Algorithmica (1999) 24: 50-75 AI g O r|th m | Ca_

© 1999 Springer-Verlag New York Inc.

Computing Vision Points in Polygons
S. Carlssohand B. J. Nilssof

Abstract. We consider a restricted version of the art gallery problem within simple polygons in which the
guards are required to lie on a given one-dimensional object, a watchman route. We call this probisiorthe
point problem We prove the following:

e The original art gallery problem is NP-hard for the very restricted classreétpolygons.

e The vision point problem can be solved efficiently for the class of street polygons.

o Alinear time algorithm for the vision point problem exists for the subclass of street polygonsstediigght
walkablepolygons.

Key Words. Computational geometry, Algorithms, Art gallery problems.

1. Introduction. The problem of placing guards in an art gallery so that every pointin
the gallery is visible to at least one guard has been considered by several researchers. If
the gallery is represented by a polygon (havingertices) and the guards are points in the
polygon, then visibility problems can be equivalently stated as problems of covering the
gallery with star-shaped polygons. Ghal [8] and Fisk [11] proved than/3| guards

are always sufficient and sometimes necessary to cover a polygoadufes.

Consider a convex polygon afedges. The bound ¢f/3] guards is a gross overes-
timation on the number of guards, since one guard will suffice for any convex polygon.
Similarly, depending on the structure of a polygon witkdges, the minimum number
of guards may be smaller than the estimate, and, therefore, it becomes interesting to find
algorithmic methods to compute the minimum number of guards necessary to cover a
given polygon. Alas, Aggarwal [1] and Lee and Lin [22] have proved that this problem
is NP-hard. A survey of results on art gallery problems and general visibility problems
can be found in O’Rourke’s monograph [26] and the articles by Keil and Sack [19] and
Shermer [27].

Since the art gallery problem is hard to solve, posing certain restrictions on the
problem may yield versions that are efficiently solvable but that still maintain practical
use. We consider the following version: given a polydg®dwof n edges and a closed
polygonal curveW of m edges, what is the minimum number of guards that céver
and are restricted to lie dW. This, of course, requires that it is possible to make such a
placement of guards AW, i.e., we require that the set of pointsWfform a guard cover
for P. A closed curve with this property is calledratchman routdor P, the minimum
number of guards olV are called thevision pointsfor W, and this version of the art
gallery problem we call theision point problenfor a polygonP and a routan.

1 Department of Computer Science, Lalghiversity of Technology, 971 87 LudeSweden.
2 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.

Received June 6, 1996; revised September 12, 1997. Communicated by D. T. Lee.



Computing Vision Points in Polygons 51

Among the practical applications for the vision point problem, one comes from the
area of robotics. A robot moving along a watchman route may be incapable of engaging
its vision system continuously, and, therefore, it may have to stop at points on the route
to obtain visibility information accurately. Our covering problem can also be stated as
a problem of illumination. Consider the polygon as a room with the boundary being
walls and the watchman route as an electric cable embedded in the ceiling. We ask for
the minimum number of light bulbs and their positions on the cable such that the whole
room is illuminated.

Unfortunately, the vision point problem turns out to be NP-hard for simple polygons in
general [4], [24]. In the rest of this presentation, we therefore restrict the watchman route
and consider the class of simple polygons that allow this restricted type of watchman
routes.

The next section is dedicated to defining the type of watchman route that we consider
and establishing the class of simple polygons, the clasteéts

In Section 3 we prove that the original art gallery problem is NP-hard for streets, and
in Section 4 we present an efficient algorithm for the vision point problem in streets.

An important and well studied subclass of the streetstegght walkable polygons
and in Section 5 we present a linear time algorithm for the vision point problem in straight
walkable polygons when the watchman route obeys certain additional properties.

2. Definitions and Preliminary Results. We begin this section with some definitions.
Most of them are standard in computational geometry.

Let P be a simple polygon and |& denote a subset of the pointst The setS is
aguard setor aguard cover if, for any pointp in P, there is a poingin S that see%.
Two pointsp andqin P are said tseeeach other if the line segment joiniqgandq lies
in P. A subsetS’ of S is a set ofvision pointsif S’ is a guard set foP. A setOP7 (S)
is a smallest cardinality set of vision points for a guard$et P.

We consider the specific problem where the sets of vision points are subsets of a
given polygonal curve ifP. Such a curve is known assatchman routeln many cases,
watchman routes can be computed efficiently. The boundary of the poRdorms
a closed watchman route that is easily obtainable. Chin and Ntafos [7] and Carlsson
et al. [3], [24] provide polynomial time algorithms for the shortest closed watchman
route problem, in rectilinear simple and simple polygons, respectively. In a recent result,
Carlsson and Jonsson [2] establish an efficient algorithm for computing the shortest open
watchman route, the shortest watchman path, in a simple polygon.

Denote byVP(p) the visibility polygon of a pointp in P. The edges of a visibility
polygon inP that are not edges &f are called thevindowsof the visibility polygon.

Each window separates the visibility polygon from subpolygorB thfat are known as
pocketssee Figure 1(a).

A cutin a simple polygorP is a directed line segment having its two endpoints on
the boundary oP, and at least one interior point in the interior &f A window of a
visibility polygon VP (p) is a cut if we specify a direction for the window. For windows
we choose the direction away from the pomntollinear to the window.

Two other specific types of cuts are used extensively in the followingegsential
cut eis a maximal extension of an edge of a polydari.e., the line segment returned



52 S. Carlsson and B. J. Nilsson

A

essential cuts supporting cuts

(@) (V)] ©)

windows

pockets

Fig. 1. lllustrating definitions.

by a ray shooting operation from an endpoint of the edge directed away from the edge.
The direction associated tis the same as the direction of the associated edge when
the polygon is traversed in counterclockwise order; see Figure 1(b). An essengal cut
is aforward essential cutvith respect to a poinp, if p lies to the left ofein P.

To define the other type of cut, we must assume that we have a simple polygon
P, a watchman rout&V, and a pointp on W. The twosupporting cutf a point p
associated to a window of VP(p) are the two maximal line segmentsinstarting at
the two endpoints of, intersecting/V, and having the largest anglewo The associated
directions of the supporting cuts are away framsee Figure 1(c).

We study the problem of guarding a class of simple polygons, for which we can
choose watchman routes that have certain useful propertieR. et simple polygon
such that there exists two distinct points with the property that any simple path between
the points forms a guard set fBr We show that we can find an optimum set of vision
points on the path for this class of polygons efficiently. We define the class formally.

DEFINITION 2.1. LetP be a simple polygon. A collapsed watchman rodkdor P is a
polygonal curve such that, for all poingse P, the seVP(p) N W is a connected chain.

If P has a collapsed watchman route, we say®istontained in the class of polygons
with collapsed watchman routes.

The same class of polygons has been studied before by Klein [20] who called the
polygons of this classtreets The definition states that a polygon is a street if the boundary
can be partitioned into two chaitisandD that are mutually visible. In this section we
denote the two endpoints bfandD by sandt and assume that the two points are given.
This may seem a severe restriction, but the two endpoints can, in fact, be found in linear
time [9]. Examples of streets and nonstreets are given in Figure 2.

We prove that the streets are exactly the class of polygons with collapsed watchman
routes.

LEMMA 2.1. A polygon has a collapsed watchman route if and only if it is a street

PrROOF We begin by showing thatR is a street, then we can use the stronger statement
that bothU andD are guard sets fdP. Assume that this is not the case andpete a



Computing Vision Points in Polygons 53

& XX

A street Not a street

Fig. 2. Examples of polygons.

point seen by only one of the two chains, &yl et S, be the shortest path froato p
and similarly letT, be the shortest path frotto p. The two pathsS, and T, must have
at least the link closest tpin common, otherwis@ sees bottJ andD; see Figure 3(a).
Denote this link byl. However, this means that there is an edgé U adjacent to the
turning point ofl that is not seen by, thus contradicting the fact that andD are
mutually visible; see Figure 3(b). Hence, b&tlandD are guard sets fd®.

We use this result to show the actual lemma. We begin with the if casé heta
street and le§ be the shortest path frosito t within P. SinceSis a shortest path, the
intersection ofSwith any visibility polygon inP is a chain. Hence, it remains to show
thatSis a guard set to have shown tlahas a collapsed watchman route. lpebe a
point in P. Point p is seen both by a poirf on U and by a pointy’ on D. One of the
segmentsg, g] or [p, q] intersectsS and hence, a point &seesp; see Figure 3(c).

The only if case is proved in a similar manner. [Bebe a polygon with a collapsed
watchman route. Lat be the shortest collapsed watchman route and extend the first and
last segments until they hit the boundaryRodit pointss’ andt’. LetU’ be the subchain
of the boundary oP obtained by walking counterclockwise along the boundary from

(a)

P

(©) )

Fig. 3. lllustrating Lemma 2.1



54 S. Carlsson and B. J. Nilsson

t’ to . Similarly let D’ be the other subchain. Take a pomtn P. This point is seen
from a pointg on W. Extend the segmenp| q] until it hits the boundary oP on both
sides, at points andr’. By the construction of the chaitnt’ andD’ and the fact thatV
is shortest, the pointsandr’ must lie on different chains. Hence, bdth and D’ are
guard sets foP; see Figure 3(d). O

We henceforth call this class of polygons streets. The class of streets encompasses
many common classes of polygons, e.g., star-shaped polygons, two-guardable polygons,
weakly edge visible polygons, and walkable polygons of which two commonly known
subclasses are the monotone polygons and the spiral polygons.

Inthe following we assume thitis a street with a boundary havingdges. We divert
somewhat and show that computing the optimum guard cover for a street is NP-hard.

3. Complexity of Guarding Streets. In this section we prove that finding the mini-
mum number of point guards in a street is NP-hard. This is the first result that shows that
optimum guarding is NP-hard for a restricted class of simple polygons.

THEOREM1. Finding the minimum number of point guards in a street is NP-hard

PrOOF We rephrase the problem as a decision problem.

Instance A streetP and a positive integeB.
Question Is there a set of at mo& point guards that cove®?

The proof is by reduction from 3/8ISFIABILITY , which is NP-complete [12].

Instance A Boolean formula

(Ipavigaviga) Al vigavig) Ao Al Vi Vika)

consisting ok clauses, each containing three literals, where each literal is a Boolean
variablel; ; = um or the conjugate of a Boolean varialhle = tm, out of a set oh
Boolean variables;, ..., u,.

Question Is there a truth assignment to thevariables that satisfies the formula?

Let a 3-ATISFIABILITY instance havé clauses anah variables. We modify the proof

of Lee and Lin [22] and Aggarwal [1] that finding a minimum guard cover for simple
polygons is NP-hard to hold for streets. The proof gives the construction of a polygon
that is guardable withi3+ n + 1 guards, if and only if the 38ISFIABILITY instance is
satisfiable.

Each variable corresponds to twell structuresin the polygon, that represent the
variable and its conjugate. The main parts of the wells are seen from a distinguished
pointx in the upper left corner of the polygon; see Figure 4. Each pair of wells also has a
notch u which is seen by the distinguished points F and T that mark whether the variable
is set to false or true. Furthermore, we ensure that every notch u is seen by, poént
rightmost vertex of the polygon.



Computing Vision Points in Polygons 55

well structures

Um, Ut

Fig. 4. lllustrating the proof of Theorem 1.

Each clause in the Boolean formula correspondstaase structurén the upper part
of the polygon, having three notches that represent the three literals and two distinguished
points fand tin each notch that mark whether the literal is set to false or true; see Figure 4.

A literal notch in a clause structure is connected to the appropriate well structure in
the following way: If the literal is a variable, we add two small spikes in the wells in such
a way that guards &, T, and t, or guards &, F, and f will see the two well structures
and the two spikes, as in the example= u, of Figure 4. Similarly, if the literal is the
conjugate of a variable, we add two small spikes in the wells in such a way that guards at
X, T, and f, or guards at, F, and t will see the two well structures and the two spikes, as
in the examplé; , = Uy of Figure 4. Furthermore, at least one of the guards in a clause
structure must be placed at a point t in order for the clause structure to be completely
seen, specifically poirg must be seen, thus ensuring that the corresponding clause in
the Boolean formula is satisfied by the truth assignment of the variables. Should all the
guards in a clause structure be placed at points f, then at least one more guard is needed,
e.g., at pointy.

The proof thus specifiek6t 2n 4 2 possible points for guards such that a minimum
vertex guard cover usek 3 n+1 of them as guard locations and this is a minimum vertex
guard cover if and only if the corresponding Zf&FIABILITY formula is satisfiable. See
Figure 5 for a complete example.

The proof can be generalized to interior point guards in the same way as is done by
Aggarwal [1] by altering the polygon in such a way that the distinguished points become
interior points of the polygon.

It remains to prove that the polygon we have constructed is a street. We partition the
boundary of the polygon into two chaitsandD and show that both these chains are
mutually visible. Lets andt be the leftmost and rightmost points of the polygon; see



56 S. Carlsson and B. J. Nilsson

clause structures

D

well structures

U1 U2 ug

Fig. 5. Example consisting of two clauses and three variables.

Figure 4. LetD be the chain obtained by following the polygon boundary in counter-
clockwise order fronsto t, and letU be the chain obtained by following the boundary
in counterclockwise order fromto s.

Let p be a point orlJ and movep downward until it reaches the polygon boundary
at pointp’. If p’ lies onD, thenD seesp, otherwisep lies in a clause structure and is
seen by poiny. Hence D seesp.

Now, let p be a point orD and movep upward until it reaches the polygon boundary
at pointp”. If p” lies onU, thenU seesp, otherwisep lies in a well structure and is seen
either by pointx, some f or t point in a clause structure, or pdirtlence U seesp. O

In the following we show that if we restrict the guards to lie on a collapsed watchman
route in a street, then we can compute an optimum cover efficiently.

4. Optimum Vision Points in Streets. Assume thaP is a street witin edges and that
W is a collapsed watchman route with edges insidé®. The crucial property of the
collapsed watchman rout# is that the intersection with the visibility polygon of any
point in P is a connected chain.

The problem we study in this section is to find an optimum set of vision points for
PonW, i.e., aselOP7 (W) in P. Unfortunately, the number of vision points can be
arbitrarily large; see Figure 6(a). The number of vision points depends on how narrow
the mouth of the notch is. By changing the situation slightly, we can get an even worse
situation; see Figure 6(b). If the three vertices are collinear, then we need an infinite
number of vision points olV. Hence, a crucial property that we assume in the following
is thatP is in general position, i.e., no three vertices are collinear. Still, since there is no
relation between the number of vision points and the size of the polygon or the size of the
watchman route, our algorithms will depend on the number of vision points computed.
The parametek will henceforth be used to denote this value.

To solve the problem of computing a smallest set of vision points, we need the concept
of a limit point with respect to a given poigton W. To define this formally we introduce
some preliminary notation.

Let e be an essential cut that crosd&'sand partitionsP into two parts,Ps and P,



Computing Vision Points in Polygons 57

mouth
. >; ;

Fig. 6. Examples requiring many vision points.

partPs containings, andP; containingt. Denote the endpoint &/ that lies inPs by g,
and in the same way, denote the other endpoiW/diy g;; see Figure 7(a).

If we move a point alongV from gs towardg;, we say that the point moves in the
forward direction This makes it possible to talk about points lying before and after other
points onW. We say that a poirgon W lies before a poing’ onW if g is reached before
g when we move alongV from gs in the forward direction. Similarly’ lies afterg.

Let p be any point irP. By Definition 2.1 we know thap sees some subchain\of.
We denote this subchain by W), and the two endpoints of this subchainIbft(p)
andright(p) in such a way thateft(p) lies beforeright(p) on W; see Figure 7(b).

Let g and g’ be two points onW, with g lying beforeg’. Denote byW(g, g') the
subchain ofW from g to g’. We let the visibility polygon ofW(g, g'), denoted by
VP(W(g, 9"), be the sefp € VPq | q € W(g, g")}.

If S is a set of points oW, we letneares(S) denote the first point i reached
from g alongW in the forward direction.

Let Q be some region, possibly consisting of several components. WetetrdQ)
denote the closure of the g@tof points, i.e., the s U bd(Q), wherebd(Q) denotes
the boundary of the regioQ.

With these notational conventions we can define the limit point of a poiflYon

DEerINITION 4.1.  The limit point of a poing on Wis the point orW specified by
Ip(g) = neares§({right(p) | p € closurgP\VP(W(gs, 9))}).

This definition captures the intuitive notion that the limit point of a gugisithe furthest
possible point oW for the next guard. This follows from Lemmas 4.1 and 4.2.

@9s

w
I e
———— |
°
®----
li
O

(a) D)

Fig. 7. lllustrating notational conventions.



58 S. Carlsson and B. J. Nilsson

We can definép' (g) by

Ip?(g) =9
Ip'(g) = Ipdp'~t(@) for i>0.

LEmmA 4.1. Ifgis a pointon W and’g=Ip(g), then
VP(W(gs, 9)) U VP(g) = VP(W(gs, 9)).

PrROOFE Evidently, the regionVP(W(gs, 9)) U VP(g) is a subset of the region
VP(W(gs, 9')), since the seW(gs, g) U {d'} is a subset oiV(gs, g'). Hence, it only
remains to prove the reverse inclusion.

Let p be a pointinv P(W(gs, g)). If pis seen by some point W(gs, g), thenp lies
in VP(W(gs, 9)) U VP(d'), and we are done. I is not seen by any point i (gs, 9),
then p must be seen by some porjt that lies betwee andg’ on W. This means that
left(p) lies beforeg’ on W, and sincey is the closest pointight(q), for every pointq
not inVP(W(gs, 9)), it also means thal’ lies beforeright(p), and, henceg’ seesp.

Furthermore, the subchain between a point and its limit poiwaeaquires a vision
point.

LEMMA 4.2, If g is a point on Wthen W(g, Ip(g)) requires at least one vision point

PROOF By the definition of limit point, there is a poimtin a pocket oVP(W(gs, 9)),

such thatp(g) = right(p). Evidently, no point on the subchaWi(gs, g)) seesp, and,

henceleft(p) liesinW(g, Ip(g)). Thus, we have thAWC(p) € W(g, Ip(g)), and since

WC(p) requires a vision point, the subchaW(g, Ip(g)) also requires a vision poiriil
Define the poing; by

01 = nearesy, ({right(p) | p € P}).

We can prove the following lemma.

LEMMA 4.3. If g1 = neares§ ({right(p) | p € P}), then
VP(W(gs, 91)) = VP(qy).

PrOOF Evidently,VP(g:) € VP(W(gs, 01)), Sinceg; € W(gs, g1). Hence, it remains
to prove the reverse inclusion.

Let p be a point inVP(W(gs, 01)). If left(p) = g1, thenp lies inVP(g;), and we are
done. Otherwisdeft(p) lies beforeg; on W, and sincep; is the closest pointight(q),
for every pointg in P, this means thag, lies beforeright(p), and, henceg; seesp. O

Lemmas 4.1 and 4.3 prove that there is sdfier which the set

{Ip'(g)) |10<i <k—1)



Computing Vision Points in Polygons 59

is a guard cover foP. Thatk cannot be unbounded follows from the fact that no three
vertices ofP are collinear. This means that there issan 0, such thatengthWC(p)) >
e, for any pointp in P. We know that, for any poing on W, lengthW(g, Ip(g))) >
length WC(p)), for some pointp, and hencek < lengthlW)/e 4+ 1 which is bounded
sincee > 0.

We present the algorithr®ptimum-Vision-Points-in-Stre¢d guard a street. The
algorithm computes the appropriate vakand outputs the set of vision poirite' (1) |
0 <i < k—1}. The pseudocode for the algorithm is displayed below.

Next, we show that the presented algorithm actually computes an optimum set of
vision points.

LEMMA 4.4. The algorithm Optimum-Vision-Points-in-Street compugesn a street
an optimum set of vision points on a given collapsed watchman.route

PROOE LetG = {01, 02, . . ., Ok} be the set of vision points computed by our algorithm
and letF = {fq, fo,..., fj} be a set of vision points, consisting of fewer points, that
most closely matcheag, following Wfrom gsto g, i.e., f; lies as close tg; as possible,
subject to thisf; lies as close tg, as possible, and so on. Lgtbe the first vision point
that differs from the sef, i.e.,gi_1 = fj_; butg # fj.

If f; lies beforeg;, then, by Lemma 4.1, poinf; can be moved to the limit point of
fi_1, and we havép(fi_1) = Ip(gi_1) = gi. This contradicts the assumption tti&t
matchegj the closest.

On the other handy; cannot lie beforef; because this implies th& is not a guard
cover, sinceg; = Ip(gi_1), and, by Lemma 4.2, the portion @ betweeng; _; andg;
requires at least one vision point. O

Algorithm  Optimum-Vision-Points-in-Street

Input A streetP represented byJ, D) and a collapsed watchman roé
Output An optimum set of vision points fd? on W

1 Identify the pointgs
2 Preproces® andW and compute the first vision poigg

k:=0
3 while Pis not completely guardedio
ki=k+1
3.1 ok == 1P (q)
endwhile

return {gi |1 <i <k}
End Optimum-Vision-Points-in-Street

It remains to show how to compute the first guggdthe limit points, and analyze the
complexity of the algorithm. To do this, we need some further lemmas.

LEMMA 4.5. LetQ be a polygonal region if® and letV denote the set of vertices of
Q. For any point p inQ there is a vertex in Vg such that rightv) lies before righ¢p).



60 S. Carlsson and B. J. Nilsson

N -right (v) 7"ig-h-t-(p)

Fig. 8. lllustrating Lemma 4.5.

PROOF Let p be a point inQ and letc be the maximal cut if? passing through points
p andright(p). The cutc intersects some boundary edgef Q at pointg. Denote the
endpoints ok by v andv’; see Figure 8. The interior of the auintersects the boundary
of P at some point, and, hence, the segment fight(v)] must intersect at some point
r’, withr’ lying betweerr andq on c. This implies thatight(v) lies beforeright(p) on
W, see Figure 8. O

The lemma tells us, together with the previous results, that in order to compute the set
of vision points, we only have to compute the poinggt(v) for the vertices oP.

We show how the first vision point can be obtained with the use of the forward essential
cuts with respect tgs.

LEMMA 4.6. The first vision point gis the first intersection point of W and a forward
essential cut with respect tq,g.e.,

01 = nearesf,(fWnNc|ce FECY,

whereFEC is the set of forward essential cuts with respectdo g

PrROOF By Lemmas 4.3 and 4.5, it is enough to determine the closest pgirfv) to
gs of the vertices of.

Next, we can reduce the set of vertices to consider by the following argumentbket
a vertex ofP and assume thaight(v) is a point oW such that the segment,[right(v)]
is not collinear to a forward essential cut with respeajdcsee Figure 9. The segment
[v, right(v)] intersects a vertex’ of P. Consider the boundary edge ,[v”] that lies
in a pocket ofVP(right(v)). The pointright(v”) lies beforeright(v) and it lies on the
forward essential cut with respectdgthat issues from the edge’[ v"]; see Figure 91

In the preprocessing of Step 2 of algoritt®ptimum-Vision-Points-in-Streedll the
forward essential cuts with respectggpare computed. The computation is done with at
most a linear number @ (log(n+m)) time ray shooting operations with a data structure
that can be precomputed @(n + m) time [5], [6], [13], [16]. To do the preprocessing,
extend the edge &V containing poings until it hits the boundary oP at pointvs. The



Computing Vision Points in Polygons 61

Fig. 9. lllustrating Lemma 4.6.

setW U [gs, vs] can be viewed as a very thin corridor belonging to the exteriét. dhe
polygon constructed in this manner consists of at most2m + 1 edges and we build
the ray shooting data structure on this polygon, denéted

The intersection points of the forward essential cuts with respegt &md W are
computed by performing ray shooting P from the vertices in the direction of the
adjacent boundary edges to get the intersection pointwijtsach takingd (log(n + m))
time. From the intersection points thus found, we establish the one closgstTthe
initial vision pointg; is then set to be this point ON. Furthermore, we keep the rest of
the intersection points, and their associated forward essential cuts with resggadhto
a list denotedrC Ly, to be used to compute the rest of the vision points.

The preprocessing of Step 2 also consists of the computation of the shortest path
tree rooted afy; [13], [23]. The tree is extended to @ugmented shortest path treg
traversing the boundary &f, and for each edgeperform the following steps: The two
endpoints ok correspond to nodasandv’ in the shortest path tree. We can, in linear
time, construct a data structure [14] enabling us to find the nearest common amicestor
tov andv’. Itis clear, by the fact that the path framio v is a shortest path and similarly
that the path fronoi to v’ is a shortest path, that the two paths are reflex chains. Hence, we
can extend each edge of the two paths and introduce an intersection peifrt tre tree
we let this intersection point correspond to a node connected to the node of the extended
edge; see Figure 10. The points of the polygon corresponding to nodes of the augmented
shortest path tree will henceforth be dencésg-verticedo distinguish them from the
vertices ofP. Note that the set of vertices is a subset of the set of asp-vertices, and that
the number of asp-vertices @(n) since we add at most one new asp-vertex for each
vertex ofP. We use the augmented shortest path tree to guide ray shooting operations to
compute limit points.

To compute the other vision points we also need the concept of supporting cut with
which we can prove the following two lemmas.

LEMMA 4.7. Aforward essential cut with respect tgigtersects W in at most one point
and a supporting cut with respect to a window\#® (W (gs, g)) intersects W in at most
two points with g being some point on W

PrROOF Assume thaeis a forward essential cut with respecigtoand thatke intersects
W in two or more points. This means that there is a ppiin the edge associatedeo



62 S. Carlsson and B. J. Nilsson

new asp-vertices

Fig. 10.Constructing the augmented shortest path tree.

such that the s&/N VP (p) is not connected, contradicting the fact tiféis a collapsed
watchman route.

Similarly, if we assume that is a supporting cut with respect to a window of
VP(W(gs, 9)) that intersect§Vin three or more points, then the &t VP(p), where
p is the starting point o€, is not connected, once again contradicting the fact\ttiat
is a collapsed watchman route. Tltatan have two intersection points can be seen in
Figure 11(b). O

The intersection point of a supporting cut and the ratéhat lies furthest frongs is
called thetrue intersection point.

LEMMA 4.8. Each vision point g1, with i > 1, is either the first intersection point
between W and a forward essential cut with respect isguing from an edge d® that

is not completely inVP(W(gs, gi)), or it is the first true intersection point between W
and a supporting cut associated to some windoWR§{W(gs, gi)), i.e.,

Oi+1 = nearesg (WnNc|ce FEC USUC;}),

v v VP(W(gs,g:))

right(q’)

: gi right(v)
VP(W(g,9)) | “right(a) P

(@) i ) (b)
Fig. 11.lllustrating Lemma 4.8.



Computing Vision Points in Polygons 63

where FEC; is the set of forward essential cuts with respect to poiinghe region
closurgP\VP(W(gs, gi))) possibly consisting of several componeatsd SUC; is the
set of supporting cuts with respect to the windowsB{W (gs, gi)).

ProOOF By Definition 4.1 and Lemma 4.5 it is enough to determine the closest point
right(v) to gs of the vertices in the regioclosurgP\VP(W(gs, gi))).

Letv be avertexin the regiatiosurgP\VP(W(gs, gi))) and assume that the segment
[v, right(v)] is not collinear to any forward essential cuthi€C; or any supporting cutin
SUC;. The segmentd, right(v)] intersects a vertex’ of P; see Figure 11. To complete
the proof we have to distinguish between three different cases:

1. If the segmentq], v'] intersectsVP(W(gs, gi)) and v’ lies on the same boundary
chain asv, thenv lies in a pocket of/P(W(gs, gi)) having the windoww. Let g be
the convex vertex o¥/P(W(gs, g/)) onw. The segmentd, right(q)] must intersect
the segmenty, right(v)] in the interval between andv’, and, hencesight(q) lies
beforeright(v) and the segment|| right(q)] is collinear to one of the supporting cuts
associated tov; see Figure 11(a).

2. Ifthe segment], v']intersects/P(W(gs, gi)) butv’ lies on the other boundary chain,
thenv once again lies in a pocket ®P(W(gs, gi)), having windoww. We letq’ be
the reflex vertex oWP(W(gs, gi)) onw. The segmentd, right(q')] must intersect
the segmentd, right(v)] in the interval between andv’, and, henceright(q’) lies
beforeright(v) and the segment, right(q)] is collinear to one of the supporting
cuts associated to; see Figure 11(b).

3. If the segmenty, v'] lies completely inclosurgP\VP(W(gs, gi))), we apply the
exact same argument as in the proof of Lemma 4.6 to show that there is awertex
such thatight(v”) lies beforeright(v) and the segmentf{, right(v”)] is collinear to
some forward essential cut IREC; .

This concludes the proof. O

The loop of Step 3 is performddtimes. Each time the limit point of the previous
vision point is computed i©(nlog(n + m)) time as follows: Lelg; be the previously
computed vision point. ComputéPg; in O(n) time [10], [18], [21]. For each pocket in
VP(W(gs, gi)) identify the two endpointg andq’ of the associated window. Letbe
the convex vertex ofP(W(gs, gi)) on the window and leq’ be the other endpoint; see
Figure 11.

We handle each of the three cases of Lemma 4.8 separately.

1. Given the point}, we determine the two asp-verticesndv’ that lie on either side
of g. Furthermore, we determine the nearest common ancesibp andv’ in the
augmented shortest path tree using the data structure computed previously. Now,
perform ray shooting frong in the direction ofu in P’, and if the shot reach&¥,
remember the intersection pointiéght(q).

2. We know that pointy’ is a vertex ofP, and, hence, that it is an asp-vertex of the
augmented shortest path tree. Lebbe the father ofy’ in the tree. We perform ray
shooting fromq’ in the direction ofu in P’, and if the shot reacha&/, we perform
a second ray shooting operation from the intersection Witim the same direction



64 S. Carlsson and B. J. Nilsson

to get the possible second intersection point Withas in Figure 11(b). The last of
these two is remembered aght(q’).

3. Finally, we have to compute the set of current intersection points betWesrd the
forward essential cuts with respecigp We can assume that we have the fstZ; 1
of intersection points, and we show how to compute the updatefidis} . Note that
we have shown how to compute the II5€ L, previously. Identify the polygon edges
that are completely seen by the poigts. .., gi, i.e., the edges ofP(W(gs, Gi)),
and remove the intersection pointshi€ £; _; of the forward essential cuts associated
to these edges to get the current list of intersection pchats; .

To get the limit point, take the true intersection point of the essential cuts and the
supporting cuts withW closest tag; on W.

To analyze the complexity, we note that we compute the visibility polygorgifor
once, taking linear time, at mo&t(n) ray shooting operations are performed, i.e, three
per window, each takin@® (log(n + m)) time. Hence, the total time to compute each
vision point is bounded b®(nlog(n + m)). The total time complexity of the algorithm
is O((n + m) + knlog(n + m)) = O(knlog(n + m) + m), and the storage use is
O(n + m+ k), since we only use linear-sized data structures.

Thus, we have the following theorem.

THEOREM?2. The Optimum-Vision-Points-in-Street algorithm computes an optimum
set of vision points on a collapsed watchman route W in a sRe€he algorithm uses
O(knlog(n+ m) +m) time and Qn+ m+Kk) storagewhere k is the size of the optimum
solution n is the size oP, and m is the size of W

5. Optimum Vision Points in Straight Walkable Polygons. An interesting subclass

of street polygons is the class of straight walkable polygons. Informally, a polygon is
straight walkable if it is possible to move two distinct points albhandD, continuously

from stot, in such a way that the two points always see each other, and neither of the
points needs to backtrack its path along the boundary chain. This class of polygons
encompasses spiral and monotone polygons.

DerINITION 5.1 [17]. LetU andD be a partitioning of the boundary of a polygon having
the two endpointsandt. A straight walkof the polygon is a pair of continuous monotone
functions(/, D) such that

1.4:[0,1] - UandD:[0,1] — D,
2. U(0) = D(0) =sandi/(1) =D(1) =t,and
3. U(x) seesD(x), forall0 < x < 1.

A polygon isstraight walkabldf it admits a straight walk.

The domain of the two functiorig andD can be chosen arbitrarily. We select the set
[0, 1] to conform with Icking’s and Klein’s definition [17].

We construct an optimaD(n + m) time algorithm to compute an optimum set of
vision points on a watchman route inside a straight walkable polygon. The algorithm we



Computing Vision Points in Polygons 65

present is a version of theptimum-Vision-Points-in-Streatgorithm and the reduced
complexity comes from the fact that in each step of the algorithm we only need local
information, i.e., given the position of tti¢h guard, we only need to look in a small
neighborhood of this guard to be able to compute the positioning of+hést guard.

To achieve the linear time bound, we have to ensure that the supporting cuts we
compute as the algorithm proceeds, interd&cat most once. From Lemma 4.7, we
know that a collapsed watchman route can intersect a forward essential cut with respect
to gs in at most one point, but a supporting cut can intersect the route in two points. To
disallow this, we place a further restriction on the structure of a collapsed watchman
routeW, and require that the intersection\@fand any segmenpj, q] in P, with ponU,
gonD, and no other point intersecting the boundarPgf a connected set. A collapsed
watchman route that obeys this additional requirement is said tatraight watchman
route One instance of a straight watchman route is the shortest p&khiat connects
the pointss andt. Other examples are the two boundary chairendD. For the rest of
this section, we assume thatis a straight watchman route.

Icking and Klein [17] present a®(n logn) time algorithm that computes a straight
walk given the pointsandt of a straight walkable polygon withedges. Heffernan [15]
improves the time bound to linear, which is optimal.

The straight walkl/, D) computed in the algorithm by Heffernan [15] consists of
I = O(n) pairs of piecewise linear functions, hence, the straight walk can be represented
by a list of pairs of linear functions as

(U, D1) for Xo <X < X,
U>, D2) for Xx; <X < Xy,
U,D) =

(U—1,Di—1) for X_» <X < X_1,
U, D) for x_1<x<x,

with Xg = 0 andx, = 1.

We present a version of the algorithm examined in the previous section that we call
Optimume-Vision-Points-in-Straight-Walkable-Polygand analyze its complexity. The
pseudocode of the algorithm is displayed below.

Algorithm  Optimum-Vision-Points-in-Straight-Walkable-Polygon

Input A straight walkable polygoP represented by, D),
a straight walki{, D), and a straight watchman routé
Output  An optimum set of vision points fd? on W

1 Preproces®, W, and(l/, D) and positiorg; on W

k=1
2 while Pis not completely guardedo
ki=k+1
21 Ok :=Ip (Gk-1)
endwhile

return {gi |1 <i <k}
End Optimum-Vision-Points-in-Straight-Walkable-Polygon



66 S. Carlsson and B. J. Nilsson

5,

Fig. 12. A straight walkable polygon with its pyramids.

We use the straight walk given as input to guide the incremental computation of the
vision points.

It remains to show how to compute the first vision patthe limit point of a point
on W, how to establish that the polygon is completely guarded, and to show the time
complexity of the algorithm.

The preprocessing of Step 1 in the algorithm consists of the computation of the shortest
path tree rooted a [13], [23], exactly as in the algorithm of the previous section. In the
same way, the tree is extended tosargmented shortest path tré®at we use to guide
implicit ray shooting operations to compute the vision points.

We also make a subdivision Bfinto so-calledpyramids® A pyramid is a polygonal
region inP bounded by a subchain &f, a subchain oD, and two walk segments
[U(X), D(x)] and 4 (X"), D(X")]. The construction of the pyramids is done by inserting
cuts that are collinear to the walk segments, iRfseparating the different pyramids.
Consider a reflex vertex of P other thans andt. Letc = [U/(X), D(X)] be a segment
of the straight walk such that = U/(x) or v = D(x). We letc be a separating cut
between two pyramids. From the monotonicity of the straight walk, it follows that no
two separating cuts intersect and therefore that the pyramidal regions are consecutive
and nonintersecting. Hence, we can order the pyramids from the “leftmost” pyramid
containings to the “rightmost” one containingand we can enumerate the pyramids in
this order; see Figure 12.

Consider some pyramid . It is bounded by two cuts from the straight walkf
and two chains of edges Bfwhere the vertices are convex. Icking and Klein [17] show
that a straight walk has certain nice properties. One of them is that the angle between a
walk segment and the polygon boundary is never more thah li8erefore follows
that the pyramids are all convex regions.

To place the initial vision poing;, we walk alongW from gs until we find the first
intersection with a forward essential cut with respecgfolLet e be the last upper
boundary edge of the first pyramigh, extend the edge and compute the intersection

3 The name pyramid is somewhat misleading, but is used due to the lack of a better name.



Computing Vision Points in Polygons 67

(@)

Fig. 13.Computing the first vision poird; .

with W, if it exists. Otherwise, continue with the next pyramid. This process gives us
the intersection oW and the first forward essential cut with respecgsolet p; be a
point one and letq; be the intersection of the extended edge Withsee Figure 13(a).
The pointq; lies in some pyramid\;, of P. Now, find the last upper boundary edge
of the next pyramidA,, in order, and construct the line extending from the last edge.
If this line intersects the segmenty], 1], then the intersection point of this essential
cut andW will lie closer togs, and, hence, we backtrack aloWgto get the currently
closest intersection point, i.e., the new pajgptwhich together with a poin, of the last
upper edge of the current pyramid gives us a new segnpentif]; see Figure 13(b). The
pointg lies in some pyramidyj,, with j> < j;. We continue the process of repeatedly
computing new intersection poinds, ga, . . . with W, that each lie im\j,, Aj,, ..., until

the last computed; lies in the current pyramid;,.

We repeat the steps for the lower bound&rychoose the intersection point closest
to gs, and position the first vision poirgy at this point.

Next, we show how to compute the limit poiqi(g; ) incrementally, given the vision
pointg;. Assume thag lies in the pyramidA;, bounded by the cutgf(x; —1), D(X;—1)]
and [/ (x;), D(x; )] of the straight walk, withx;, _1 < x;,. By Lemma 4.8, our aim is to
compute the closest intersection point betw®émand the forward essential cuts with
respect tas that start in the pockets &P (W(gs, gi)) and the closest intersection point
betweerW and the supporting cuts with respect to the windowsB{W (gs, gi)).

In Lemma 4.8 we introduced the two sét§C;, of forward essential cuts with respect
to gs that have issuing edgeséafosurgP\VP (W(gs, gi))), andSUC;, of supporting cuts
of windows of VP(W(gs, gi)). We partition each of these sets into two new s]é&’flu
and FECP, together withSt/C andSUCP. The setFEC) consists of those forward
essential cuts iFEC; that issue from the chaid. Similarly the setFECP consists of
those issuing fronD. We partition the seS/C; in the same way.

If cis a cut inP, we letl. denote the directed line collinear tohaving the same
direction asc. LetIHP (I) andrHP (I) denote the left half-plane and the right half-plane
respectively of the directed lineIf Q is some planar region, we lbtl(Q) denote the
boundary ofQ. With these notational conventions we can define two curves that are
important to compute limit points efficiently. Define the cur@$ andCP by

c’ =bd| () HPAN [ rHP(|.

ceFecy cesucy?



68 S. Carlsson and B. J. Nilsson

e Fecy

e Fecv

Fig. 14.An example of the curvé:iU .

CP =bd| [ HPdN [ IHP(C)

ceFECP cesucP

The two curve€C” andCP can equivalently be viewed as the lower envelope of the cuts
in FECY U SUCY and the cuts iFFECP U SUCP, respectively; see Figure 14.
By Lemma 4.8 we have that

g1 = nearesf, {(WNC”, Wn CP)).

We show how to compute the limit points incrementally, using the cudreandCP.

Our assumption is, as stated previously, thaties in Aj;, and we consider the
pyramidsAj 11, Aj 42, . . ., in order until we find the limit pointim;,,, . Note thatA, ,,
is not known at the beginning of the computation. We will show how to perform the
computation along the upper boundary of each pyramid, i.e., how to find the intersection
CY NWnN Aj, with ji + 1 < j < ji;1. The computation along the lower boundary is
performed in a similar fashion, simultaneously. The pseudocode of the routine computing
the limit point is provided below.

Algorithm  Limit-Point

Input A pointg € Wand an integef; such thag;, € A
Output  The pointg ;1 = Ip(gi) and an integej;; 1 such thagi 11 € Aj,



Computing Vision Points in Polygons 69

1 j:=ji,done:=false CY := ¢, CP := ¢, vhl' := ¢, vhI® := ¢
2 while notdonedo

j=j+1
2.1 if vhlY = ¢ then

Let v be the first vertex o) in A; andv’ the second vertex dfl in A;
if gi, v, andv’ form a left turnthen
LetvhlY be the half-line frony; throughw
Compute the half-linshl from v
Mergeshf to CV
endif
endif
2.2 if vhlY intersectdJ in A; at pthen
Compute the half-linshf from p
Mergeshl to CV

vhlV :=¢
endif
2.3 if vhlY £ ¢ then

Letebe the last edge df in A; and lethl be the half-line
collinear toe directed toward the interior ¢?
Mergehl to C
endif
2.4 if CV intersectdVin Aj then
Compute the intersection poiqy
endif
25 Perform steps corresponding to Steps 2.1-2.4 for the lower boubdary
2.6 if at least one ofly andqp existsthen
Letgi,1 be the one ofy andgp closest tay;
Let jitq =]
done:= true
endif
endwhile
3 return gy andjigs
End Limit-Point

In Step 1 we make initializations of variables we will use. Step 2 is a loop that is
traversed for each pyramid aftas, until the limit point is found inA;;,,. Step 2.1 tests
if there is a window ofVP(W(gs, g;)) starting at the first vertex of U, in the current
pyramid; see Figure 15(a). If this is so, we Wt be the visibility half-line, i.e., the
half-line starting at; and passing through We also introduce the first supporting half-
line shfiJ collinear to the supporting cut issuing framand merge it to the chataiU .We
describe how to perform the merging step later. Sincea vertex ofP, it corresponds
to a node in the augmented shortest path tree rootgd aith v being the father node
of v in the tree. The half-linshl is the half line starting at directed toward”; see
Figure 15(b).

In Step 2.2 we test whether an existing visibility half-line has a further intersection
with the boundary otJ in the current pyramid. If this is so, we compute the second



70 S. Carlsson and B. J. Nilsson

©

Fig. 15.lllustrating the computation of the limit point of .

supporting half-linehk’ collinear with the other supporting cut and mesgij@ to the
chainCiU. The half—lineshl;J is computed in the following way: Let andu’ be the two
asp-vertices closest tp on either side ofp, wherep is the intersection point ofhl
andU; see Figure 15(b). We can obtain the nearest common aneg&stbuu andu’ in
constant time [14]. The half-linghl is the half-line starting ap, directed towardl”.

In Step 2.3 we test whether there are forward essential cuts with respgcthiat
start in a pocket oVP(W(gs, gi)). Since all vertices ol in the current pyramid are
convex, with the possible exception of the two end vertices, our only interest lies in the
last edgee of U in the current pyramid; see Figure 15(c). The half-lmés the half-line
collinear toe starting at the end vertex &f in this pyramid and directed so thgtlies
to the right ofhl so as to correspond with the direction of the supporting cuts described
above. Note that a half-linkl issuing fromU will have opposite direction with respect
to the associated forward essential cut.

Each half-line is merged with the ch:mh’ = {(C, Cp, ..., Ck_1, Ck) Wherecy, ..., Ck_1
are line segments arg is a half-line, using the algorithierge-to-Upper-Chain

Algorithm Merge-to-Upper-Chain

Input The chainC” and a half-linehl to be merged witlC” under certain conditions
Output The new upper chai@

1 if CY is emptythen

CP := (hl)
endif
2 ifC’ =(c,c, ..., Ck 1, C) then

setk’ := k and setlone:= false



Computing Vision Points in Polygons 71

2.1 while not(dong do
Let| be the line collinear tay directed so thag; lies to the right of
if hl has points to the right dfthen
letl” be the line collinear tdl
if I” intersectxy at the pointp then
if o = [a, b] or ¢y is a half-line starting a& then
let hl be the half-line starting gb with the same direction ad and
setC” = (cy, ..., C_1, [, p], hI')
endif
else/* if I’ does not interse@j, then */
K=k -1
endif
else/* if hl has all its points to the left dfthen */
done:= true
endif
endwhile
endif
return C/
End Merge-to-Upper-Chain

The straight walki/, D) specifies one parameter partial functions ¢°, andcP
defined by

Ww:[0,1] - W such that W(x) = WnN [U(X), D(X)],
¢Y: [0,1] — cV such that C”(x) = CY N [U(x), D(X)],
cP: 10,11 - cP such that CP(x) = CP N [U(x), D(x)].

It follows from the fact thatV is polygonal, straight, and hasedges, together with the
fact thatt/ andD are piecewise linear and monotone, thiaiis monotone and consists
of O(n + m) functions of the formA(x)/B(x), whereA is a quadratic function anfi
is a linear function of subintervals to,[@]. Similarly, each functioi€” andCP consists
of O(n) functions of the same type.

In Step 2.4 we compute the possible intersection poir@bfandW in the current
pyramid. If the current pyramid i&; we begin by computing the subs&@$S N A; and
W N Aj. We have thatrj = [y, [U(X), D(X)] and therefore to fincC! N A,
we only have to find the intersection poirds (xj_1) = C” N [U/(X;-1), D(X;—1)] and
CY(x) = CP N[UX;), D(x)], for C. Similarly for W N Aj, we have to find the inter-
section pointsV(xj—1) = WN [U(Xj—1), D(Xj—p] andW(x;) = W N [U(X;), D(X))],
for W. To get the intersection point betwe&Y andW in the pyramid, we solve the
equationV(x) = CiU(x), for x, which produces the poirdy = W(x). The time to
perform the operations is linear in the size of the pyramid, the par@’oandW in
the pyramid.

In Step 2.5 we perform these same operations for the lower boundary of the current
pyramid, i.e., computing the s€° NWnN Aj, for ji11 < j < ji + 1. We determine the
half-linesvhI®, shP, shB, and the half-lines corresponding to forward essential cuts, to



72 S. Carlsson and B. J. Nilsson

get the chairCP, and compute the possible intersection paejmtof CP andW in the
current pyramid.

The last step of the loop, Step 2.6, determines if the limit point has been found, and,
if so, exits the procedure.

LEMMA 5.1. A watchman route in a straight walkable polygon needs at most n vision
points

PrOOF  The algorithm positions the first vision poigt in pyramid Aj, which means
thatg; sees all the pyramida;, ..., A, and symmetrically the last vision poigg is
placed inA;, implying that the last pyramids;, , .. ., A; are seen bgi. Furthermore, we
know that each of the pyramids;, ;1, . .., Aj,—1 contains points of the watchman route,
and, hence, one vision point in each pyramid will suffice to guard the whole polygon
because each pyramid is convex. Since there are no more thaamids, no more than

n vision points are needed. O

THEOREM3. The algorithm Optimum-Vision-Points-in-Straight-Walkable-Polygon
computes an optimum set of vision points on a straight watchman roltead/¢traight
walkable polygorP. The algorithm uses (& + m) time and storagevhere n is the size
of P and m is the size of W

PrROOF The correctness of the algorithm follows from the construction and Lemma 4.4,
so it only remains to analyze the complexity.

Step 1 take®(n + m) time since we can compute the augmented shortest path tree
from a point inO(n) time. The subdivision into pyramids also tak®sn) time, if the
two setsl/ andD, each consisting 0O (n) linear functions, are scanned frogno t.
Computingg; and W takesO(n 4+ m) time sinceU, D, andW are each scanned a
constant number of times.

To show that Step 2 takeé®(n + m) time, we show that, if a vision poirg; lies
in Aj and its limit pointg; 1 lies in A;,, the time to compute ;1 is bounded by
O(Zj‘gjfjiﬂ [Aj| + [WN Aj|), but this follows easily since only the boundary of the
pyramidsAj, Aj 41, ..., Aj,, and the portion ofV in these pyramids are traversed a
constant number of times during the construction. Since all of these pyramids are seen
by the vision point together with its limit point we do not have to consider any of these
pyramids again, but can continue the computation frgm,. Hence, the total time for
the construction is linear in the size of the input. O

6. Conclusion

6.1. Remarks We have shown a method with which we can compute an optimum set
of vision points on a given collapsed watchman route in a street. We have also presented
a faster version of the algorithm that works for straight walkable polygons with straight
watchman routes.

The Optimum-Vision-Points-in-Streatgorithm uses explicit ray shooting to find the



Computing Vision Points in Polygons 73

vision points. This makes for heavy time consumption when we compute each vision
point, but the algorithm requires only linear time preprocessing. If we use more prepro-
cessing time, the cost of computing the vision points can be reduced. Instead of doing
explicit ray shooting operations, we do them implicitly, by first computing a visibility
graph structure and using this structure to guide the placement of the vision points.
However, this version of the algorithm would only be more efficient when the number
of vision points is very large.

In fact, we can use the method to compute optimum guard covers for certain polygons.
The method consists of two steps:

1. Show that the given polygdnis a street.
2. Show how to obtain a collapsed watchman rdMtgich that some s&P7 (P) C W.

The algorithm runs ir0(knlog(n + m) + m) = O(n?log(n + m) + m) time sincek,
the number of guards, ©(n).

If we can show that the polygon is straight walkable and that the watchman route
is straight, then our algorithm runs in optimal linear time. This can be done for spiral
polygons, where it is easy to see that there is an optimum guard cover on the convex
chain of a spiral polygon [24], [25]. We can also find optimum guard covers for histogram
and alp polygons in linear time. Here it is easy to establish that the base is a straight
watchman route that allows an optimum guard cover, thus yielding the result [4], [24].

6.2. Open Problems In the first part of this work, we discuss the problem of plac-
ing static point guards inside polygons. We introduce the concept of one-dimensional
guarding, meaning that guards have to be positioned on a given closed curve called the
watchman route. These guard points are called vision points. In this setting, we investi-
gate the problem of computing optimum vision points, i.e., positions for a minimum set
of vision points. This differs from previous definitions of guarding where the guards are
only restricted to lie inside the polygon, and the objective is to find an optimum guard
cover.

The algorithm we present for streets is probably not optimal. However, we feel that the
important breakthrough is to show that there exist efficient algorithms for the optimum
vision points problem in streets. Efficiency in this setting is somewhat undefined. The
complexity of the algorithm depends heavily on the size of the output, as described in
the beginning of Section 4, which can have arbitrary size. Hence, we can never have an
algorithm for the optimum vision points problem that is polynomial in the size of the
input only. If we let QP, the set duasi-Polynomiaproblems, be the set of problems
that have polynomial time complexity in the input and output size, we have shown that
the optimum vision points problem for streets lies in QP, and this is the best we can hope
for.

Furthermore, a linear time algorithm to solve the problem for straight walkable poly-
gons is presented under the assumption that the watchman route is straight. If the watch-
man route is not straight, the problem can be solved in polynomial time, since the output
size isO(n) and the algorithm for streets also works in this, more restricted, case. We
also show that the optimum guard covering problem is NP-hard for the slightly less
restricted class of streets. A summary of the complexity of guarding is shown in Table 1.

To indicate further research problems, it would be interesting to narrow the gap



74

S. Carlsson and B. J. Nilsson

Table 1. Complexity of guarding, for some classes of simple polygons.

Polygon classes

Cover type Spiral Alp Str. walk. Street Simple
Vision points Linear Linear LinegP QP NP-hard
Guard cover Linear Linear Unknown NP-hard NP-hard

between the tractable and intractable guarding problems further. Other polygon classes
such as monotone and walkable polygons may yield interesting information that could
be useful to show further complexity results.

(1]
[2

(3]

(4]
(5]
(6]

[7]
(8]

[9]
[10]
[11]
[12)
[13]
[14]
[15]
[16]

(17]

References

A. Aggarwal. The Art Gallery Theorem: Its Variations, Applications and Algorithmic Aspects. Ph.D.
thesis, Johns Hopkins University, 1984.

S. Carlsson, H. Jonsson. Computing a Shortest Watchman Path in a Simple Polygon in Polynomial Time.
In Proc. Workshop on Algorithms and Data Structur@$ADS 95, pages 122—-134. Lecture Notes in
Computer Science, vol. 955. Springer-Verlag, Berlin, 1995.

S. Carlsson, H. Jonsson, B. J. Nilsson. Finding the Shortest Watchman Route in a Simple Polygon. In
Proc. 4th International Symposium on Algorithms and ComputatiSAAC 93, pages 58-67. Lecture
Notes in Computer Science, vol. 762. Springer-Verlag, Berlin, 1993.

S. Carlsson, B. J. Nilsson, S. Ntafos. Optimum Guard Covergwaiidatchmen Routes for Restricted
Polygonsinternational Journal of Computational Geometry and Applicati®(4):85-105, 1993.

B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, J. Snoeyink. Ray Shooting
in Polygons using Geodesic TriangulationsPioc. 18h ICALP, pages 661-673, 1991.

B. Chazelle, L. Guibas. Visibility and Intersection Problems in Plane Geonisgrete and Compu-
tational Geometry4:551-581, 1989.

W. Chin, S. Ntafos. Optimum Watchman Routegormation Processing Letter28:39-44, 1988.

V. Chvatal. A Combinatorial Theorem in Plane Geomefigurnal of Combinatorial TheonSeries B
13(6):395-398, 1975.

D. Das, P. J. Heffernan, G. Narasimhan. LR-Visibility in PolygonsPtac. 5th Canadian Conference

on Computational Geometrpages 303—308, 1993.

H. EIGindy, D. Avis. A Linear Algorithm for Computing the Visibility Polygon from a Poidaurnal

of Algorithms 2:186-197, 1981.

S. Fisk. A Short Proof of Chatal’s Watchman Theorendournal of Combinatorial TheorySeries B
24:374, 1978.

M. R. Garey, D. S. Johnso@omputers and IntractabilityA Guide to the Theory of NP-Completeness
Freeman, San Francisco, CA, 1979.

L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan. Linear Time Algorithms for Visibility and
Shortest Path Problems inside Triangulated Simple Polygdgsrithmicg 2:209-233, 1987.

D. Harel, R. E. Tarjan. Fast Algorithms for Finding Nearest Common Ances$dfgM Journal on
Computing 13(2):338-355, 1984.

P. J. Heffernan. An Optimal Algorithm for the Two-Guard ProblemPoc. th ACM Symposium on
Computational Geometrpages 348-358, 1993.

J. Hershberger, S. Suri. A Pedestrian Approach to Ray Shooting: Shoot a Ray, Take a Wadic. In
SODA pages 54-63, 1993.

C. Icking, R. Klein. The Two Guards Problem.mmoc. 7th ACM Symposium on Computational Geom-
etry, pages 166-175, 1991.



Computing Vision Points in Polygons 75

(18]
[19]

[20]
[21]
[22]
(23]
[24]
[25]

[26]
[27]

B. Joe, R. B. Simpson. Correction to Lee’s Visibility Polygon AlgorittBiiT, 27:458-473, 1987.

J. M. Keil, J.-R. Sack. Minimum Decompositions of Polygonal Objects. In G. T. Toussaint, editor,
Computational Geometrpages 197-216. North-Holland, Amsterdam, 1985.

R. Klein. Walking an Unknown Street with Bounded Deto@omputational GeometryTheory and
Applications 1(6):325-351, 1992.

D. T. Lee. Visibility of a Simple PolygorComputer VisionGraphics and Image Processing@2:207—

221, 1983.

D. T. Lee, A. K. Lin. Computational Complexity of Art Gallery ProblemEEE Transactions on
Information TheorylT-32:276—-282, 1986.

D. T. Lee, F. P. Preparata. Euclidean Shortest Paths in the Presence of Rectilinear Béetieosks
14:393-410, 1984.

B. J. Nilsson. Guarding Art Galleries—Methods for Mobile Guards. Ph.D. thesis, Lund University,
1995.

B. J. Nilsson, D. Wood. Watchmen Routes in Spiral Polygons. Technical Report LU-CS-TR:90-55,
Dept. of Computer Science, Lund University, 1990. An extended abstract of a preliminary version
appears ifProc. 2nd Canadian Conference on Computational Geomgtages 269—272, 1990.

J. O'Rourke Art Gallery Theorems and Algorithm®xford University Press, Oxford, 1987.

T. C. Shermer. Recent Results in Art Gallerieeoceedings of the IEEPpages 1384-1399, September
1992.



