
Algorithmica (1999) 24: 50–75 Algorithmica
© 1999 Springer-Verlag New York Inc.

Computing Vision Points in Polygons

S. Carlsson1 and B. J. Nilsson2

Abstract. We consider a restricted version of the art gallery problem within simple polygons in which the
guards are required to lie on a given one-dimensional object, a watchman route. We call this problem thevision
point problem. We prove the following:

• The original art gallery problem is NP-hard for the very restricted class ofstreetpolygons.
• The vision point problem can be solved efficiently for the class of street polygons.
• A linear time algorithm for the vision point problem exists for the subclass of street polygons calledstraight

walkablepolygons.

Key Words. Computational geometry, Algorithms, Art gallery problems.

1. Introduction. The problem of placing guards in an art gallery so that every point in
the gallery is visible to at least one guard has been considered by several researchers. If
the gallery is represented by a polygon (havingn vertices) and the guards are points in the
polygon, then visibility problems can be equivalently stated as problems of covering the
gallery with star-shaped polygons. Chv`atal [8] and Fisk [11] proved thatbn/3c guards
are always sufficient and sometimes necessary to cover a polygon ofn edges.

Consider a convex polygon ofn edges. The bound ofbn/3c guards is a gross overes-
timation on the number of guards, since one guard will suffice for any convex polygon.
Similarly, depending on the structure of a polygon withn edges, the minimum number
of guards may be smaller than the estimate, and, therefore, it becomes interesting to find
algorithmic methods to compute the minimum number of guards necessary to cover a
given polygon. Alas, Aggarwal [1] and Lee and Lin [22] have proved that this problem
is NP-hard. A survey of results on art gallery problems and general visibility problems
can be found in O’Rourke’s monograph [26] and the articles by Keil and Sack [19] and
Shermer [27].

Since the art gallery problem is hard to solve, posing certain restrictions on the
problem may yield versions that are efficiently solvable but that still maintain practical
use. We consider the following version: given a polygonP of n edges and a closed
polygonal curveW of m edges, what is the minimum number of guards that coverP
and are restricted to lie onW. This, of course, requires that it is possible to make such a
placement of guards onW, i.e., we require that the set of points ofW form a guard cover
for P. A closed curve with this property is called awatchman routefor P, the minimum
number of guards onW are called thevision pointsfor W, and this version of the art
gallery problem we call thevision point problemfor a polygonP and a routeW.

1 Department of Computer Science, Lule˚a University of Technology, 971 87 Lule˚a, Sweden.
2 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.

Received June 6, 1996; revised September 12, 1997. Communicated by D. T. Lee.

Computing Vision Points in Polygons 51

Among the practical applications for the vision point problem, one comes from the
area of robotics. A robot moving along a watchman route may be incapable of engaging
its vision system continuously, and, therefore, it may have to stop at points on the route
to obtain visibility information accurately. Our covering problem can also be stated as
a problem of illumination. Consider the polygon as a room with the boundary being
walls and the watchman route as an electric cable embedded in the ceiling. We ask for
the minimum number of light bulbs and their positions on the cable such that the whole
room is illuminated.

Unfortunately, the vision point problem turns out to be NP-hard for simple polygons in
general [4], [24]. In the rest of this presentation, we therefore restrict the watchman route
and consider the class of simple polygons that allow this restricted type of watchman
routes.

The next section is dedicated to defining the type of watchman route that we consider
and establishing the class of simple polygons, the class ofstreets.

In Section 3 we prove that the original art gallery problem is NP-hard for streets, and
in Section 4 we present an efficient algorithm for the vision point problem in streets.

An important and well studied subclass of the streets arestraight walkable polygons,
and in Section 5 we present a linear time algorithm for the vision point problem in straight
walkable polygons when the watchman route obeys certain additional properties.

2. Definitions and Preliminary Results. We begin this section with some definitions.
Most of them are standard in computational geometry.

Let P be a simple polygon and letS denote a subset of the points inP. The setS is
a guard setor aguard cover, if, for any point p in P, there is a pointq in S that seesp.
Two pointsp andq in P are said toseeeach other if the line segment joiningp andq lies
in P. A subsetS ′ of S is a set ofvision points, if S ′ is a guard set forP. A setOPT (S)
is a smallest cardinality set of vision points for a guard setS in P.

We consider the specific problem where the sets of vision points are subsets of a
given polygonal curve inP. Such a curve is known as awatchman route. In many cases,
watchman routes can be computed efficiently. The boundary of the polygonP forms
a closed watchman route that is easily obtainable. Chin and Ntafos [7] and Carlsson
et al. [3], [24] provide polynomial time algorithms for the shortest closed watchman
route problem, in rectilinear simple and simple polygons, respectively. In a recent result,
Carlsson and Jonsson [2] establish an efficient algorithm for computing the shortest open
watchman route, the shortest watchman path, in a simple polygon.

Denote byVP(p) the visibility polygon of a pointp in P. The edges of a visibility
polygon inP that are not edges ofP are called thewindowsof the visibility polygon.
Each window separates the visibility polygon from subpolygons ofP that are known as
pockets; see Figure 1(a).

A cut in a simple polygonP is a directed line segment having its two endpoints on
the boundary ofP, and at least one interior point in the interior ofP. A window of a
visibility polygonVP(p) is a cut if we specify a direction for the window. For windows
we choose the direction away from the pointp collinear to the window.

Two other specific types of cuts are used extensively in the following. Anessential
cut eis a maximal extension of an edge of a polygonP, i.e., the line segment returned

52 S. Carlsson and B. J. Nilsson

Fig. 1. Illustrating definitions.

by a ray shooting operation from an endpoint of the edge directed away from the edge.
The direction associated toe is the same as the direction of the associated edge when
the polygon is traversed in counterclockwise order; see Figure 1(b). An essential cute
is aforward essential cutwith respect to a pointp, if p lies to the left ofe in P.

To define the other type of cut, we must assume that we have a simple polygon
P, a watchman routeW, and a pointp on W. The twosupporting cutsof a point p
associated to a windoww of VP(p) are the two maximal line segments inP, starting at
the two endpoints ofw, intersectingW, and having the largest angle tow. The associated
directions of the supporting cuts are away fromw; see Figure 1(c).

We study the problem of guarding a class of simple polygons, for which we can
choose watchman routes that have certain useful properties. LetP be a simple polygon
such that there exists two distinct points with the property that any simple path between
the points forms a guard set forP. We show that we can find an optimum set of vision
points on the path for this class of polygons efficiently. We define the class formally.

DEFINITION 2.1. LetP be a simple polygon. A collapsed watchman routeW for P is a
polygonal curve such that, for all pointsp ∈ P, the setVP(p)∩W is a connected chain.

If Phas a collapsed watchman route, we say thatP is contained in the class of polygons
with collapsed watchman routes.

The same class of polygons has been studied before by Klein [20] who called the
polygons of this classstreets. The definition states that a polygon is a street if the boundary
can be partitioned into two chainsU andD that are mutually visible. In this section we
denote the two endpoints ofU andD by sandt and assume that the two points are given.
This may seem a severe restriction, but the two endpoints can, in fact, be found in linear
time [9]. Examples of streets and nonstreets are given in Figure 2.

We prove that the streets are exactly the class of polygons with collapsed watchman
routes.

LEMMA 2.1. A polygon has a collapsed watchman route if and only if it is a street.

PROOF. We begin by showing that ifP is a street, then we can use the stronger statement
that bothU andD are guard sets forP. Assume that this is not the case and letp be a

Computing Vision Points in Polygons 53

Fig. 2.Examples of polygons.

point seen by only one of the two chains, sayU. Let Sp be the shortest path froms to p
and similarly letTp be the shortest path fromt to p. The two pathsSp andTp must have
at least the link closest top in common, otherwisep sees bothU andD; see Figure 3(a).
Denote this link byl . However, this means that there is an edgee of U adjacent to the
turning point ofl that is not seen byD, thus contradicting the fact thatU andD are
mutually visible; see Figure 3(b). Hence, bothU andD are guard sets forP.

We use this result to show the actual lemma. We begin with the if case. LetP be a
street and letSbe the shortest path froms to t within P. SinceS is a shortest path, the
intersection ofSwith any visibility polygon inP is a chain. Hence, it remains to show
thatS is a guard set to have shown thatP has a collapsed watchman route. Letp be a
point in P. Point p is seen both by a pointq on U and by a pointq′ on D. One of the
segments [p,q] or [p,q′] intersectsS, and hence, a point ofSseesp; see Figure 3(c).

The only if case is proved in a similar manner. LetP be a polygon with a collapsed
watchman route. LetW be the shortest collapsed watchman route and extend the first and
last segments until they hit the boundary ofP at pointss′ andt ′. Let U ′ be the subchain
of the boundary ofP obtained by walking counterclockwise along the boundary from

Fig. 3. Illustrating Lemma 2.1

54 S. Carlsson and B. J. Nilsson

t ′ to s′. Similarly let D′ be the other subchain. Take a pointp in P. This point is seen
from a pointq on W. Extend the segment [p,q] until it hits the boundary ofP on both
sides, at pointsr andr ′. By the construction of the chainsU ′ andD′ and the fact thatW
is shortest, the pointsr andr ′ must lie on different chains. Hence, bothU ′ and D′ are
guard sets forP; see Figure 3(d).

We henceforth call this class of polygons streets. The class of streets encompasses
many common classes of polygons, e.g., star-shaped polygons, two-guardable polygons,
weakly edge visible polygons, and walkable polygons of which two commonly known
subclasses are the monotone polygons and the spiral polygons.

In the following we assume thatP is a street with a boundary havingn edges. We divert
somewhat and show that computing the optimum guard cover for a street is NP-hard.

3. Complexity of Guarding Streets. In this section we prove that finding the mini-
mum number of point guards in a street is NP-hard. This is the first result that shows that
optimum guarding is NP-hard for a restricted class of simple polygons.

THEOREM1. Finding the minimum number of point guards in a street is NP-hard.

PROOF. We rephrase the problem as a decision problem.

Instance: A streetP and a positive integerB.
Question: Is there a set of at mostB point guards that coversP?

The proof is by reduction from 3-SATISFIABILITY , which is NP-complete [12].

Instance: A Boolean formula

(l1,1 ∨ l1,2 ∨ l1,3) ∧ (l2,1 ∨ l2,2 ∨ l2,3) ∧ · · · ∧ (lk,1 ∨ lk,2 ∨ lk,3)

consisting ofk clauses, each containing three literals, where each literal is a Boolean
variablel i, j = um or the conjugate of a Boolean variablel i, j = ūm, out of a set ofn
Boolean variablesu1, . . . ,un.

Question: Is there a truth assignment to then variables that satisfies the formula?

Let a 3-SATISFIABILITY instance havek clauses andn variables. We modify the proof
of Lee and Lin [22] and Aggarwal [1] that finding a minimum guard cover for simple
polygons is NP-hard to hold for streets. The proof gives the construction of a polygon
that is guardable with 3k+ n+ 1 guards, if and only if the 3-SATISFIABILITY instance is
satisfiable.

Each variable corresponds to twowell structuresin the polygon, that represent the
variable and its conjugate. The main parts of the wells are seen from a distinguished
pointx in the upper left corner of the polygon; see Figure 4. Each pair of wells also has a
notch u which is seen by the distinguished points F and T that mark whether the variable
is set to false or true. Furthermore, we ensure that every notch u is seen by pointt, the
rightmost vertex of the polygon.

Computing Vision Points in Polygons 55

Fig. 4. Illustrating the proof of Theorem 1.

Each clause in the Boolean formula corresponds to aclause structurein the upper part
of the polygon, having three notches that represent the three literals and two distinguished
points f and t in each notch that mark whether the literal is set to false or true; see Figure 4.

A literal notch in a clause structure is connected to the appropriate well structure in
the following way: If the literal is a variable, we add two small spikes in the wells in such
a way that guards atx, T, and t, or guards atx, F, and f will see the two well structures
and the two spikes, as in the examplel i,1 = um of Figure 4. Similarly, if the literal is the
conjugate of a variable, we add two small spikes in the wells in such a way that guards at
x, T, and f, or guards atx, F, and t will see the two well structures and the two spikes, as
in the examplel i,2 = ūm′ of Figure 4. Furthermore, at least one of the guards in a clause
structure must be placed at a point t in order for the clause structure to be completely
seen, specifically pointz must be seen, thus ensuring that the corresponding clause in
the Boolean formula is satisfied by the truth assignment of the variables. Should all the
guards in a clause structure be placed at points f, then at least one more guard is needed,
e.g., at pointy.

The proof thus specifies 6k+ 2n+ 2 possible points for guards such that a minimum
vertex guard cover uses 3k+n+1 of them as guard locations and this is a minimum vertex
guard cover if and only if the corresponding 3-SATISFIABILITY formula is satisfiable. See
Figure 5 for a complete example.

The proof can be generalized to interior point guards in the same way as is done by
Aggarwal [1] by altering the polygon in such a way that the distinguished points become
interior points of the polygon.

It remains to prove that the polygon we have constructed is a street. We partition the
boundary of the polygon into two chainsU andD and show that both these chains are
mutually visible. Lets and t be the leftmost and rightmost points of the polygon; see

56 S. Carlsson and B. J. Nilsson

Fig. 5.Example consisting of two clauses and three variables.

Figure 4. LetD be the chain obtained by following the polygon boundary in counter-
clockwise order froms to t, and letU be the chain obtained by following the boundary
in counterclockwise order fromt to s.

Let p be a point onU and movep downward until it reaches the polygon boundary
at point p′. If p′ lies onD, thenD seesp, otherwisep lies in a clause structure and is
seen by pointy. Hence,D seesp.

Now, let p be a point onD and movep upward until it reaches the polygon boundary
at pointp′′. If p′′ lies onU, thenU seesp, otherwisep lies in a well structure and is seen
either by pointx, some f or t point in a clause structure, or pointt. Hence,U seesp.

In the following we show that if we restrict the guards to lie on a collapsed watchman
route in a street, then we can compute an optimum cover efficiently.

4. Optimum Vision Points in Streets. Assume thatP is a street withn edges and that
W is a collapsed watchman route withm edges insideP. The crucial property of the
collapsed watchman routeW is that the intersection with the visibility polygon of any
point inP is a connected chain.

The problem we study in this section is to find an optimum set of vision points for
P on W, i.e., a setOPT (W) in P. Unfortunately, the number of vision points can be
arbitrarily large; see Figure 6(a). The number of vision points depends on how narrow
the mouth of the notch is. By changing the situation slightly, we can get an even worse
situation; see Figure 6(b). If the three vertices are collinear, then we need an infinite
number of vision points onW. Hence, a crucial property that we assume in the following
is thatP is in general position, i.e., no three vertices are collinear. Still, since there is no
relation between the number of vision points and the size of the polygon or the size of the
watchman route, our algorithms will depend on the number of vision points computed.
The parameterk will henceforth be used to denote this value.

To solve the problem of computing a smallest set of vision points, we need the concept
of a limit point with respect to a given pointgonW. To define this formally we introduce
some preliminary notation.

Let e be an essential cut that crossesW and partitionsP into two parts,Ps andPt ,

Computing Vision Points in Polygons 57

Fig. 6.Examples requiring many vision points.

partPs containings, andPt containingt. Denote the endpoint ofW that lies inPs by gs,
and in the same way, denote the other endpoint ofW by gt ; see Figure 7(a).

If we move a point alongW from gs towardgt , we say that the point moves in the
forward direction. This makes it possible to talk about points lying before and after other
points onW. We say that a pointg onW lies before a pointg′ onW if g is reached before
g′ when we move alongW from gs in the forward direction. Similarlyg′ lies afterg.

Let p be any point inP. By Definition 2.1 we know thatp sees some subchain ofW.
We denote this subchain by WC(p), and the two endpoints of this subchain byleft(p)
andright(p) in such a way thatleft(p) lies beforeright(p) on W; see Figure 7(b).

Let g andg′ be two points onW, with g lying beforeg′. Denote byW(g, g′) the
subchain ofW from g to g′. We let the visibility polygon ofW(g, g′), denoted by
VP(W(g, g′)), be the set{p ∈ VPq | q ∈ W(g, g′)}.

If S is a set of points onW, we letnearestg(S) denote the first point inS reached
from g alongW in the forward direction.

Let Q be some region, possibly consisting of several components. We letclosure(Q)
denote the closure of the setQ of points, i.e., the setQ ∪ bd(Q), wherebd(Q) denotes
the boundary of the regionQ.

With these notational conventions we can define the limit point of a point onW.

DEFINITION 4.1. The limit point of a pointg onW is the point onW specified by

lp(g) = nearestg({right(p) | p ∈ closure(P\VP(W(gs, g)))}).

This definition captures the intuitive notion that the limit point of a guardg is the furthest
possible point onW for the next guard. This follows from Lemmas 4.1 and 4.2.

Fig. 7. Illustrating notational conventions.

58 S. Carlsson and B. J. Nilsson

We can definelpi (g) by

lp0(g) = g,

lpi (g) = lp(lpi−1(g)) for i > 0.

LEMMA 4.1. If g is a point on W and g′ = lp(g), then

VP(W(gs, g)) ∪ VP(g′) = VP(W(gs, g
′)).

PROOF. Evidently, the regionVP(W(gs, g)) ∪ VP(g′) is a subset of the region
VP(W(gs, g′)), since the setW(gs, g) ∪ {g′} is a subset ofW(gs, g′). Hence, it only
remains to prove the reverse inclusion.

Let p be a point inV P(W(gs, g′)). If p is seen by some point inW(gs,g), thenp lies
in VP(W(gs,g)) ∪ VP(g′), and we are done. Ifp is not seen by any point inW(gs,g),
then p must be seen by some pointg′′ that lies betweeng andg′ onW. This means that
left(p) lies beforeg′ on W, and sinceg′ is the closest pointright(q), for every pointq
not inVP(W(gs, g)), it also means thatg′ lies beforeright(p), and, hence,g′ seesp.

Furthermore, the subchain between a point and its limit point onW requires a vision
point.

LEMMA 4.2. If g is a point on W, then W(g, lp(g)) requires at least one vision point.

PROOF. By the definition of limit point, there is a pointp in a pocket ofVP(W(gs, g)),
such thatlp(g) = right(p). Evidently, no point on the subchainW(gs, g)) seesp, and,
hence,left(p) lies inW(g, lp(g)). Thus, we have thatWC(p) ⊆ W(g, lp(g)), and since
WC(p) requires a vision point, the subchainW(g, lp(g)) also requires a vision point.

Define the pointg1 by

g1 = nearestgs({right(p) | p ∈ P}).
We can prove the following lemma.

LEMMA 4.3. If g1 = nearestgs({right(p) | p ∈ P}), then

VP(W(gs,g1)) = VP(g1).

PROOF. Evidently,VP(g1) ⊆ VP(W(gs,g1)), sinceg1 ∈ W(gs,g1). Hence, it remains
to prove the reverse inclusion.

Let p be a point inVP(W(gs, g1)). If left(p) = g1, thenp lies inVP(g1), and we are
done. Otherwise,left(p) lies beforeg1 on W, and sinceg1 is the closest pointright(q),
for every pointq in P, this means thatg1 lies beforeright(p), and, hence,g1 seesp.

Lemmas 4.1 and 4.3 prove that there is somek for which the set

{lpi (g1) | 0≤ i ≤ k− 1}

Computing Vision Points in Polygons 59

is a guard cover forP. Thatk cannot be unbounded follows from the fact that no three
vertices ofP are collinear. This means that there is anε > 0, such thatlength(WC(p)) ≥
ε, for any pointp in P. We know that, for any pointg on W, length(W(g, lp(g))) ≥
length(WC(p)), for some pointp, and hence,k ≤ length(W)/ε + 1 which is bounded
sinceε > 0.

We present the algorithmOptimum-Vision-Points-in-Streetto guard a street. The
algorithm computes the appropriate valuekand outputs the set of vision points{lpi (g1) |
0≤ i ≤ k− 1}. The pseudocode for the algorithm is displayed below.

Next, we show that the presented algorithm actually computes an optimum set of
vision points.

LEMMA 4.4. The algorithm Optimum-Vision-Points-in-Street computes, given a street,
an optimum set of vision points on a given collapsed watchman route.

PROOF. LetG = {g1, g2, . . . , gk} be the set of vision points computed by our algorithm
and letF = { f1, f2, . . . , fl } be a set of vision points, consisting of fewer points, that
most closely matchesG, following W from gs to gt, i.e., f1 lies as close tog1 as possible,
subject to thisf2 lies as close tog2 as possible, and so on. Letgi be the first vision point
that differs from the setF , i.e.,gi−1 = fi−1 but gi 6= fi .

If fi lies beforegi , then, by Lemma 4.1, pointfi can be moved to the limit point of
fi−1, and we havelp(fi−1) = lp(gi−1) = gi . This contradicts the assumption thatF
matchesG the closest.

On the other hand,gi cannot lie beforefi because this implies thatF is not a guard
cover, sincegi = lp(gi−1), and, by Lemma 4.2, the portion ofW betweengi−1 andgi

requires at least one vision point.

Algorithm Optimum-Vision-Points-in-Street

Input: A streetP represented by(U, D) and a collapsed watchman routeW
Output: An optimum set of vision points forP on W

1 Identify the pointgs

2 PreprocessP andW and compute the first vision pointg1

k := 0
3 while P is not completely guardeddo

k := k+ 1
3.1 gk := lpk−1(g1)

endwhile
return {gi | 1≤ i ≤ k}

End Optimum-Vision-Points-in-Street

It remains to show how to compute the first guardg1, the limit points, and analyze the
complexity of the algorithm. To do this, we need some further lemmas.

LEMMA 4.5. Let Q be a polygonal region inP and letVQ denote the set of vertices of
Q. For any point p inQ there is a vertexv in VQ such that right(v) lies before right(p).

60 S. Carlsson and B. J. Nilsson

Fig. 8. Illustrating Lemma 4.5.

PROOF. Let p be a point inQ and letc be the maximal cut inP passing through points
p andright(p). The cutc intersects some boundary edgee of Q at pointq. Denote the
endpoints ofeby v andv′; see Figure 8. The interior of the cutc intersects the boundary
of P at some pointr, and, hence, the segment [v, right(v)] must intersectc at some point
r ′, with r ′ lying betweenr andq onc. This implies thatright(v) lies beforeright(p) on
W; see Figure 8.

The lemma tells us, together with the previous results, that in order to compute the set
of vision points, we only have to compute the pointsright(v) for the vertices ofP.

We show how the first vision point can be obtained with the use of the forward essential
cuts with respect togs.

LEMMA 4.6. The first vision point g1 is the first intersection point of W and a forward
essential cut with respect to gs, i.e.,

g1 = nearestgs({W∩ c | c ∈ FEC}),

whereFEC is the set of forward essential cuts with respect to gs.

PROOF. By Lemmas 4.3 and 4.5, it is enough to determine the closest pointright(v) to
gs of the vertices ofP.

Next, we can reduce the set of vertices to consider by the following argument. Letv be
a vertex ofP and assume thatright(v) is a point onWsuch that the segment [v, right(v)]
is not collinear to a forward essential cut with respect togs; see Figure 9. The segment
[v, right(v)] intersects a vertexv′ of P. Consider the boundary edge [v′, v′′] that lies
in a pocket ofVP(right(v)). The pointright(v′′) lies beforeright(v) and it lies on the
forward essential cut with respect togs that issues from the edge [v′, v′′]; see Figure 9.

In the preprocessing of Step 2 of algorithmOptimum-Vision-Points-in-Street, all the
forward essential cuts with respect togs are computed. The computation is done with at
most a linear number ofO(log(n+m)) time ray shooting operations with a data structure
that can be precomputed inO(n+m) time [5], [6], [13], [16]. To do the preprocessing,
extend the edge ofW containing pointgs until it hits the boundary ofP at pointvs. The

Computing Vision Points in Polygons 61

Fig. 9. Illustrating Lemma 4.6.

setW∪ [gs, vs] can be viewed as a very thin corridor belonging to the exterior ofP. The
polygon constructed in this manner consists of at mostn+ 2m+ 1 edges and we build
the ray shooting data structure on this polygon, denotedP′.

The intersection points of the forward essential cuts with respect togs andW are
computed by performing ray shooting inP′ from the vertices in the direction of the
adjacent boundary edges to get the intersection point withW, each takingO(log(n+m))
time. From the intersection points thus found, we establish the one closest togs. The
initial vision pointg1 is then set to be this point onW. Furthermore, we keep the rest of
the intersection points, and their associated forward essential cuts with respect togs, in
a list denotedFCL0, to be used to compute the rest of the vision points.

The preprocessing of Step 2 also consists of the computation of the shortest path
tree rooted atgt [13], [23]. The tree is extended to anaugmented shortest path treeby
traversing the boundary ofP, and for each edgeeperform the following steps: The two
endpoints ofe correspond to nodesv andv′ in the shortest path tree. We can, in linear
time, construct a data structure [14] enabling us to find the nearest common ancestoru
to v andv′. It is clear, by the fact that the path fromu to v is a shortest path and similarly
that the path fromu tov′ is a shortest path, that the two paths are reflex chains. Hence, we
can extend each edge of the two paths and introduce an intersection point one. In the tree
we let this intersection point correspond to a node connected to the node of the extended
edge; see Figure 10. The points of the polygon corresponding to nodes of the augmented
shortest path tree will henceforth be denotedasp-verticesto distinguish them from the
vertices ofP. Note that the set of vertices is a subset of the set of asp-vertices, and that
the number of asp-vertices isO(n) since we add at most one new asp-vertex for each
vertex ofP. We use the augmented shortest path tree to guide ray shooting operations to
compute limit points.

To compute the other vision points we also need the concept of supporting cut with
which we can prove the following two lemmas.

LEMMA 4.7. A forward essential cut with respect to gs intersects W in at most one point
and a supporting cut with respect to a window ofVP(W(gs, g)) intersects W in at most
two points, with g being some point on W.

PROOF. Assume thate is a forward essential cut with respect togs and thate intersects
W in two or more points. This means that there is a pointp on the edge associated toe

62 S. Carlsson and B. J. Nilsson

Fig. 10.Constructing the augmented shortest path tree.

such that the setW∩VP(p) is not connected, contradicting the fact thatW is a collapsed
watchman route.

Similarly, if we assume thatc is a supporting cut with respect to a window of
VP(W(gs, g)) that intersectsW in three or more points, then the setW∩ VP(p), where
p is the starting point ofc, is not connected, once again contradicting the fact thatW
is a collapsed watchman route. Thatc can have two intersection points can be seen in
Figure 11(b).

The intersection point of a supporting cut and the routeW that lies furthest fromgs is
called thetrue intersection point.

LEMMA 4.8. Each vision point gi+1, with i ≥ 1, is either the first intersection point
between W and a forward essential cut with respect to gs issuing from an edge ofP that
is not completely inVP(W(gs,gi)), or it is the first true intersection point between W
and a supporting cut associated to some window ofVP(W(gs,gi)), i.e.,

gi+1 = nearestgs({W∩ c | c ∈ FEC i ∪ SUC i }),

Fig. 11.Illustrating Lemma 4.8.

Computing Vision Points in Polygons 63

whereFEC i is the set of forward essential cuts with respect to point gs in the region
closure(P\VP(W(gs,gi))) possibly consisting of several components, andSUC i is the
set of supporting cuts with respect to the windows ofVP(W(gs, gi)).

PROOF. By Definition 4.1 and Lemma 4.5 it is enough to determine the closest point
right(v) to gs of the vertices in the regionclosure(P\VP(W(gs,gi))).

Letv be a vertex in the regionclosure(P\VP(W(gs,gi))) and assume that the segment
[v, right(v)] is not collinear to any forward essential cut inFEC i or any supporting cut in
SUC i . The segment [v, right(v)] intersects a vertexv′ of P; see Figure 11. To complete
the proof we have to distinguish between three different cases:

1. If the segment [v, v′] intersectsVP(W(gs,gi)) and v′ lies on the same boundary
chain asv, thenv lies in a pocket ofVP(W(gs,gi)) having the windoww. Let q be
the convex vertex ofVP(W(gs,gi)) on w. The segment [q, right(q)] must intersect
the segment [v, right(v)] in the interval betweenv andv′, and, hence,right(q) lies
beforeright(v) and the segment [q, right(q)] is collinear to one of the supporting cuts
associated tow; see Figure 11(a).

2. If the segment [v, v′] intersectsVP(W(gs,gi)) butv′ lies on the other boundary chain,
thenv once again lies in a pocket ofVP(W(gs,gi)), having windoww. We letq′ be
the reflex vertex ofVP(W(gs,gi)) on w. The segment [q′, right(q′)] must intersect
the segment [v, right(v)] in the interval betweenv andv′, and, hence,right(q′) lies
beforeright(v) and the segment [q′, right(q′)] is collinear to one of the supporting
cuts associated tow; see Figure 11(b).

3. If the segment [v, v′] lies completely inclosure(P\VP(W(gs,gi))), we apply the
exact same argument as in the proof of Lemma 4.6 to show that there is a vertexv′′

such thatright(v′′) lies beforeright(v) and the segment [v′′, right(v′′)] is collinear to
some forward essential cut inFEC i .

This concludes the proof.

The loop of Step 3 is performedk times. Each time the limit point of the previous
vision point is computed inO(n log(n+m)) time as follows: Letgi be the previously
computed vision point. ComputeVPgi in O(n) time [10], [18], [21]. For each pocket in
VP(W(gs,gi)) identify the two endpointsq andq′ of the associated window. Letq be
the convex vertex ofVP(W(gs,gi)) on the window and letq′ be the other endpoint; see
Figure 11.

We handle each of the three cases of Lemma 4.8 separately.

1. Given the pointq, we determine the two asp-verticesv andv′ that lie on either side
of q. Furthermore, we determine the nearest common ancestoru of v andv′ in the
augmented shortest path tree using the data structure computed previously. Now,
perform ray shooting fromq in the direction ofu in P′, and if the shot reachesW,
remember the intersection point asright(q).

2. We know that pointq′ is a vertex ofP, and, hence, that it is an asp-vertex of the
augmented shortest path tree. Letu be the father ofq′ in the tree. We perform ray
shooting fromq′ in the direction ofu in P′, and if the shot reachesW, we perform
a second ray shooting operation from the intersection withW in the same direction

64 S. Carlsson and B. J. Nilsson

to get the possible second intersection point withW; as in Figure 11(b). The last of
these two is remembered asright(q′).

3. Finally, we have to compute the set of current intersection points betweenWand the
forward essential cuts with respect togs. We can assume that we have the listFCLi−1

of intersection points, and we show how to compute the updated listFCLi . Note that
we have shown how to compute the listFCL0 previously. Identify the polygon edges
that are completely seen by the pointsg1, . . . ,gi , i.e., the edges ofVP(W(gs,gi)),
and remove the intersection points inFCLi−1 of the forward essential cuts associated
to these edges to get the current list of intersection pointsFCLi .

To get the limit point, take the true intersection point of the essential cuts and the
supporting cuts withW closest togi on W.

To analyze the complexity, we note that we compute the visibility polygon forgi

once, taking linear time, at mostO(n) ray shooting operations are performed, i.e, three
per window, each takingO(log(n + m)) time. Hence, the total time to compute each
vision point is bounded byO(n log(n+m)). The total time complexity of the algorithm
is O((n + m) + kn log(n + m)) = O(kn log(n + m) + m), and the storage use is
O(n+m+ k), since we only use linear-sized data structures.

Thus, we have the following theorem.

THEOREM2. The Optimum-Vision-Points-in-Street algorithm computes an optimum
set of vision points on a collapsed watchman route W in a streetP. The algorithm uses
O(kn log(n+m)+m) time and O(n+m+k) storage, where k is the size of the optimum
solution, n is the size ofP, and m is the size of W.

5. Optimum Vision Points in Straight Walkable Polygons. An interesting subclass
of street polygons is the class of straight walkable polygons. Informally, a polygon is
straight walkable if it is possible to move two distinct points alongU andD, continuously
from s to t, in such a way that the two points always see each other, and neither of the
points needs to backtrack its path along the boundary chain. This class of polygons
encompasses spiral and monotone polygons.

DEFINITION 5.1 [17]. LetU andD be a partitioning of the boundary of a polygon having
the two endpointssandt. A straight walkof the polygon is a pair of continuous monotone
functions(U,D) such that

1. U : [0,1]→ U andD : [0,1]→ D,
2. U(0) = D(0) = s andU(1) = D(1) = t, and
3. U(x) seesD(x), for all 0≤ x ≤ 1.

A polygon isstraight walkableif it admits a straight walk.

The domain of the two functionsU andD can be chosen arbitrarily. We select the set
[0,1] to conform with Icking’s and Klein’s definition [17].

We construct an optimalO(n + m) time algorithm to compute an optimum set of
vision points on a watchman route inside a straight walkable polygon. The algorithm we

Computing Vision Points in Polygons 65

present is a version of theOptimum-Vision-Points-in-Streetalgorithm and the reduced
complexity comes from the fact that in each step of the algorithm we only need local
information, i.e., given the position of thei th guard, we only need to look in a small
neighborhood of this guard to be able to compute the positioning of thei + 1st guard.

To achieve the linear time bound, we have to ensure that the supporting cuts we
compute as the algorithm proceeds, intersectW at most once. From Lemma 4.7, we
know that a collapsed watchman route can intersect a forward essential cut with respect
to gs in at most one point, but a supporting cut can intersect the route in two points. To
disallow this, we place a further restriction on the structure of a collapsed watchman
routeW, and require that the intersection ofWand any segment [p,q] in P, with p onU,
q onD, and no other point intersecting the boundary ofP, is a connected set. A collapsed
watchman route that obeys this additional requirement is said to be astraight watchman
route. One instance of a straight watchman route is the shortest path inP that connects
the pointssandt. Other examples are the two boundary chainsU andD. For the rest of
this section, we assume thatW is a straight watchman route.

Icking and Klein [17] present anO(n logn) time algorithm that computes a straight
walk given the pointssandt of a straight walkable polygon withn edges. Heffernan [15]
improves the time bound to linear, which is optimal.

The straight walk(U,D) computed in the algorithm by Heffernan [15] consists of
l = O(n) pairs of piecewise linear functions, hence, the straight walk can be represented
by a list of pairs of linear functions as

(U,D) =



(U1,D1) for x0 ≤ x < x1,

(U2,D2) for x1 ≤ x < x2,
...

(Ul−1,Dl−1) for xl−2 ≤ x < xl−1,

(Ul ,Dl) for xl−1 ≤ x ≤ xl ,

with x0 = 0 andxl = 1.
We present a version of the algorithm examined in the previous section that we call

Optimum-Vision-Points-in-Straight-Walkable-Polygon, and analyze its complexity. The
pseudocode of the algorithm is displayed below.

Algorithm Optimum-Vision-Points-in-Straight-Walkable-Polygon

Input: A straight walkable polygonP represented by(U,D),
a straight walk(U,D), and a straight watchman routeW

Output: An optimum set of vision points forP onW

1 PreprocessP, W, and(U,D) and positiong1 onW
k := 1

2 while P is not completely guardeddo
k := k+ 1

2.1 gk := lp (gk−1)

endwhile
return {gi | 1≤ i ≤ k}

End Optimum-Vision-Points-in-Straight-Walkable-Polygon

66 S. Carlsson and B. J. Nilsson

Fig. 12.A straight walkable polygon with its pyramids.

We use the straight walk given as input to guide the incremental computation of the
vision points.

It remains to show how to compute the first vision pointg1, the limit point of a point
on W, how to establish that the polygon is completely guarded, and to show the time
complexity of the algorithm.

The preprocessing of Step 1 in the algorithm consists of the computation of the shortest
path tree rooted atgt [13], [23], exactly as in the algorithm of the previous section. In the
same way, the tree is extended to anaugmented shortest path treethat we use to guide
implicit ray shooting operations to compute the vision points.

We also make a subdivision ofP into so-calledpyramids.3 A pyramid is a polygonal
region in P bounded by a subchain ofU, a subchain ofD, and two walk segments
[U(x),D(x)] and [U(x′),D(x′)]. The construction of the pyramids is done by inserting
cuts that are collinear to the walk segments, intoP, separating the different pyramids.
Consider a reflex vertexv of P other thans andt. Let c = [U(x),D(x)] be a segment
of the straight walk such thatv = U(x) or v = D(x). We let c be a separating cut
between two pyramids. From the monotonicity of the straight walk, it follows that no
two separating cuts intersect and therefore that the pyramidal regions are consecutive
and nonintersecting. Hence, we can order the pyramids from the “leftmost” pyramid
containings to the “rightmost” one containingt and we can enumerate the pyramids in
this order; see Figure 12.

Consider some pyramid ofP. It is bounded by two cuts from the straight walk ofP
and two chains of edges ofP where the vertices are convex. Icking and Klein [17] show
that a straight walk has certain nice properties. One of them is that the angle between a
walk segment and the polygon boundary is never more than 180◦. It therefore follows
that the pyramids are all convex regions.

To place the initial vision pointg1, we walk alongW from gs until we find the first
intersection with a forward essential cut with respect togs. Let e be the last upper
boundary edge of the first pyramid11, extend the edgee, and compute the intersection

3 The name pyramid is somewhat misleading, but is used due to the lack of a better name.

Computing Vision Points in Polygons 67

Fig. 13.Computing the first vision pointg1.

with W, if it exists. Otherwise, continue with the next pyramid. This process gives us
the intersection ofW and the first forward essential cut with respect togs. Let p1 be a
point one and letq1 be the intersection of the extended edge withW; see Figure 13(a).
The pointq1 lies in some pyramid1j1 of P. Now, find the last upper boundary edge
of the next pyramid12, in order, and construct the line extending from the last edge.
If this line intersects the segment [p1,q1], then the intersection point of this essential
cut andW will lie closer togs, and, hence, we backtrack alongW to get the currently
closest intersection point, i.e., the new pointq2, which together with a pointp2 of the last
upper edge of the current pyramid gives us a new segment [p2,q2]; see Figure 13(b). The
point q2 lies in some pyramid1j2, with j2 ≤ j1. We continue the process of repeatedly
computing new intersection pointsq3,q4, . . . with W, that each lie in1j3,1j4, . . ., until
the last computedqi lies in the current pyramid1ji .

We repeat the steps for the lower boundaryD, choose the intersection point closest
to gs, and position the first vision pointg1 at this point.

Next, we show how to compute the limit pointlp(gi) incrementally, given the vision
pointgi . Assume thatgi lies in the pyramid1ji bounded by the cuts [U(xji−1),D(xji−1)]
and [U(xji),D(xji)] of the straight walk, withxji−1 < xji . By Lemma 4.8, our aim is to
compute the closest intersection point betweenW and the forward essential cuts with
respect togs that start in the pockets ofVP(W(gs,gi)) and the closest intersection point
betweenW and the supporting cuts with respect to the windows ofVP(W(gs,gi)).

In Lemma 4.8 we introduced the two setsFEC i , of forward essential cuts with respect
togs that have issuing edges inclosure(P\VP(W(gs,gi))), andSUC i , of supporting cuts
of windows ofVP(W(gs,gi)). We partition each of these sets into two new setsFECU

i
andFECD

i , together withSUCU
i andSUCD

i . The setFECU
i consists of those forward

essential cuts inFEC i that issue from the chainU. Similarly the setFECD
i consists of

those issuing fromD. We partition the setSUC i in the same way.
If c is a cut inP, we let lc denote the directed line collinear toc having the same

direction asc. Let lHP(l) andrHP(l) denote the left half-plane and the right half-plane
respectively of the directed linel. If Q is some planar region, we letbd(Q) denote the
boundary ofQ. With these notational conventions we can define two curves that are
important to compute limit points efficiently. Define the curvesCU

i andCD
i by

CU
i = bd

 ⋂
c∈FECU

i

lHP(lc) ∩
⋂

c∈SUCU
i

rHP(lc)

 ,

68 S. Carlsson and B. J. Nilsson

Fig. 14.An example of the curveCU
i .

CD
i = bd

 ⋂
c∈FECD

i

lHP(lc) ∩
⋂

c∈SUCD
i

lHP(lc)

 .
The two curvesCU

i andCD
i can equivalently be viewed as the lower envelope of the cuts

in FECU
i ∪ SUCU

i and the cuts inFECD
i ∪ SUCD

i , respectively; see Figure 14.
By Lemma 4.8 we have that

gi+1 = nearestgs({W∩ CU
i ,W∩ CD

i }).

We show how to compute the limit points incrementally, using the curvesCU
i andCD

i .
Our assumption is, as stated previously, thatgi lies in 1ji , and we consider the

pyramids1ji+1,1ji+2, . . . , in order until we find the limit point in1ji+1. Note that1ji+1

is not known at the beginning of the computation. We will show how to perform the
computation along the upper boundary of each pyramid, i.e., how to find the intersection
CU

i ∩W ∩ 1j , with ji + 1 ≤ j ≤ ji+1. The computation along the lower boundary is
performed in a similar fashion, simultaneously. The pseudocode of the routine computing
the limit point is provided below.

Algorithm Limit-Point

Input: A point gi ∈W and an integerji such thatgi ∈ 1ji
Output: The pointgi+1 = lp(gi) and an integerji+1 such thatgi+1 ∈ 1ji+1

Computing Vision Points in Polygons 69

1 j := ji , done:= false, CU
i := ∅, CD

i := ∅, vhlU := ∅, vhlD := ∅
2 while notdonedo

j := j + 1
2.1 if vhlU = ∅ then

Let v be the first vertex ofU in 1j andv′ the second vertex ofU in 1j

if gi , v, andv′ form a left turnthen
Let vhlU be the half-line fromgi throughv
Compute the half-lineshlU1 from v

MergeshlU1 to CU
i

endif
endif

2.2 if vhlU intersectsU in 1j at pthen
Compute the half-lineshlU2 from p
MergeshlU2 to CU

i

vhlU := ∅
endif

2.3 if vhlU 6= ∅ then
Let ebe the last edge ofU in 1j and lethl be the half-line
collinear toedirected toward the interior ofP
Mergehl to CU

i
endif

2.4 if CU
i intersectsW in 1j then

Compute the intersection pointqU

endif
2.5 Perform steps corresponding to Steps 2.1–2.4 for the lower boundaryD
2.6 if at least one ofqU andqD existsthen

Let gi+1 be the one ofqU andqD closest togi

Let ji+1 := j
done:= true

endif
endwhile

3 return gi+1 and ji+1

End Limit-Point

In Step 1 we make initializations of variables we will use. Step 2 is a loop that is
traversed for each pyramid after1ji until the limit point is found in1ji+1. Step 2.1 tests
if there is a window ofVP(W(gs,gi)) starting at the first vertexv of U, in the current
pyramid; see Figure 15(a). If this is so, we letvhlU be the visibility half-line, i.e., the
half-line starting atgi and passing throughv. We also introduce the first supporting half-
line shlU1 collinear to the supporting cut issuing fromv, and merge it to the chainCU

i . We
describe how to perform the merging step later. Sincev is a vertex ofP, it corresponds
to a node in the augmented shortest path tree rooted atgt, with v′′ being the father node
of v in the tree. The half-lineshlU1 is the half line starting atv directed towardv′′; see
Figure 15(b).

In Step 2.2 we test whether an existing visibility half-line has a further intersection
with the boundary ofU in the current pyramid. If this is so, we compute the second

70 S. Carlsson and B. J. Nilsson

Fig. 15.Illustrating the computation of the limit point ofgi .

supporting half-lineshlU2 collinear with the other supporting cut and mergeshlU2 to the
chainCU

i . The half-lineshlU2 is computed in the following way: Letu andu′ be the two
asp-vertices closest top on either side ofp, wherep is the intersection point ofvhlU

andU; see Figure 15(b). We can obtain the nearest common ancestoru′′ of u andu′ in
constant time [14]. The half-lineshlU2 is the half-line starting atp, directed towardu′′.

In Step 2.3 we test whether there are forward essential cuts with respect togs that
start in a pocket ofVP(W(gs,gi)). Since all vertices ofU in the current pyramid are
convex, with the possible exception of the two end vertices, our only interest lies in the
last edgeeof U in the current pyramid; see Figure 15(c). The half-linehl is the half-line
collinear toe starting at the end vertex ofU in this pyramid and directed so thatgi lies
to the right ofhl so as to correspond with the direction of the supporting cuts described
above. Note that a half-linehl issuing fromU will have opposite direction with respect
to the associated forward essential cut.

Eachhalf-line ismergedwith thechainCU
i = 〈c1, c2, . . . , ck−1, ck〉wherec1, . . . , ck−1

are line segments andck is a half-line, using the algorithmMerge-to-Upper-Chain.

Algorithm Merge-to-Upper-Chain

Input: The chainCU
i and a half-linehl to be merged withCU

i under certain conditions
Output: The new upper chainCU

i

1 if CU
i is emptythen

CU
i := 〈hl〉

endif
2 if CU

i = 〈c1, c2, . . . , ck−1, ck〉 then
setk′ := k and setdone:= false

Computing Vision Points in Polygons 71

2.1 while not (done) do
Let l be the line collinear tock′ directed so thatgi lies to the right ofl
if hl has points to the right ofl then

let l ′ be the line collinear tohl
if l ′ intersectsck′ at the pointp then

if ck′ = [a,b] or ck′ is a half-line starting ata then
let hl′ be the half-line starting atp with the same direction ashl and

setCU
i := 〈c1, . . . , ck′−1, [a, p],hl′〉

endif
else/∗ if l ′ does not intersectck′ then ∗/

k′ := k′ − 1
endif

else/∗ if hl has all its points to the left ofl then ∗/
done:= true

endif
endwhile

endif
return CU

i
End Merge-to-Upper-Chain

The straight walk(U,D) specifies one parameter partial functionsW, CU
i , andCD

i
defined by

W: [0,1]→W such that W(x) =W∩ [U(x),D(x)],
CU

i : [0,1]→ CU
i such that CU

i (x) = CU
i ∩ [U(x),D(x)],

CD
i : [0,1]→ CD

i such that CD
i (x) = CD

i ∩ [U(x),D(x)].

It follows from the fact thatW is polygonal, straight, and hasm edges, together with the
fact thatU andD are piecewise linear and monotone, thatW is monotone and consists
of O(n+m) functions of the formA(x)/B(x), whereA is a quadratic function andB
is a linear function of subintervals to [0,1]. Similarly, each functionCU

i andCD
i consists

of O(n) functions of the same type.
In Step 2.4 we compute the possible intersection point ofCU

i andW in the current
pyramid. If the current pyramid is1j we begin by computing the subsetsCU

i ∩1j and
W ∩ 1j . We have that1j =

⋃
xj−1≤x≤xj

[U(x),D(x)] and therefore to findCU
i ∩ 1j

we only have to find the intersection pointsCU
i (xj−1) = CU

i ∩ [U(xj−1),D(xj−1)] and
CU

i (xj) = CU
i ∩ [U(xj),D(xj)], for CU

i . Similarly for W∩1j , we have to find the inter-
section pointsW(xj−1) = W ∩ [U(xj−1),D(xj−1)] andW(xj) = W ∩ [U(xj),D(xj)],
for W. To get the intersection point betweenCU

i andW in the pyramid, we solve the
equationW(x) = CU

i (x), for x, which produces the pointqU = W(x). The time to
perform the operations is linear in the size of the pyramid, the parts ofCU

i andW in
the pyramid.

In Step 2.5 we perform these same operations for the lower boundary of the current
pyramid, i.e., computing the setCD

i ∩W∩1j , for ji+1 ≤ j ≤ ji + 1. We determine the
half-linesvhlD, shlD1 , shlD2 , and the half-lines corresponding to forward essential cuts, to

72 S. Carlsson and B. J. Nilsson

get the chainCD
i , and compute the possible intersection pointqD of CD

i andW in the
current pyramid.

The last step of the loop, Step 2.6, determines if the limit point has been found, and,
if so, exits the procedure.

LEMMA 5.1. A watchman route in a straight walkable polygon needs at most n vision
points.

PROOF. The algorithm positions the first vision pointg1 in pyramid1j1 which means
thatg1 sees all the pyramids11, . . . , 1j1 and symmetrically the last vision pointgk is
placed in1jk implying that the last pyramids1jk , . . . , 1l are seen bygk. Furthermore, we
know that each of the pyramids1j1+1, . . . , 1jk−1 contains points of the watchman route,
and, hence, one vision point in each pyramid will suffice to guard the whole polygon
because each pyramid is convex. Since there are no more thann pyramids, no more than
n vision points are needed.

THEOREM3. The algorithm Optimum-Vision-Points-in-Straight-Walkable-Polygon
computes an optimum set of vision points on a straight watchman route W, in a straight
walkable polygonP. The algorithm uses O(n+m) time and storage, where n is the size
of P and m is the size of W.

PROOF. The correctness of the algorithm follows from the construction and Lemma 4.4,
so it only remains to analyze the complexity.

Step 1 takesO(n+m) time since we can compute the augmented shortest path tree
from a point inO(n) time. The subdivision into pyramids also takesO(n) time, if the
two setsU andD, each consisting ofO(n) linear functions, are scanned froms to t.
Computingg1 andW takesO(n + m) time sinceU, D, andW are each scanned a
constant number of times.

To show that Step 2 takesO(n + m) time, we show that, if a vision pointgi lies
in 1ji and its limit pointgi+1 lies in 1ji+1, the time to computegi+1 is bounded by
O(
∑

ji≤ j≤ ji+1
|1j | + |W ∩ 1j |), but this follows easily since only the boundary of the

pyramids1ji , 1ji+1, . . . , 1ji+1 and the portion ofW in these pyramids are traversed a
constant number of times during the construction. Since all of these pyramids are seen
by the vision point together with its limit point we do not have to consider any of these
pyramids again, but can continue the computation from1ji+1. Hence, the total time for
the construction is linear in the size of the input.

6. Conclusion

6.1. Remarks. We have shown a method with which we can compute an optimum set
of vision points on a given collapsed watchman route in a street. We have also presented
a faster version of the algorithm that works for straight walkable polygons with straight
watchman routes.

TheOptimum-Vision-Points-in-Streetalgorithm uses explicit ray shooting to find the

Computing Vision Points in Polygons 73

vision points. This makes for heavy time consumption when we compute each vision
point, but the algorithm requires only linear time preprocessing. If we use more prepro-
cessing time, the cost of computing the vision points can be reduced. Instead of doing
explicit ray shooting operations, we do them implicitly, by first computing a visibility
graph structure and using this structure to guide the placement of the vision points.
However, this version of the algorithm would only be more efficient when the number
of vision points is very large.

In fact, we can use the method to compute optimum guard covers for certain polygons.
The method consists of two steps:

1. Show that the given polygonP is a street.
2. Show how to obtain a collapsed watchman routeWsuch that some setOPT (P) ⊆W.

The algorithm runs inO(kn log(n +m) +m) = O(n2 log(n +m) +m) time sincek,
the number of guards, isO(n).

If we can show that the polygon is straight walkable and that the watchman route
is straight, then our algorithm runs in optimal linear time. This can be done for spiral
polygons, where it is easy to see that there is an optimum guard cover on the convex
chain of a spiral polygon [24], [25]. We can also find optimum guard covers for histogram
and alp polygons in linear time. Here it is easy to establish that the base is a straight
watchman route that allows an optimum guard cover, thus yielding the result [4], [24].

6.2. Open Problems. In the first part of this work, we discuss the problem of plac-
ing static point guards inside polygons. We introduce the concept of one-dimensional
guarding, meaning that guards have to be positioned on a given closed curve called the
watchman route. These guard points are called vision points. In this setting, we investi-
gate the problem of computing optimum vision points, i.e., positions for a minimum set
of vision points. This differs from previous definitions of guarding where the guards are
only restricted to lie inside the polygon, and the objective is to find an optimum guard
cover.

The algorithm we present for streets is probably not optimal. However, we feel that the
important breakthrough is to show that there exist efficient algorithms for the optimum
vision points problem in streets. Efficiency in this setting is somewhat undefined. The
complexity of the algorithm depends heavily on the size of the output, as described in
the beginning of Section 4, which can have arbitrary size. Hence, we can never have an
algorithm for the optimum vision points problem that is polynomial in the size of the
input only. If we let QP, the set ofQuasi-Polynomialproblems, be the set of problems
that have polynomial time complexity in the input and output size, we have shown that
the optimum vision points problem for streets lies in QP, and this is the best we can hope
for.

Furthermore, a linear time algorithm to solve the problem for straight walkable poly-
gons is presented under the assumption that the watchman route is straight. If the watch-
man route is not straight, the problem can be solved in polynomial time, since the output
size isO(n) and the algorithm for streets also works in this, more restricted, case. We
also show that the optimum guard covering problem is NP-hard for the slightly less
restricted class of streets. A summary of the complexity of guarding is shown in Table 1.

To indicate further research problems, it would be interesting to narrow the gap

74 S. Carlsson and B. J. Nilsson

Table 1.Complexity of guarding, for some classes of simple polygons.

Polygon classes

Cover type Spiral Alp Str. walk. Street Simple

Vision points Linear Linear Linear/P QP NP-hard
Guard cover Linear Linear Unknown NP-hard NP-hard

between the tractable and intractable guarding problems further. Other polygon classes
such as monotone and walkable polygons may yield interesting information that could
be useful to show further complexity results.

References

[1] A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications and Algorithmic Aspects. Ph.D.
thesis, Johns Hopkins University, 1984.

[2] S. Carlsson, H. Jonsson. Computing a Shortest Watchman Path in a Simple Polygon in Polynomial Time.
In Proc. Workshop on Algorithms and Data Structures, WADS ’95, pages 122–134. Lecture Notes in
Computer Science, vol. 955. Springer-Verlag, Berlin, 1995.

[3] S. Carlsson, H. Jonsson, B. J. Nilsson. Finding the Shortest Watchman Route in a Simple Polygon. In
Proc. 4th International Symposium on Algorithms and Computation, ISAAC ’93, pages 58–67. Lecture
Notes in Computer Science, vol. 762. Springer-Verlag, Berlin, 1993.

[4] S. Carlsson, B. J. Nilsson, S. Ntafos. Optimum Guard Covers andm-Watchmen Routes for Restricted
Polygons.International Journal of Computational Geometry and Applications, 3(1):85–105, 1993.

[5] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, J. Snoeyink. Ray Shooting
in Polygons using Geodesic Triangulations. InProc. 18th ICALP, pages 661–673, 1991.

[6] B. Chazelle, L. Guibas. Visibility and Intersection Problems in Plane Geometry.Discrete and Compu-
tational Geometry, 4:551–581, 1989.

[7] W. Chin, S. Ntafos. Optimum Watchman Routes.Information Processing Letters, 28:39–44, 1988.
[8] V. Chvátal. A Combinatorial Theorem in Plane Geometry.Journal of Combinatorial Theory, Series B,

13(6):395–398, 1975.
[9] D. Das, P. J. Heffernan, G. Narasimhan. LR-Visibility in Polygons. InProc. 5th Canadian Conference

on Computational Geometry, pages 303–308, 1993.
[10] H. ElGindy, D. Avis. A Linear Algorithm for Computing the Visibility Polygon from a Point.Journal

of Algorithms, 2:186–197, 1981.
[11] S. Fisk. A Short Proof of Chv´atal’s Watchman Theorem.Journal of Combinatorial Theory, Series B,

24:374, 1978.
[12] M. R. Garey, D. S. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, San Francisco, CA, 1979.
[13] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan. Linear Time Algorithms for Visibility and

Shortest Path Problems inside Triangulated Simple Polygons.Algorithmica, 2:209–233, 1987.
[14] D. Harel, R. E. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors.SIAM Journal on

Computing, 13(2):338–355, 1984.
[15] P. J. Heffernan. An Optimal Algorithm for the Two-Guard Problem. InProc. 9th ACM Symposium on

Computational Geometry, pages 348–358, 1993.
[16] J. Hershberger, S. Suri. A Pedestrian Approach to Ray Shooting: Shoot a Ray, Take a Walk. InProc.

SODA, pages 54–63, 1993.‘
[17] C. Icking, R. Klein. The Two Guards Problem. InProc. 7th ACM Symposium on Computational Geom-

etry, pages 166–175, 1991.

Computing Vision Points in Polygons 75

[18] B. Joe, R. B. Simpson. Correction to Lee’s Visibility Polygon Algorithm.BIT, 27:458–473, 1987.
[19] J. M. Keil, J.-R. Sack. Minimum Decompositions of Polygonal Objects. In G. T. Toussaint, editor,

Computational Geometry, pages 197–216. North-Holland, Amsterdam, 1985.
[20] R. Klein. Walking an Unknown Street with Bounded Detour.Computational Geometry: Theory and

Applications, 1(6):325–351, 1992.
[21] D. T. Lee. Visibility of a Simple Polygon.Computer Vision, Graphics, and Image Processing, 22:207–

221, 1983.
[22] D. T. Lee, A. K. Lin. Computational Complexity of Art Gallery Problems.IEEE Transactions on

Information Theory, IT-32:276–282, 1986.
[23] D. T. Lee, F. P. Preparata. Euclidean Shortest Paths in the Presence of Rectilinear Barriers.Networks,

14:393–410, 1984.
[24] B. J. Nilsson. Guarding Art Galleries—Methods for Mobile Guards. Ph.D. thesis, Lund University,

1995.
[25] B. J. Nilsson, D. Wood. Watchmen Routes in Spiral Polygons. Technical Report LU-CS-TR:90–55,

Dept. of Computer Science, Lund University, 1990. An extended abstract of a preliminary version
appears inProc. 2nd Canadian Conference on Computational Geometry, pages 269–272, 1990.

[26] J. O’Rourke.Art Gallery Theorems and Algorithms. Oxford University Press, Oxford, 1987.
[27] T. C. Shermer. Recent Results in Art Galleries.Proceedings of the IEEE, pages 1384–1399, September

1992.

