
Algorithmica (1999) 25: 418–437 Algorithmica
© 1999 Springer-Verlag New York Inc.

Concatenation-Based Greedy Heuristics for the
Euclidean Steiner Tree Problem

M. Zachariasen1 and P. Winter1

Abstract. We present a class ofO(n logn) heuristics for the Steiner tree problem in the Euclidean plane.
These heuristics identify a small number of subsets with few, geometrically close, terminals using minimum
spanning trees and other well-known structures from computational geometry: Delaunay triangulations, Gabriel
graphs, relative neighborhood graphs, and higher-order Voronoi diagrams. Full Steiner trees of all these
subsets are sorted according to some appropriately chosen measure of quality. A tree spanning all terminals
is constructed using greedy concatenation. New heuristics are compared with each other and with heuristics
from the literature by performing extensive computational experiments on both randomly generated and library
problem instances.

Key Words. Heuristics, Steiner trees.

1. Introduction. Given a setZ of n terminalsin the Euclidean plane, a shortest network
which interconnectsZ is called aSteiner minimum tree(SMT). An SMT may contain
additional intersection points,Steiner points. ThisSteiner tree problemis NP-hard and
has been a subject for extensive investigation [9]. The most effective exact algorithm
is currently able to solve most problem instances with up to 1000 terminals in a day
[24], [23]. If less CPU time is available or larger problem instances have to be solved,
heuristics are called for.

An SMT is a union offull Steiner trees(FSTs). An FSTF spanning a subsetZk of k
terminals inZ hask− 2 Steiner points. Each Steiner point has three edges making 120◦

with each other. Every terminal inF has degree one (is a leaf inF). If two or three FSTs
share a terminal in an SMT, then the edges meet at the terminal at an angle which is at
least 120◦. Experience has shown that FSTs in an SMT seldomly span more than five
terminals [24].

A minimum spanning tree(MST) for the terminals inZ is a shortest network spanning
Z without introducing Steiner points. An MST forZ can be constructed inO(n logn)
time [14], and is a good approximation to an SMT. This is a consequence of the Steiner
ratio theorem [9]: LetSMT(Z) andMST(Z) denote an SMT and an MST, respectively,
spanning the same set of terminalsZ. Then the ratio|SMT(Z)|/|MST(Z)| is always
greater than or equal to

√
3/2. Consequently, any MST algorithm, seen as an approx-

imation algorithm for the Steiner tree problem, has a 2/
√

3 ≈ 1.1547 performance
ratio.

1 Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
{martinz,pawel}@diku.dk.

Received October 27, 1997; revised May 7, 1998. Communicated by D. T. Lee.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 419

The length of the MST is therefore a natural reference for the performance of other
approximation algorithms, since there is little point in constructing algorithms which
produce solutions worse than the MST. It was for a long time an open problem whether
there exist approximation algorithms with performance ratios strictly less than 2/

√
3.

Arora [1] showed that there exists a polynomial-time approximation scheme for the
Euclidean traveling salesman problem and other geometric problems—among these the
Euclidean Steiner tree problem. This means that we can find in polynomial time (in the
number of terminals but not in 1/ε) a solution within a factor 1+ ε from the optimum
for every fixedε > 0. This result was obtained by a clever partitioning of the plane and
applying dynamic programming.

The practical usefulness of the Arora algorithm has yet to be proven. Less sophisticated
heuristics2 on average produce much better solutions than their worst-case performance
ratio 2/

√
3 indicates. All heuristics described in the sequel have performance ratio 2/

√
3.

Therefore, their performance will be measured on an experimental basis by computing
the reduction over the MST (the most commonly used measure in the literature) and,
when available, the excess from the SMT. When references are made to theaverage
reduction over the MST, it is assumed that the terminals have been distributed randomly
with uniform distribution in a (unit) square. For this distribution andn = 100 the average
reduction of SMT over MST is approximately 3.2%—the asymptotic value is probably
slightly larger [24].

Starting with an MST, a simple approach suggested by Thompson [21] is to look for
edges meeting at angles less than 120◦ and insert Steiner points at appropriate positions
(Figure 1(a)). These Steiner point insertions are continued until improvements fall be-
low some threshold value. Chang [6] gave a slightly more general variant: select three
vertices (terminals or Steiner points) of the current tree, insert a new Steiner point and
corresponding edges, and remove the longest edge on any cycle created (Figure 1(b)).
Other MST-based methods have been proposed. The fastest of them, due to Beasley [4],
has subquadratic observed running time and a 2.9% average reduction over the MST.
Beasley and Goffinet [5] used the approach from [4] in a simulated annealing framework.
Their heuristic obtains a 3.0% average reduction at the expense of a huge running time.

The application of geometric structures to heuristics for the Euclidean Steiner tree
problem was initiated by Smith and Liebman [17]. A triangulation ofZ was used to
aid the identification of small subsets of terminals. The triangulation was constructed
by using the convex hull forZ. The worst-case running time wasO(n4) due to a very
elaborate subset selection procedure. The observed running time was close to being
quadratic. The average reduction was rather poor, approximately 2.2%.

A much more efficient heuristic was given by Smith et al. [16]. A similar approach
has also been applied to the three-dimensional Euclidean Steiner tree problem [18]
and to the plane rectilinear case [15]. This firstO(n logn) heuristic is based on the
Delaunaytriangulation (DT). The average reduction was approximately 2.7%. This is
quite impressive, worst-case running time taken into consideration. Since the class of
heuristics presented in this paper all originate from the ideas used by this heuristic, we
present one of its variants here.

2 All heuristics for the Steiner tree problem are in fact approximation algorithms since they construct solutions
which are no worse than the MST; however, for historic reasons we use the word “heuristics” in the following.

420 M. Zachariasen and P. Winter

Fig. 1.Simple Steiner point insertions. (a) Steiner point insertion. (b) Generalized Steiner point insertion.

A linear number of subsets with two, three, or four terminals is identified as follows:
two-terminal subsets are the MST edges (MST is a subgraph of DT), three-terminal
subsets are corners of triangles in the DT with two MST edges, and four-terminal subsets
are corners of two edge-sharing triangles in the DT with three connected edges from the
MST. For each setZk containingk terminals,k = 2,3,4, the shortest FST is constructed
(if it exists); let it be denoted byFST(Zk). All generated FSTs are placed on a priority
queueQ with the priority|FST(Zk)|/|MST(Zk)| (smallest first).

The treeT spanning all terminals is then constructed by picking FSTs fromQ in
a manner similar to Kruskal’s MST algorithm. An FST is only added toT if it does
not create a cycle. Since a fast disjoint-set data structure is used, the overall worst-case
complexity of the concatenation of small FSTs remainsO(n logn).

The new class of heuristics will follow the general outline of the DT heuristic. We
show that it is possible to obtain a 3.0% reduction usingO(n logn) time, albeit with a
slightly larger constant factor than Smith et al.’s heuristic. In Section 2 we present some
well-known structures from computational geometry and discuss their application to the
Steiner tree problem. Identification of small subsets of terminals (which are likely to be
spanned by a single FST in an SMT) using these structures is discussed in Section 3.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 421

Determination of the shortest FST for every such subset and pruning away nonoptimal
FSTs is covered in Section 4. Concatenation of FSTs using a greedy approach is discussed
in Section 5. In Section 6 the performance of the heuristics is compared by performing
extensive experiments on randomly generated problem instances, including instances
from theOR-Library[3]. The results are also compared with other heuristics with similar
worst-case or observed running time. Concluding remarks are given in Section 7.

2. Proximity Structures. In this section we present some well-known structures from
computational geometry which capture proximity relations for a set of terminalsZ.

2.1. Voronoi Diagrams. Let zi andzj denote two distinct terminals. Furthermore, let
H(zi , zj) denote the set of points not farther fromzi than fromzj . H(zi , zj) is a half-
plane. Let

V(zi , Z) =
⋂

zj∈Z\zi

H(zi , zj)

be theVoronoi regionof zi . V(zi , Z) is convex and its interior is the locus of points
closer tozi than to any other terminal. Hence,

V(zi , Z) = {q ∈ E2 | |zi q| ≤ |zj q|,∀zj ∈ Z\zi }.
Let P(zi , Z) denote the boundary ofV(zi , Z). The union of these boundaries for all

terminals inZ forms theVoronoi diagramfor Z, denoted byVD(Z). Its edges are called
Voronoi edges. Points where Voronoi edges meet are calledVoronoi points.

Thekth order Voronoi diagram VDk(Z), 1 ≤ k < n, is a partition of the plane into
regionsV(Zk, Z), Zk ⊆ Z, |Zk| = k. The interior ofV(Zk, Z) is the locus of points
closer to every terminal inZk than to any terminal inZ\Zk. Hence,

V(Zk, Z) = {q ∈ E2 | |zi q| ≤ |zj q|,∀zi ∈ Zk,∀zj ∈ Z\Zk}.
HenceVD1(Z) = VD(Z). Note thatV(Zk, Z) may be empty. In fact, at mostO(n3)

regions of all ordersk, 1≤ k ≤ n−1, are nonempty; furthermore, the Voronoi diagrams
of all orders up toK th order can be determined inO(K 2n logn) time [10].

2.2. Delaunay Triangulations. The straight-line dual of the Voronoi diagram forZ is
a triangulation ofZ, called the Delaunay triangulation and denoted byDT(Z). This is
one of the most important triangulations capturing proximity relations. It can also be
defined as the unique triangulation such that the circumcircle of each triangle does not
contain any other terminal in its interior. Triangles ofDT(Z) tend to be as “equilateral”
as possible in the sense that the smallest internal angle in all its triangles is maximized
over all triangulations.

An edge(zi , zj) belongs toDT(Z) if and only if there is a circle passing throughzi

andzj and containing no other terminal in its interior (Figure 2(a)).
DT(Z)has a number of interesting properties. It can be constructed in time2(n logn)

and contains at least one MST forZ. The MST forZ can be determined in time2(n)
onceDT(Z) is given [14].

422 M. Zachariasen and P. Winter

Fig. 2. Proximity structures: (a) Delaunay triangulation, (b) Gabriel graph, (c) relative neighborhood graph,
and (d) minimum spanning tree.

2.3. Gabriel Graphs. Let zi andzj denote two distinct terminals. LetD(zi , zj) denote
a disk withzi zj as its diameter. AGabriel graph GG(Z) hasZ as its vertex set. A pair
of terminalszi andzj is adjacent iffD(zi , zj) contains no other terminal (Figure 2(b)).
GG(Z) can be constructed in2(n logn) time by removing fromDT(Z) edges not in-
tersecting their dual Voronoi edges [11]. Consequently,GG(Z) is a subgraph ofDT(Z).
In fact, it contains at least one MST forZ.

2.4. Relative Neighborhood Graphs. Let zi andzj denote two distinct terminals. Let
L(zi , zj) be a lune obtained as an intersection of two disks with radius|zi zj | and centered
at zi andzj , respectively. A relative neighborhood graphRNG(Z) hasZ as its vertex
set. A pair of terminalszi andzj is adjacent iffL(zi , zj) contains no other terminal [22]
(Figure 2(c)). A2(n logn) plane sweep algorithm for the construction ofRNG(Z) has
been suggested by Supowit [19].RNG(Z) is a subgraph ofDT(Z). It contains at least
one MST forZ.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 423

3. Subsets of Terminals. The first phase of all our heuristics is to identify low-
cardinality subsets of terminalsZk ⊆ Z, 2 ≤ |Zk| ≤ K , such that the shortest FST
for Zk (if it exists) is a good candidate for a subtree of an SMT forZ. We assume that
the maximum number of terminals of any FST to be generated is given as a fixed integer
K , 2≤ K ≤ n. Computational experience reported in Section 6 indicates thatK should
not be greater than 6 for randomly generated problem instances.

Subsets with two terminals are identified by taking alln− 1 pairs of terminals joined
by an edge in an MST forZ. The rationale behind this strategy is due to the fact that
FSTs spanning two terminals in an SMT forZ must belong to an MST forZ.

HIGHER-ORDERVORONOIDIAGRAMS. A subsetZk of Z, 3 ≤ k ≤ K , is selected iff
the Voronoi regionV(Zk, Z) is nonempty. The family of these subsets (together with
two-terminal subsets) is denoted byHVD(K).

The total number of nonempty Voronoi regions in Voronoi diagrams of all orders up
to K th order isO(K 2(n− K)) [10].

DELAUNAY TRIANGULATIONS. A subsetZk of Z, 3 ≤ k ≤ K , is selected iff the sub-
graph ofDT(Z) induced byZk is the Delaunay triangulation ofZk. The family of these
subsets (together with two-terminal subsets) is denoted byDT4(K).

A larger family of subsets, denoted byDT ?(K), is obtained by taking subsetsZk of
Z, 3≤ k ≤ K , such that the subgraph ofDT(Z) induced byZk is connected.

GABRIEL GRAPHS. A subsetZk of Z, 3 ≤ k ≤ K , is selected iff the subgraph
of DT(Z) induced by Zk is the Delaunay triangulation ofZk and is connected
in GG(Z). The family of these subsets (together with two-terminal subsets) is denoted
by GG4(K).

A larger family of subsets, denoted byGG?(K), is obtained by taking subsetsZk of
Z, 3≤ k ≤ K , such that the subgraph ofGG(Z) induced byZk is connected.

RELATIVE NEIGHBORHOODGRAPHS. A subsetZk of Z, 3≤ k ≤ K , is selected iff the
subgraph ofDT(Z) induced byZk is the Delaunay triangulation ofZk and is connected
in RNG(Z). The family of these subsets (together with two-terminal subsets) is denoted
by RNG4(K).

A larger family of subsets, denoted byRNG?(K), is obtained by taking subsetsZk

of Z, 3≤ k ≤ K , such that the subgraph ofRNG(Z) induced byZk is connected.

MINIMUM SPANNING TREES. A subsetZk of Z, 3≤ k ≤ K , is selected iff the subgraph
of DT(Z) induced byZk is the Delaunay triangulation ofZk and it is connected in
MST(Z). The family of these subsets (together with two-terminal subsets) is denoted by
MST4(K).

A larger family of subsets, denoted byMST?(K), is obtained by taking subsetsZk of
Z, 3≤ k ≤ K , such that the subgraph ofMST(Z) induced byZk is connected.

424 M. Zachariasen and P. Winter

It is well-known that

MST4(K) ⊆ RNG4(K) ⊆ GG4(K) ⊆ DT4(K)

and

MST∗(K) ⊆ RNG∗(K) ⊆ GG∗(K) ⊆ DT∗(K).

Furthermore,

MST4(K) ⊆ MST∗(K), RNG4(K) ⊆ RNG∗(K),
GG4(K) ⊆ GG∗(K), DT4(K) ⊆ DT∗(K).

The total number of terminal subsets in each of the setsMST4(K), RNG4(K),
GG4(K), and DT4(K) is O(3K−3n) since there areO(n) triangles and each trian-
gle has at most three neighboring triangles. Assuming thatK is a constant we getO(n)
terminal subsets in timeO(n logn).

Theexpectednumber of terminal subsets in each of the setsMST?(K), RNG?(K),
GG?(K), andDT?(K) is O(6K−1n) since each terminal inDT(Z) hasaveragedegree
six. Assuming thatK is a constant the expected number of terminal subsets isO(n) and
they can be generated in expected timeO(n logn).

4. Full Steiner Tree Generation. Since we only consider small subsets of terminals
(K ≤ 6), the processing time needed for each subset of terminals is bounded by a
constant. We compute a shortest FST for a given subset of terminals, instead of an
SMT, for the following reasons:

• It is much faster and less complicated to compute a shortest FST or to conclude that
no FST exists.
• An FST does exist for a small fraction of subsets of terminals (especially whenK ≥ 5)

while all subsets of terminals have an SMT.
• SMTs will often be obtained by concatenation of smaller FSTs.

It is well-known that an SMT forZk is completely inside the convex hullCH(Zk).
Even a smaller region, called theSteiner hullof Zk and denoted bySH(Zk), can be
obtained in the following iterative way. Initially,SH(Zk) is identical withCH(Zk). If
SH(Zk) contains a pairzi , zj of terminals appearing consecutively on the boundary, and
a third terminalzq, zq 6= zi , zj , such that the interior angle∠zi zqzj of4zi zqzj is greater
than or equal to 120◦ and4zi zqzj contains no other terminals, then replacingzi zj by zi zq

andzqzj on the boundary yields a smaller region completely containing SMT forZk.
This process is continued for as long as possible. It can be shown that the order in which
the edges are replaced is immaterial [9]. If the interior ofSH(Zk) is not connected,Zk is
said to havedegenerate configuration; the original problem instance can be decomposed
into smaller problem instances (Figure 3(a)). If the interior ofSH(Zk) is connected and
all terminals are on its boundary,Zk is said to haveSteiner configuration(Figure 3(b)).

Properties of FSTs with three or four terminals are well understood [9]. In particular, a
necessary condition for the existence of such FSTs is that all terminals are on the boundary
of their convex hull. We say that such sets of terminals have aconvex configuration.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 425

Fig. 3.Terminal configuration examples: (a) degenerate and (b) Steiner.

A convex configuration is not necessary for the existence of FSTs with five or more
terminals.

Experiments show that we may discard terminal sets which do not form a Steiner
configuration since they are very unlikely to be spanned by a single FST in an SMT
for Z [24]. In a set of one hundred problem instances (each with one hundred terminals),
all sets with five terminals and all butoneset with six terminals had Steiner configurations.
There were two sets of seven terminals which did not have a Steiner configuration, but
since we restrict our attention to sets with up to six terminals, these sets would not be
considered anyway.

The advantage of considering Steiner configurations, in addition to discarding less
promising FSTs, is that it is much faster to compute shortest FSTs for sets with five
and six terminals. An FST fork terminals is computed by generating all possible full
topologies fork terminals and determining the FST (if it exists) for each topology in
O(k) time using Hwang’s algorithm [8]. There are 15 (resp. 120) different topologies for
k = 5 (resp.k = 6). If the configuration is Steiner, only 5 (resp. 14) different topologies
need to be considered [9].

For each terminal setZk the following computations/tests are made:

1. Compute the Steiner hull forZk. If the configuration ofZk is degenerate or not Steiner,
then discardZk.

2. Find a shortest FST forZk, denoted byFST(Zk), by generating all admissible full
topologies and applying Hwang’s algorithm. If no FST exists, then discardZk.

3. ComputeMST(Zk). If |MST(Zk)| ≤ |FST(Zk)|, then discardZk.

5. Greedy Concatenation. Given a listF of FSTs, we would like to construct a
short tree spanningZ using these FSTs. For any FSTF ∈ F we denote byZF the set of
terminals spanned byF and byMZF the subgraph ofMST(Z) induced byZF . We assume
in our complexity analysis thatF containsO(n) FSTs. Relatively limited knowledge is
required about these FSTs—a fact that makes the approach easy to generalize to other
metrics (including obstacle-avoiding variants).For each FSTF ∈ F we only assume
that the following information is available:

• Terminal setZF spanned byF .
• Length|F | of F .

426 M. Zachariasen and P. Winter

Fig. 4.SMT with an FST inducing disconnected subgraphs of the MST (gray edges).

• Length|MST(ZF)| of an MST spanningZF .
• Information about the connectedness ofMZF , i.e., whetherZF induces a connected

subgraph ofMST(Z) or not.

No knowledge about the location of Steiner points nor about the connections between
terminals and Steiner points is needed during the concatenation. However, in order to
output the final tree, it is obviously necessary that we have access to this information.

Experimental evidence, presented in Section 6, shows that terminals ofmostFSTs
in an SMT induce connected subgraphs ofMST(Z). One must therefore use MSTs as
backbones when constructing good approximations to SMTs. However, in order to obtain
high-quality solutions, it is sometimes necessary to deviate from the MST (Figure 4),
as previously pointed out by Chang [6]. We therefore split our greedy construction into
two phases:

1. Greedy concatenation (Kruskal):Sort the FSTs according to apriority measureand
construct an initial solution using a variant of Kruskal’s MST algorithm, as explained
in Section 5.1. Only FSTs with terminals inducing connected subgraphs ofMST(Z)
are allowed to be used in this phase.

2. Greedy insertion: Try to improve the initial solution by inserting the remaining
FSTs, as explained in Section 5.2.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 427

We have tried to avoid the greedy insertion altogether to simplify the procedure.
However, it seems very difficult to define a priority measure which both gives special
priority to connected induced subgraphs of the MSTand some preference to other
promising FSTs.

5.1. Constructing the Initial Tree Using Kruskal. This initial phase is basically the
heuristic of Smith et al. [16]. The FSTs are sorted according to the ratio priority
|F |/|MST(ZF)| (smallest first), such that FSTs showing a large relative reduction over the
MST have top priority. Another possibility is to use the difference priority|MST(ZF)|−
|F | (largest first). Our experiments show that the ratio priority is to be preferred as
the difference priority gives preference to large (in terms of length) FSTs; there is no
guarantee that such FSTs are SMTs for their terminals. The ratio priority is more size
independent, although with some preference for smaller FSTs. Also, if a small “bad”
FST is added in this initial phase, it is likely to be replaced by a larger FST during the
greedy FST insertion phase (Section 5.2).

Thus, we sort the FSTs by ratio and assume in the following that the FSTs are indexed
according to this priority:F = {F1, F2, . . . , Fm}, wherem = O(n) is the number of
FSTs. We also assume that the MST edges (two-terminal FSTs), denoted byM and
sorted in nondecreasing order, form the tail ofF . The initial treeT0 is constructed by
using the following algorithm (for an example see Figure 5):

function Kruskal(F)
T0 = ∅
forall F ∈ F do

if (MZF is connected)and (F does not create a cycle inT0) then T0 = T0 ∪ F
return T0

end

That is, we scanF and add FSTs to the tree (forest) if no cycle is created. Since the
MST edges form the tail ofF we always obtain a valid tree, i.e.,T0 is connected and
acyclic.

The initial treeT0 will never be longer thanMST(Z) since only FSTs which induce
connected subgraphs ofMST(Z) are added. Furthermore, since we only improveT0 in
the second phase, the final tree will necessarily also have this property. AnMST(Z) is
known to have degree at most six for every terminal [13] and the same will hold forT0.
This can be seen from the fact that every FST inT0 spanningk terminals replaces exactly
k− 1 edges inMST(Z); all terminals in an FST are leaves and thus the degree of every
terminal inT0 is at most its degree inMST(Z).

5.2. Greedy FST Insertion. In this section we present an approach which has some
similarity to Chang’s generalized Steiner point insertions [6]. However, we restrict our
attention to the sorted listF of FSTs and define anFST insertionas follows: LetT be
the current tree, initiallyT = T0. Assume that the FSTs inT appear in the same order

428 M. Zachariasen and P. Winter

Fig. 5. Initial tree using Kruskal. Observe that each FST induces a connected subgraph of the MST (gray
edges).

as inF . An FSTFi ∈ F\T is inserted intoT by using the following algorithm:

function Insert(T , Fi ,M)
T ′ = Fi

forall F ∈ T do
if (|ZF | ≥ 3) and (F does not create a cycle inT ′) then T ′ = T ′ ∪ F

forall F ∈M do
if (F does not create a cycle inT ′) then T ′ = T ′ ∪ F

return T ′

end

Thus, we first addFi to an empty tree, then all FSTs inT with three or more terminals
(avoiding cycles), and finally MST edges in order to guarantee connectivity. An FST-
insertion requiresO(n) time.3

The actual behavior of the algorithm is that it insertsFi into T by pushing some of
the FSTs inT out and reconnecting the components by adding edges fromMST(Z).

3 Using a fast disjoint set data structure [20], the amortized time per FST is actuallyO(α(m,n)), where
α(m,n) is the inverse of Ackermann’s function. This is an extremely slow-growing function and for all
practical purposes a constant.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 429

Fig. 6.FST-insertion: tree (a) before and (b) after insertion.

More precisely, if an FSTFi with k terminals is inserted intoT , k−1 cycles are created
(Figure 6(a)). Each such cycle visits one or more FSTs fromT ; one single FST inT
may, if it spans three or more terminals, be a part of more than one cycle. For each
cycle, only the FST which has the highest ratio is a candidate for deletion. Thus there
is a natural preference for keeping low-ratio FSTs, in particular FSTs spanning three or
more terminals (Figure 6(b)).

If the resulting treeT ′ is shorter thanT we setT = T ′ and try to insert the next FST
fromF\T . Scanning throughF once yields anO(n2) greedy improvement algorithm.
Preliminary experiments, presented in Section 6, show that this method is very effective

430 M. Zachariasen and P. Winter

but at the cost of high running times. We will now show how to cut the running time
down toO(n logn) while preserving most of the power of theO(n2) heuristic.

The obvious solution is to allow at mostO(logn) FST insertions: pick the first
O(logn) FSTs fromF and perform the insert operation iteratively for each of these
FSTs. Unfortunately, the following arguments show that the total expected relative im-
provement will diminish whenn becomes large.

Assuming that the terminals are randomly distributed in a unit square, the expected
length of an SMT is2(

√
n). This follows directly from the constant factor relation-

ship between the length of anSMT(Z), an MST(Z), and a Traveling Salesman tour
TSP(Z) through the same set of pointsZ. More specifically we have12|TSP(Z)| ≤
|MST(Z)| ≤ |TSP(Z)| (the first inequality is the performance bound on the so-called
double MST heuristic for TSP and the other inequality is obvious). Similarly we have
(
√

3/2)|MST(Z)| ≤ |SMT(Z)| ≤ |MST(Z)| (the first inequality is the Steiner ratio
theorem and the second is again obvious). These inequalities yield(

√
3/4)|TSP(Z)| ≤

|SMT(Z)| ≤ |TSP(Z)| and by using the classic result of Beardwood et al. [2] which
states that the expected length of a TSP tour through a set of points distributed randomly
in a unit square is2(

√
n), the same results follows for an SMT.

When an FSTFi spanningk terminals is inserted, at mostk − 1 FSTs spanning
three or more terminals are deleted fromT . In addition, only a constant number of
newMST edges is added toT since only MST edges which span terminals in removed
FSTs are new candidates for being used to reconnect the tree. Thus, the total number of
FSTs (including MST edges) deleted or added is bounded by a constant. Each FST has
bounded length and therefore the length reduction is bounded by a constant independent
of n. The total length reduction obtained by performingO(logn) FST insertions thus has
the same order of magnitude. Now, this implies that the expected relative improvement
over the initial solution drops to zero asn goes to infinity. This indicates that we must
performÄ(

√
n) insertions to ensure that the effect of the greedy improvement does not

disappear for large values ofn.
One remedy to this problem is to insertFi locally in constant time. For any treeT ,

defineTz, z ∈ Z, to be the set of FSTs inT which spanz. Assume thatT has at most six
FSTs spanning each terminal; in particular, this holds forT0 (see Section 5.1).4 Consider
the forestT̄ =⋃z∈ZFi

Tz, i.e., FSTs inT which share a terminal withFi . Obviously, this

forest contains at most 6K FSTs. LetZ̄ =⋃F∈T̄ ZF be the terminals spanned byT̄ and

letMZ̄ be the subgraph ofMST(Z) induced byZ̄.
The number of components in the forestT̄ is bounded by the number of terminals in

Fi (there are two components in Figure 6(a)). If there is only one component, thenall
FSTs through cycles created by insertingFi into T are inT̄ . We replace the subtreēT
by T̄ ′ = Insert(T̄ , Fi ,MZ̄) provided thatT̄ ′ spansZ̄ and is connected. Note thatT̄ ′ is
not necessarily connected since we use edges fromMZ̄ to reconnect the components,
not edges fromMST(Z̄).

By representingT andMST(Z) appropriately, a local insertion can be performed in
constant time. Although not very likely to happen we must also ensure that the size ofTz

4 In an SMT there can be at mostthreesuch FSTs and, furthermore, for randomly generated instances the
probability that there areexactlythree FSTs is zero.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 431

never becomes greater than six. This can be checked just beforeT is updated, discarding
the insertion if the bound is exceeded.

If T̄ or T̄ ′ are disconnected the local insertion ofFi is discarded. However, it may still
be possible to perform anO(n)-insertion. The overall greedy improvement algorithm is
the following: SetT = T0. For each FSTFi ∈ F\T we first try a local insertion. If̄T
andT̄ ′ are connected and|T̄ ′| < |T̄ | we updateT and go to the next FST. Otherwise we
make the callInsert(T , Fi ,M)—provided that we have made less thanCdlogne O(m)-
insertions already. HereC is a constant determined as follows. Preliminary experiments
showed that if the number of components inT̄ was small, it was more likely that an
insertion was improving. We therefore makeCi dlogne insertions for every numberi
of components inT̄ (i = 1, . . . , K); settingCi = K − i + 1 proved to give the right
balance between running time and solution quality.5 Still, it should be noted that the main
reduction in length comes from the local insertions since these may be performed for
every FST; the otherO(logn) insertions only have a small, although not negligible, effect.

6. Computational Experience. The new class of greedy concatenation-based heuris-
tics was experimentally evaluated on an HP9000 workstation6 using the programming
language C++ and class library LEDA (version 3.4.1) [12]. The random number genera-
tor used was therandom source class in LEDA. We also used LEDA’s native Delaunay
triangulation algorithm. The higher-order Voronoi diagram implementation was based
on Lee’s algorithm [10] using the first-order Voronoi diagram algorithm in LEDA.

In Section 6.1 we compare terminal subset generation methods discussed in Section 3.
The most promising of these are selected and we compare the new heuristics with our
own implementation of the heuristic by Smith et al. [16] by performing experiments on a
large number of randomly generated instances with up to 10,000 terminals (Section 6.2).
Finally, the new heuristics are compared with other heuristics from the literature by
measuring their performance on a series of library problem instances (Section 6.3).

6.1. Terminal Subset Generation Methods. The terminal subset generation methods
described in Section 3 compared experimentally 100 problem instances (each with 100
terminals). The terminals were drawn randomly with uniform distribution from a unit
square.

The average number of subsets generated with cardinalityk = 3,4,5,6 is given in
Table 1. As could be expected, fewer subsets are generated when the connected induced
subgraphs are restricted to adjacent triangles ofDT . A very large number of subsets is
generated forDT? andGG?. Also, a relatively large number of three and four terminal
subsets is generated byHVD, but this is less critical since FST computations are much
more expensive for five and six terminal subsets.

Table 1 also presents the corresponding counts of surviving FSTs. We immediately
note that a much larger fraction of terminal subsets survives for the triangulation-based

5 Example: forK = 5 andn = 1000 at most(5+ 4+ 3+ 2+ 1)dlog 1000e = 105 insertions are made.
6 Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Main memory: 96 MB.
Performance: 3.27 SPECint95 (109.1 SPECint92) and 3.98 SPECfp95 (169.9 SPECfp92). Operating system:
HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization flag -O3).

432 M. Zachariasen and P. Winter

Table 1.Terminal subset generation methods.∗

k = 3 k = 4 k = 5 k = 6

Method TS FST NI TS FST NI TS FST NI TS FST NI

HVD 459 253 0.01 623 161 0.14 777 88 0.08 924 40 0.05
DT4 186 151 0.54 273 116 0.34 530 98 0.08 1,150 80 0.03
GG4 134 116 0.55 193 93 0.34 334 73 0.09 636 56 0.03
RNG4 78 65 1.01 98 40 0.53 134 24 0.36 186 14 0.08
MST4 57 45 1.80 61 20 1.23 67 8 0.61 73 3 0.12
DT ? 1,052 507 0.00 4,316 794 0.00 18,717 1389 0.00 83,930 2,375 0.01
GG? 431 220 0.01 1,188 253 0.00 3,507 326 0.00 10,796 403 0.01
RNG? 184 90 0.48 327 62 0.19 623 50 0.08 1,241 39 0.01
MST? 120 54 1.30 159 24 0.89 219 10 0.33 310 5 0.05

∗For each cardinalityk the table gives the average number of terminal subsets (TS), average number of
surviving full Steiner trees (FST) and average number of not identified FSTs in SMTs (NI). Terminal subsets
are generated as explained in Section 3 using higher-order Voronoi diagrams (HVD), Delaunay triangulations
(DT), Gabriel graphs (GG), relative neighborhood graphs (RNG), and minimum spanning trees (MST).

methods. ForDT4 a total (for 3≤ k ≤ 6) of 21% survive, compared with only 5% for
DT?. The same numbers forGG4 andGG? are 26% and 8%, respectively. ForHVD the
number is 19%, slightly lower than forDT4.

The ratio of surviving terminal subsets is not the only measure of quality. More
important is the issue of how well FSTs in SMTs are represented. Since SMTs are
known for all instances in the testbed [24], we may count the number of FSTs in each
SMT which havenotbeen identified. These average counts are also given in Table 1 and
are in general quite low. They should be compared with an average of 29.2 two-terminal
FSTs (MST-edges), 19.9 three-terminal FSTs, 7.5 four-terminal FSTs, 1.6 five-terminal
FSTs, and 0.2 FSTs with six or more terminals in the same 100 problem instances.
Another interesting observation is that 10 of these SMTs had a maximum FST size
(number of terminals) of four, 65 a maximum of five, 20 a maximum of six, and only 5
had an FST with seven or more terminals.

There is a (natural) correspondence between the total number of FSTs generated
and counts of not identified FSTs. The methodsHVD, DT?, andGG? which generate
a large number of subsets (the last two in particular) also have a higher probability of
“covering” the SMT. This does not mean thatDT4 andGG4 are poor at identifying
FSTs in SMTs—on average only one FST is missed. Another interesting observation is
thatRNG4 and especiallyMST4 are significantly worse at identifying FSTs in SMTs.
Finally, on the basis of the statistics forMST? we can conclude that an average of 2.6
FSTs do not induce connected subgraphs of the MST. This should be compared with an
average total of 58.4 FSTs in the corresponding SMTs.

The performance of a heuristic using a given subset generation method depends
on the concatenation method used. First we compare all generation methods using the
O(n logn) greedy concatenation method described in Section 5.2. In Table 2 the re-
duction over MST is given for each generation method andK = 3,4,5,6 (maximum
subset cardinality). The table clearly shows that the ability to cover FSTs in SMTs is
not the only factor that determines the performance of greedy concatenation heuristics.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 433

Table 2.Heuristic performance for terminal subset generation methods.

K = 3 K = 4 K = 5 K = 6

Method RED∗ CPU∗ RED CPU RED CPU RED CPU

HVD 2.79 2.13 3.06 4.13 3.09 7.66 3.09 14.57
DT4 2.77 0.17 3.06 0.38 3.09 1.66 3.10 7.33
GG4 2.78 0.17 3.07 0.33 3.09 1.25 3.10 4.67
RNG4 2.69 0.19 3.05 0.27 3.09 0.66 3.09 1.62
MST4 2.56 0.09 2.92 0.14 2.97 0.36 2.97 0.71
DT ? 2.78 0.41 3.03 2.22 3.05 28.15 3.06 346.07
GG? 2.80 0.25 3.05 0.79 3.08 6.22 3.09 50.26
RNG? 2.74 0.21 3.06 0.36 3.09 1.38 3.09 6.26
MST? 2.63 0.11 2.95 0.18 2.99 0.54 3.00 1.59

∗RED: reduction over MST (%). CPU: total CPU time (sec.).

Triangulation-based methods, in particularDT4 andGG4, performbetterthan their sub-
graph connectivity-based counterparts. This may seem surprising but is just an indicator
that the greedy concatenation has had less bad choices. The CPU times are more or
less directly proportional to the number of subsets generated—perhaps except forHVD
which has a relatively high overhead due to the complex algorithm for constructing
higher-order Voronoi diagrams. IncreasingK from 4 to 5 increases the running time by
a factor between 2 (forHVD) and 13 (forDT?). Also note that selectingK = 3 is a very
bad alternative. The improvement in solution quality when going fromK = 5 to K = 6
on the other hand is negligible.

In the following we identify heuristics using theO(n logn) concatenation method
by its generation method and maximum terminal subset cardinalityK . For instance,
GG4(5) uses terminal subsets with up to five terminals identified as vertices of adjacent
triangles of theDT forming connected induced subgraphs of the Gabriel graph.

On the basis of the results presented in Table 2, we selectedGG4(4) andGG4(5) as the
most “promising” alternatives. This is motivated by the excellent performance of these
two heuristics and by their limited use of CPU time.RNG4(5) is also very efficient, but
requires a special nonstandard algorithm if one demandsO(n logn) running time [19].

Finally we present some results on other alternatives for greedy concatenation. Table 3
compares four variants using generation methodGG4 for K = 4,5 andn = 100. The
first variant returns the initial solution obtained by using Kruskal without making any

Table 3.Greedy concatenation method comparison forGG4.

K = 4 K = 5

Greedy concatenation method RED∗ CPU∗ RED CPU

(1) Kruskal 2.83 0.19 2.86 1.05
(2) Kruskal + local insertions 2.98 0.27 3.00 1.17
(3) Kruskal + local insertions +O(logn) insertions 3.07 0.33 3.09 1.25
(4) Kruskal +O(n) insertions 3.11 0.54 3.13 1.53

∗RED: reduction over MST (%). CPU: total CPU time (sec.).

434 M. Zachariasen and P. Winter

FST insertions (Section 5.1). The second only makes local FST insertions while the third
makes local FST insertions andO(logn) FST insertions (this is the variant evaluated in
Table 2). The last variant makesO(n) FST insertions and therefore takesO(n2) time as
opposed to the other three variants which requireO(n logn) time.

FST insertions significantly improve the quality of the heuristic solution at relatively
limited cost. The performance of the third variant is not much worse than the fourth
variant. However, this difference increases for larger values ofn as will be shown in
Section 6.3; the higher running time complexity of the latter also becomes much more
evident.

6.2. Comparison to Smith et al.’s Heuristic. In this section we compareGG4(4) and
GG4(5) to our own implementation of the heuristic by Smith et al. [16]. In this original
version, calledSLL, triangles in the DT with two MST edges for which the correspond-
ing FST exists are put on a priority queue (similar toMST4(3)). The Kruskal-based
concatenation first tries to add a four-terminal FST for the triangle in question and its
nearest adjacent triangle7—if this FST does not exist or if it does create a cycle in the
current tree, the three-terminal FST is added.

A very simple modification of this heuristic, calledSLL+, simply puts all triangles
with two MST edges for which an FST exists and all four-terminal FSTs constructed
from adjacent triangles with three connected MST edges on the priority queue (just like
MST4(4)). The heuristic tree is constructed using Kruskal.

We present computational results in Table 4. Each number is an average taken over
100 instances.SLL+ outperformsSLL at very little extra computational cost (for very
small instances the opposite seems to be the case as shown in Section 6.3).GG4(4) and
GG4(5) obtain reductions which are more than 0.3% better thanSLL–at aconstantfactor
of 6 and 22 times the running time ofSLL. ForGG4(4) approximately one-third of this
extra time is spent generating FSTs and two-thirds performing greedy improvement. For

Table 4.Randomly generated instances.

SLL SLL+ GG4(4) GG4(5)

n RED∗ CPU∗ RED CPU RED CPU RED CPU

50 2.76 0.06 2.89 0.06 3.11 0.15 3.13 0.56
100 2.71 0.11 2.83 0.13 3.07 0.33 3.09 1.25
500 2.68 0.31 2.84 0.37 3.04 2.05 3.07 7.60

1,000 2.70 0.68 2.83 0.81 3.02 4.37 3.05 16.04
5,000 2.72 3.96 2.85 4.61 3.01 25.67 3.04 89.00

10,000 2.71 8.44 2.85 9.75 3.00 54.69 3.02 186.40

Avg. 2.71 2.85 3.04 3.07

∗RED: reduction over MST (%). CPU: total CPU time (sec.).

7 Based on the distance between corresponding Voronoi vertices.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 435

GG4(5) we have just the opposite: two-thirds are used by FST generation and one-third
by greedy improvement.

This may at first seem to be expensive, but the new heuristics still areO(n logn) and
we actually are very close to optimum: Forn = 50, the average SMT reduction is 3.23%;
out of 100 instancesGG4(4) found the optimal solution for 10 instances andGG4(5)
the optimal solution for 15 instances. Forn = 100 the average SMT reduction is 3.20%;
no optimal solutions have been found by either heuristic. On average we are therefore
within 0.1% from optimum for small instances (n ≤ 100) and (most likely) within 0.2%
from optimum for larger instances.

6.3. Comparison to Other Heuristics. First we make a detailed comparison to the
heuristics by Beasley [4] (BE92) and Beasley and Goffinet [5] (BG94). The CPU times
in these two papers have been “normalized” using theLinpackbenchmark.8

The heuristics were evaluated on instances which are available from theOR-Library
[3]. These instance are randomly generated problem instances with 10–1000 terminals,
15 instances for each size; optimal solutions are known for all these instances [24], [23].
In addition, a single 10,000 terminals instance is available from theOR-Library.

We ranSLL+, GG4(4) andGG4(4)+ (the O(n2) variant ofGG4(4) which makes
O(n) FST insertions) on the same set of problem instances. In Table 5 we compare
the results withBE92. The overall tendency as far as solution quality is concerned is
clear:SLL+ falls behind by a large margin, whileGG4(4) andGG4(4)+ both are better
thanBE92. While the observed running time growth ofBE92 is O(n1.317) the heuristic
GG4(4) has a worst-case running time ofO(n logn)with a relatively small constant. For
n = 1000 the running time ofGG4(4) is less that one-seventh ofBE92 and the heuristic
solutions produced are also better.

It would have been interesting to make a thorough comparison between our new
heuristics andBE92 on larger instances. Beasley [4] reports a 3.00% reduction in (nor-
malized) time 4093.38 seconds on one 10,000 terminals instance. When we applied
SLL+, GG4(4), andGG4(4)+ to the same instance we obtained reductions of 2.85%,
2.98%, and 3.16%, respectively. The corresponding CPU times were 9.89, 54.22, and
5533.93 seconds. Thus the new heuristics compare very favorably when running times
are taken into account.

While the variance of the MST reduction is similar forBE92,GG4(4), andGG4(4)+,
the CPU-time variance shows a completely different picture. The iterative nature of
BE92 makes the running time less predictable, e.g., forn = 1000, the ratio between
the maximum and minimum running time is 3.00, while it is only 1.05 and 1.11 for
GG4(4) andGG4(4)+, respectively. Also, whileGG4(4) uses 1 minute on an average
10,000 terminal instance,BE92 spends more than an hour on a similar instance (based
on the result for the single 10,000 terminal instance discussed above; if this instance is
representative the reported running time growth ofO(n1.317) actually seems to be closer
to being quadratic for larger instances).

8 Our HP workstation has a Linpack benchmark of approximately 40, the Cray X-MP/28 used in [4] a value
between 50 and 200 and the SGI Indigo machine used in [5] a value between 4 and 12. Accordingly, the CPU
times in these two papers have been multiplied by 1.5 and 0.2, respectively, in order to make them comparable
with ours.

436 M. Zachariasen and P. Winter

Table 5.Comparison on instances from theOR-Library.

BE92 SLL+ GG4(4) GG4(4)+ OPT

n RED∗ CPU∗ RED CPU RED CPU RED CPU RED

10 3.14± 1.86 0.07 2.91± 1.82 0.01 3.17± 1.91 0.02 3.17± 1.91 0.02 3.25± 1.88
20 3.02± 1.01 0.17 2.91± 1.04 0.01 3.10± 1.00 0.04 3.10± 0.97 0.04 3.16± 0.99
30 2.87± 0.72 0.26 2.73± 0.72 0.02 2.94± 0.78 0.08 2.96± 0.77 0.08 3.07± 0.78
40 3.02± 0.63 0.50 2.87± 0.54 0.03 3.03± 0.63 0.11 3.04± 0.63 0.11 3.14± 0.63
50 2.84± 0.40 0.49 2.72± 0.39 0.04 2.93± 0.36 0.14 2.93± 0.36 0.17 3.03± 0.41
60 2.95± 0.40 0.72 2.75± 0.37 0.04 3.08± 0.46 0.19 3.10± 0.43 0.22 3.27± 0.42
70 2.84± 0.36 0.72 2.65± 0.33 0.05 2.92± 0.36 0.21 2.97± 0.33 0.29 3.11± 0.38
80 2.82± 0.62 1.00 2.64± 0.61 0.06 2.87± 0.65 0.25 2.92± 0.65 0.36 3.04± 0.67
90 2.94± 0.45 1.22 2.85± 0.50 0.07 2.96± 0.49 0.29 3.01± 0.51 0.45 3.12± 0.49

100 2.95± 0.37 1.47 2.80± 0.34 0.08 3.08± 0.43 0.34 3.14± 0.41 0.56 3.27± 0.38
250 2.95± 0.21 4.32 2.79± 0.23 0.17 3.00± 0.22 0.92 3.07± 0.24 2.91 3.21± 0.23
500 3.05± 0.17 10.28 2.89± 0.17 0.37 3.13± 0.19 2.03 3.22± 0.17 11.52 3.33± 0.18

1000 3.02± 0.13 31.76 2.87± 0.12 0.80 3.05± 0.12 4.32 3.18± 0.14 48.84 3.31± 0.14

Avg. 2.95± 0.72 2.80± 0.70 3.02± 0.74 3.06± 0.73 3.18± 0.73

∗RED: reduction over MST (%) and standard deviation. CPU: total CPU time (sec.). OPT: optimal
solution reduction.

The heuristicBG94 [5] has a performance that is somewhere betweenGG4(4) and
GG4(4)+ but at the cost of a huge running time. Results are only reported forn ≤ 100
and for these instances the average reduction is 3.03%. ForGG4(4) andGG4(4)+ the
reductions obtained on the same instances are 3.01% and 3.03%, respectively. However,
the (normalized) running time forBG94 (n = 100) is more than 100 times larger than for
bothGG4(4) andGG4(4)+. Also, the observed running time growth is higher, namely
O(n2.19).

Finally, Chapeau-Blondeau et al. [7] recently suggested a newO(n logn) heuristic.
The (normalized) running times reported are slightly higher than those forSLL and
SLL+ and the average reduction forn = 1000 is only 2.78%. Thus this heuristic does
not perform better thanSLL+.

7. Concluding Remarks. We presented a class ofO(n logn) heuristics for the Steiner
tree problem in the Euclidean plane. The new heuristics first generated a short list of FSTs
constructed on small subsets of terminals. The geometrically close terminals spanned by
each FST were identified by using well-known structures from computational geometry.

Heuristic trees were constructing by greedy concatenation. Extensive experiments
showed that the new heuristics performed better than any other knownO(n logn) heuris-
tic. In fact, the heuristic solutions were better than those obtained by most other heuristics
with higher (or unknown) complexities.

The approach can be easily generalized to other metrics and higher dimensions,
including obstacle-avoiding variants. A local search approach using full Steiner tree
concatenation has recently been suggested by Zachariasen [25]. Solutions within 0.05%
from optimum could be obtained by using the same basic FST-insertion scheme.

Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 437

References

[1] S. Arora. Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Problems.
In Proc. 37th Ann. Symp. on Foundations of Computer Science, pages 2–13, 1996.

[2] J. Beardwoord, J. H. Halton, and J. M. Hammersley. The Shortest Path Through Many Points.Proceed-
ings of the Cambridge Philosophical Society, 55:299–327, 1959.

[3] J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail.Journal of the Operational
Research Society, 41:1069–1072, 1990.

[4] J. E. Beasley. A Heuristic for Euclidean and Rectilinear Steiner Problems.European Journal of Oper-
ational Research, 58:284–292, 1992.

[5] J. E. Beasley and F. Goffinet. A Delaunay Triangulation-Based Heuristic for the Euclidean Steiner
Problem.Networks, 24:215–224, 1994.

[6] S. K. Chang. The Generation of Minimal Trees with a Steiner Topology.Journal of the Association for
Computing Machinery, 19:699–711, 1972.

[7] F. Chapeau-Blondeau, F. Janez, and J.-L. Ferrier. A Dynamic Adaptive Relaxation Scheme Applied to
the Euclidean Steiner Minimal Tree Problem.SIAM Journal on Optimization, 7(4):1037–1053, 1997.

[8] F. K. Hwang. A Linear Time Algorithm for Full Steiner Trees.Operations Research Letters, 4(5):235–
237, 1986.

[9] F. K. Hwang, D. S. Richards, and P. Winter.The Steiner Tree Problem. Annals of Discrete Mathematics
53. Elsevier, Amsterdam, 1992.

[10] D. T. Lee. Onk-Nearest Neighbour Voronoi Diagrams in the Plane.IEEE Transactions on Computers,
C-31(6):478–487, 1982.

[11] D. W. Matula and R. R. Sokal. Properties of Gabriel Graphs Relevant to Geographic Variation Research
and the Clustering of Points in the Plane.Geographical Analysis, 12:205–222, 1980.

[12] K. Mehlhorn and S. N¨aher. LEDA—A Platform for Combinatorial and Geometric Comput-
ing. Max Planck Institute for Computer Science, Saarbr¨ucken, 1996, http://www.mpi-sb.mpg.de/
LEDA/leda.html.

[13] C. H. Papadimitriou and U. V. Vazirani. On Two Geometric Problems Related to the Travelling Salesman
Problem.Journal of Algorithms, 5:231–246, 1984.

[14] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction, second edition. Springer-
Verlag, New York,1988.

[15] J. M. Smith, D. T. Lee, and J. S. Liebman. AnO(n logn) Heuristic for the Rectilinear Steiner Minimal
Tree Problem.Engineering Optimization, 4:179–192, 1980.

[16] J. M. Smith, D. T. Lee, and J. S. Liebman. AnO(n logn) Heuristic for Steiner Minimal Tree Problems
on the Euclidean Metric.Networks, 11:23–29, 1981.

[17] J. M. Smith and J. S. Liebman. Steiner Trees, Steiner Circuits and the Interference Problem in Building
Design.Engineering Optimization, 4:15–36, 1979.

[18] J. M. Smith, R. Weiss, and M. Patel. AnO(N2) Heuristic for Steiner Minimal Trees inE3. Networks,
25:273–289, 1995.

[19] K. J. Supowit. The Relative Neighbourhood Graph, with an Application to Minimum Spanning Trees.
Journal of the Association for Computing Machinery, 30(3):428–448, 1983.

[20] R. E. Tarjan.Data Structures and Network Algorithms. CBMS–NSF Regional Conference Series in
Applied Mathematics, Vol. 44. CBMS, Washington, DC, 1983.

[21] E. A. Thompson. The Method of Minimum Evolution.Annals of Human Genetics, 36:333–340, 1973.
[22] G. T. Toussaint. The Relative Neighbourhood Graph of a Finite Planar Set.Pattern Recognition,

12(4):261–268, 1980.
[23] D. M. Warme. Personal communication, 1997.
[24] P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Improved Exact Algorithm.

Networks, 30:149–166, 1997.
[25] M. Zachariasen. Local Search for the Steiner Tree Problem in the Euclidean Plane.European Journal

of Operational Research, to appear.

