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Concatenation-Based Greedy Heuristics for the
Euclidean Steiner Tree Problem

M. Zachariasehand P. Wintet

Abstract. We present a class @(nlogn) heuristics for the Steiner tree problem in the Euclidean plane.
These heuristics identify a small number of subsets with few, geometrically close, terminals using minimum
spanning trees and other well-known structures from computational geometry: Delaunay triangulations, Gabriel
graphs, relative neighborhood graphs, and higher-order Voronoi diagrams. Full Steiner trees of all these
subsets are sorted according to some appropriately chosen measure of quality. A tree spanning all terminals
is constructed using greedy concatenation. New heuristics are compared with each other and with heuristics
from the literature by performing extensive computational experiments on both randomly generated and library
problem instances.
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1. Introduction. Givenase¥ of nterminaldnthe Euclidean plane, a shortest network
which interconnect¥ is called aSteiner minimum treé€SMT). An SMT may contain
additional intersection point§teiner pointsThis Steiner tree problers NP-hard and

has been a subject for extensive investigation [9]. The most effective exact algorithm
is currently able to solve most problem instances with up to 1000 terminals in a day
[24], [23]. If less CPU time is available or larger problem instances have to be solved,
heuristics are called for.

An SMT is a union offull Steiner treegFST9. An FSTF spanning a subsé of k
terminals inZ hask — 2 Steiner points. Each Steiner point has three edges makirig 120
with each other. Every terminal if has degree one (is a leafi). If two or three FSTs
share a terminal in an SMT, then the edges meet at the terminal at an angle which is at
least 120. Experience has shown that FSTs in an SMT seldomly span more than five
terminals [24].

A minimum spanning tre@MST) for the terminals irZ is a shortest network spanning
Z without introducing Steiner points. An MST fat can be constructed i@ (nlogn)
time [14], and is a good approximation to an SMT. This is a consequence of the Steiner
ratio theorem [9]: LeBMT(Z) andMST(Z) denote an SMT and an MST, respectively,
spanning the same set of termin&ls Then the ratigSMT(Z)|/|MST(Z)| is always
greater than or equal t¢/3/2. Consequently, any MST algorithm, seen as an approx-
imation algorithm for the Steiner tree problem, has/a/3 ~ 1.1547 performance
ratio.
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The length of the MST is therefore a natural reference for the performance of other
approximation algorithms, since there is little point in constructing algorithms which
produce solutions worse than the MST. It was for a long time an open problem whether
there exist approximation algorithms with performance ratios strictly less thal3.2
Arora [1] showed that there exists a polynomial-time approximation scheme for the
Euclidean traveling salesman problem and other geometric problems—among these the
Euclidean Steiner tree problem. This means that we can find in polynomial time (in the
number of terminals but not in/z) a solution within a factor & ¢ from the optimum
for every fixeds > 0. This result was obtained by a clever partitioning of the plane and
applying dynamic programming.

The practical usefulness of the Arora algorithm has yetto be proven. Less sophisticated
heuristicg on average produce much better solutions than their worst-case performance
ratio 2/+/3 indicates. All heuristics described in the sequel have performance fat® 2
Therefore, their performance will be measured on an experimental basis by computing
the reduction over the MST (the most commonly used measure in the literature) and,
when available, the excess from the SMT. When references are made dvetfage
reduction over the MST, it is assumed that the terminals have been distributed randomly
with uniform distribution in a (unit) square. For this distribution ang: 100 the average
reduction of SMT over MST is approximately2%—the asymptotic value is probably
slightly larger [24].

Starting with an MST, a simple approach suggested by Thompson [21] is to look for
edges meeting at angles less than°1&td insert Steiner points at appropriate positions
(Figure 1(a)). These Steiner point insertions are continued until improvements fall be-
low some threshold value. Chang [6] gave a slightly more general variant: select three
vertices (terminals or Steiner points) of the current tree, insert a new Steiner point and
corresponding edges, and remove the longest edge on any cycle created (Figure 1(b)).
Other MST-based methods have been proposed. The fastest of them, due to Beasley [4],
has subquadratic observed running time and9&@2average reduction over the MST.
Beasley and Goffinet [5] used the approach from [4] in a simulated annealing framework.
Their heuristic obtains a.8% average reduction at the expense of a huge running time.

The application of geometric structures to heuristics for the Euclidean Steiner tree
problem was initiated by Smith and Liebman [17]. A triangulationZofvas used to
aid the identification of small subsets of terminals. The triangulation was constructed
by using the convex hull foZ. The worst-case running time waxn*) due to a very
elaborate subset selection procedure. The observed running time was close to being
quadratic. The average reduction was rather poor, approximagety. 2

A much more efficient heuristic was given by Smith et al. [16]. A similar approach
has also been applied to the three-dimensional Euclidean Steiner tree problem [18]
and to the plane rectilinear case [15]. This fi&tnlogn) heuristic is based on the
Delaunaytriangulation (DT). The average reduction was approximatety@ This is
guite impressive, worst-case running time taken into consideration. Since the class of
heuristics presented in this paper all originate from the ideas used by this heuristic, we
present one of its variants here.

2 All heuristics for the Steiner tree problem are in fact approximation algorithms since they construct solutions
which are no worse than the MST; however, for historic reasons we use the word “heuristics” in the following.
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Fig. 1. Simple Steiner point insertions. (a) Steiner point insertion. (b) Generalized Steiner point insertion.

A linear number of subsets with two, three, or four terminals is identified as follows:
two-terminal subsets are the MST edges (MST is a subgraph of DT), three-terminal
subsets are corners of triangles in the DT with two MST edges, and four-terminal subsets
are corners of two edge-sharing triangles in the DT with three connected edges from the
MST. For each sef containingk terminalsk = 2, 3, 4, the shortest FST is constructed
(if it exists); let it be denoted biFST(Zk). All generated FSTs are placed on a priority
queueQ with the priority [FST(Zx)|/IMST(Zy)| (smallest first).

The treeT spanning all terminals is then constructed by picking FSTs f@rim
a manner similar to Kruskal’s MST algorithm. An FST is only added td it does
not create a cycle. Since a fast disjoint-set data structure is used, the overall worst-case
complexity of the concatenation of small FSTs remag logn).

The new class of heuristics will follow the general outline of the DT heuristic. We
show that it is possible to obtain a086 reduction using (nlogn) time, albeit with a
slightly larger constant factor than Smith et al.’s heuristic. In Section 2 we present some
well-known structures from computational geometry and discuss their application to the
Steiner tree problem. Identification of small subsets of terminals (which are likely to be
spanned by a single FST in an SMT) using these structures is discussed in Section 3.
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Determination of the shortest FST for every such subset and pruning away nonoptimal
FSTsiscoveredin Section 4. Concatenation of FSTs using agreedy approachis discussed
in Section 5. In Section 6 the performance of the heuristics is compared by performing
extensive experiments on randomly generated problem instances, including instances
from theOR-Library[3]. The results are also compared with other heuristics with similar
worst-case or observed running time. Concluding remarks are given in Section 7.

2. Proximity Structures. In this section we present some well-known structures from
computational geometry which capture proximity relations for a set of termihals

2.1. Voronoi Diagrams Letz andz; denote two distinct terminals. Furthermore, let
H(z, z;) denote the set of points not farther framthan fromz;. H(z, z) is a half-
plane. Let

V@, 2)= () H@.2)

ZjeZ\z

be theVoronoi regionof z. V(z, Z) is convex and its interior is the locus of points
closer toz than to any other terminal. Hence,

V(z,2)={q € E?||zq| < zql,Vz € Z\z}.

Let P(z, Z) denote the boundary &f(z, Z). The union of these boundaries for all
terminals inZ forms theVoronoi diagranfor Z, denoted byD(Z2). Its edges are called
Voronoi edgesPoints where Voronoi edges meet are calfecbnoi points

Thekth order Voronoi diagram VIXZ), 1 < k < n, is a partition of the plane into
regionsV (Zx, 2), Zx € Z, |Zx| = k. The interior ofV (Zk, Z) is the locus of points
closer to every terminal i@y than to any terminal irZ\ Zx. Hence,

V(Zx, Z) = {q € E? | |1zq| < |zql,VZ € Zk, VZ € Z\Z}.

HenceVD,(Z) = VD(Z). Note thatV (Zx, Z) may be empty. In fact, at mo€(n?)
regions of all orderk, 1 < k < n—1, are nonempty; furthermore, the Voronoi diagrams
of all orders up taK th order can be determined @(K?nlogn) time [10].

2.2. Delaunay Triangulations The straight-line dual of the Voronoi diagram faris
a triangulation ofZ, called the Delaunay triangulation and denoted®ly(Z). This is
one of the most important triangulations capturing proximity relations. It can also be
defined as the unique triangulation such that the circumcircle of each triangle does not
contain any other terminal in its interior. Triangles®T (Z) tend to be as “equilateral”
as possible in the sense that the smallest internal angle in all its triangles is maximized
over all triangulations.

An edge(z;, z;)) belongs toD T (Z) if and only if there is a circle passing through
andz; and containing no other terminal in its interior (Figure 2(a)).

DT (Z) has anumber of interesting properties. It can be constructed ifttimg n)
and contains at least one MST fd@r The MST forZ can be determined in tim@ (n)
onceDT (Z) is given [14].
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Fig. 2. Proximity structures: (a) Delaunay triangulation, (b) Gabriel graph, (c) relative neighborhood graph,
and (d) minimum spanning tree.

2.3. Gabriel Graphs Letz andz; denote two distinct terminals. L&(z, z;) denote
a disk withz; z; as its diameter. Asabriel graph GGZ) hasZ as its vertex set. A pair
of terminalsz andz; is adjacent iffD(z, zj) contains no other terminal (Figure 2(b)).
G G(Z) can be constructed i®(nlogn) time by removing fromDT (Z) edges not in-
tersecting their dual Voronoi edges [11]. Consequefi$(Z) is a subgraph ob T (Z).

In fact, it contains at least one MST fdr.

2.4. Relative Neighborhood Graphs Let z andz; denote two distinct terminals. Let
L(z, z) be alune obtained as an intersection of two disks with rgdiag and centered
atz; andz;, respectively. A relative neighborhood graBNG(Z) hasZ as its vertex
set. A pair of terminalg; andz; is adjacent iffL (z, z;) contains no other terminal [22]
(Figure 2(c)). A®(nlogn) plane sweep algorithm for the constructionrRNG(Z) has
been suggested by Supowit [LI®NG Z) is a subgraph oD T (Z). It contains at least
one MST forZ.
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3. Subsets of Terminals. The first phase of all our heuristics is to identify low-
cardinality subsets of terminalg, € Z, 2 < |Zx| < K, such that the shortest FST
for Z, (if it exists) is a good candidate for a subtree of an SMTZoWe assume that
the maximum number of terminals of any FST to be generated is given as a fixed integer
K, 2 < K < n. Computational experience reported in Section 6 indicatesiftsitould
not be greater than 6 for randomly generated problem instances.

Subsets with two terminals are identified by takingralt 1 pairs of terminals joined
by an edge in an MST foEZ. The rationale behind this strategy is due to the fact that
FSTs spanning two terminals in an SMT f8must belong to an MST for .

HIGHER-ORDER VORONOIDIAGRAMS. A subsetZy of Z, 3 < k < K, is selected iff
the Voronoi regionV (Zx, Z) is nonempty. The family of these subsets (together with
two-terminal subsets) is denoted HYD(K).

The total number of nonempty Voronoi regions in Voronoi diagrams of all orders up
to Kth order isO(K?(n — K)) [10].

DELAUNAY TRIANGULATIONS. A subsetZ, of Z, 3 < k < K, is selected iff the sub-
graph of DT (Z) induced byZy is the Delaunay triangulation &. The family of these
subsets (together with two-terminal subsets) is denotedTy(K ).

A larger family of subsets, denoted By *(K), is obtained by taking subsefg of
Z, 3 <k < K, such that the subgraph BT (Z) induced byZ is connected.

GABRIEL GRAPHS A subsetZy of Z, 3 < k < K, is selected iff the subgraph
of DT(Z) induced by Zy is the Delaunay triangulation oZx and is connected
in GG(Z). The family of these subsets (together with two-terminal subsets) is denoted
by GG*(K).
A larger family of subsets, denoted BG*(K), is obtained by taking subseZ of
Z, 3 < k < K, such that the subgraph &G(2) induced byZy is connected.

RELATIVE NEIGHBORHOODGRAPHS A subsetZ, of Z, 3 < k < K, is selected iff the
subgraph oDT (Z) induced byZy is the Delaunay triangulation & and is connected
in RNG(Z). The family of these subsets (together with two-terminal subsets) is denoted
by RNG*(K).

A larger family of subsets, denoted RNG*(K), is obtained by taking subseZx
of Z, 3 < k < K, such that the subgraph BNG(Z) induced byZy is connected.

MINIMUM SPANNING TREES A subseZy of Z, 3 < k < K, is selected iff the subgraph
of DT(Z) induced byZy is the Delaunay triangulation afx and it is connected in
MST(Z). The family of these subsets (together with two-terminal subsets) is denoted by
MST*(K).

A larger family of subsets, denoted MST*(K), is obtained by taking subsefs of
Z, 3 <k < K, such that the subgraph BfST(Z) induced byZy is connected.
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It is well-known that
MST?(K) € RNG*(K) € GG*(K) € DT2(K)

and
MST(K) € RNG'(K) € GG*(K) € DT*(K).

Furthermore,

MST2(K) € MST*(K), RNG*(K) € RNG(K),
GG2(K) € GG*(K), DTA(K) C DT*(K).

The total number of terminal subsets in each of the 8% (K), RNG*(K),
GG2(K), andDT2(K) is O(3X—3n) since there ard®(n) triangles and each trian-
gle has at most three neighboring triangles. Assumingkhata constant we ged(n)
terminal subsets in tim®(nlogn).

The expectechumber of terminal subsets in each of the $8&T*(K), RNG*(K),
GG*(K), andDT*(K) is O(6X~1n) since each terminal iD T (Z) hasaveragedegree
six. Assuming thaK is a constant the expected number of terminal subs€@gng and
they can be generated in expected tid@ logn).

4. Full Steiner Tree Generation. Since we only consider small subsets of terminals

(K < 6), the processing time needed for each subset of terminals is bounded by a
constant. We compute a shortest FST for a given subset of terminals, instead of an
SMT, for the following reasons:

e Itis much faster and less complicated to compute a shortest FST or to conclude that
no FST exists.

e AnFST does exist for a small fraction of subsets of terminals (especially Wherb)
while all subsets of terminals have an SMT.

e SMTs will often be obtained by concatenation of smaller FSTs.

It is well-known that an SMT foiZy is completely inside the convex hiH(Zy).
Even a smaller region, called tt&teiner hullof Z, and denoted bysH(Zy), can be
obtained in the following iterative way. InitialN§H(Zy) is identical withCH(Zy). If
SH(Zy) contains a paig;, z; of terminals appearing consecutively on the boundary, and
athird terminalzg, z4 # 7, z;, such that the interior angléz; z,z; of Az zyz; is greater
than or equal to 120andA z z, z; contains no other terminals, then replacing by z z,
andzyz; on the boundary yields a smaller region completely containing SM1Zfor
This process is continued for as long as possible. It can be shown that the order in which
the edges are replaced is immaterial [9]. If the interioBBif Zy) is not connectedZy is
said to havelegenerate configuratigthe original problem instance can be decomposed
into smaller problem instances (Figure 3(a)). If the interio&bf Zy) is connected and
all terminals are on its boundar¥ is said to havéteiner configuratiofFigure 3(b)).
Properties of FSTs with three or four terminals are well understood [9]. In particular, a
necessary condition for the existence of such FSTs is that all terminals are on the boundary
of their convex hull. We say that such sets of terminals hageravex configuratian
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(@) (b)

Fig. 3. Terminal configuration examples: (a) degenerate and (b) Steiner.

A convex configuration is not necessary for the existence of FSTs with five or more
terminals.

Experiments show that we may discard terminal sets which do not form a Steiner
configuration since they are very unlikely to be spanned by a single FST in an SMT
for Z [24]. In a set of one hundred problem instances (each with one hundred terminals),
all sets with five terminals and all babheset with six terminals had Steiner configurations.
There were two sets of seven terminals which did not have a Steiner configuration, but
since we restrict our attention to sets with up to six terminals, these sets would not be
considered anyway.

The advantage of considering Steiner configurations, in addition to discarding less
promising FSTSs, is that it is much faster to compute shortest FSTs for sets with five
and six terminals. An FST fdk terminals is computed by generating all possible full
topologies fork terminals and determining the FST (if it exists) for each topology in
O(k) time using Hwang'’s algorithm [8]. There are 15 (resp. 120) different topologies for
k = 5 (respk = 6). If the configuration is Steiner, only 5 (resp. 14) different topologies
need to be considered [9].

For each terminal s&fy the following computationgests are made:

1. Compute the Steiner hull f@. If the configuration oZ is degenerate or not Steiner,
then discardZy.

2. Find a shortest FST fafy, denoted byFST(Zy), by generating all admissible full
topologies and applying Hwang’s algorithm. If no FST exists, then disZard

3. ComputeMST(Zy). If [IMST(Zy)| < [FST(Zx)|, then discardZ.

5. Greedy Concatenation. Given a listF of FSTs, we would like to construct a

short tree spanning using these FSTs. For any F&Te F we denote by the set of
terminals spanned Hy and byM . the subgraph dfIST(Z) induced byZ . We assume

in our complexity analysis thaf containsO(n) FSTs. Relatively limited knowledge is
required about these FSTs—a fact that makes the approach easy to generalize to other
metrics (including obstacle-avoiding variants).For each FS€ F we only assume

that the following information is available:

e Terminal setZg spanned by.
e Length|F| of F.
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Fig. 4. SMT with an FST inducing disconnected subgraphs of the MST (gray edges).

e Length|MST(Zg)| of an MST spanningk.
¢ Information about the connectednessidf;, i.e., whetheiZg induces a connected
subgraph oMST(Z) or not.

No knowledge about the location of Steiner points nor about the connections between
terminals and Steiner points is needed during the concatenation. However, in order to
output the final tree, it is obviously necessary that we have access to this information.

Experimental evidence, presented in Section 6, shows that terminalesiFSTs
in an SMT induce connected subgraphsM8T(Z). One must therefore use MSTs as
backbones when constructing good approximations to SMTs. However, in order to obtain
high-quality solutions, it is sometimes necessary to deviate from the MST (Figure 4),
as previously pointed out by Chang [6]. We therefore split our greedy construction into
two phases:

1. Greedy concatenation (Kruskal):Sort the FSTs according tqaiority measureand
construct an initial solution using a variant of Kruskal’s MST algorithm, as explained
in Section 5.1. Only FSTs with terminals inducing connected subgrapl&atZ)
are allowed to be used in this phase.

2. Greedy insertion: Try to improve the initial solution by inserting the remaining
FSTs, as explained in Section 5.2.
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We have tried to avoid the greedy insertion altogether to simplify the procedure.
However, it seems very difficult to define a priority measure which both gives special
priority to connected induced subgraphs of the M&Td some preference to other
promising FSTSs.

5.1. Constructing the Initial Tree Using Kruskal This initial phase is basically the
heuristic of Smith et al. [16]. The FSTs are sorted according to the ratio priority
|F|/IMST(Zg)| (smallestfirst), such that FSTs showing a large relative reduction over the
MST have top priority. Another possibility is to use the difference prigMBT(Zg)| —

|F| (largest first). Our experiments show that the ratio priority is to be preferred as
the difference priority gives preference to large (in terms of length) FSTs; there is no
guarantee that such FSTs are SMTs for their terminals. The ratio priority is more size
independent, although with some preference for smaller FSTs. Also, if a small “bad”
FST is added in this initial phase, it is likely to be replaced by a larger FST during the
greedy FST insertion phase (Section 5.2).

Thus, we sort the FSTs by ratio and assume in the following that the FSTs are indexed
according to this priorityF = {Fy, Fo, ..., Fn}, wherem = O(n) is the number of
FSTs. We also assume that the MST edges (two-terminal FSTs), denoted dyd
sorted in nondecreasing order, form the tailZaf The initial treeTy is constructed by
using the following algorithm (for an example see Figure 5):

function KruskalF)
To=¢
forall F € 7 do
if (Mz. is connectedand (F does not create a cycle ) then To = To U F
return Ty
end

That is, we scadr and add FSTs to the tree (forest) if no cycle is created. Since the
MST edges form the tail o we always obtain a valid tree, i.€lg is connected and
acyclic.

The initial treeTy will never be longer thaMIST(Z) since only FSTs which induce
connected subgraphs BfST(Z) are added. Furthermore, since we only imprdyén
the second phase, the final tree will necessarily also have this propemySAQZ) is
known to have degree at most six for every terminal [13] and the same will holig for
This can be seen from the fact that every FSTgspanning terminals replaces exactly
k — 1 edges irMST(2); all terminals in an FST are leaves and thus the degree of every
terminal inTy is at most its degree IMIST(Z).

5.2. Greedy FST Insertian In this section we present an approach which has some
similarity to Chang's generalized Steiner point insertions [6]. However, we restrict our
attention to the sorted list of FSTs and define aRST insertioras follows: LetT be

the current tree, initiallyT = To. Assume that the FSTs ih appear in the same order
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Fig. 5. Initial tree using Kruskal. Observe that each FST induces a connected subgraph of the MST (gray
edges).

asinF. An FSTF € F\T isinserted intdl' by using the following algorithm:

function Inser(T, F, M)

T =F
forall F € T do
if (|Zg| > 3)and (F does not create a cyclei)thenT' =T'UF
forall F € M do
if (F does not create acyclei)thenT'=T'UF
return T’
end

Thus, we first addr, to an empty tree, then all FSTsThwith three or more terminals
(avoiding cycles), and finally MST edges in order to guarantee connectivity. An FST-
insertion require®©(n) time 3

The actual behavior of the algorithm is that it insefftsnto T by pushing some of
the FSTs inT out and reconnecting the components by adding edges M&T(Z).

3 Using a fast disjoint set data structure [20], the amortized time per FST is acthalym, n)), where
a(m, n) is the inverse of Ackermann’s function. This is an extremely slow-growing function and for all

practical purposes a constant.



Concatenation-Based Greedy Heuristics for the Euclidean Steiner Tree Problem 429

) -'»_Component 1

FST to be inserted

Component 2

@

(b)

Fig. 6. FST-insertion: tree (a) before and (b) after insertion.

More precisely, if an FST; with k terminals is inserted int®, k — 1 cycles are created
(Figure 6(a)). Each such cycle visits one or more FSTs fignone single FST inf
may, if it spans three or more terminals, be a part of more than one cycle. For each
cycle, only the FST which has the highest ratio is a candidate for deletion. Thus there
is a natural preference for keeping low-ratio FSTs, in particular FSTs spanning three or
more terminals (Figure 6(b)).

If the resulting tre€l”’ is shorter thaT we setT = T’ and try to insert the next FST
from F\T. Scanning througtF once yields arO(n?) greedy improvement algorithm.
Preliminary experiments, presented in Section 6, show that this method is very effective
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but at the cost of high running times. We will now show how to cut the running time
down toO(nlogn) while preserving most of the power of ti&n?) heuristic.

The obvious solution is to allow at mo€(logn) FST insertions: pick the first
O(logn) FSTs fromF and perform the insert operation iteratively for each of these
FSTs. Unfortunately, the following arguments show that the total expected relative im-
provement will diminish whem becomes large.

Assuming that the terminals are randomly distributed in a unit square, the expected
length of an SMT is®(,/n). This follows directly from the constant factor relation-
ship between the length of @®MT(Z), an MST(Z), and a Traveling Salesman tour
TSR Z) through the same set of poin&s More specifically we havé|TSF(Z)| <
IMST(Z)| < |TSR2)| (the first inequality is the performance bound on the so-called
double MST heuristic for TSP and the other inequality is obvious). Similarly we have
(+/3/2)|MST(Z)| < |SMT(Z)| < |[MST(Z)| (the first inequality is the Steiner ratio
theorem and the second is again obvious). These inequalities(yi&t)| TSR Z)| <
ISMT(Z)| < |TSRZ)| and by using the classic result of Beardwood et al. [2] which
states that the expected length of a TSP tour through a set of points distributed randomly
in a unit square i® (,/n), the same results follows for an SMT.

When an FSTF; spanningk terminals is inserted, at mokt— 1 FSTs spanning
three or more terminals are deleted frdm In addition, only a constant number of
newMST edges is added b since only MST edges which span terminals in removed
FSTs are new candidates for being used to reconnect the tree. Thus, the total number of
FSTs (including MST edges) deleted or added is bounded by a constant. Each FST has
bounded length and therefore the length reduction is bounded by a constant independent
of n. The total length reduction obtained by performidgogn) FST insertions thus has
the same order of magnitude. Now, this implies that the expected relative improvement
over the initial solution drops to zero agyoes to infinity. This indicates that we must
perform (4/n) insertions to ensure that the effect of the greedy improvement does not
disappear for large values of

One remedy to this problem is to inséiitlocally in constant time. For any treE,
defineT,, z € Z, to be the set of FSTs ifi which spare. Assume thaT has at most six
FSTs spanning each terminal; in particular, this holdS#dsee Section 5.1)Consider
the foresflT = Uzezﬁ T,, i.e., FSTsinl which share a terminal with;. Obviously, this
forest contains at most6 FSTs. LetZ = | Ji_+ Zr be the terminals spanned Byand
let M be the subgraph dIST(Z) induced byZ.

The number of components in the for@sis bounded by the number of terminals in
F (there are two components in Figure 6(a)). If there is only one componentalihen
FSTs through cycles created by insertiginto T are inT. We replace the subtrée
by T’ = Inser{T, F;, M5) provided thafT’ spansZ and is connected. Note that is
not necessarily connected since we use edges frdgnto reconnect the components,
not edges fronMST(Z).

By representingd andMST(Z) appropriately, a local insertion can be performed in
constant time. Although not very likely to happen we must also ensure that the 3ize of

4In an SMT there can be at mastreesuch FSTs and, furthermore, for randomly generated instances the
probability that there arexactlythree FSTs is zero.
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never becomes greater than six. This can be checked just Gefetgdated, discarding
the insertion if the bound is exceeded.

If T or T’ are disconnected the local insertionffis discarded. However, it may still
be possible to perform a@(n)-insertion. The overall greedy improvement algorithm is
the following: SetT = To. For each FSTF; € F\T we first try a local insertion. IT
andT’ are connected arld’| < |T| we updatél and go to the next FST. Otherwise we
make the callnser{(T, F;, M)—provided that we have made less tl@afiogn] O(m)-
insertions already. Hel@ is a constant determined as follows. Preliminary experiments
showed that if the number of componentsTirwas small, it was more likely that an
insertion was improving. We therefore ma&eg[logn] insertions for every number
of components iff (i = 1, ..., K); settingC; = K — i + 1 proved to give the right
balance between running time and solution qualsyill, it should be noted that the main
reduction in length comes from the local insertions since these may be performed for
every FST; the othdd (log n) insertions only have a small, although not negligible, effect.

6. Computational Experience. The new class of greedy concatenation-based heuris-
tics was experimentally evaluated on an HP9000 workstatising the programming
language C++ and class library LEDA (version 3.4.1) [12]. The random number genera-
tor used was theandom _source classin LEDA. We also used LEDAS native Delaunay
triangulation algorithm. The higher-order Voronoi diagram implementation was based
on Lee’s algorithm [10] using the first-order Voronoi diagram algorithm in LEDA.

In Section 6.1 we compare terminal subset generation methods discussed in Section 3.
The most promising of these are selected and we compare the new heuristics with our
own implementation of the heuristic by Smith et al. [16] by performing experiments on a
large number of randomly generated instances with up to 10,000 terminals (Section 6.2).
Finally, the new heuristics are compared with other heuristics from the literature by
measuring their performance on a series of library problem instances (Section 6.3).

6.1. Terminal Subset Generation MethodsThe terminal subset generation methods
described in Section 3 compared experimentally 100 problem instances (each with 100
terminals). The terminals were drawn randomly with uniform distribution from a unit
square.

The average number of subsets generated with carditkaiity3, 4, 5, 6 is given in
Table 1. As could be expected, fewer subsets are generated when the connected induced
subgraphs are restricted to adjacent triangleB©f A very large number of subsets is
generated foDT* andGG*. Also, a relatively large number of three and four terminal
subsets is generated bivD, but this is less critical since FST computations are much
more expensive for five and six terminal subsets.

Table 1 also presents the corresponding counts of surviving FSTs. We immediately
note that a much larger fraction of terminal subsets survives for the triangulation-based

5 Example: fork = 5 andn = 1000 at most5 + 4 + 3+ 2 + 1)[log 1000 = 105 insertions are made.

6 Machine: HP 9000 Series 700 Model 735/99. Processor: 99 MHz PA-RISC 7100. Main memory: 96 MB.
Performance: 3.27 SPECIint95 (109.1 SPECIint92) and 3.98 SPECfp95 (169.9 SPECfp92). Operating system:
HP-UX 9.0. Compiler: GNU C++ 2.7.2 (optimization flag -O3).
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Table 1. Terminal subset generation methdds.

k=3 k=4 k=5 k=6
Method TS FST NI TS FST NI TS FST NI TS FST NI
HVD 459 253 001 623 161 014 777 88 008 924 40 005
DTA 186 151 054 273 116 034 530 98 008 1150 80 0.03
GG 134 116 055 193 93 034 334 73 009 636 56 0.03
RNG* 78 65 101 98 40 053 134 24 036 186 14  0.08
MST: 57 45 180 61 20 1.23 67 8 061 73 3 012
DT* 1,052 507 0.0 4316 794 000 18717 1389 000 83,930 2,375 0.01
GG* 431 220 001 1,188 253 000 3,507 326 0.0 10,796 403  0.01
RNG* 184 90 048 327 62 019 623 50 008 1241 39 001
MST* 120 54 130 159 24 089 219 10 033 310 5 005

*For each cardinalitik the table gives the average number of terminal subsets (TS), average number of
surviving full Steiner trees (FST) and average number of not identified FSTs in SMTs (NI). Terminal subsets
are generated as explained in Section 3 using higher-order Voronoi diagrams (HVD), Delaunay triangulations
(DT), Gabriel graphs (GG), relative neighborhood graphs (RNG), and minimum spanning trees (MST).

methods. FoDT# a total (for 3< k < 6) of 21% survive, compared with only 5% for
DT*. The same numbers f@G”* andGG* are 26% and 8%, respectively. R8WD the
number is 19%, slightly lower than f@T~.

The ratio of surviving terminal subsets is not the only measure of quality. More
important is the issue of how well FSTs in SMTs are represented. Since SMTs are
known for all instances in the testbed [24], we may count the number of FSTs in each
SMT which havenotbeen identified. These average counts are also given in Table 1 and
are in general quite low. They should be compared with an average of 29.2 two-terminal
FSTs (MST-edges), 19.9 three-terminal FSTs, 7.5 four-terminal FSTs, 1.6 five-terminal
FSTs, and 0.2 FSTs with six or more terminals in the same 100 problem instances.
Another interesting observation is that 10 of these SMTs had a maximum FST size
(number of terminals) of four, 65 a maximum of five, 20 a maximum of six, and only 5
had an FST with seven or more terminals.

There is a (natural) correspondence between the total number of FSTs generated
and counts of not identified FSTs. The methéti¢D, DT*, andGG* which generate
a large number of subsets (the last two in particular) also have a higher probability of
“covering” the SMT. This does not mean thaT™* and GG* are poor at identifying
FSTs in SMTs—on average only one FST is missed. Another interesting observation is
thatRNG* and especiallMST* are significantly worse at identifying FSTs in SMTs.
Finally, on the basis of the statistics fs#fST* we can conclude that an average of 2.6
FSTs do not induce connected subgraphs of the MST. This should be compared with an
average total of 58.4 FSTs in the corresponding SMTs.

The performance of a heuristic using a given subset generation method depends
on the concatenation method used. First we compare all generation methods using the
O(nlogn) greedy concatenation method described in Section 5.2. In Table 2 the re-
duction over MST is given for each generation method Ene- 3, 4, 5, 6 (maximum
subset cardinality). The table clearly shows that the ability to cover FSTs in SMTs is
not the only factor that determines the performance of greedy concatenation heuristics.
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Table 2. Heuristic performance for terminal subset generation methods.

K=3 K=4 K=5 K=6
Method RED CPU* RED CPU RED CPU RED CPU
HVD 2.79 2.13 3.06 4.13 3.09 7.66 3.09 14.57
DTA 2.77 0.17 3.06 0.38 3.09 1.66 3.10 7.33
GG* 2.78 0.17 3.07 0.33 3.09 1.25 3.10 4.67
RNG* 2.69 0.19 3.05 0.27 3.09 0.66 3.09 1.62
MST 2.56 0.09 2.92 0.14 2.97 0.36 2.97 0.71
DT* 2.78 0.41 3.03 2.22 3.05 28.15 3.06 346.07
GG* 2.80 0.25 3.05 0.79 3.08 6.22 3.09 50.26
RNG* 2.74 0.21 3.06 0.36 3.09 1.38 3.09 6.26
MST* 2.63 0.11 2.95 0.18 2.99 0.54 3.00 1.59

*RED: reduction over MST (%). CPU: total CPU time (sec.).

Triangulation-based methods, in particUld™ andGG*, performbetterthan their sub-
graph connectivity-based counterparts. This may seem surprising but is just an indicator
that the greedy concatenation has had less bad choices. The CPU times are more or
less directly proportional to the number of subsets generated—perhaps exddgfor
which has a relatively high overhead due to the complex algorithm for constructing
higher-order Voronoi diagrams. Increasikgfrom 4 to 5 increases the running time by
a factor between 2 (fddVvD) and 13 (forDT*). Also note that selecting = 3 is a very
bad alternative. The improvement in solution quality when going fkom: 5toK = 6
on the other hand is negligible.

In the following we identify heuristics using th@(nlogn) concatenation method
by its generation method and maximum terminal subset cardinilitizor instance,
GG (5) uses terminal subsets with up to five terminals identified as vertices of adjacent
triangles of theDT forming connected induced subgraphs of the Gabriel graph.

Onthe basis of the results presented in Table 2, we sel&e§) andGG>(5) as the
most “promising” alternatives. This is motivated by the excellent performance of these
two heuristics and by their limited use of CPU tinlRNG*(5) is also very efficient, but
requires a special nonstandard algorithm if one dem&nadogn) running time [19].

Finally we present some results on other alternatives for greedy concatenation. Table 3
compares four variants using generation metG@f for K = 4,5 andn = 100. The
first variant returns the initial solution obtained by using Kruskal without making any

Table 3. Greedy concatenation method comparisonGa&*.

K=4 K =5
Greedy concatenation method RED CPU RED CPU
(1) Kruskal 2.83 0.19 2.86 1.05
(2) Kruskal + local insertions 2.98 0.27 3.00 1.17
(3) Kruskal + local insertions ©(logn) insertions 3.07 0.33 3.09 1.25
(4) Kruskal +O(n) insertions 3.11 0.54 3.13 1.53

*RED: reduction over MST (%). CPU: total CPU time (sec.).
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FST insertions (Section 5.1). The second only makes local FST insertions while the third
makes local FST insertions af@log n) FST insertions (this is the variant evaluated in
Table 2). The last variant mak€(n) FST insertions and therefore tak®gn?) time as
opposed to the other three variants which req@ie logn) time.

FST insertions significantly improve the quality of the heuristic solution at relatively
limited cost. The performance of the third variant is not much worse than the fourth
variant. However, this difference increases for larger values a$ will be shown in

Section 6.3; the higher running time complexity of the latter also becomes much more
evident.

6.2. Comparison to Smith et & Heuristic  In this section we compa®G*(4) and

GG~ (5) to our own implementation of the heuristic by Smith et al. [16]. In this original
version, calledsLL, triangles in the DT with two MST edges for which the correspond-
ing FST exists are put on a priority queue (similarM&T*(3)). The Kruskal-based
concatenation first tries to add a four-terminal FST for the triangle in question and its
nearest adjacent triandle-if this FST does not exist or if it does create a cycle in the
current tree, the three-terminal FST is added.

A very simple modification of this heuristic, call&®LL", simply puts all triangles
with two MST edges for which an FST exists and all four-terminal FSTs constructed
from adjacent triangles with three connected MST edges on the priority queue (just like
MST*(4)). The heuristic tree is constructed using Kruskal.

We present computational results in Table 4. Each number is an average taken over
100 instancesSLL" outperformsSLL at very little extra computational cost (for very
small instances the opposite seems to be the case as shown in Secti@G6.@) and
GG"(5) obtain reductions which are more thaB% better thasLL—at aconstanfactor
of 6 and 22 times the running time 8LL For GG*(4) approximately one-third of this
extratime is spent generating FSTs and two-thirds performing greedy improvement. For

Table 4. Randomly generated instances.

SLL SLIF GG>(4) GG2(5)
n RED* CPU* RED CPU RED CPU RED CPU
50 2.76 0.06 2.89 0.06 3.11 0.15 3.13 0.56
100 2.71 0.11 2.83 0.13 3.07 0.33 3.09 1.25
500 2.68 0.31 2.84 0.37 3.04 2.05 3.07 7.60
1,000 2.70 0.68 2.83 0.81 3.02 4.37 3.05 16.04
5,000 2.72 3.96 2.85 4.61 3.01 25.67 3.04 89.00
10,000 2.71 8.44 2.85 9.75 3.00 54.69 3.02 186.40
Avg. 2.71 2.85 3.04 3.07

*RED: reduction over MST (%). CPU: total CPU time (sec.).

7 Based on the distance between corresponding Voronoi vertices.
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GG (5) we have just the opposite: two-thirds are used by FST generation and one-third
by greedy improvement.
This may at first seem to be expensive, but the new heuristics stid aréogn) and
we actually are very close to optimum: Foe= 50, the average SMT reduction i3%;
out of 100 instance&G"*(4) found the optimal solution for 10 instances aa@"(5)
the optimal solution for 15 instances. Foe= 100 the average SMT reduction i28%;
no optimal solutions have been found by either heuristic. On average we are therefore
within 0.1% from optimum for small instances & 100) and (most likely) within 2%
from optimum for larger instances.

6.3. Comparison to Other Heuristics First we make a detailed comparison to the
heuristics by Beasley [4BE92) and Beasley and Goffinet [33(G94). The CPU times
in these two papers have been “normalized” using.ihpackbenchmark

The heuristics were evaluated on instances which are available fro@RHsgbrary
[3]. These instance are randomly generated problem instances with 10-1000 terminals,
15 instances for each size; optimal solutions are known for all these instances [24], [23].
In addition, a single 10,000 terminals instance is available fron®OtReLibrary.

We ranSLL", GG*(4) andGG~(4)* (the O(n?) variant of GG*(4) which makes
O(n) FST insertions) on the same set of problem instances. In Table 5 we compare
the results withBBE92. The overall tendency as far as solution quality is concerned is
clear:SLL* falls behind by a large margin, whi®8G* (4) andGG*(4)* both are better
thanBE92. While the observed running time growthBE9?2 is O (n*317) the heuristic
GG (4) has a worst-case running time®fn log n) with a relatively small constant. For
n = 1000 the running time d6G*(4) is less that one-seventhBE92 and the heuristic
solutions produced are also better.

It would have been interesting to make a thorough comparison between our new
heuristics andBE92 on larger instances. Beasley [4] reports@0%6 reduction in (nor-
malized) time 4093.38 seconds on one 10,000 terminals instance. When we applied
SLLY, GG*(4), andGG*(4)* to the same instance we obtained reductions.85%,
2.98%, and 3L6%, respectively. The corresponding CPU times were 9.89, 54.22, and
5533.93 seconds. Thus the new heuristics compare very favorably when running times
are taken into account.

While the variance of the MST reduction is similar 892, GG*(4), andGG* (4)*,
the CPU-time variance shows a completely different picture. The iterative nature of
BE92 makes the running time less predictable, e.g.hfex 1000, the ratio between
the maximum and minimum running time is08, while it is only 105 and 111 for
GG*(4) andGG"*(4)*, respectively. Also, whil&sG*(4) uses 1 minute on an average
10,000 terminal instanc®&E92 spends more than an hour on a similar instance (based
on the result for the single 10,000 terminal instance discussed above; if this instance is
representative the reported running time growti®oh’-31") actually seems to be closer
to being quadratic for larger instances).

8 Our HP workstation has a Linpack benchmark of approximately 40, the Cray X-MP/28 used in [4] a value
between 50 and 200 and the SGI Indigo machine used in [5] a value between 4 and 12. Accordingly, the CPU
times in these two papers have been multiplied by 1.5 and 0.2, respectively, in order to make them comparable
with ours.
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Table 5. Comparison on instances from tBdR-Library.

BE92 SLLF GGA(4) GGA(4)* OPT

n RED* CPU* RED CPU RED CPU RED CPU RED

10 3.14+1.86 0.07 29K 1.82 0.01 3.1A 191 0.02 3.1A191 0.02 3.25+1.88
20 3.02+1.01 0.17 2914 1.04 0.01 3.1G:1.00 0.04 3.16:0.97 0.04 3.1640.99
30 2.87+£0.72 0.26 2.73:0.72 0.02 2.94-0.78 0.08 2.96t0.77 0.08 3.07+0.78
40 3.02+0.63 0.50 2.8A4-0.54 0.03 3.03:0.63 0.11 3.04-0.63 0.11 3.14+0.63
50 2.84+:0.40 0.49 2.72-0.39 0.04 293 0.36 0.14 2.93:0.36 0.17 3.03+0.41
60 2.95+0.40 0.72 2.75:0.37 0.04 3.080.46 0.19 3.16:0.43 0.22 3.27+:0.42
70 2.84+0.36 0.72 2.65%:-0.33 0.05 2.92£0.36 0.21 2.94-0.33 0.29 3.11+0.38
80 2.82+0.62 1.00 2.64-0.61 0.06 2.8A40.65 0.25 2.92-0.65 0.36 3.04+0.67
90 2.94+0.45 1.22 2.850.50 0.07 2.96:0.49 0.29 3.0k-0.51 0.45 3.12+0.49
100 2.95+0.37 1.47 2.86:0.34 0.08 3.08:0.43 0.34 3.14:0.41 0.56 3.27+0.38
250 2.95+0.21 4.32 2.7%£0.23 0.17 3.06:0.22 0.92 3.0&0.24 291 3.21+0.23
500 3.05+0.17 10.28 2.8%-0.17 0.37 3.13:0.19 2.03 3.22-0.17 11.52 3.33+0.18
1000 3.02+0.13 31.76 2.8A40.12 0.80 3.05:0.12 4.32 3.18:0.14 48.84 3.31+0.14

Avg. 2.95+0.72 2.80£0.70 3.02£ 0.74 3.06+ 0.73 3.18+0.73

*RED: reduction over MST (%) and standard deviation. CPU: total CPU time (sec.). OPT: optimal
solution reduction.

The heuristicBG94 [5] has a performance that is somewhere betw®én(4) and
GG*(4)* but at the cost of a huge running time. Results are only reported fo100
and for these instances the average reduction0i3%8. ForGG*(4) andGG*(4)* the
reductions obtained on the same instances &8 and 303%, respectively. However,
the (normalized) running time f@G94 (h = 100) is more than 100 times larger than for
both GG*(4) andGG*(4)*. Also, the observed running time growth is higher, namely
O(nZ.lQ)_

Finally, Chapeau-Blondeau et al. [7] recently suggested a@éawlogn) heuristic.
The (normalized) running times reported are slightly higher than thos&lfarand
SLL" and the average reduction for= 1000 is only 278%. Thus this heuristic does
not perform better thaBLL".

7. Concluding Remarks. We presented a class©f(nlogn) heuristics for the Steiner

tree problem in the Euclidean plane. The new heuristics first generated a short list of FSTs
constructed on small subsets of terminals. The geometrically close terminals spanned by
each FST were identified by using well-known structures from computational geometry.

Heuristic trees were constructing by greedy concatenation. Extensive experiments
showed that the new heuristics performed better than any other kBgmiog n) heuris-
tic. Infact, the heuristic solutions were better than those obtained by most other heuristics
with higher (or unknown) complexities.

The approach can be easily generalized to other metrics and higher dimensions,
including obstacle-avoiding variants. A local search approach using full Steiner tree
concatenation has recently been suggested by Zachariasen [25]. Solutions W&Bin O
from optimum could be obtained by using the same basic FST-insertion scheme.
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