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Harmonic Analysis, Real Approximation, and the
Communication Complexity of Boolean Functions1

V. Grolmusz2

Abstract. The two-party communication complexity of Boolean functionf is known to be at least
log rank(Mf ), i.e., the logarithm of the rank of the communication matrix off [19]. Lovász and Saks [17]
asked whether the communication complexity off can be bounded from above by(log rank(Mf ))

c, for some
constantc. The question was answered affirmatively for a special class of functionsf in [17], and Nisan and
Wigderson proved nice results related to this problem [20], but, forarbitrary f , it remained a difficult open
problem.

We prove here an analogous polylogarithmic upper bound in the stronger multiparty communication model
of Chandra et al. [6], which, instead of the rank of the communication matrix, depends on the L1 norm of
function f , for arbitrary Boolean functionf .
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1. Introduction

1.1. Communication Complexity. In the two-party communication game, introduced
by Yao [23], two players,P1 andP2, attempt to compute a Boolean functionf (x1, x2):
{0,1}n → {0,1}, wherex1, x2 ∈ {0,1}n′ , 2n′ = n. PlayerP1 knows the value ofx2,
P2 knows the value ofx1, but Pi does not know the value ofxi , for i = 1,2. The
minimum number of bits that must be communicated by the players to computef is the
communication complexityof f , denoted byκ( f ).

This model has been widely studied and was applied to prove time–area tradeoffs for
VLSI circuits, and has other numerous applications and remarkable properties (e.g., [1],
[10], [11], [17], [19], or see [16] for a survey).

An important problem in complexity theory is giving lower and upper estimations
for the communication complexity of functionf . The following general lower bound to
κ( f ) was introduced in [19]:

κ( f ) ≥ log rank(Mf ),

whereMf is a binary 2n
′ ×2n′ matrix, containing the value off (x1, x2) in the intersection

of the row ofx1 and the column ofx2.
Lovász and Saks asked in [17] whether there existed an integerc such that, for all
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Boolean functionsf ,

κ( f ) ≤ (log rank(Mf ))
c.(1)

In [17], (1) was proved for a special class of functions. Nisan and Wigderson [20] also
have nice results concerning this inequality. However, for generalf , (1) is open, and
seems to be a difficult problem.

The main contribution of this paper is an analogous polylogarithmic upper bound for
arbitrary f , in the strongerk-party communication model of [6]:

C(k)( f ) = O((log
(
nL1( f )

)
)3),

for k = c log(nL1( f )) players, whereC(k)( f ) is thek-party communication complexity
of f , and L1( f ) is the L1 spectral normof Boolean functionf (both are defined below).

REMARK. Recently, Lu [18] observed that a slight modification in our ODDCOUNT
protocol (Lemma 11) yields anO(

(
log(nL1( f ))

)2
) upper bound toC(k)( f ).

1.2. Multiparty Games. Themultiparty communication game, defined by Chandra et
al. [6], is a generalization of the two-party case. In this game,k players,P1, P2, . . . , Pk,

intend to compute a Boolean functionf (x1, x2, . . . , xn): {0,1}n → {0,1}. On setS=
{x1, x2, . . . , xn} of variables there is a fixed partitionA of k classesA1, A2, . . . , Ak, and
playerPi knows every variable,exceptthose inAi , for i = 1,2, . . . , k. The players have
unlimited computational power, and they communicate with the help of a blackboard,
viewed by all players. The goal is to computef (x1, x2, . . . , xn), such that at the end
of the computation, every player knows this value. The cost of the computation is the
number of bits written on the blackboard for the givenx = (x1, x2, . . . , xn) and A =
(A1, A2, . . . , Ak). The cost of a multiparty protocol is the maximum number of bits
communicated for anyx from {0,1}n and the givenA. The k-party communication
complexity,C(k)

A ( f ), of a function f , with respect to partitionA, is the minimum of costs
of thosek-party protocols which computef . The k-party symmetric communication
complexity of f is defined as

C(k)( f ) = max
A

C(k)
A ( f ),

where the maximum is taken over allk-partitions of set{x1, x2, . . . , xn}.
This model was used by Babai et al. [3] for constructing pseudorandom generators.

Håstad and Goldmann [13] and the author [7], [12] have used it for proving lower bounds
to the size of hard-to-handle circuit classes.

For a general upper bound for both two and more players, we suppose thatA1 is one of
the smallest classes ofA1, A2, . . . , Ak. ThenP1 can compute any Boolean function ofS
with |A1|+1 bits of communication:P2 writes down the|A1|bits of A1 on the blackboard,
P1 reads it, and computes and announces the valuef (x1, x2, . . . , xn) ∈ {0,1}. So

C(k)( f ) ≤
⌊

n

k

⌋
+ 1.(2)

For certain functions, much better upper bounds were proven in [6], [9], and [7]. However,
to the author’s knowledge, before the present paper, no general upper bounds were known,
other than (2).
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1.3. Spectral Norms. There is a vast literature on representing the Boolean functions
by polynomials over some field or ring (see, e.g., [2], [5], [22], [15], [14], or [4] for
a survey). One reason for this may be that the polynomials offer a more developed
machinery than the “pure” Boolean functions. One tool in this machinery is the Fourier
expansion of Boolean functions [15], [5]:

We represent the Boolean functionf as a functionf : {−1,1}n → {−1,1} where
−1 stands for “true.” The set of all real-valued functions over{−1,1}n forms a 2n-
dimensional vector space over the reals with an inner product:

〈g, h〉 = 2−n
∑

x∈{−1,1}n
g(x)h(x).

We define, forα = (α1, α2, . . . , αn) ∈ {0,1}n,

xα =
n∏

i=1

xαi
i .

The monomialsxα for α ∈ {0,1}n form anorthonormal basisin this 2n-dimensional
vector space; consequently, any functionh: {−1,1}n → R can be uniquely expressed
as

h(x1, x2, ..., xn) =
∑

α∈{0,1}n
aαxα.(3)

The right-hand side of (3) is called theFourier expansionof h, and numbersaα for
α ∈ {0,1}n are calledthe spectral(or Fourier) coefficientsof h. The L1 norm ofh is

L1(h) =
∑

α∈{0,1}n
|aα|.

The L2 norm is

L2(h) =
( ∑
α∈{0,1}n

a2
α

)1/2

= 〈h, h〉1/2.

1.3.1. Examples

• The PARITY function in this setting isx1x2 · · · xn, its L1 norm is 1, while its degree
is n.
• It is easy to verify that

n∨
i=1

xi = − 1

2n−1

(
2n−1−

n∏
i=1

(xi + 1)

)

= − 1

2n−1
(2n−1− (1+ x1+ x2+ · · · + xn + x1x2+ · · · + x1x2 · · · xn))

and
n∧

i=1

xi = 1

2n−1

(
2n−1−

n∏
i=1

(1− xi )

)

= 1

2n−1
(2n−1− (1− x1− x2− · · · − xn + x1x2+ · · · + (−1)nx1x2...xn)).
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Observe that both then-fan-in OR and AND have exponentially many nonzero Fourier
coefficients, their degree isn, while their L1 norms are less than three.
• The inner product mod 2 function (IP) is defined as follows:

IP(x1, x2, ..., x2n) =
n∏

i=1

(x2i−1 ∧ x2i ).

It is easy to verify that L1(IP) is the highest possible for any 2n variable Boolean
functions: 2n.

Bruck and Smolensky [5] established a relation between the L1 norm and the computabil-
ity of f by polynomial threshold function. A generalization of one of their results plays
a main role (Lemma 8) in the present work.

2. Main Results. First we present a general theorem, which implies several corollaries
in a more natural setting. Theorem 1 shows that if a Boolean function can be approximated
by areal function with small error, then there exists ak-party protocol which computes
the Boolean function, and the number of communicated bits in this protocol depends
only on the L1 norm of theapproximating real function.

THEOREM1. Let f be a Boolean function f: {−1,1}n→ {−1,1}, and let g be a real
function g: {−1,1}n→ R. Suppose that, for all x ∈ {−1,1}n,

|g(x)− f (x)| < 1
5.

Then the k-party symmetric communication complexity of f is

O

(
k2 log(nL1(g))

⌈
nL2

1(g)

2k

⌉)
.

In particular, choosingg = f in Theorem 1:

COROLLARY 2. Let f be a Boolean function f: {−1,1}n→ {−1,1}. Then the k-party
symmetric communication complexity of f is

O

(
k2 log(nL1( f ))

⌈
nL2

1( f )

2k

⌉)
.

Or, settingk large enough:

COROLLARY 3. Let f be an arbitrary Boolean function of n variables. Let k =
c log(nL1( f )) with c> 0. Then

C(k)( f ) = O
(
log3

(
nL1( f )

))
.

In other words, if the L1 spectral norm off is bounded by a polynomial inn, then
thesymmetric k-party communication complexity off is at mostO(log3 n), with k =
c logn.
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Let f andg be two functions, such that| f − g| < 1
5. Then their L1 norms may differ

even exponentially, e.g.,f ≡ 0, g′ is a Boolean function of exponential L1 norm, then
g = 1

6g′ also has exponential L1 norm, while| f − g| ≤ 1
6. So the following corollary

of Theorem 1 may yield a much better bound than Corollary 3:

COROLLARY 4. Let

γ = inf{L1(g)| g : {−1,1}n→ R, and∀x ∈ {−1,1}n : |g(x)− f (x)| < 1
5}.

Then

C(k)( f ) = O

(
k2 log(nγ )

⌈
nγ 2

2k

⌉)
.

Suppose thatf is a Boolean function of large (say, exponential) L1 norm inn. Our
Corollary 3 can guarantee only a communication protocol with too many communicated
bits: the trivialbn/kc+ 1 protocol may be better. However, if the Fourier coefficients of
f are distributed “unevenly enough,” i.e., they can be divided into two parts, one with
small L1, the other with small L2 norms, then we can do much better:

THEOREM5. Let

f (x) =
∑

α∈{0,1}n
aαxα,

and let S⊂ {0,1}n such that ∑
α∈S

a2
α ≤ ε,

for someε < 1
2500. Let

g(x) =
∑

α∈{0,1}n−S

aαxα.

Then, for all k ≥ 2 and for all k-partitions of the inputs, there exists a k-party protocol
with

O

(
k2 log(nL1(g))

⌈
nL2

1(g)

2k

⌉)
bits of communication,and this protocol computes f correctly on at least(1−25ε) > 99

100
fraction of the inputs.

The following results of [8] show the power of our upper bounds in Theorems 1 and
5, proving that almost all Boolean functions have very high multiparty communication
complexity:

THEOREM6 [8]. Let f be a uniformly chosen random member of set

{ f | f : {−1,1}n→ {−1,1}}.
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Then the probability that, for some A k-equipartition of x= {x1, x2, . . . , xn}, there exists
a k-party protocol which computes f with communication of at mostbn/kc− logn bits,
is less than

2−2Ä(n) .

The communication complexity remains high even if we computef on mostof the
inputs:

THEOREM7. Let f be a uniformly chosen random member of set

{ f | f : {−1,1}n→ {−1,1}}.

Then the probability that, for some A k-equipartition of x= {x1, x2, . . . , xn}, there exists
a k-party protocol which correctly computes f on a fraction of at least1

2 + ε of inputs,
with communication of at mostbn/kc − log(n/ε) bits, is less than

2−2Ä(n) .

Comparing Theorem 1 with Theorem 6, and Theorem 5 with Theorem 7, we have
that for almost all Boolean functionsf :

• f has exponential L1 norm,
• if f is approximated by a real functiong with error less than15, then the L1 norm of

g is exponential inn,
• the Fourier coefficients off are “evenly distributed”: they cannot be divided into two

sets, one with subexponential L1 norm, the other with a small L2 norm.

3. The Proof of Theorem 1. The following lemma is a generalization of a lemma of
Bruck and Smolensky [5].

LEMMA 8. Let U ⊂ {−1,1}n such that|U | ≥ (1− 1
100)2

n. Let g: {−1,1}n → R.
Suppose that, for all x ∈ U , 4

5 < |g(x)| < 6
5 is satisfied. Then there exists polynomial

G0(x) with integer coefficients and withL1 norm

L1(G0) ≤ 400nL2
1(g)

such that

sgn(G0(x)) = sgn(g(x))

for all x ∈ U .

PROOF. The Fourier expansion ofg:

g(x) =
∑

α∈{0,1}n
aαxα,
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whereaα, for α ∈ {0,1}n, are the Fourier coefficients ofg. Then by definition

L1(g) =
∑

α∈{0,1}n
|aα|

and

L2
2(g) = 〈g, g〉 = 2−n

∑
x∈{−1,1}n

g2(x) =
∑

α∈{0,1}n
a2
α,

using the Parseval identity.
Since|g(x)| ≥ 4

5 for x ∈ U , and|U | ≥ (1− 1
100)2

n,

L2(g) ≥ (1− 1
100)

16
25.

Our next step is giving a lower bound to the L1 norm ofg.

(i) Suppose that there exists anα such that|aα| > 1
2. If sgn(xα) = sgn(g(x)) for

all x ∈ U , then we are done,G0(x) = xα suffices. Otherwise, for somex ∈ U ,
sgn(xα) 6= sgn(g(x)). Then the other terms ofg must compensate forxα, so the
sum of the absolute values of their coefficients should be greater than4

5. So

L1(g) ≥ 4
5 + |aα| ≥ 13

10.

(ii) Otherwise, if all|aα| ≤ 1
2, then

(1− 1
100)

16
25 ≤

∑
α∈{0,1}n

a2
α ≤ 1

2

∑
α∈{0,1}n

|aα|,

so

(1− 1
100)

32
25 ≤

∑
α∈{0,1}n

|aα| = L1(g).

Consequently, either we have found a suitableG0(x), or we have concluded that

L1(g) ≥ (1− 1
100)

32
25 ≥ 127

100.(4)

We define random monomialsZi (x) as follows:

Zi (x) = sgn(aα)x
α with probability

|aα|
L1(g)

.

Let random polynomialG(x) be defined as the sum ofN = b400nL2
1(g)c monomials

Zi (x):

G(x) =
N∑

i=1

Zi (x).

Computing the expectation ofZi (x):

E(Zi (x)) =
∑

α∈{0,1}n

|aα|
L1(g)

sgn(aα)x
α = g(x)

L1(g)
,
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where we used the fact that sgn(v)|v| = v. The expectation ofG(x) is

E(G(x)) = Ng(x)

L1(g)
.(5)

The variance ofZi (x) is

Var(Zi (x)) = E(Z2
i (x))− E2(Zi (x)) = 1− g2(x)

L2
1(g)

.

The variance ofG(x) is

Var(G(x)) = N

(
1− g2(x)

L2
1(g)

)
.

Since|g(x)| ≤ 6
5, and because of (4),

g2(x)

L2
1(g)
≤ ( 120

127)
2 ≤ 9

10,

so
N

10
≤ Var(G(x)) ≤ N

or √
N

10
≤ D(G(x)) ≤

√
N,(6)

whereD(G(x)) = √Var(G(x)), the standard deviation ofG(x).
From (5), the sign ofE(G(x)) is the same as the sign ofg(x). Consequently,

Pr(sgn(G(x)) 6= sgn(g(x)) = Pr(sgn(G(x)) 6= sgn
(
E(G(x))

)
)

≤ Pr

(∣∣G(x)− E(G(x))
∣∣ ≥ N|g(x)|

L1(g)

)
≤ Pr

(∣∣G(x)− E(G(x))
∣∣ ≥ 4N

5L1(g)

)
.

From the Bernstein inequality (see [21]) (or from the Central Limit Theorem), with
D = D(G(x)), we get

Pr(|G(x)− E(G(x))| ≥ µD) ≤ 2 exp

(
− µ2

2
(
1+ µ/D

)2
)
,(7)

where 0< µ < D/2.
Forµ = 3

√
n, N = b400nL2

1(g)c we get that the probability in (7) is less thane−n.
On the other hand,

µD ≤ 4N

5L1(g)
,
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so

Pr(sgn(G(x)) 6= sgn(g(x))) < e−n.

Consequently,

Pr(∃x ∈ U : sgn(G(x)) 6= sgn(g(x)))

≤
∑
x∈U

Pr(sgn(G(x)) 6= sgn(g(x))) ≤ |U |e−n ≤ 2ne−n < 1,

and since this probability is less than one, there exists a polynomialG0(x) for which
sgn(G0(x)) = sgn(g(x)) for all x ∈ U . The coefficients of thisG0 are integers, and its
L1 norm is at mostN.

PROOF OFTHEOREM1. Functiong satisfies the requirements of Lemma 8, forU =
{−1,1}n. Then there exists a polynomialG0(x)with integer coefficients and an L1 norm
of at most 400nL2

1(g), such that

sgn(g(x)) = sgn(G0(x))

for all x ∈ {−1,1}n. Since sgn(g(x)) = f (x), we have that sgn(G0(x)) = f (x), for all
x ∈ {−1,1}n. By Theorem 9,G0(x) has the required symmetrick-party communication
complexity.

THEOREM9. Let

G(x) =
N∑

i=1

Zi (x),

where Zi (x) = xα or Zi (x) = −xα, for someα ∈ {0,1}n, and for x∈ {−1,1}n. Then
the symmetric k–party communication complexity of G is

O

(
k2 log(nN)

⌈
nN

2k

⌉)
.

PROOF OFTHEOREM9. Let G1(x) be the sum of theZi ’s with positive sign, and let
G2(x) be the sum of the(−Zi )’s, whereZi has a negative sign. So

G(x) = G1(x)− G2(x),

andG1 hasN1 terms,G2 hasN2 terms,N1+ N2 = N.
Observe thatGj (x) is the sum ofNj terms of the form

xα =
n∏

i=1

xαi
i =

∏
i :αi=1

xi

for j = 1,2. Clearly,

xα =
{ −1 if |{i : xi = −1, αi = 1}| is odd,

1 otherwise.
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For j = 1,2, letbj denote the number (counting the possible multiplicities) of those terms
xα in Gj (x), for which |{i : xi = −1, αi = 1}| is odd. ThenGj (x) = (Nj − bj )− bj =
Nj − 2bj , so

G(x) = G1(x)− G2(x) = N1− N2+ 2b2− 2b1.(8)

We denote

yi =
{

1 if xi = −1,
0 if xi = 1,

then

xα = −1 ⇐⇒
n∑

i=1

yiαi = 1 mod 2.

We form a matrixM ( j ) with Nj rows andn columns, forj = 1,2. Each row corresponds
to a termxα in Gj (x), and thei th entry of that row isyiαi . Obviously, the number
of those rows ofM ( j ) which have an odd sum is equal tobj . Suppose now that we are
given polynomialG(x), playersP1, P2, . . . , Pk, and ak-partitionA = (A1, A2, . . . , Ak)

of the set{x1, x2, . . . , xn}. We assume that playerP̀ knows functionG(x), partition
A, functionsG1(x), G2(x), and the values of all variables, except those inA`, for
` = 1,2, . . . , k. Then the players, without any communication, can privately compute
matricesM (1) andM (2), and exactly those entries of these matrices will not be known
to playerP̀ , which correspond to variables in classA`. The set of these entries is called
B`, for ` = 1,2, . . . , k. The following lemma shows a protocol by which the players
can first computeb1 and thenb2, and, consequently,G(x), by (8).

LEMMA 10. Let M ∈ {0,1}m×n, M = {mi j }, and let B = {B1, B2, . . . , Bk} be a
partition of the set{mi j : 1 ≤ i ≤ m,1 ≤ j ≤ n}, such that player P̀knows every
mi j except those in B̀, for ` = 1,2, . . . , k. Then there exists a k-party protocol which
computes the number of the rows with an odd sum in M by communicating

O

(
k2 logm

⌈
m

2k

⌉)
bits.

PROOF. First, the players compute a matrixQ ∈ {0,1}m×k from M , with no commu-
nication: a row ofQ is associated with each row ofM ; the first element of rowj of Q
is the mod 2 sum of those entries of thej th row of M which are the elements ofB1 at
the same time. Analogously, thei th element of rowj of Q is the mod 2 sum of those
entries of thej th row of M which are the elements ofBi at the same time. Clearly, the
number of rows with an odd sum inM and inQ is the same. Moreover, playerP̀ knows
every column of matrixQ, except columǹ , for ` = 1,2, . . . , k.

With an additional assumption, Lemma 11 gives a protocol withO(k2 logm)
communication. This protocol is implicit in [2], in [9], and is used in a more general
form in [7].
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LEMMA 11. Letβ ∈ {0,1}k. Suppose it is known to each player thatβ does not occur
as a row of Q. Then there exists a k-party protocol which computes the number of rows
with an odd sum with a communication of O(k2 logm) bits.

PROOF OFLEMMA 11. Without restricting the generality we may suppose thatβ is the
all-1 vector of lengthk. Let ODD(γ1γ2 · · · γ`) and EVEN(γ1γ2 · · · γ`) denote the number
of those rows ofQ which have odd (resp. even) sums, and they begin withγ1γ2 · · · γ`,
` ≤ k, γi ∈ {0,1}. Clearly, ODD(γ1γ2 · · · γ`−1,0) + ODD(γ1γ2 · · · γ`−1,1) = ODD
(γ1γ2 · · · γ`−1). For example,P1 does not know the first column ofQ, but he can com-
municate ODD(0)+ EVEN(1) if P1 counts those rows which have an odd sum in their
second throughkth position. SimilarlyP2 can communicate ODD(10) + EVEN(11) if
he counts those rows which begin with 1, and the sum of their first, third, fourth,. . ., kth
elements is odd.

This observation motivates the following protocol:

Protocol ODDCOUNT

The goal: to computeb, the number of rows with an odd sum inQ. Observe that
b = ODD(1)+ODD(0). Numberb will be computed as the sum of valuesui announced
by playerPi , i = 1,2, . . . , k.

P1 announcesu1 = ODD(0)+ EVEN(1).

Note:b = u1− EVEN(1)+ODD(1).

P2 announcesu2 = ODD(10)+ EVEN(11)− EVEN(10)−ODD(11).

Note:b = u1+ u2− 2EVEN(11)+ 2ODD(11)

P3 announcesu3 = 2ODD(110)+ 2EVEN(111)− 2EVEN(110)− 2ODD(111).

Note:b = u1+ u2+ u3− 4EVEN(111)+ 4ODD(111)

...

Pi announcesui = 2i−2ODD(1 · · ·10)+ 2i−2EVEN(1 · · ·11)− 2i−2EVEN(1 · · ·10)

− 2i−2ODD(1 · · ·11)

Note:b =∑i
j=1 uj − 2i−1EVEN(

i times︷ ︸︸ ︷
11· · ·1)+ 2i−1ODD(

i times︷ ︸︸ ︷
11· · ·1).

After Pk announcesuk, the players privately add up theui ’s from i = 1 throughk. Note
that

b =
k∑

j=1

uj − 2k−1EVEN(

k times︷ ︸︸ ︷
11· · ·1)+ 2k−1ODD(

k times︷ ︸︸ ︷
11· · ·1).

However, as we assumed at the beginning, there are no all-1 rows inQ, so

b =
k∑

j=1

uj
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and we are done. Eachui can be communicated usingO(k logm) bits, so the total
communication isO(k2 logm).

Now we return to the proof of Lemma 10. We divide the rows of matrixQ into
blocks of 2k−1−1 contiguous rows plus a leftover of at most 2k−1−1 rows. The players
cooperatively determine the number of the odd rows in each block, and then privately
add up the results.

Next we show how to obtain the number of odd rows for a single block at the cost
of O(k2 logm) bits of communication.P1 knows all the columns, except the first, so he
knows at most 2k−1− 1 rows of lengthk− 1 in a block, so he can find aβ ′ ∈ {0,1}k−1,
β ′ = (β2, β3, . . . , βk), which is not a row of thek − 1 column wide part of the block
seen byP1. Let β = (1, β2, β3, . . . , βk). Thenβ does not occur as a row in this block.
So if P1 communicatesβ, and they play protocol ODDCOUNT of Lemma 11 in a given
block, they usek2 logm bits for the block, and, since there are at most

⌈
m/(2k−1− 1)

⌉
blocks, the total communication is

O

(
k2 logm

⌈
m

2k

⌉)
.

4. Proof of Theorem 5

LEMMA 12. Let f be a Boolean function and let h: {−1,1}n→ R such that

L2
2( f − h) = 〈 f − h, f − h〉 ≤ ε.

Then

Prx(| f (x)− h(x)| > 1
5) ≤ 25ε,

where Prx is the probability measure associated with the uniform distribution over
{−1,1}n.

PROOF.

ε ≥ 〈 f (x)− h(x), f (x)− h(x)〉
= Ex( f (x)− h(x))2 ≥ 1

25Prx(| f (x)− h(x)| > 1
5).

Now we prove Theorem 5. LetU be defined as

U = {x ∈ {−1,1}n : | f (x)− g(x)| ≤ 1
5}.

From Lemma 12,|U | ≥ (1− 25ε)2n. If ε ≤ 1
2500, then we can apply Lemma 8 forg.

The proof then proceeds exactly as the proof of Theorem 1.
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