)) disig(u, v)
disty(p,q)  disc(u,v)  disti(p.q)

and the last term is less thayi3 — 1 (by the second assumption).
Consider the following piecewise geodetic circular pathin

< thll - 1LF1E = I 1 F L

p— h(u)ih(v)—>q—> p.

By the previous assertions, its length is boundeg84-(9/3 —1)+9/3+dist; (p, ) <
0. On the other hand, bothandT (x) belong to it. Subsequently, distx, T (x)) < 9/2.
O

The next step in the proof of the lemma is to establish a homotopy betWee
Id,;. Observe that there istmiquegeodetic pattP (x) € H betweerx andT (x), since
the distance between them is less than half the girtH dbefine

M[t,x]=1—t)x+tT(x), telo,1],

where by the right-hand side we mean timéquepointy € P(x) such that dist (x, y)/
dist; (X, T(x)) = t. Note that if two pointx, y € H are close enough, so aféx) and
T(y), and moreover, the two patli&x(x) and P(y) must be nearly identical. Therefore
M[t, x] is continuous, and thus it is the required homotopy.

To complete the proof we need some basic definitions and facts from algebraic topol-
ogy (see, e.g., [10]):

First, recall the notion of thirst homology group HK) of a (continuous) grapK.
It can be defined as the abelian group offmlvsin K. Given an arbitrary orientation
of the edges, a flow in (oriented) is an integer-valued function oB(K) such that
for all verticesv of K, the sum of values of the incoming edges is equal to that of the
outgoing. It is readily checked thét; (K) is isomorphic to the additive groupx<,
wherey (K) = |[E(K)|— |V (K)|+1isthe Euler characteristic &f. Note that the Euler
characteristic of a discrete graph is equal to that of its continuous counterpart.

Next, we need the following fundamental fact (which, for future use, is stated here
for arbitrary simplicial complexes and thtn homology groups):

Fact. Let K and L be simplicial complexes: K — L, h: L — K, continuous
maps and assume that b f is homotopic tddgk . Then these mappings induce group
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homomorphisms*f H;(K) — H;(L)and h*: H;(L) — H;(K) suchthath o f*isan
automorphism of HK). ConsequentlyH; (K) is isomorphically embeddable in €.).

We return now to our proof. SincCé = ﬁ~o f is homotopic to identity, the above
fact implies that the first homology grouhy (H) is embeddable it (G). On the other
hand,x(H) = |[E(H)] = n+1 > |E(G)| —n+1 = x(&), andZ*™ cannot be
isomorphically embedded #*©). Contradiction. O

3. The Main Lemma: General Case

In this section we address the general case, i.e., when the sole restriction on the approx-
imating graphG is x(G) < x(H). In what follows we will often refer to the proof of
Lemma 2.1 presented in the previous section.

The proof of the special case of the Main Lemma proceeded differently depending
on whether the conditions of Claim 2.2 were satisfied. However, is it at all possible for
these conditions to fail? In this section we show that a slightly weaker statement always
holds, and continues to hold under more general circumstances.

Theorem 3.1. Let H be anunweighted graph of girthand let G be #finite, weighteq
graph satisfyingx (G) < x(H). Then for any contmuousf H — G, there exist
X,y € H such thatf (x) = f(y) anddist; (X, y) > g/4— 5

Remark. Notice that here, unlike beford, is anarbitrary continuous function, and
not an extension of some discrefte

Proof. The general scheme of the proof resembles that of Lemma 2.1; the main differ-
ence lies in finding a suitable

Without loss of generality, we may assume thas onto; if it is not, we shall consider
its image f (H) < G instead ofG. Obviously, x (f(H)) < x(G) = x(G) < x(H).
The vertices off (H) are, naturally, those points df(H) whose neighborhoods anet
locally homeomorphic t&®, plus the images of vertices &f.

Here comes the only fine point in the proof which did not occur previously. We shall
formally (i.e., without effecting the actual structure) extend the set of verti¢& of
G by adding to it a finite set of point&xt C G. The extended vertex set defines a new
edge set foG. The goal of the extension is to achieve the following property: For any
edgee C H and a poini € e, either the imagé (x) is a vertex ofG, or f (x) belongs
to an edge = (u,v) € G and there exist pointp, q € e such thatx € [p, q], and
f(p=u f@@=v

The desired extension can be achieved by taking = {w | w is anextremepoint for
somef (e), wheree C H is an edge ofl }. An extreme pointv is defined as an interior
point of some edge in G, such that any neighborhood af in ¢ contains pointsiot
in f(e). Clearly, no edge < G may contain more than two extreme points associated
with an edgee C H.

The rest of the proof is very close to the one we had before. Define a function
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h: V(G) — H as follows: Foru € V(G), let h(u) be somepoint p € H such that
f(p) = u. The functionh: G — H is defined as before, by extendihgo the whole
Gina piecewise linear manner using geodetic paths. Define®isd — H, by
Tx)=ho f(x).

Now, assume by contradiction that the theorem is wrong, i.e., the distance between
anyx, y € H with f(x) = f(y), is (strictly) less tham/4 — 1.

Claim 3.2. Under the above assumptigior any x € H the distance between x and
T (x) is (strictly) less than ¢2.

Proof Suppose that belongs to edge of H, and f (x) belongs to edge = (u, v)
of G. We assume without loss of generality, tHa) is not a vertex ofG (otherwise,
the proof becomes simpler). By the manner in which the old set of vemcés) was
extended, there exist poings q € esuchthak € [p, q], andf(p) =u, f(q) =v.Let
P. C H be the geodetic path to which the edge G was mapped bﬁ The endpoints
of P; areh(u) andh(v). By the definition off, T(x) = ho f(x) belongs to this path.

By the definition ofh, the pointsp andh(u) are mapped byf to the same point,
and therefore the distance between them is (by our assumption) Ies;/manl the
same applies tq andh(v). Also, dis(p, q) < 1. Clearly, the length of the geodetlc path
P is at most dist (h(u), p) + dist; (p, ) + dist; (q, h(v)) < g/2.

Consider the following piecewise geodetic circular patiiin

p— h(u)ih(v)—>q—> p.

It contains bothx and T (x); by the previous assertions, its length is (strictly) less than
(9/4—3) +9/2+ (9/4— %) + 1 = g. Thus we conclude digtx, T(x)) < g/2. O

The rest of the proof proceeds exactly as before. The contradiction is reached by
directly comparing the Euler characteristics @fand H, rather than the number of
edges in these graphs. O

Arguing as in the proof of Claim 2.2, we obtain the general case of the Main Lemma
as a corollary to Theorem 3.1.

Lemma 3.3. Let H be a simple unweighted connected graph of size n and girth g
and let G be &finite, weighted graph of size>= n, such thaty(G) < x(H). Then

for any subset S of cardinality n of vertices of G equipped with the induced metric
distH, S) > g/4— 3.

An interesting question is whether the (multiplicative) cons@appearing in Lem-
ma 3.3 is the best possible. We conjecture that it can be improv%d When the
approximated graph is the-cycle (C,), the constant is indee%i, as will be shown in
Section 5. Here we show an upper bound arbitrarily closkfmr this special case.

Consider the embedding 6, in the treeT,, as illustrated by Fig. 1. Assign to all the
outer edges of the tree (associated with the leaves) weight 1, and to all the inner edges
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Fig. 1. An embedding ofC, in a tree.

weight 2, wheres is an arbitrary small positive constant. It is readily checked that in
this casegl| f || = 2 + 28, while for sufficiently largen, || f 1| = n/6. Therefore, the
distortion is(1 + 8)n/3.

4. Whenx(G)< x(H) — 1

Given a graphH define itsapproximation patterras a functionAy(i),i € N U {0},
whereAy (i) is the minimum possible distortion in an embeddindHoih a graphG with
x(G) <i.Theorem 1.1 provides an upper bound ongheelopeof the approximation
patterns of all graphs of size That is, any graph of size can do at least as well. We
also know that for any particularthere exists a graphl of sizen which cannot do
much better. The problem that we consider in this section—and, in fact, in the entire
paper—has to do with providing bounds on the approximation patterfiadfdgraphH .

Let H be a simple unweighted graph (not a tree). Clearly, by omitting one edge in
a shortest cycle, one arrives atgirth(H) — 1)-spanner oH with |[E(H)| — 1 edges.
Combining this simple fact with the Main Lemmavyyields (x (H) —1) = ©(girth(H)).

But what aboutAy (x (H) — k), wherek > 1? The above bound obviously becomes
loose. In this section, we propose some approaches toward bounding these numbers.
The first approach seems to be appropriate for skyatlextends the one used for
k = 1. We demonstrate it fdk = 2, where the bound is sharp, and the method is not

obscured by technicalities.

Let H be a simple unweighted graph of sizeand letC be a cycle of minimal length in
it (in general, not unique). Defirge as the length of the second (af@y shortest simple
cycle inH. Notice that the definition does not depend on the choi¢& @bviously, by
omitting two properly chosen edges frdrh one can obtain ég, — 1)-spanner oH.

Theorem 4.1. Let H be as abovand letG be an arbitrary(without loss of generality
continuou$ graph with finitely many vertices angd(G) < x(H) — 2. Then for any
subset S G, |S| = n, with the induced metriaist(H, S) > g,/4 — 3.
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Proof. If g, = girth(H), the theorem holds in a trivial manner; in what follows we
assume thay, > girth(H), or, equivalently, there exists uiquecycle of minimal
length inH, namelyC.

Put for convenience, = x(H), s = x(G). Proceeding as in the proof of Lemma 3.3
(including the assumption that without loss of generafitjs onto), we conclude that
our theorem can potentially fail only when for alle H,

dist; (X, T(X)) < g2/2,

where, as alwayd] (x) = ho f(x). Assume this is the case. Contracti@di.e., gluing

together all the vertices i@ and deleting th¢C| self-loops created by this), we obtain a

new (simple) grapii’. Let| be the projection map df onH’ defined by the contraction.

We claim that under the assumptions, the miapsd!| o T: H — H’ are homotopic.
Let x,y € H be any two points at distance smaller thgn2, and letPy(x, y),

P>(x, y) be any two geodetic paths between them. We claim that uhteth P; and

P, are mapped to theamepathP(x’, y') C H’, wherex’ = | (x), y = 1 (y). Indeed,

by the uniqueness of the minimal length cycleHn the circular pattx N y P
can contain no simple cycle b@, and the latter is contracted byto a point. After
this observation the task of establishing a homotopy betweand | o T becomes
simple: for everyx € H, 1(x) can be transferred too T (x) in H' in a continuous and
uniform manner along the paﬂi, which is the image (unddr) of all geodetic paths
P(x, T(x)) € H. Clearly, the dependence B} on x is a continuous one.

However,| andl o T cannot be homotopic. If they were, the induced mepsg| o
T)*: Hi(H) — Hi(H’) would be equivalent. It is easy to verify thét is onto; it is a
projection map with kernel generated by the elemerttigfH ) associated witlC. But
(I o T)* cannot be onto! Indeed, the homotopy groups are, respecthtely]) = Z",
H1(G) = Z3, and, by a direct calculatiotd;(H’) = Z" 1. Thus

GoTyrzt 5 gs M gr 1 g1

Buts < r — 1. Contradiction. O

Remark. Inthe case whef® is ann-vertex graph, an& = V(G), the above bound
can be improved, as in Lemma 2.1, to di$t S) > g,/3 — 1.

The second approach we discuss is much simpler, and seems to be more suitable
for large values ok. The idea is to find a large-girth subgraph léf whose (inner)
distances are close to thosehh Currently, we do not clearly understand the limits of
this approach. We demonstrate how it works by considering a concrete example.

Let My, denote a discreten + 1) x (n+ 1) grid. How well can it be approximated
by a subset of a tree? The boundary cy@lef M, with its inner metric is at a distance
2 fromCy,. The latter is, by Corollary 5.3 (to be proven in the next section) at a distance
> ‘é‘n — 1 from any subse§, |S| = 4n, of a tree. Therefore for any subsebf size
(n+ 1)? of a tree, distH, S) > %n —1/2. The bound is quite tight: it is easy to find a
subtree inMp, which distorts the distances by at most 3.
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5. Approximating Cycles; Multidimensional Generalizations

In this section we give a different proof for Theorem 3.1 for the special case tthen
a cycle. The statement and the proof are then generalized to higher dimensions.
Letdisk(-, -) denote the geodetic metric on the unit sptSwéa prescribed dimension.

Proposition 5.1. LetT be atopological treg.e., a one-dimensional simplicial complex
associated with a discrete tree. Then for any continuous mag from S'to T there
exist points xy e S such thadist(x, y) > 27/3,and f (x) = f(y).

This proposition is a consequence of the following:

Proposition 5.2. Let f: S+ T be a continuous magpnd let{l,, I,, I3} be an arbi-
trary partition of~S1 to three intervals with mutually disjoint interiar§hen there exists
c € T such thatf ~1(c) has a representative in each of these intervals

Proof. Recall the well-known simple fact that for any three pointitthere exists
a (unique)central point c, such that for any pair of these pointslies on the path
connecting them. Led;, S, Sz be the points ir§* such thatl, = [s1, $], |2 =[S, s3],
andl3 = [ss, s1], and letc be the central point of (), f(s), f(ss). By definition,
f~1(c) has a nonempty intersection with each of the three intervals. O

If the intervalsly, |2, andls are chosen to be of the (same) lengtty 3, then among
any three points; € 11, X2 € |2, andxz € Izthere exists a pai, x; with dists(x;, xj) >
2 /3. Combining this observation with Proposition 5.2, we derive Proposition 3.11.

Arguing as in the proofs of Theorem 3.1 and Claim 2.2, the above propositions yield:

Corollary 5.3. Let S be an n-point finite metric space defined by a subset of vertices
of some tree TThen

dist(C,. S) > % _1

Next, we discuss the analogues of Propositions 5.2 and 5.1 in higher dimensions. We
start with the former. Let\, be the boundary of a simplex,; of dimensionn + 1.
By definition, A, is a union of the(n + 2)-faces ofo,, ;. Denote this family of faces
by F = {Fi}i”;“lz. EachF is ann-dimensional simplex; different faces have mutually
disjoint interiors. In what follows, it will be convenient to view, as the following
equivalent set:

Ap = {(xl,xz,...,xn+2) e R"™2|x >0fori=1,...,n+2;

n+2
in = 1; atleastone; is 0} .
i=1

Inthis representation the fa€ecorresponds to the subset®f of all points withx; = 0.
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For a simplicial complexX, let |K| denote its geometrical realization. For the sake
of convenience we shall identifiK | with K.

Theorem 5.4. Let K be a simplicial complex of dimensign n such that the th
homology group K(K) is trivial. Then for any continuous map :fA, — |K|, there
exists a point &= |K | such that f1(c) has a representative in every E F.

Proof. LetU; C |K| be the image of; underf, fori = 1,...,n+ 2. The union of
theU;-s, i.e., f (Ay), will be calledU . Notice that all theJ;-s are compact, and solis.
Foru € U, letd(u) be the vector of distances

d(u) = (dist(u, Uy), distk (u,Uy), ..., distk (U, Ups2)) € R™2,

Assume by contradiction that the theorem is false. Then it is possible to define a map
h:U = Ay,

_dw
CldWll

Let us check thah is indeed well defined. Since by our assumption the intersection
i”jf U; is empty, the denominator is never zero. The coordinategwf, being dis-
tances, are nonnegative. Also, since euery U belongs to somé&J;, at least one of
these coordinates is 0.
The rest is simple. Consider the m@p A, — A, defined asT = ho f. By the
definition ofh, T maps eachr; into itself. Proceeding as in the proof of Claim 2.3, we

construct a homotopy betwed@nand the identity map Id :

h(u)

M[t,X] = (A—t)Xx+tT(X), telo,1],

where the convex combination is well defined, as botand T (x) lie in the same

face. Such homotopy is, however, impossible. As we have already mentioned before, its
existence would imply that theth homology grougH, (Anr) can be embedded id,(U).

But H,(U) is trivial, asU is a subset of an-dimensional K | with H, (k) = 0, whereas
Hn(Ap) is not. O

Remark 5.5. The same result can be shown to hold in a slightly more general setting,
whenK is an arbitraryn-dimensional simplicial complex anflis homotopic to a map
that sends the whola, to a single point ifK|.

Before discussing the high-dimensional analogue of Proposition 5.1, let us view the
problems we have been dealing with from a more general perspective. Suppade that
andG are metric spaces such that for some topological redda@not be continuously
embedded irG. Then, for any continuous mafp. H — G there exist som&,y € H
such thatf (x) = f(y). Definea(H, G) = inf sup, , disty (x, y) over all suchx, y.

What can be said about(H, G)? The same question can be asked fieg of a given
homotopy type. The problem seems to be appealing and mathematically interesting.
Although some classic results in this direction exist (e.g., the Borsuk—Ulam theorem can
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be viewed as related), we are unaware of any general method for obtaining sharp bounds
ona(H, G) in the general case.

Letan be the infimum ot (S", |K|), taken over all simplicial complexéé of dimen-
sion < n such that theth homology grouHn(K) of K is trivial. Then:

Theorem 5.6. «p is equal to thggeodeti¢ diameter of the regular simplex inscribed
in the unit spher&", i.e.,
()
an = arccoy ——— | .
n+1

Proof. Let us identifyS" with the unit sphere ilR"*! centered at the originA, can
then be identified (up to scaling) with the boundary of the regular simplexinscribed
in S".

The upper bound is easy, and is given by the following construction:
Let {vj }i”:f = A, N S" be the vertices of\,,, so thaty; ¢ F;. Let D be the cone of all
facets of dimension — 1, i.e.,

D = {x e R"™ | x = tp, wheret > 0, andp belongs to the boundary of sorfe}.

Clearly,D is contractible and of dimensian

LetF c S", i =1,...,n+ 2, be the central projections of tlig's on the sphere
S". Define the mag: S" — D as follows. Forx € F/, let T(x) = y, wherey € D
is such thaty — x is a multiple ofvj, and is as short as possible. In other words,
projectsF' on D parallel tov;. It is easily verified thafl is continuous, and that, for
any vertexv; of A, —v; is mapped to the origin. Furthermore, for any x, € S" with
T (x1) = T(X2), the Euclidean distance between them is equi; 1§ — t; vj||» for some
pair of verticesu;, vj, and scalars < t;, t; < 1. Since(v;, v;) < 0, this distance is
bounded byjjv; —v; ||o. Consequently, the geodetic distance betwaeamdx, is at most
dists(vi, vj) = arccog—1/(n+ 1)).

A careful analysis shows that the best lower bound,pone can getfrom Theorem 5.4
is only arccog(n — 2)/2n), which is too weak fon > 1. The proof of the stronger lower
bound is based on the following different statement:

Lemma5.7. Let K be a simplicial complex of dimensienn such that H(K) = 0.
Then for any continuous map :fS" — K, there exists a point & K such that the
convex hull of f1(c) contains the center a§".

Proof. LetK be endowed with a metric induced by the Euclidean distance. Since the
nth homology group of the image df is also trivial (it is a subcomplex df), we may
assume without loss of generality thiais onto, andK is compact.

Assume by contradiction that the statement is false. Define am&p — S" as
follows. For a poing € K, let p(a) be the (uniquely defined) closest-to-the-center point
of the convex hull off ~1(a). Let

p(@)

h = .
@ =@l
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Due to our assumptionh,is well defined. Call two unit vectors, y € S" compatibleif

(X, y) > 0. The key property offi is that, for everyx € S", the vectorsx andh o f(x)

are compatible. The reason for this is thpat f (x) is the closest-to-the-origin point in
the convex hull off =1 o f (x), and as such has a positive inner product with any point
in con{ f~ o f(x)}, includingx. We leave the verification of this simple geometrical
statement to the reader. This property alone would have yielded a contradiction if
were continuous. But it is not. To overcome this difficulty we construct a new function
h:: K — S", such thath; is continuous, and, for every € K, h(a) andh;(a) are
compatible.

Claim5.8. Let B.(a) € K denote the ball of radius around a€ K. There exists
e > 0, such that for every point & K there exists a direction@) € S", such thatfor
every xe B.(a) C K, h(x) and d(a) are compatible

Proof. Assume the statement is wrong. Then there exists a sequence dBbalills=

1,2, ..., withg — 0, such that none of theirimages untidras a common compatible
direction. Equivalently, the convex hull of eveh(B,,), and therefore also of every
p(B,,), contains the center of the sphere. Sip¢8,,) < f~1(B,,), the convex hull of

the latter set also contains the center. Finally, by the Cacatbry Theorem, there exist
somen + 2 vectors inf ~1(B,,) whose convex hull already contains the center. Consider
a subsequence of the balls-sequence which converges to some pbikt Using the
standard compactness argument on the correspoxidifg)-tuples inS" and keeping

in mind the continuity off, one arrives at a conclusion that the convex hulfot(c)
contains the center of the sphere, contrary to our assumptions. O

Lete > 0 be as provided by Claim 5.8. L&R be a triangulation oK such that
the diameter of any simplex ifiRis at mosts. For a vertexa of TR, definehy(a) to
be a directiond(a) € S" as defined in Claim 5.8. Extend the function to the entire
K in a piecewise linear manner using the triangulafiét Clearly, the obtainedi; is
continuous. We claim that itis pointwise compatible withndeed, itis true by definition
fora € K whichisavertex of R If ais notavertex, itis a convex combination of vertices
{a1, @y, ..., am} of some simplex iR By the choice offR disk (a, &) < ¢ for every
a;. By the manner in which; was defined on the verticesBR, h(a) is compatible with
all hy(a)’s, and therefore it must be compatible with their convex combindtiga) as
well.

We return to the proof of the lemma. Define, as ustial§" — S"by T = hjo f. The
map is continuous. Moreover, mos S" is mapped toits antipode, sintéx) = hjo f (x)
is compatible withh o f (x) which is in turn compatible wittx. Therefore, for every
x € S" there exists ainiquegeodetic path betweex and T (x). Arguing along the
same lines as in the proof of Lemma 2.1, these geodetic paths can be used to construct
a homotopy betweem and the identity map, and conclude th#t(S") is embeddable
in H,(K) = 0. The obtained contradiction establishes Lemma 5.7. |

All that remains to complete the proof of Theorem 5.6 is to show the following simple
geometrical fact:
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Claim5.9. Let Sc S" be a set of points whose convex hull contains the center of the
sphere Then thggeodeti¢ diameter of S is at least that of the regular simplex inscribed
in S".

Proof. Clearly, it suffices to show that the Euclidean diameteSdd at least that of

a regular simplex inscribed &". By the Caratbodory Theorem, there exists a subset
Y of Sof sizem < n + 2 such thaton({Y} also contains the center of the sphere. Let
M be an(n + 1) x m matrix whose -column, viewed as a vector, is thth member

of Y. ConsiderN = MTM. N is a symmetric quadratic matrix of size, with 1's on
the diagonal. Reformulating the claim on the diameteY af terms ofN, we arrive at
the equivalent statement that one of the off-diagonal entriésisfless than or equal to
—1/(n+ 1). To prove the latter statement, notice that, by the choicé, dhere exists

a nonnegative nonzero vectorsuch thatMw = 0, and consequentidw = 0. Letw;

be the largest entry ab, and letc be theith row of N. Since(c, w) = 0, andg; = 1, it
holds that

Z(w]‘/wi)q = -1

J#
Observing that there ara — 1 off-diagonal elements in the rogy and that, for every,
0 < wj/wi <1, one concludes that there must exist an off-diagonal entryngfich is

at most—1/(m — 1). Howeverm < n + 2, and the statement follows. O
This completes the proof of Theorem 5.6. O
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