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Abstract. The main question discussed in this paper is how well a finite metric space of
sizen can be embedded into a graph with certain topological restrictions.

The existing constructions of graph spanners imply that anyn-point metric space can
be represented by a (weighted) graph withn vertices andn1+O(1/r ) edges, with distances
distorted by at mostr . We show that this tradeoff between the number of edges and the
distortion cannot be improved, and that it holds in a much more general setting. The main
technical lemma claims that the metric space induced by an unweighted graphH of girth
g cannot be embedded in a graphG (even if it is weighted) of smaller Euler characteristic,
with distortion less thang/4− 3

2. In the special case when|V(G)| = |V(H)| andG has
strictly less edges thanH , an improved bound ofg/3− 1 is shown. In addition, we discuss
the caseχ(G) < χ(H)−1, as well as some interesting higher-dimensional analogues. The
proofs employ basic techniques of algebraic topology.

1. Introduction

The geometry of finite metric spaces and, in particular, the questions related to their
faithful representation by subsets of certain metric spaces of special interest, have been
intensively studied and developed in recent years by researchers from different areas
of Mathematics and Theoretical Computer Science. Let us mention but a few. Johnson
and Lindenstrauss [7], and Bourgain [4] study embeddings in Hilbert spaces from the
perspective of functional analysis. Motivated by questions in graph theory, Graham and
Winkler [6] consider embeddings inZd, cubes, etc. In Linialet al. [8] embeddings in
low-dimensional real normed spaces are investigated and applied to the design of graph
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algorithms. In the area of distributed computing, sparse subnetworks of a given network
which faithfully represent the distances play a central role in various constructions,
e.g., design of synchronizers. Such subnetworks, calledspanners, were originated by
Awerbuch [2], and Peleg and Ullman [12].

We continue this line of research and study embeddings in metric spaces induced by
weighted graphs of bounded Euler characteristic.

Let (X, d) and(Y, δ) be finite metric spaces,|X| = |Y|. Let f be a one-to-one map
from X ontoY. TheLipschitz normof f , denoted‖ f ‖Lip or simply‖ f ‖, is

‖ f ‖ = max
s6=t ∈X

δ( f (s), f (t))

d(s, t)
.

TheLipschitz distance(or distortion) betweenX andY is

dist(X,Y) = inf
f :X 7→Y

‖ f ‖ · ‖ f −1‖,

where the infimum (actually minimum) is taken over all one-to-one maps. This distance
is akin to the Banach–Mazur distance between linear normed spaces. The Lipschitz
distance is a very natural measure for finite metric spaces, and is the one commonly used
(see, e.g., Bourgain [4]). It has the following projective property:

dist(X, αY) = dist(X,Y),

whereαY is the metric space on the same point set asY, with all the distances multiplied
byα > 0. Indeed, if f is the least-distortion map fromX ontoY, the same mapf ′ from
X ontoαY has

‖ f ′‖ = α ‖ f ‖; ‖ f ′−1‖ = 1

α
‖ f −1‖.

In fact, the Lipschitz distance is closely related to the projective Hilbert metric (see, e.g.,
Bushell [5] for a beautiful application of this metric).

Let X be a finite metric space of sizen. The central question discussed in this paper
is how well X can be approximated by a subsetS of cardinalityn of vertices (with the
induced metric) of an undirected graphG with positive weights on edges and bounded
Euler characteristic. Recall that the Euler characteristic ofG is χ(G) = |E(G)| −
|V(G)| + 1. In other words, we want to estimate the value of minS dist(X, S), where the
minimum is taken over all suchS⊆ V(G). Naturally, the answer depends onX.

An important special case of the general question is whenX is a metric space induced
by a graphH with n vertices andeedges. Is it possible to approximate suchX by a graph
G with the same number of vertices, but strictly less edges? The later question, or more
precisely the upper bound part of it, can be answered usinggraph spanners. A t-spanner
(t ≥ 1) of a graphH is a connected subgraphG of H , such that for everyi, j ∈ V

distG(i, j ) ≤ t · distH (i, j ).

The key observation relating spanners to our framework is that dist(H,G) ≤ t . Indeed,
for the identity map on the verticesI : V 7→ V , ‖I ‖ ≤ t and‖I −1‖ = 1. Thus spanners
with few edges provide some answers to our questions. The first explicit construction
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of sparse spanners for arbitrary unweighted graphs was accomplished by Awerbuch [2],
and Peleg and Sh¨affer [11]. A different construction appeared more recently in Alth¨ofer
et al. [1]; it improves the constants, and works for weighted graphs as well.

Theorem 1.1[1]. Let H be an arbitrary(weighted) graph with n vertices. Then, for
all integer t> 1, H has a t-spanner with at most n1+2/t edges.

Consequently, any metric spaceX of cardinalityn can bet-approximated by such a
graph. For the sake of completeness, here is a sketch of a short constructive proof of this
theorem, a variant of the one appearing in [1]. It emphasizes the special role played by
subgraphs of girth> t + 1. Recall that the girth of a graph is the smallest number of
edges in a cycle.

Proof. Throw away (one by one) the inessential edges ofH , i.e., the edges whose
removal does not affect the distances inH . Consider the remaining edges one by one,
in order of nondecreasing weight. At each stage add the current edge to the emerging
structure if it does not close a cycle of (edge) size≤ t+1 there; otherwise discard it. Call
the obtained subgraphG. Obviously,G has girth> t+1, and therefore, by a well-known
theorem from extremal graph theory (see, e.g., Bollob´as [3]),|E(G)| ≤ n1+2/t . On the
other hand, the manner in whichG was constructed implies that every nonchosen edge
in H is approximated by some path inG with distortion≤ t . Consequently, the same
holds for any path inH , and the theorem follows.

The above bound is tight (up to constants) for graph spanners. Indeed, ifH is a
simple unweighted (i.e., unit-weighted) graph of girthg, any proper subgraph ofH
distorts the distances by at leastg− 1. Now, for all integerg > 3, there exist (explicitly
constructible) graphs withn vertices and girthg, which have more than12n1+4/(3g−6)

edges (see Margulis [9]). The lower bound follows.
Let us return to our original question: What is the smallest possible distortion in

representing a given finite metric spaceX by a graphG of the same size asX, but with
a bounded number of edges? More generally, what is the smallest possible distortion in
representingX by a subset of vertices (with the induced metric) of a weighted graphG
of bounded Euler characteristicχ(G)? Theorem 1.1 provides an upper bound for this
question. However, the simple argument used for obtaining a lower bound for spanners
does not apply in the general case, as the class of the approximating graphs is not restricted
to subgraphs ofH . Nevertheless, somewhat surprisingly, we shall see that (almost) the
same lower bound holds. Weaker existential related results were obtained in Alth¨ofer
et al. [1] (see the section on Steiner spanners).

The central result of this paper, which we shall refer to as the Main Lemma, claims that
any embedding of an unweighted graphH with girth g in a graphG with χ(G) < χ(H),
has a distortion of at leastg/4− 3

2. In the special case when|V(H)| = |V(G)|, this
lower bound is improved tog/3− 1.

The Main Lemma implies:

Theorem 1.2. Let X be a metric space associated with an unweighted graph H of
size n and girth10 < g ≤ n, with |E(H)| close to the maximal possible under these
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restrictions(i.e., Margulis graphs or better). Then X is at distance at least g/4− 3
2 from

any subset of size n of any graph G withχ(G) ≤ 1
2n1+ 4/(3g−6) − n+ 1.

In addition to the main question, we briefly discuss the case whenχ(G) < χ(H)−1.
We also discuss an interesting extension of a special case of the Main Lemma to higher
dimensions.

2. The Main Lemma: Special Case

In this section we prove the Main Lemma for the special case when the size (the number
of vertices) of the approximating graph is equal to that of the approximated. There are
two reasons for treating this important special case separately. The first is that it permits a
clear exposition of the main ideas of the proof. Second, the result in this case is stronger.

All the graphs under discussion are undirected; the edges may have (strictly) positive
weights. In an unweighted graph all edges have a unit weight. Sometimes the graphs will
be identified with the metric spaces they induce on the vertices. Thegirth of a graph is
the smallest number of edges in a cycle.

Lemma 2.1. Let H be a simple unweighted connected graph, and let G be an arbitrary
(weighted) graph with the same number of vertices, but strictly less edges. Then

dist(H,G) ≥ g/3 − 1,

where g is the girth of H.

Proof. For an arbitrary one-to-one mappingf from V(H) to V(G), it will be shown
that necessarily‖ f ‖ · ‖ f −1‖ ≥ g/3 −1. It will be convenient to useh for f −1. Without
loss of generality,G is assumed to be simple, i.e., with no double edges and self-loops,
and connected. Letn be the size ofH andG, i.e.,V(H)| = |V(G)| = n.

Instead of discrete graphs and functions, we shall work with their continuous counter-
parts. First, let us associate our graphs with certain one-dimensional simplicial complexes
endowed with a metric. Think of each edgee = (v, u) of weightw of the graph as an
interval of lengthw equipped with the usual line metric, with one endpoint identified
with the vertexv and the other withu. Edge metrics naturally induce a metric on the
entire structure. The structures obtained in this fashion fromH andG will be denotedH̃
andG̃, respectively, and called sometimes thecontinuous H,G. Note that the distances
between the vertices are preserved, i.e., distH (v, u) = distH̃ (v, u). Every path inH̃ (and
G̃) has a naturally defined length. The distance between any pair of pointsx, y ∈ H̃ (or
G̃) is equal to the length of a shortest path connecting them (there might be several).
Such paths will be calledgeodetic paths.

Next, extendf andh to continuous maps̃f : H̃ 7→ G̃ andh̃: G̃ 7→ H̃ , respectively,
in the following piecewise-linear manner: For each edgee = (v, u) of H , mark some
geodetic pathPe = P(v,u) from f (v) to f (u) in G̃. Let x ∈ H̃ be a point inH̃ , and
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assume that it belongs to the edge(a, b). Let

α = distH̃ (a, x)

distH̃ (a, b)
.

Now f̃ (x) is defined as the (unique) pointy ∈ P(a,b) such that

distG̃( f (a), y)

distG̃( f (a), f (b))
= α.

Defineh̃ analogously. Notice, that unlikef andh, their continuous counterparts̃f , h̃,
do not have to be one-to-one. Also, there might be more than one way to obtain the
extensions, as they depend on the choice of the geodetic paths. In general,h̃ ◦ f̃ need
not be the identity function oñH anymore.

We note thatf̃ is indeed an extension off , i.e., for any vertexv ∈ H , f̃ (v) = f (v).
Another observation is that the Lipschitz norm off̃ is equal to that off ,

‖ f̃ ‖ = max
s6=t ∈H̃

distG̃( f̃ (s), f̃ (t))

distH̃ (s, t)
= ‖ f ‖.

This follows directly from the structure of̃H andG̃, and the obvious fact that fors, t ∈ H̃
belonging to the same edgee= (a, b),

distG̃( f̃ (s), f̃ (t))

distH̃ (s, t)
= distG( f (a), f (b))

distH (a, b)
.

Respectively,‖h̃‖ = ‖h‖.

Claim 2.2. If there exist x, y ∈ H̃ such that

distH̃ (x, y) ≥ g

3
and f̃ (x) = f̃ (y),

then‖ f ‖ · ‖h‖ ≥ g/3 − 1.

Proof. Let v andu be the vertices closest tox and y, respectively. Since the set of
vertices constitutes a12-net for H̃ , distH (v, u) ≥ g/3 − 1. On the other hand, since
f̃ (x) = f̃ (y),

distG( f (v), f (u)) ≤ distG̃( f̃ (x), f̃ (v))+ distG̃( f̃ (y), f̃ (u)) ≤ ‖ f̃ ‖ · ( 1
2 + 1

2) = ‖ f ‖.
Combining the two inequalities we get‖h‖ ≥ (g/3 − 1)/‖ f ‖.

Thus, under the conditions of Claim 2.2 the lemma is true. It remains to take care of
the case when no two points at distance≥ g/3 in H̃ are mapped bỹf to the same point.

Assume by contradiction that indeed‖ f ‖ · ‖h‖ < g/3 − 1. Since‖ f̃ ‖ = ‖ f ‖
and‖h̃‖ = ‖h‖, the same also applies to‖ f̃ ‖ · ‖h̃‖. Let T be a mapping fromH̃ to
itself, defined byT(x) = h̃ ◦ f̃ (x). Clearly,T is continuous. It will be shown thatT is
homotopic to identity, which, together with some basic facts from algebraic topology,
contradicts the condition|E(H)| > |E(G)|.
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Claim 2.3. For any x∈ H̃ , the distance between x and T(x) is< g/2.

Proof. Suppose thatx belongs to the edgee of H̃ , and f̃ (x) belongs to the edge
c = (u, v) of G̃. By definition of f̃ , there exist pointsp,q ∈ e such thatx lies between
them, andf̃ (p) = u, f̃ (q) = v. (If f̃ (x) is a vertex ofG, the proof is simplified). Let
Pc ⊆ H̃ be the geodetic path to which the edgec ∈ G̃ is mapped bỹh. The endpoints of
Pc are the verticesh(u) andh(v). By definition,T(x) = h̃ ◦ f̃ (x) belongs to this path.

Sincep andh(u) are mapped byf̃ to the same pointu, the distance between them
is, by our first assumption, smaller thang/3. The same applies toq andh(v).

The distance betweenh(u) andh(v) is bounded byg/3 − 1. Indeed,

distH (h(u), h(v))

distH̃ (p,q)
= distH (h(u), h(v))

distG(u, v)
· distG̃(u, v)

distH̃ (p,q)
≤ ‖h‖ · ‖ f̃ ‖ = ‖h‖ · ‖ f ‖,

and the last term is less thang/3− 1 (by the second assumption).
Consider the following piecewise geodetic circular path inH̃ :

p→ h(u)
Pc−→ h(v)→ q→ p.

By the previous assertions, its length is bounded byg/3+(g/3−1)+g/3+distH̃ (p,q) ≤
g. On the other hand, bothx andT(x) belong to it. Subsequently, distH̃ (x, T(x)) < g/2.

The next step in the proof of the lemma is to establish a homotopy betweenT and
IdH̃ . Observe that there is auniquegeodetic pathP(x) ⊆ H̃ betweenx andT(x), since
the distance between them is less than half the girth ofH . Define

M [t, x] = (1− t) x + t T(x), t ∈ [0, 1],

where by the right-hand side we mean theuniquepoint y ∈ P(x) such that dist̃H (x, y)/
distH̃ (x, T(x)) = t. Note that if two pointsx, y ∈ H̃ are close enough, so areT(x) and
T(y), and moreover, the two pathsP(x) and P(y) must be nearly identical. Therefore
M [t, x] is continuous, and thus it is the required homotopy.

To complete the proof we need some basic definitions and facts from algebraic topol-
ogy (see, e.g., [10]):

First, recall the notion of thefirst homology group H1(K ) of a (continuous) graphK .
It can be defined as the abelian group of allflows in K . Given an arbitrary orientation
of the edges, a flow in (oriented)K is an integer-valued function onE(K ) such that
for all verticesv of K , the sum of values of the incoming edges is equal to that of the
outgoing. It is readily checked thatH1(K ) is isomorphic to the additive groupZχ(K ),
whereχ(K ) = |E(K )|−|V(K )|+1 is the Euler characteristic ofK . Note that the Euler
characteristic of a discrete graph is equal to that of its continuous counterpart.

Next, we need the following fundamental fact (which, for future use, is stated here
for arbitrary simplicial complexes and thei th homology groups):

Fact. Let K and L be simplicial complexes, f : K 7→ L, h: L 7→ K , continuous
maps, and assume that h◦ f is homotopic toIdK . Then these mappings induce group
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homomorphisms f∗: Hi (K ) 7→ Hi (L) and h∗: Hi (L) 7→ Hi (K ) such that h∗ ◦ f ∗ is an
automorphism of Hi (K ). Consequently, Hi (K ) is isomorphically embeddable in Hi (L).

We return now to our proof. SinceT = h̃ ◦ f̃ is homotopic to identity, the above
fact implies that the first homology groupH1(H̃) is embeddable inH1(G̃). On the other
hand,χ(H̃) = |E(H)| − n + 1 > |E(G)| − n + 1 = χ(G̃), andZχ(H̃) cannot be
isomorphically embedded inZχ(G̃). Contradiction.

3. The Main Lemma: General Case

In this section we address the general case, i.e., when the sole restriction on the approx-
imating graphG is χ(G) < χ(H). In what follows we will often refer to the proof of
Lemma 2.1 presented in the previous section.

The proof of the special case of the Main Lemma proceeded differently depending
on whether the conditions of Claim 2.2 were satisfied. However, is it at all possible for
these conditions to fail? In this section we show that a slightly weaker statement always
holds, and continues to hold under more general circumstances.

Theorem 3.1. Let H be an unweighted graph of girth g,and let G be a(finite,weighted)
graph satisfyingχ(G) < χ(H). Then, for any continuousf̃ : H̃ → G̃, there exist
x, y ∈ H̃ such thatf̃ (x) = f̃ (y) anddistH̃ (x, y) ≥ g/4− 1

2.

Remark. Notice that here, unlike before,̃f is anarbitrary continuous function, and
not an extension of some discretef .

Proof. The general scheme of the proof resembles that of Lemma 2.1; the main differ-
ence lies in finding a suitablẽh.

Without loss of generality, we may assume thatf̃ is onto; if it is not, we shall consider
its image f̃ (H̃) ⊆ G̃ instead ofG̃. Obviously,χ( f̃ (H̃)) ≤ χ(G̃) = χ(G) < χ(H).
The vertices off̃ (H̃) are, naturally, those points of̃f (H̃) whose neighborhoods arenot
locally homeomorphic toR, plus the images of vertices of̃H .

Here comes the only fine point in the proof which did not occur previously. We shall
formally (i.e., without effecting the actual structure) extend the set of verticesV(G̃) of
G̃ by adding to it a finite set of pointsExt ⊂ G̃. The extended vertex set defines a new
edge set forG̃. The goal of the extension is to achieve the following property: For any
edgee⊆ H̃ and a pointx ∈ e, either the imagef̃ (x) is a vertex ofG̃, or f̃ (x) belongs
to an edgec = (u, v) ⊆ G̃ and there exist pointsp,q ∈ e such thatx ∈ [ p,q], and
f̃ (p) = u, f̃ (q) = v.

The desired extension can be achieved by takingExt = {w |w is anextremepoint for
some f̃ (e), wheree⊆ H̃ is an edge ofH̃}. An extreme pointw is defined as an interior
point of some edgec in G̃, such that any neighborhood ofw in c contains pointsnot
in f̃ (e). Clearly, no edgec ⊆ G̃ may contain more than two extreme points associated
with an edgee⊆ H̃ .

The rest of the proof is very close to the one we had before. Define a function
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h: V(G̃) → H̃ as follows: Foru ∈ V(G̃), let h(u) be somepoint p ∈ H̃ such that
f̃ (p) = u. The functionh̃: G̃ → H̃ is defined as before, by extendingh to the whole
G̃ in a piecewise linear manner using geodetic paths. Define alsoT : H̃ → H̃ , by
T(x) = h̃ ◦ f̃ (x).

Now, assume by contradiction that the theorem is wrong, i.e., the distance between
anyx, y ∈ H̃ with f̃ (x) = f̃ (y), is (strictly) less thang/4− 1

2.

Claim 3.2. Under the above assumption, for any x ∈ H̃ the distance between x and
T(x) is (strictly) less than g/2.

Proof. Suppose thatx belongs to edgee of H̃ , and f̃ (x) belongs to edgec = (u, v)
of G̃. We assume without loss of generality, thatf̃ (x) is not a vertex ofG̃ (otherwise,
the proof becomes simpler). By the manner in which the old set of verticesV(G̃) was
extended, there exist pointsp,q ∈ esuch thatx ∈ [ p,q], and f̃ (p) = u, f̃ (q) = v. Let
Pc ⊆ H̃ be the geodetic path to which the edgec ∈ G̃ was mapped bỹh. The endpoints
of Pc areh(u) andh(v). By the definition ofh̃, T(x) = h̃ ◦ f̃ (x) belongs to this path.

By the definition ofh, the pointsp andh(u) are mapped byf̃ to the same pointu,
and therefore the distance between them is (by our assumption) less thang/4− 1

2; the
same applies toq andh(v). Also, dist(p,q) ≤ 1. Clearly, the length of the geodetic path
Pc is at most dist̃H (h(u), p)+ distH̃ (p,q)+ distH̃ (q, h(v)) < g/2.

Consider the following piecewise geodetic circular path inH̃ :

p→ h(u)
Pc−→ h(v)→ q→ p.

It contains bothx andT(x); by the previous assertions, its length is (strictly) less than
(g/4− 1

2)+ g/2+ (g/4− 1
2)+ 1= g. Thus we conclude distH̃ (x, T(x)) < g/2.

The rest of the proof proceeds exactly as before. The contradiction is reached by
directly comparing the Euler characteristics ofG̃ and H̃ , rather than the number of
edges in these graphs.

Arguing as in the proof of Claim 2.2, we obtain the general case of the Main Lemma
as a corollary to Theorem 3.1.

Lemma 3.3. Let H be a simple unweighted connected graph of size n and girth g,
and let G be a(finite, weighted) graph of size≥ n, such thatχ(G) < χ(H). Then,
for any subset S of cardinality n of vertices of G equipped with the induced metric,
dist(H, S) ≥ g/4− 3

2.

An interesting question is whether the (multiplicative) constant1
4 appearing in Lem-

ma 3.3 is the best possible. We conjecture that it can be improved to1
3. When the

approximated graph is then-cycle (Cn), the constant is indeed13, as will be shown in
Section 5. Here we show an upper bound arbitrarily close to1

3 for this special case.
Consider the embedding ofCn in the treeTn as illustrated by Fig. 1. Assign to all the

outer edges of the tree (associated with the leaves) weight 1, and to all the inner edges
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Fig. 1. An embedding ofCn in a tree.

weight 2δ, whereδ is an arbitrary small positive constant. It is readily checked that in
this case‖ f ‖ = 2+ 2δ, while for sufficiently largen, ‖ f −1‖ = n/6. Therefore, the
distortion is(1+ δ)n/3.

4. Whenχ(G)< χ(H)− 1

Given a graphH define itsapproximation patternas a functionAH (i ), i ∈ N ∪ {0},
whereAH (i ) is the minimum possible distortion in an embedding ofH in a graphG with
χ(G) ≤ i . Theorem 1.1 provides an upper bound on theenvelopeof the approximation
patterns of all graphs of sizen. That is, any graph of sizen can do at least as well. We
also know that for any particulari there exists a graphH of sizen which cannot do
much better. The problem that we consider in this section—and, in fact, in the entire
paper—has to do with providing bounds on the approximation pattern of afixedgraphH .

Let H be a simple unweighted graph (not a tree). Clearly, by omitting one edge in
a shortest cycle, one arrives at a(girth(H) − 1)-spanner ofH with |E(H)| − 1 edges.
Combining this simple fact with the Main Lemma yieldsAH (χ(H)−1) = 2(girth(H)).
But what aboutAH (χ(H) − k), wherek > 1? The above bound obviously becomes
loose. In this section, we propose some approaches toward bounding these numbers.

The first approach seems to be appropriate for smallk; it extends the one used for
k = 1. We demonstrate it fork = 2, where the bound is sharp, and the method is not
obscured by technicalities.

Let H be a simple unweighted graph of sizen, and letC be a cycle of minimal length in
it (in general, not unique). Defineg2 as the length of the second (afterC) shortest simple
cycle inH . Notice that the definition does not depend on the choice ofC. Obviously, by
omitting two properly chosen edges fromH , one can obtain a(g2− 1)-spanner ofH .

Theorem 4.1. Let H be as above, and letG̃ be an arbitrary(without loss of generality
continuous) graph with finitely many vertices andχ(G̃) ≤ χ(H) − 2. Then, for any
subset S⊆ G̃, |S| = n, with the induced metric, dist(H, S) ≥ g2/4− 3

2.
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Proof. If g2 = girth(H), the theorem holds in a trivial manner; in what follows we
assume thatg2 > girth(H), or, equivalently, there exists auniquecycle of minimal
length inH , namelyC.

Put for convenience,r = χ(H), s= χ(G̃). Proceeding as in the proof of Lemma 3.3
(including the assumption that without loss of generalityf̃ is onto), we conclude that
our theorem can potentially fail only when for allx ∈ H̃ ,

distH̃ (x, T(x)) < g2/2 ,

where, as always,T(x) ≡ h̃ ◦ f̃ (x). Assume this is the case. ContractingC (i.e., gluing
together all the vertices inC and deleting the|C| self-loops created by this), we obtain a
new (simple) graphH ′. Let I be the projection map of̃H on H̃ ′ defined by the contraction.
We claim that under the assumptions, the mapsI and I ◦ T : H̃ → H̃ ′ are homotopic.

Let x, y ∈ H̃ be any two points at distance smaller thang2/2, and letP1(x, y),
P2(x, y) be any two geodetic paths between them. We claim that underI both P1 and
P2 are mapped to thesamepathP(x′, y′) ⊆ H̃ ′, wherex′ = I (x), y′ = I (y). Indeed,

by the uniqueness of the minimal length cycle inH , the circular pathx
P1−→ y

P2−→ x
can contain no simple cycle butC, and the latter is contracted byI to a point. After
this observation the task of establishing a homotopy betweenI and I ◦ T becomes
simple: for everyx ∈ H̃ , I (x) can be transferred toI ◦ T(x) in H̃ ′ in a continuous and
uniform manner along the pathP

′
x, which is the image (underI ) of all geodetic paths

P(x, T(x)) ⊆ H̃ . Clearly, the dependence ofP
′
x on x is a continuous one.

However,I and I ◦ T cannot be homotopic. If they were, the induced mapsI ∗, (I ◦
T)∗: H1(H̃)→ H1(H̃ ′) would be equivalent. It is easy to verify thatI ∗ is onto; it is a
projection map with kernel generated by the element ofH1(H̃) associated withC. But
(I ◦ T)∗ cannot be onto! Indeed, the homotopy groups are, respectively,H1(H̃) = Zr ,
H1(G̃) = Zs, and, by a direct calculation,H1(H̃ ′) = Zr−1. Thus

(I ◦ T)∗: Zr f̃ ∗−→ Zs h̃∗−→ Zr I ∗−→ Zr−1.

But s< r − 1. Contradiction.

Remark. In the case whenG is ann-vertex graph, andS= V(G), the above bound
can be improved, as in Lemma 2.1, to dist(H, S) ≥ g2/3− 1.

The second approach we discuss is much simpler, and seems to be more suitable
for large values ofk. The idea is to find a large-girth subgraph ofH , whose (inner)
distances are close to those inH . Currently, we do not clearly understand the limits of
this approach. We demonstrate how it works by considering a concrete example.

Let Mn×n denote a discrete(n+ 1)× (n+ 1) grid. How well can it be approximated
by a subset of a tree? The boundary cycleQ of Mn×n with its inner metric is at a distance
2 fromC4n. The latter is, by Corollary 5.3 (to be proven in the next section) at a distance
≥ 4

3n − 1 from any subsetS′, |S′| = 4n, of a tree. Therefore for any subsetS of size
(n+ 1)2 of a tree, dist(H, S) ≥ 2

3n− 1/2. The bound is quite tight: it is easy to find a
subtree inMn×n which distorts the distances by at mostn+ 3.
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5. Approximating Cycles; Multidimensional Generalizations

In this section we give a different proof for Theorem 3.1 for the special case whenH is
a cycle. The statement and the proof are then generalized to higher dimensions.

Let distS(·, ·)denote the geodetic metric on the unit sphereSof a prescribed dimension.

Proposition 5.1. LetT̃ be a topological tree, i.e.,a one-dimensional simplicial complex
associated with a discrete tree T. Then, for any continuous map̃f from S1 to T̃ there
exist points x, y ∈ S1 such thatdistS(x, y) ≥ 2π/3, and f̃ (x) = f̃ (y).

This proposition is a consequence of the following:

Proposition 5.2. Let f̃ : S1 7→ T̃ be a continuous map, and let{I1, I2, I3} be an arbi-
trary partition ofS1 to three intervals with mutually disjoint interiors. Then there exists
c ∈ T̃ such thatf̃ −1(c) has a representative in each of these intervals.

Proof. Recall the well-known simple fact that for any three points inT̃ there exists
a (unique)central point c, such that for any pair of these points,c lies on the path
connecting them. Lets1, s2, s3 be the points inS1 such thatI1 = [s1, s2], I2 = [s2, s3],
and I3 = [s3, s1], and letc be the central point off̃ (s1), f̃ (s2), f̃ (s3). By definition,
f̃ −1(c) has a nonempty intersection with each of the three intervals.

If the intervalsI1, I2, andI3 are chosen to be of the (same) length 2π/3, then among
any three pointsx1 ∈ I1, x2 ∈ I2, andx3 ∈ I3 there exists a pairxi , xj with distS(xi , xj ) ≥
2π/3. Combining this observation with Proposition 5.2, we derive Proposition 5.1.

Arguing as in the proofs of Theorem 3.1 and Claim 2.2, the above propositions yield:

Corollary 5.3. Let S be an n-point finite metric space defined by a subset of vertices
of some tree T. Then

dist(Cn, S) ≥ n

3
− 1.

Next, we discuss the analogues of Propositions 5.2 and 5.1 in higher dimensions. We
start with the former. Let1n be the boundary of a simplexσn+1 of dimensionn + 1.
By definition,1n is a union of the(n + 2)-faces ofσn+1. Denote this family of faces
by F = {Fi }n+2

i=1 . EachFi is ann-dimensional simplex; different faces have mutually
disjoint interiors. In what follows, it will be convenient to view1n as the following
equivalent set:

1n =
{
(x1, x2, . . . , xn+2) ∈ Rn+2 | xi ≥ 0 for i = 1, . . . ,n+ 2;

n+2∑
i=1

xi = 1; at least onexi is 0

}
.

In this representation the faceFi corresponds to the subset of1n of all points withxi = 0.
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For a simplicial complexK , let |K | denote its geometrical realization. For the sake
of convenience we shall identify|K | with K .

Theorem 5.4. Let K be a simplicial complex of dimension≤ n such that the nth
homology group Hn(K ) is trivial. Then, for any continuous map f: 1n 7→ |K |, there
exists a point c∈ |K | such that f−1(c) has a representative in every Fi ∈ F .

Proof. Let Ui ⊆ |K | be the image ofFi under f , for i = 1, . . . ,n+ 2. The union of
theUi -s, i.e., f (1n), will be calledU . Notice that all theUi -s are compact, and so isU .
For u ∈ U , let d(u) be the vector of distances

d(u) = (dist|K |(u,U1), dist|K |(u,U2), . . . , dist|K |(u,Un+2)) ∈ Rn+2.

Assume by contradiction that the theorem is false. Then it is possible to define a map
h: U 7→ 1n,

h(u) = d(u)

‖d(u)‖1 .

Let us check thath is indeed well defined. Since by our assumption the intersection⋂n+2
i=1 Ui is empty, the denominator is never zero. The coordinates ofd(u), being dis-

tances, are nonnegative. Also, since everyu ∈ U belongs to someUi , at least one of
these coordinates is 0.

The rest is simple. Consider the mapT : 1n 7→ 1n defined asT ≡ h ◦ f . By the
definition ofh, T maps eachFi into itself. Proceeding as in the proof of Claim 2.3, we
construct a homotopy betweenT and the identity map Id1n :

M [t, x] = (1− t) x + t T(x), t ∈ [0, 1],

where the convex combination is well defined, as bothx and T(x) lie in the same
face. Such homotopy is, however, impossible. As we have already mentioned before, its
existence would imply that thenth homology groupHn(1n) can be embedded inHn(U ).
But Hn(U ) is trivial, asU is a subset of ann-dimensional|K | with Hn(k) = 0, whereas
Hn(1n) is not.

Remark 5.5. The same result can be shown to hold in a slightly more general setting,
whenK is an arbitraryn-dimensional simplicial complex andf is homotopic to a map
that sends the whole1n to a single point in|K |.

Before discussing the high-dimensional analogue of Proposition 5.1, let us view the
problems we have been dealing with from a more general perspective. Suppose thatH
andG are metric spaces such that for some topological reasonsH cannot be continuously
embedded inG. Then, for any continuous mapf : H 7→ G there exist somex, y ∈ H
such that f (x) = f (y). Defineα(H,G) = inf f supx,y distH (x, y) over all suchx, y.
What can be said aboutα(H,G)? The same question can be asked forf -s of a given
homotopy type. The problem seems to be appealing and mathematically interesting.
Although some classic results in this direction exist (e.g., the Borsuk–Ulam theorem can
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be viewed as related), we are unaware of any general method for obtaining sharp bounds
onα(H,G) in the general case.

Letαn be the infimum ofα(Sn, |K |), taken over all simplicial complexesK of dimen-
sion≤ n such that thenth homology groupHn(K ) of K is trivial. Then:

Theorem 5.6. αn is equal to the(geodetic) diameter of the regular simplex inscribed
in the unit sphereSn, i.e.,

αn = arccos

(
− 1

n+ 1

)
.

Proof. Let us identifySn with the unit sphere inRn+1 centered at the origin;1n can
then be identified (up to scaling) with the boundary of the regular simplexσn+1 inscribed
in Sn.

The upper bound is easy, and is given by the following construction:

Let {vi }n+2
i=1 = 1n ∩ Sn be the vertices of1n, so thatvi /∈ Fi . LetD be the cone of all

facets of dimensionn− 1, i.e.,

D = {x ∈ Rn+1 | x = tp, wheret ≥ 0, andp belongs to the boundary of someFi }.
Clearly,D is contractible and of dimensionn.

Let F ′i ⊂ Sn, i = 1, . . . ,n + 2, be the central projections of theFi ’s on the sphere
Sn. Define the mapT : Sn 7→ D as follows. Forx ∈ F ′i , let T(x) = y, wherey ∈ D
is such thaty − x is a multiple ofvi , and is as short as possible. In other words,T
projectsF ′i onD parallel tovi . It is easily verified thatT is continuous, and that, for
any vertexvi of 1n,−vi is mapped to the origin. Furthermore, for anyx1, x2 ∈ Sn with
T(x1) = T(x2), the Euclidean distance between them is equal to‖ti vi − tj vj ‖2 for some
pair of verticesvi , vj , and scalars 0≤ ti , tj ≤ 1. Since〈vi , vj 〉 < 0, this distance is
bounded by‖vi −vj ‖2. Consequently, the geodetic distance betweenx1 andx2 is at most
distS(vi , vj ) = arccos(−1/(n+ 1)).

A careful analysis shows that the best lower bound onαn one can get from Theorem 5.4
is only arccos((n−2)/2n), which is too weak forn > 1. The proof of the stronger lower
bound is based on the following different statement:

Lemma 5.7. Let K be a simplicial complex of dimension≤ n such that Hn(K ) = 0.
Then, for any continuous map f: Sn 7→ K , there exists a point c∈ K such that the
convex hull of f−1(c) contains the center ofSn.

Proof. Let K be endowed with a metric induced by the Euclidean distance. Since the
nth homology group of the image off is also trivial (it is a subcomplex ofK ), we may
assume without loss of generality thatf is onto, andK is compact.

Assume by contradiction that the statement is false. Define a maph: K 7→ Sn as
follows. For a pointa ∈ K , let p(a) be the (uniquely defined) closest-to-the-center point
of the convex hull off −1(a). Let

h(a) = p(a)

‖p(a)‖2 .
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Due to our assumptions,h is well defined. Call two unit vectorsx, y ∈ Sn compatibleif
〈x, y〉 > 0. The key property ofh is that, for everyx ∈ Sn, the vectorsx andh ◦ f (x)
are compatible. The reason for this is thatp ◦ f (x) is the closest-to-the-origin point in
the convex hull off −1 ◦ f (x), and as such has a positive inner product with any point
in conv{ f −1 ◦ f (x)}, includingx. We leave the verification of this simple geometrical
statement to the reader. This property alone would have yielded a contradiction ifh
were continuous. But it is not. To overcome this difficulty we construct a new function
h1: K 7→ Sn, such thath1 is continuous, and, for everya ∈ K , h(a) andh1(a) are
compatible.

Claim 5.8. Let Bε(a) ⊆ K denote the ball of radiusε around a∈ K . There exists
ε > 0, such that for every point a∈ K there exists a direction d(a) ∈ Sn, such that, for
every x∈ Bε(a) ⊆ K , h(x) and d(a) are compatible.

Proof. Assume the statement is wrong. Then there exists a sequence of ballsBεi , i =
1, 2, . . . ,with εi → 0, such that none of their images underh has a common compatible
direction. Equivalently, the convex hull of everyh(Bεi ), and therefore also of every
p(Bεi ), contains the center of the sphere. Sincep(Bεi ) ⊆ f −1(Bεi ), the convex hull of
the latter set also contains the center. Finally, by the Carath´eodory Theorem, there exist
somen+2 vectors inf −1(Bεi )whose convex hull already contains the center. Consider
a subsequence of the balls-sequence which converges to some pointc of K . Using the
standard compactness argument on the corresponding(n+ 2)-tuples inSn and keeping
in mind the continuity off , one arrives at a conclusion that the convex hull off −1(c)
contains the center of the sphere, contrary to our assumptions.

Let ε > 0 be as provided by Claim 5.8. LetTR be a triangulation ofK such that
the diameter of any simplex inTR is at mostε. For a vertexa of TR, defineh1(a) to
be a directiond(a) ∈ Sn as defined in Claim 5.8. Extend the function to the entire
K in a piecewise linear manner using the triangulationTR. Clearly, the obtainedh1 is
continuous. We claim that it is pointwise compatible withh. Indeed, it is true by definition
for a ∈ K which is a vertex ofTR. If a is not a vertex, it is a convex combination of vertices
{a1,a2, . . . ,am} of some simplex inTR. By the choice ofTR, distK (a,ai ) ≤ ε for every
ai . By the manner in whichh1 was defined on the vertices ofTR, h(a) is compatible with
all h1(ai )’s, and therefore it must be compatible with their convex combinationh1(a) as
well.

We return to the proof of the lemma. Define, as usual,T : Sn 7→ Sn by T ≡ h1◦ f . The
map is continuous. Moreover, nox ∈ Sn is mapped to its antipode, sinceT(x) = h1◦ f (x)
is compatible withh ◦ f (x) which is in turn compatible withx. Therefore, for every
x ∈ Sn there exists auniquegeodetic path betweenx and T(x). Arguing along the
same lines as in the proof of Lemma 2.1, these geodetic paths can be used to construct
a homotopy betweenT and the identity map, and conclude thatHn(Sn) is embeddable
in Hn(K ) = 0. The obtained contradiction establishes Lemma 5.7.

All that remains to complete the proof of Theorem 5.6 is to show the following simple
geometrical fact:
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Claim 5.9. Let S⊂ Sn be a set of points whose convex hull contains the center of the
sphere. Then the(geodetic) diameter of S is at least that of the regular simplex inscribed
in Sn.

Proof. Clearly, it suffices to show that the Euclidean diameter ofS is at least that of
a regular simplex inscribed inSn. By the Carath´eodory Theorem, there exists a subset
Y of S of sizem ≤ n+ 2 such thatconv{Y} also contains the center of the sphere. Let
M be an(n + 1) × m matrix whosei -column, viewed as a vector, is thei th member
of Y. ConsiderN = MT M . N is a symmetric quadratic matrix of sizem, with 1’s on
the diagonal. Reformulating the claim on the diameter ofY in terms ofN, we arrive at
the equivalent statement that one of the off-diagonal entries ofN is less than or equal to
−1/(n + 1). To prove the latter statement, notice that, by the choice ofY, there exists
a nonnegative nonzero vectorw such thatMw = 0, and consequentlyNw = 0. Letwi

be the largest entry ofw, and letc be thei th row of N. Since〈c, w〉 = 0, andci = 1, it
holds that ∑

j 6=i

(wj /wi )cj = −1.

Observing that there arem− 1 off-diagonal elements in the rowc, and that, for everyj ,
0≤ wj /wi ≤ 1, one concludes that there must exist an off-diagonal entry ofc which is
at most−1/(m− 1). However,m≤ n+ 2, and the statement follows.

This completes the proof of Theorem 5.6.
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