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Harmonic Analysis, Real Approximation, and the
Communication Complexity of Boolean Functions

V. Grolmus?

Abstract.  The two-party communication complexity of Boolean functiénis known to be at least
logrank M), i.e., the logarithm of the rank of the communication matrixfof19]. Lovasz and Saks [17]
asked whether the communication complexityfatan be bounded from above lgg rank M ))€, for some
constant. The question was answered affirmatively for a special class of funcfion$17], and Nisan and
Wigderson proved nice results related to this problem [20], butafbitrary f, it remained a difficult open
problem.

We prove here an analogous polylogarithmic upper bound in the stronger multiparty communication model
of Chandra et al. [6], which, instead of the rank of the communication matrix, depends on tieerh of
function f, for arbitrary Boolean functionf .
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1. Introduction

1.1. Communication Complexity In thetwo-party communication gamatroduced
by Yao [23], two playersP; and P,, attempt to compute a Boolean functidiix;, x»):

{0, 1}" — {0, 1}, wherexy, x; € {0, 1}", 2n" = n. PlayerP; knows the value ok,

P, knows the value ok;, but P, does not know the value of, fori = 1,2. The
minimum number of bits that must be communicated by the players to confipstine
communication complexigf f, denoted by (f).

This model has been widely studied and was applied to prove time—area tradeoffs for
VLSI circuits, and has other numerous applications and remarkable properties (e.g., [1],
[10], [11], [17], [19], or see [16] for a survey).

An important problem in complexity theory is giving lower and upper estimations
for the communication complexity of functioh. The following general lower bound to
k() was introduced in [19]:

(f) = logrankMs),

whereM; is a binary 2 x 2" matrix, containing the value df(xy, X,) in the intersection
of the row ofx; and the column oxk,.
Lovasz and Saks asked in [17] whether there existed an integiech that, for all
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Boolean functions,

1) k(f) < (logrankMy))°.

In [17], (1) was proved for a special class of functions. Nisan and Wigderson [20] also
have nice results concerning this inequality. However, for genkrél) is open, and
seems to be a difficult problem.

The main contribution of this paper is an analogous polylogarithmic upper bound for
arbitrary f, in the strongek-party communication model of [6]:

Cc®(f) = O((log (nL1(F)))?),

for k = clog(nL(f)) players, wher€® ( f) is thek-party communication complexity
of f,and Ly(f) is the Ly spectral nornof Boolean functionf (both are defined below).

ReEMARK. Recently, Lu [18] observed that a slight modification in our ODDCOUNT
protocol (Lemma 11) yields a®((log(nL( f )))2) upper bound t&€® (f).

1.2. Multiparty Games Themultiparty communication gameefined by Chandra et

al. [6], is a generalization of the two-party case. In this gaomayers,Py, Ps, ..., Py,
intend to compute a Boolean functidr(xy, Xz, ..., Xp): {0, 1}" — {0, 1}. On setS =

{X1, X2, . .., Xn} Of variables there is a fixed partitiohof k classes;;, Ay, ..., A, and
playerP, knows every variableexcepthose inA;, fori = 1, 2, ..., k. The players have
unlimited computational power, and they communicate with the help of a blackboard,
viewed by all players. The goal is to computéx,, xo, ..., Xp), such that at the end

of the computation, every player knows this value. The cost of the computation is the
number of bits written on the blackboard for the giver= (xq, X2, ..., X,) and A =

(Ag, Ay, ..., AY). The cost of a multiparty protocol is the maximum number of bits
communicated for anx from {0, 1}" and the givenA. The k-party communication
complexity,C(Ak)( f), of afunctionf, with respect to partitior\, is the minimum of costs

of thosek-party protocols which computé. The k-party symmetric communication
complexity of f is defined as

co(f)= m/?xcgk)(f),

where the maximum is taken over ktpartitions of sef{xy, Xo, ..., Xn}.

This model was used by Babai et al. [3] for constructing pseudorandom generators.
Hastad and Goldmann [13] and the author [7], [12] have used it for proving lower bounds
to the size of hard-to-handle circuit classes.

For a general upper bound for both two and more players, we suppog%g ieamne of
the smallest classes 8§, A, ..., Ac. ThenP; can compute any Boolean function $f
with | A1]+1 bits of communication?, writes down the A, | bits of A; on the blackboard,

P; reads it, and computes and announces the valug, xo, ..., X) € {0, 1}. So

3 ch(f) < LEJ +1.

For certain functions, much better upper bounds were provenin [6], [9], and [7]. However,
tothe author’s knowledge, before the present paper, no general upper bounds were known,
other than (2).
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1.3. Spectral Norms There is a vast literature on representing the Boolean functions
by polynomials over some field or ring (see, e.g., [2], [5], [22], [15], [14], or [4] for
a survey). One reason for this may be that the polynomials offer a more developed
machinery than the “pure” Boolean functions. One tool in this machinery is the Fourier
expansion of Boolean functions [15], [5]:

We represent the Boolean functidnas a functionf: {—1, 1}" — {—1, 1} where
—1 stands for “true.” The set of all real-valued functions oyed, 1}" forms a 2-
dimensional vector space over the reals with an inner product:

(@h=2" %" gooh).

xe{-1,1j"

We define, forr = (a1, an, ..., an) € {0, 1}",

n
o _ @
X _| |xi'.
i=1

The monomialx® for « € {0, 1}" form anorthonormal basisn this 2'-dimensional
vector space; consequently, any functlan{—1, 1}" — R can be uniquely expressed
as

(3) h(X1, X2, ..., Xn) = Z agx“.

ae{0,1jn

The right-hand side of (3) is called th®urier expansiorof h, and numbers, for
a € {0, 1}" are calledhe spectralor Fourier) coefficientof h. The Ly norm ofh is

Lihy = > faul.

ae(0,4)"

The L, norm is

1/2
mm=< ag _ e
@e{0,4)n

1.3.1. Examples

e The PARITY function in this setting i%; X, - - - X, its Ly norm is 1, while its degree
isn.
e Itis easy to verify that

VM=—;4@“—HM+D)
i=1 i=1

1

= 5 @ At X X XX X))
and
n 1 n
Ax = 5 (27 TJa—
i=1 i=1
1
= —— (2" Q=X = Xp— = X+ XaXo + - + (= 1) X1X2...Xn)).

on-1
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Observe that both thefan-in OR and AND have exponentially many nonzero Fourier
coefficients, their degree s while their Ly norms are less than three.
e The inner product mod 2 function (IP) is defined as follows:

n
IP(X1, X2, ..., Xon) = H(Xzi—l A Xgi).
i1

It is easy to verify that L(IP) is the highest possible for anynZariable Boolean
functions: 2.

Bruck and Smolensky [5] established a relation between tm®tm and the computabil-
ity of f by polynomial threshold function. A generalization of one of their results plays
a main role (Lemma 8) in the present work.

2. Main Results. Firstwe present a general theorem, which implies several corollaries
inamore natural setting. Theorem 1 shows that if a Boolean function can be approximated
by areal function with small error, then there exist&goarty protocol which computes

the Boolean function, and the number of communicated bits in this protocol depends
only on the I3 norm of theapproximating real function

THEOREM1. Let f be a Boolean function:f{—1, 1}" — {—1, 1}, and let g be a real
function g {—1, 1}" — R. Suppose thafor all x € {—1, 1}",

lgx) — f 0] < 2.

Then the k-party symmetric communication complexity of f is
2
(k2 log(nL1(g)) [ Ll(g)D .

In particular, choosing = f in Theorem 1:

COROLLARY 2. Let f be aBoolean function: f{—1, 1}" — {—1, 1}. Then the k-party
symmetric communication complexity of f is

(kzlog(nLl(f))[ (f)D.

COROLLARY 3. Let f be an arbitrary Boolean function of n variableset k =
clog(nLy(f)) withc > 0.Then

c®(f) =0 (log® (nL1(1))).

Or, settingk large enough:

In other words, if the L spectral norm off is bounded by a polynomial in, then
the symmetric kparty communication complexity of is at mostO(log® n), with k =
clogn.
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Let f andg be two functions, such thaf —g| < % Then their I3 norms may differ
even exponentially, e.gf, = 0, ¢ is a Boolean function of exponentiaj lnorm, then
g= %g’ also has exponential;Lnorm, while| f — g| < %. So the following corollary
of Theorem 1 may yield a much better bound than Corollary 3:

COROLLARY 4. Let
y =inf{lLi(g)| g:{-1,1}" - R, andvx € {-1,1}": |[g(x) — f(X)| < %}.

Then
ny?
c¥f)y=0 <k2 Iog(ny)(F—D )

Suppose thaf is a Boolean function of large (say, exponentiad)rlorm inn. Our
Corollary 3 can guarantee only a communication protocol with too many communicated
bits: the trivial [n/k] + 1 protocol may be better. However, if the Fourier coefficients of
f are distributed “unevenly enough,” i.e., they can be divided into two parts, one with
small Ly, the other with small L norms, then we can do much better:

THEOREMS. Let
foo= D aX,
ae{0,1}"

and let Sc {0, 1}" such that

for somes < Let

1
2500°
g(x) = A X%,

ae{0,1}"-S

Then for all k > 2 and for all k-partitions of the inputghere exists a k-party protocol

with
2
0 <k2|og(nL1(g))PL21k(g)D

bits of communicatigrand this protocol computes f correctly on at leélst 25¢) >

X . 100
fraction of the inputs

The following results of [8] show the power of our upper bounds in Theorems 1 and
5, proving that almost all Boolean functions have very high multiparty communication
complexity:

THEOREMG [8]. Let f be a uniformly chosen random member of set

(fIf: {1, 1" > {-1,1}}.
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Then the probability thator some A k-equipartition of x= {x1, X2, ..., Xn}, there exists
a k-party protocol which computes f with communication of at riogk | — logn bits
is less than
2_29(1‘!)
The communication complexity remains high even if we comgfuten mostof the
inputs:

THEOREM7. Let f be a uniformly chosen random member of set
{(f1f:{-1,1" > (-1, 1}}.

Then the probability thafor some A k-equipartition of x= {X1, X2, ..., Xa}, there exists
a k-party protocol which correctly computes f on a fraction of at Ie}’ﬁte of inputs
with communication of at mogh/k| — log(n/e) bits, is less than
2_29(m
Comparing Theorem 1 with Theorem 6, and Theorem 5 with Theorem 7, we have
that for almost all Boolean functions:

e f has exponential L norm,

e if f is approximated by a real functianwith error less thar%, then the L. norm of
g is exponential im,

o the Fourier coefficients of are “evenly distributed”: they cannot be divided into two
sets, one with subexponential horm, the other with a smalllnorm.

3. The Proof of Theorem 1. The following lemma is a generalization of a lemma of
Bruck and Smolensky [5].

LEMMA 8. LetU c {—1,1}" such thatjU| > (1 — 1—30)2“. Letg {-1,1}" - R.

Suppose thafor all x € U, g < [gx¥)| < g is satisfied Then there exists polynomial
Go(x) with integer coefficients and witly norm
L1(Go) < 400L3(g)
such that
sgn(Go(x)) = sgn(g(x))
forall x € U.

PrROOF The Fourier expansion @f.

g(x) = a, X",
aef{0,1}n
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wherea,, for o € {0, 1}", are the Fourier coefficients gf Then by definition

L= ) lal

ae{0,4)"

and
LX@=(gg=2" ) do= Y a,
xe{—1,1j ae{0,1)"

using the Parseval identity.

Since|g(x)| > 2 forx e U, and|U| > (1 — 35)2",

100
LZ(g) = (1_ 100)
Our next step is giving a lower bound to the horm ofg.

(i) Suppose that there exists ansuch that|a,| > % If sgn(x*) = sgn(g(x)) for
all x € U, then we are doné3g(x) = x* suffices. Otherwise, for some e U,
sgnx¥) # sgn(g(x)). Then the other terms af must compensate fot*, so the
sum of the absolute values of their coefficients should be greateétk&m

Ll(g) + |aor| =t 10

(i) Otherwise, if allla,| < 3, then

116 2 _1
(1—m)2—5§ Z a, =5 Z |2,
ael0,1)n ael0, 1

SO
(1 100) 25 = Z |aOI| = Ll(g)

{0,
Consequently, either we have found a suitaBgx), or we have concluded that

(4) L1(9) > (1 — 35903 = 156
We define random monomials (x) as follows:

|aa|

Zi(X) = sgn(a,)x*

Let random polynomiaG (x) be defined as the sum &f = [400nL2(g)] monomials
Zi(x):

N
G(X) =) Zi(x).
i=1

Computing the expectation &; (x):

|| g(x)
E(Zi(x) = o= 20
(Zi(x) = Zojl Lo(g S9m@x" =
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where we used the fact that gginjv| = v. The expectation 0&(x) is

Ng(x)
° E(G(X)) = _
© C0 =T
The variance o¥; (x) is
2
Var(Z; (x)) = E(le(x)) — EZ(Zi X)) =1-— gz(X) )
L1(9)

The variance of5(x) is

g%(x)
Var(G =N|1- .
ar(G(x)) ( L§<g)>

Since|g(x)| < g and because of (4),

g2(x)
g = B = h
SO
E <Var(G(x)) < N
0= (GX) =
or
N
(6) \/% < DGX) < VN,

whereD(G(X)) = /Var(G(x)), the standard deviation @(x).
From (5), the sign oE(G(x)) is the same as the sign gfx). Consequently,

Pr(sgnG(x)) # sgng(x)) = Pr(sgnG(x)) # sgn(E(G(x))))

NIg()|
Pr(|G(x) — E(G
r(l (x) — E(G(x))| = Ll(g)>

IA

IA

4N
Pr{ |G(x) — E(G(X))| = .
(| 0 (©e0)| = 5L1(g))
From the Bernstein inequality (see [21]) (or from the Central Limit Theorem), with
D = D(G(x)), we get

2
(7) PHIG(X) — E(G(X)| = uD) < 2exp(—“72> ,
2(14 u/D)
where O< p < D/2.
Foru = 3¢/n, N = [40nL2(g)] we get that the probability in (7) is less tham,
On the other hand,
4N

5L1(9)’

ub <
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o)
Pr(sgnG(x)) # sgng(x))) < e".
Consequently,

Pr(@x e U : sgnG(x)) # sgng(x)))
< D PrsgnG(x)) #sgngx))) < |Ule" < 2% < 1,

xeU

and since this probability is less than one, there exists a polyndsgiad) for which
sgn(Go(x)) = sgng(x)) for all x € U. The coefficients of thi&g are integers, and its
L1 norm is at mosi. O

PrROOF OFTHEOREM 1. Functiong satisfies the requirements of Lemma 8, tbr=
{—1, 1}". Then there exists a polynomiab(x) with integer coefficients and an lnorm
of at most 400L2(g), such that

sgn(g(x)) = sgnGo(x))

forall x € {—1, 1}". Since sgg(x)) = f(x), we have that sgiGo(x)) = f (x), for all
x € {—1, 1}". By Theorem 9G(x) has the required symmetteparty communication
complexity. O

THEOREM9. Let
N
GO =Y Zi(x),
i=1

where Z(x) = x* or Zj(x) = —x%, for somex € {0, 1}", and for x € {—1, 1}". Then
the symmetric k—party communication complexity of G is

) <k2 log(nN) "nz_l;l“) .

PROOF OFTHEOREM9. Let G1(x) be the sum of th&Z;'s with positive sign, and let
G2(x) be the sum of thé—Z;)’s, whereZ; has a negative sign. So

G(x) = G1(X) — G2(x),

andG; hasN; terms,G, hasN, terms,N; + N, = N.
Observe thaG; (x) is the sum ofN; terms of the form

n
x*=]]x" =[] %
i=1 iw=1
for j =1, 2. Clearly,

X — -1 if |{i :x =-1« =1}|isodd,
11 otherwise.
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Forj = 1, 2, letb; denote the number (counting the possible multiplicities) of those terms
x* in Gj(x), for which|[{i : xi = —1, o = 1}| is odd. TherG;(x) = (N; — bj) — b =
N; — 2b;, so

(8) G(X) = G1(X) — G2(X) = N; — No + 2by, — 2b;.
We denote

o 1 if Xi = —1,
Y¥=10 if x=1

then

n
X=-1 Zyicxi =1mod?2

i=1
We form a matrixM ) with N;j rows anch columns, forj = 1, 2. Each row corresponds
to a termx“ in G;j(x), and theith entry of that row isy;«;. Obviously, the number
of those rows oM which have an odd sum is equallip Suppose now that we are
given polynomialG(x), playersPy, P,, ..., P, and &k-partition A = (Aq, Ao, ..., Ax)
of the set{xy, Xo, ..., Xn}. We assume that playd?, knows functionG(x), partition
A, functionsG;(x), G2(x), and the values of all variables, except thoseAn for
¢ =12, ...,k Then the players, without any communication, can privately compute
matricesM® andM @, and exactly those entries of these matrices will not be known
to playerP,, which correspond to variables in cla&g The set of these entries is called
B,, fore =1,2,...,k. The following lemma shows a protocol by which the players
can first computd,; and therb,, and, consequentl(x), by (8).

LEmmA 10. Let M € {0, ™", M = {m;;}, and let B = {By, B,..., By} be a
partition of the sefm;;: 1 <i < m,1 < j < n}, such that player Pknows every
m;; except those in Bfor ¢ = 1,2, ..., k. Then there exists a k-party protocol which
computes the number of the rows with an odd sum in M by communicating

o(ewan{2)

PROOF  First, the players compute a matgx € {0, 1™ from M, with no commu-
nication: a row ofQ is associated with each row &f; the first element of row of Q

is the mod 2 sum of those entries of theh row of M which are the elements &; at
the same time. Analogously, thth element of rowj of Q is the mod 2 sum of those
entries of thejth row of M which are the elements &; at the same time. Clearly, the
number of rows with an odd sum M and inQ is the same. Moreover, play®y knows
every column of matrixQ, except columrt, for¢ = 1,2, ..., k.

bits.

With an additional assumption, Lemma 11 gives a protocol wattk?logm)
communication. This protocol is implicit in [2], in [9], and is used in a more general
formin [7].
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LEMMA 11. Letp e {0, 1}¥. Suppose it is known to each player tifatioes not occur
as a row of Q Then there exists a k-party protocol which computes the number of rows
with an odd sum with a communication ofk3logm) bits.

PROOF OFLEMMA 11. Without restricting the generality we may suppose ghiatthe
all-1 vector of lengttk. Let ODD(y1y» - - - v¢) and EVENy1y2 - - - y¢) denote the number
of those rows ofQ which have odd (resp. even) sums, and they begin with - - - y;,
¢ <k, y €{0,1}. Clearly, ODOy1y2 - - - y¢—1,0) + ODD(y1y2 - - - y¢—1, 1) = ODD
(Y1y2 - - - Ye—1)- For exampleP; does not know the first column &, but he can com-
municate ODRO) + EVEN(Y) if P; counts those rows which have an odd sum in their
second throughkth position. SimilarlyP, can communicate ODQ0) + EVEN(11) if
he counts those rows which begin with 1, and the sum of their first, third, fourtkth
elements is odd.

This observation motivates the following protocol:

Protocol ODDCOUNT

The goal: to computd, the number of rows with an odd sum @. Observe that
b = ODD(1) + ODD(0). Numberb will be computed as the sum of valugsannounced
by playerP,i =1,2,...,k.

P; announcesi; = ODD(0) + EVEN(1).

Note:b = u; — EVEN(1) + ODD(1).

P, announcesi, = ODD(10) + EVEN(11) — EVEN(10) — ODD(11).

Note:b = u; + u, — 2EVEN(11) + 20DD(11)

P; announcesiz = 20DD(110) + 2EVEN(111) — 2EVEN(110) — 20DD(111).
Note:b = U + Uy + us — 4EVEN(111) + 40DD(111)

P, announces; = 2 ~20DD(1---10) + 2 2EVEN(1---11) — 2 2EVEN(1- - - 10)
—2-20DD(1---11)
i times i times

. i i—1 i—1
Note:b = Y| _; uj — 2 *EVEN(11.--1) + 2-10DD(1. - - 1).

After P announcesi, the players privately add up the's fromi = 1 throughk. Note
that

k times k times

k—1 — k—1 ——
uj — 2" "EVEN(11..-1) + 2°°°0ODD(11- - - 1).

k
b=

j=1
However, as we assumed at the beginning, there are no all-1 ro@ssa
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and we are done. Eaaly can be communicated using(klogm) bits, so the total
communication i€ (k? logm). O

Now we return to the proof of Lemma 10. We divide the rows of ma@ixnto
blocks of -1 — 1 contiguous rows plus a leftover of at mo$t2— 1 rows. The players
cooperatively determine the number of the odd rows in each block, and then privately
add up the results.

Next we show how to obtain the number of odd rows for a single block at the cost
of O(k?logm) bits of communicationP; knows all the columns, except the first, so he
knows at most 21 — 1 rows of lengthk — 1 in a block, so he can findg € {0, 1}*°1,

B = (B2, B3, ..., Bx), which is not a row of th&k — 1 column wide part of the block
seen byP;. Let 8 = (1, B2, B3, - - -, Bk)- Theng does not occur as a row in this block.
So if P, communicateg, and they play protocol ODDCOUNT of Lemma 11 in a given
block, they usé? logm bits for the block, and, since there are at mosy (2<% — 1)
blocks, the total communication is

o (esm ) i

4. Proof of Theorem 5

LEMMA 12. Let f be a Boolean function and let h—1, 1}" — R such that
L3(f —h)y=(f —h, f —h) <e.
Then
Pr(f() —h)| > %) < 25,
where Pry is the probability measure associated with the uniform distribution over

(—1,1)".

PrROOF

™
%

(f(x) = hx), f(x) —h(x))

Ex(f () —h())? = %PK( f(x) —hx)| > 3). O

Now we prove Theorem 5. L&t be defined as
U={xe{-11":[f(x)—gx| =<1}

From Lemma 12|U| > (1 — 25¢)2". If ¢ < floo’ then we can apply Lemma 8 for

The proof then proceeds exactly as the proof of Theorem 1. O

Acknowledgment. The author is grateful to Chi-Jen Lu for discussions on this topic.
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