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Output-Sensitive Reporting of Disjoint Paths'
G. Di Battista? R. Tamassid,and L. Vismara

Abstract. A k-path query on a graph consists of computingertex-disjoint paths between two given
vertices of the graph, whenever they exist. In this paper we study the problem of perférpatly queries,

with k < 3, in a graphG with n vertices. We denote withthe total length of the reported paths. kot 3, we

present an optimal data structure fdrthat use<O(n) space and executé&spath queries in output-sensitive

O(¢) time. For triconnected planar graphs, our results make use of a new combinatorial structure that plays the
same role as bipolas{) orientations for biconnected planar graphs. This combinatorial structure also yields
an alternative construction of convex grid drawings of triconnected planar graphs.
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1. Introduction. Connectivity is a fundamental property of graphs, and has been ex-
tensively studied in the graph algorithms literature. In particular, biconnectivity and
triconnectivity properties play a special role in a number of graph algorithms.

In this paper we investigate data structures that support the following fundamental
k-path querywith k < 3, on a graph: given verticesandv, computek vertex-disjoint
paths between andv, whenever they exist. A variation of the above query, call&d a
connectivity querydetermines whether such paths exist (i.e., provides mpeanswer)
but does not return the paths. We denote witimdm the number of vertices and edges
of the graph, respectively, and withthe total length (number of edges) of the paths
returned by &-path query.

We are interested in constructing a space-efficient data structure for the graph such
that the time for &-path query is output-sensitive, i.€© f (n) + ¢) with f (n) = o(n).
Ideally, we would like to achievé (n) = O(1) with linear space.
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1.1. Previous Results on Path and Connectivity Querids this section we overview
previous results ok-path and-connectivity queries. First, we consider algorithms that
do not exploit preprocessing. Using network flow techniques [18}path query can
be answered if©(m,/n) time for arbitraryk, and inO(n + m) time for any fixedk.
Regarding planar graphs, it has been shown thapath query can be performed in
O(n) time for anyk [38].

Faster query time can be achieved if preprocessing is allowedk Eol, it is easy
to see that a spanning forest allows one to perform 1-connectivity queri@glintime
and 1-path queries i@ (¢) time. For general graphs akd< 4, or for (k — 1)-connected
graphs and fixeld > 4, there aré(n)-space data structures that perfdaoonnectivity
gueries inO(1) time, but do not support output-sensitikgoath queries (see [45] and
[53] for k = 2, [15] fork = 3, [29] fork = 4, and [10] fork > 4).

Table 1 in Appendix 8 summarizes previous and new results on methokispfth
andk-connectivity queries.

1.2. Previous Results on Orientations and Orderings of Graph3rientations and or-
derings are powerful combinatorial structures that have been successfully applied to
solving various graph problems. Here, we overview previous work related to our com-
binatorial results.

Bipolar orientations angdt-numberings of biconnected graphs were first defined in
conjunction with a planarity testing algorithm [19], [35], and were later used for a variety
of topological and geometric graph problems, such as embedding (see, e.g., [6], [16], and
[45]), visibility (see, e.g., [39], [46], and [55]), drawing (see, e.g., [1], [13], and [47]),
point location (see, e.g., [37] and [48]), and floorplanning (see, e.g., [31]). One of the
notable properties of planar bipolar orientations is that they induce a two-dimensional
lattice [33] on the vertices of the graph. See [11] for a comprehensive study of bipolar
orientations.

Canonical orderings were first defined by de Fraysseix et al. [12] for maximal planar
graphs and later extended by Kant [30] to triconnected planar graphs. They have been
successfully applied to the construction of various types of planar drawings (straight-line,
orthogonal, and polyline) (see, e.g., [9], [12], and [30]).

Schnyder [40] defines realizers of maximal planar graphs in his study of the order
dimension of planar graphs, and shows their application to planar straight-line draw-
ings [41]. The construction of realizers of maximal planar graphs can also be efficiently
parallelized [32]. Brightwell and Trotter [3], [4] define normal families of paths for a
class of planar graphs that includes triconnected planar graphs. Normal families of paths
are related to Schnyder’s realizers. However, they do not analyze the time complexity
of their construction. Normal families of paths are important for the study of the order
dimension of convex polytopes and planar maps.

Graph drawing methods based on orientations, numberings, and realizers are surveyed
in[22].

1.3. Previous Results on Independent Spanning Tre&srecent years the problem of
finding independent spanning trees of a given graph has received increasing attention.
Two spanning trees of a grafih having the same roat are calledndependenif for

each vertex of G the two paths betweanandr along the two trees are vertex-disjoint.
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Independent spanning trees find applications in fault-tolerant protocols for distributed
computing networks.

An interesting conjecture about independent spanning trees is the following: for each
k-connected grap® and each vertex of G, there exisk independent spanning trees of
G rooted ar . The conjecture has been provedkoe 2 by Itai and Rodeh [27], and for
k = 3, independently, by Cheriyan and Maheshwari [5] and Zehavi and Itai [56]. While
the proof of Zehavi and Itai is existential, the proofs of Itai and Rodeh and of Cheriyan
and Maheshwari are constructive. In particular, Itai and Rodeh used bipolar orientations,
while Cheriyan and Maheshwari proved that every triconnected graph has a nonsepa-
rating ear decomposition and presented an algorithm to construct such a decomposition
and the three spanning trees.

For generak-connected graphs with> 4 the conjecture is still open, but Huck has
proved it fork-connected planar graphs wikh= 4 [24] andk = 5 [26] (i.e., for all
planar graphs, since 6-connected graphs are nonplanar).

Similar conjectures have been formulated considering edge-connectivity instead of
vertex-connectivity [27], [34] and for directed graphs [17], [25], [49], [54].

1.4. New Results Our new results are outlined as follows:

e We define realizers of triconnected planar graphs, and show how to construct them
in linear time. Our definition naturally extends the one by Schnyder [40] using a
chromatic framework such that each edge of the graph has one or two colors from
the set{blue green red}. Our realizers induce an orientation of a triconnected planar
graph with properties closely related to those of bipolar orientations for biconnected
planar graphs. Oub (n)-time construction of a realizer of triconnected planar graph
G with n vertices has the following additional applications:

— We show how to compute a normal family of paths [3], [4] ®&rin O(n) time.
Brightwell and Trotter [3], [4] previously showed the existence of such families,
but did not study the time complexity of their construction.

— We give an alternativ® (n)-time algorithm for constructing a convex grid drawing
of G with O(n?) area. (A convex grid drawing is a planar straight-line drawing
with faces drawn as convex polygons and vertices placed at integer coordinates.)
This extends Schnyder’s barycentric drawing method for maximal planar graphs
to triconnected planar graphs [40], [41], and gives an alternative proof of Kant’s
result [30].

e Basedonrealizers, we show how to construct a linear-space data structure that supports
output-sensitive 3-path queries on a triconnected planar graph. Using this result, we
show how to construct i® (n) time a data structure for anvertex planar grapt (of
arbitrary connectivity) that used(n) space and supporkspath queries, fok < 3,
in O(¢) time, wheret is the total size of the reported paths.

e By exploiting the result of Cheriyan and Maheshwari [5], we show how to construct
a linear-space data structure that supports output-sensitive 3-path queries on a tri-
connected graph. Using this result, we show how to construi(in?) time a data
structure for am-vertex graphG (of arbitrary connectivity) that use®(n) space
and support&-path queries, fok < 3, in O(¢) time, wheret is the total size of the
reported paths.
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The rest of this paper is organized as follows. In Section 2 we present preliminary
results on output-sensitive 2-path queries. Realizers of triconnected planar graphs and
their combinatorial properties are introduced in Section 3. The data structure and the
output-sensitive algorithm for 3-path queries in triconnected planar graphs are given in
Section 4. The data structure and the output-sensitive algorithm for 3-path queries in
general triconnected graphs are given in Section 5. The extension to graphs of arbitrary
connectivity is contained in Section 6. In Section 7 we present the algorithm for convex
grid drawing of triconnected planar graphs. Conclusions are contained in Section 8.

2. Preliminaries. In this section we define basic concepts used in the paper, present
preliminary results on output-sensitive 2-path queries, and overview previous results on
canonical orderings.

2.1. Basic Definitions We assume familiarity with graph theory [2], [21]. We recall
some basic definitions on connectivity. geparating k-sebf a graph is a set ok
vertices whose removal disconnects the graph; separating 1-sets and 2-sets are called
cutverticesandseparation pairsrespectively. A graph ik-connected if there exists no
separatingk — 1)-set; 1-connected, 2-connected, and 3-connected graphs are usually
calledconnectegdbiconnectedandtriconnectedrespectively.

Unless otherwise specified, all the paths referred to in this paper are simple. Two paths
are vertex-disjoint when they have no vertex in common except, possibly, the endpoints.
Since we deal only with vertex connectivity, for brevity we sligjointinstead of vertex-
disjoint. Two pathgrosswhen they share at least one vertex distinct from their endpoints
orone edge. The set of vertices and edges shared by two crossing paths iscralsthg

A drawing of a graphG is a mapping of each vertex @ to a distinct point of the
plane and of each edda, v) of G to a simple Jordan curve with endpointeindv. A
drawing isplanar if no two edges intersect, except, possibly, at common endpoints. A
graph is planar if it has a planar drawing.

Two planar drawings of a planar grahare equivalentif, for each vertexv, they
have the same circular clockwise sequence of edges incidenvwlitbhnce, the planar
drawings ofG are partitioned into equivalence classes. Each of those classes is called
an embeddingpf G. An embeddeglanar graph (alsplane graph) is a planar graph
with a prescribed embedding. A triconnected planar graph has a unique embedding, up
to a reflection. A planar drawing divides the plane into topologically connected regions
delimited by cycles; these cycles are calieces Theexternafface is the cycle delimiting
the unbounded region. Two equivalent planar drawings have the same faces.

Let G be a plane graph. A vertex or edge®fis said to beexternalif it lies on the
external face, anthternal otherwise. A path or crossing @ is said to beexternalif it
consists only of external vertices and edges and is said iatdal if it consists only
of internal vertices and edges.

2.2. Bipolar Orientations an@-Path Queries In this section we show how to perform
output-sensitive 2-path queries on biconnected graphs.

Let G be ann-vertex graph with an edges, t). A bipolar orientation(also called
st-orientatior) [11], [35] of G with respect to an edgs, t) is an orientation of the edges
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of G such that the resulting digradh is acyclic,s is the unique source d, andt is

the unique sink oD. A biconnected graph admits a bipolar orientation with respect to
any edge(s, t), which can be computed in linear time [19]. Atrnumberingof G is

a numberingys, ..., v, Of the vertices ofG such thats = v;, t = vy, and each other
vertexvi, 1 <i < n, is adjacent to at least one vertgx j < i, and to at least one
vertexvg, kK > i.

Given a bipolar orientation of a biconnected graphwe construct two spanning
trees ofG, T and T, rooted ats andt, respectively, as shown by Itai and Rodeh [27].
TreeTs is obtained by selecting an incoming edge for every vertex distinct & ¢ior
vertext an incoming edge distinct froigs, t)). TreeT is similarly obtained by selecting
an outgoing edge for every vertex distinct fror(for vertexs an outgoing edge distinct
from (s, t)). Clearly, for every vertex of G, the pathps(v) along Ty betweemnv and
s and the pathp;(v) along T; betweenv andt are disjoint. As shown in the follow-
ing lemma, treegs andT; contain all the information needed to answer 2-path queries
in G.

LEMMA 1. For each pair of vertices u and of G, the subgraph of G formed by edge
(s, t) and by the four pathsgu), p;(u), ps(v), and p(v) contains two disjoint paths
between u and.

PROOF  With respect to the bipolar orientation used to constiyeindT;, we indicate,
for each vertexw of G, thestnumber ofw with stn(w). Without loss of generality, let
stn(u) < stn(v). Two cases are possible forandv:

1. Pathgs(v) andp;(u) do notcross. Ldtag (resplca;) be the lowest common ancestor
of uandv in Ty (resp.T;). The first path betweemanduv is obtained by concatenating
the path between andlcas with the path between andlcas; note thatlcas may
coincide withu. The second path betweerandv is obtained by concatenating the
path between andlca; with the path betweenandica;; note thalca; may coincide
with v. The two paths betweanandv are clearly disjoint: for each ancestoof u
orv in Ts and each ancestgrof u or v in T, stn(x) < stn(y) holds.

2. Pathsps(v) and p;(u) cross. Lestopvertey be any vertex of the crossing. The first
path between andv is obtained by concatenating the path betweandstopvertey
with the path betweenandstopvertey. The second path betweaiandv is obtained
by concatenating the path betwegmands, with edge(s, t), with the path between
v andt. The two paths between and v are clearly disjointi(s, t) is neither an
edge ofTs nor an edge off;, and for each ancestor of u in T, each ancestoy
of v in T;, and each vertex of the path between andv including stopvertey,
stn(x) < stn(w) < stn(y) holds.

Note thatps(u) and p;(v) cannot cross, since, for each ancestof u in Ts and each
ancestoly of v in Ty, stn(x) < stn(y) holds. O

THEOREM1. Let G be a biconnected graph with n vertices and m edBesre exists
an O(n)-space data structure for G that can be constructed itn@ m) time and
supports2-path queries in @¢) time, wheret is the size of the reported paths



Output-Sensitive Reporting of Disjoint Paths 307

PROOE The data structure simply stores rooted tf&gandT; with parent pointers. Itis
easy to see that this data structure can be constructed i©timé m) and require©(n)
space [19]. A 2-path query for verticesandv, with stn(u) < stn(v), is performed by
traversing pathgs(u), ps(v), pt(u), andp;(v) one edge at the time, alternating between
them, until one of the two following halting events occur:

e Icas andlca; are reached;
e stopvertey, is reached.

If both Icag andlca; are reached, then Case 1 of the proof of Lemma 1 applies. If
stopvertey; is reached, then Case 2 of the proof of Lemma 1 applies.

Once the appropriate case has been determined, reporting the two paths hetween
andv can be done irfD(¢) time by simply traversing treek andT;. Thus, it remains
to be proved that the computationlods andlca;, or of stopvertey, can be carried out
in O(¢) time. This is guaranteed by the alternating traversal technique and by the fact
that the longest subpath explored to compagg andlca, or stopvertey, is reused for
constructing one of the two paths betweeandv. O

2.3. Canonical Orderings In this section we recall the definition of canonical order-
ings of triconnected plane graphs, as given by Kant [30].

Let G be a triconnected plane graph withvertices, and letip, uy, u, be three
consecutive external vertices®f A canonical orderingf G (see Figure 1) is an ordering
v1, ..., vp Of the vertices ofG that can be partitioned into subsequen¥gs.. ., V;,
whereVi = {vg, ..., Vs44 ), 1 <k<hl=s << -+ <% <Sp1=n+1,
dk = ka1 — & — 1, such that the following conditions are verified:

1. vy = Uuq, v2 = Uy, andV1 = {vq, vo}.

2. Let Gi be the plane subgraph @& induced byV; U---U VW, 1 < k < h, and
let Cx be the external face @y. For each < k < h — 1 one of the following cases
occurs:
(a8) Vk = {vg } is a vertex ofCy and has at least one neighboiGn— Gy;
(b) Vk = {vg, .., vsuq ) IS @ subpath o€y, and eachy, s <i < s + dk, has

degree two iGg and has at least one neighboiGn— G.

3. Each subgraple is biconnected and internally triconnected, i.e., removing two
internal vertices oG, does not disconnect it.

4. vy = Ug andVy = {vn}.

In the example of Figure 1, each vertex is labeled with its rank in the canonical
ordering, and the partition of the vertices is given\y= {v1, vz}, Vo = {vs, vs, vs},
Vs = {ve, v7}, Va = {vg}, V5 = {vo, v10}, V6 = {v11}, Vo = {v12}, Vg = {v13},
Vg = {v14}, V1o = {v1s, v16}, V11 = {v17, v18}, V12 = {v19}, Viz = {vao}, V14 = {v21}).

LEMMA 2 [30]. Each triconnected plane graph has a canonical orderiwgich can
be computed in linear time and space
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Fig. 1. A realizer of a triconnected planar gragh (a) The blue tree 06. (b) The green tree db. (c) The
red tree ofG.

3. Realizers of Triconnected Planar Graphs

3.1. Definition Arealizerof atriconnected plane graghis a triplet of rooted directed
spanning trees db with the following properties (see Figure 1):

1. In each spanning tree, the edge&ddre directed from children to parent.
2. The sinks (roots) of the spanning trees are three external verti€s of
3. Each edge of is contained in at least one and in at most two spanning trees.
4. If an edge ofG is contained in two spanning trees, then it has different directions in
the two trees.
5. Consider the edges @& with the directions they have in the three spanning trees,
where an edge with two opposite directions is considered twice:
(a) Each nonsink vertexof G has exactly threeutgoing edgeghe circular order of
the outgoing edges aroumdnduces a circular order of the spanning trees around
v; all the nonsink vertices @b have the same circular order of the spanning trees.
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(@) (b)

Fig. 2. Two examples of Property 5 of the realizers.

(b) For each vertex o6 theincoming edgethat belong to the same spanning tree
appear consecutively between the outgoing edges of the two other spanning trees
(the firstand lastincoming edges are possibly coincident with the outgoing edges).
6. For the sink of each spanning tree, all the incoming edges belong to that spanning
tree.

Let Ty, Ty, andT, be the spanning trees forming a realizer of a triconnected plane
graphG (see Figure 1(b),(c)). We assign a color to the edges obntained inly, Ty,
andT;, sayblue green andred, respectively. In the figures, we use dark grey for blue,
light grey for green, and medium grey for red. According to Property 3 of the realizers,
each edge o6 is assigned one or two colors, and is said to mibredor 2-colored
respectively. For example, in the realizer shown in Figure 1, édges1) is 1-colored,
while edge(vs, vs) is 2-colored. From now on, we represent a 2-colored edge half with
one color and half with the other; dashes represent optionality. In Figure 2, two examples
of Property 5 of the realizers are represented in this way.

LEMMA 3. Each triconnected plane graph G has a realjzehich can be computed in
linear time and space

PROOF A realizer can be constructed by assigning colors and directions to the edges
of G as follows:

1. acanonical ordering of the vertices®fis computed;
2. vy, vy, andvy, are the sinks of the blue, green, and red tree, respectively;
3. (v1, v2) is an outgoing blue edge fap and an outgoing green edge far,
4, foreach2< k < h:
(a) if Vk = {vg }, letc, ..., g be the consecutive neighborsgf on Cy_1; (v, C)
is an outgoing blue edge far,, and possibly an outgoing red edge frif
¢ has no neighbor il — Gy; (vs, C) is an outgoing green edge fog, and
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s V, V,

[ Stk o< X
o ([ ]

. S

CI Cr CI Cr
Vi Vo Vg Vo
(a) (b)
Fig. 3. The coloring of the edges in the construction of a realizet/ay {vs }. (0) Vk = {vg,, .- ., Vg )

possibly an outgoing red edge for if ¢ has no neighbor il — Gi; edges
(vs, Gi), I <i <, are outgoing red edges far(see Figure 3(a));

(b) if Vk = {vg, ..., vs+d ), let ¢ andg be the neighbors obs and vg g, ON
Ck_1, respectivelyyvs +4,, G) is an outgoing blue edge fag, .4, and possibly
an outgoing red edge for if ¢ has no neighbor i — G; (v, G ) IS an outgoing
green edge fovs , and possibly an outgoing red edge épif ¢, has no neighbor
in G — Gg; edge(vi, vi11), & <i < & + dk is an outgoing blue edge feor and
an outgoing green edge for, ;1 (see Figure 3(b)).

Note thatv; has no outgoing blue edge; has no outgoing green edge, andhas
no outgoing red edge. Besides, for eack R < h, the following invariants hold:

e every vertex ofVi has exactly one outgoing blue edge, exactly one outgoing green
edge, and no outgoing red edge; the outgoing blue edge precedes the outgoing green
edge in the clockwise circular order of the edge€gfand all the (possible) incoming
red edges are incident with vertices®f — V;

o for every vertex ofCy the (possible) incoming blue edge ©f follows the (possible)
incoming green edge @ in the clockwise circular order of the edges@y;

e no vertex ofC¢_; has an outgoing blue or green edge incident with a vertéx pf

e every vertex ofCx_; with no neighbor inG — Gy has exactly one outgoing red edge,
while every vertex ofC¢_1 with neighbors inG — Gk has no outgoing red edge;

e Gy contains no cycle such that a common color is assigned to all its edges.

All the properties of a realizer easily follow from these invariants. By Lemma 2, the
above construction can be carried out in linear time and space. O

3.2. Properties In this section we consider a triconnected plane gr@phquipped
with arealizerTy, Tg, T;. We denote, v, andv, ass, Sy, ands;, respectively. For each
vertexv of G, theblue path p(v) is the path ofG alongT, with endpointsy ands,. In
the same way, we define tigeeen path g(v) as the path oG along Ty with endpoints
v andsy and thered path p(v) as the path ofs alongT, with endpointsv ands. In
the rest of the paper the subpath of patlw), i € {b, g, r}, with endpointsy and the
ancestou of v in T; is denoted byp; (v, u).

The subpath of the external face with endpoigteinds, and not containing, is
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denoted byext(sy, ). Similarly, the subpath of the external face with endpognisnd
S and not containingy is denoted byext(s, &) and the subpath of the external face
with endpointss, andsy and not containing, is denoted byext(s,, Sy).

The lowest common ancestor of vertiaeandv in T, i € {b, g,r}, is denoted by
Ica; (u, v); in the rest of the paper we ukm; instead ofca; (u, v) for brevity.

From the construction in the proof of Lemma 3, it follows that, for each vertex
of G, the colors of the three outgoing edges appear in the following counterclockwise
circular order: blue, green, red. Without loss of generality{lsed, r } will be considered
accordingly ordered in the rest of the paper.

LEMMA 4. Let G be atriconnected plane graph with n vertices and m edgegvery
realizer of G the number o2-colored edges of G i8n — m — 3.

PrROOF  For each planar grapm < 3n — 6. Each tree wittn vertices has — 1 edges;
thus the total number of edges in the three spanning trees of the realigerHd 8> m.
The thesis follows from Property 3 of the realizers. O

LEMMA 5. Letv be a vertex of G and let ij, k be three consecutive colors in the
circularly ordered setb, g, r}. Let x # s; be a vertex of gv) and let y be its parent
in T;. The i-colored(resp k-colored outgoing edge of x is on the rigltesp left) of

p; (v), while each(possibl¢ i-colored (resp k-colored incoming edge of x different
from (y, x) is on the lefi(resp right) of p; (v).

ProoOF Easily follows from Properties 5(a) and 5(b) of the realizers, from the circular
order of setb, g, r}, and from the planarity 0&. O

LEMMA 6. For each vertexw of G, pp(v), pg(v), and p(v) have only vertew in
common

PrROOF Leti, j, andk be three consecutive colors in the circularly orderedised, r }.
Suppose, for a contradiction, thpft(v) and pj(v) have vertexx in common and that
pi (v, X) and pj (v, X) have no vertex in common witlp (v). By Property 6 of the
realizers,x # s;. From Property 5(a) of the realizers and by planarity@f it
follows that the edge of; (v) incoming tox is on the right ofp; (v), thus contradicting
Lemma 5. O

LEMMA 7. Letuandv betwo vertices of Qfthere existtwo colorsij € {b, g,r}, i #
j,such that € p;j(u) and ue p;(v), then p(u, v) = p;(v, u).

PrROOF  Suppose, for a contradiction, that(u, v) and p; (v, u) have only vertices

andv in common. Sincés is planar, two cases are possibig(v, u) is an internal path

in the subgraph with the external face formedgdpu), p; (u), andext(s, s;), or pi (u, v)

is an internal path in the subgraph with the external face formeg; ty), p;(v), and

ext(s, ). It is easy to see that in the first case Property 5(b) of the realizers is not
satisfied for vertexs, and in the second case it is not satisfied for verstekus,p; (U, v)
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and p;j (v, u) have a third vertexv in common besides andv. The same argument
can be recursively applied g (u, w) andp; (w, u), and top; (w, v) andp; (v, w). This
completes the proof. O

LEMMA 8. For vertices g, sy, and $ of G the following properties holdp; (sg) =
Pg(S) = exl(sy, ); Po(S) = Pr(Sp) = eXUS, S); Pg(Sh) = Po(Sy) = XSy, Sy).

ProOF  We prove thap; (sy) = pg(S) = exi(sy, & ); the other two cases are analogous.
Equality pr (sg) = py(s) follows from Lemma 7, so we only have to prove that
Pr(Sy) = Py(s) is external.
We first prove that the first edgs,, wg) and the last edg@wr, s) of pr (Sy) = Pg(s)
are external. By Properties 5(a) and 6 of the realizers, the outgoing blue edge and the
outgoing red edge ofy are consecutive in the counterclockwise circular order of the
edges aroungy. Suppose, for a contradiction, that the edgexifsy, s) incident with
Sy is not the outgoing red edge sf. By planarity ofG, pp(sy) and p; (sy) have at least
one vertex in common, thus contradicting Lemma 6. Similarly, it can be proved that the
edge ofext(sy, ) incident withs; is the outgoing green edge §f
We now complete the proof by showing that the other edges(sf) = py(s) arealso
external. Suppose, for a contradiction, tipatsy) = py(s) # exi(sy, s ); hence, there
exists a vertex # sy, wg, S, wr Of eX(Sy, §) that is not a vertex opr (wg) = Pg(wr).
Since the graph is planapg(x) (resp.pr (X)) has at least a vertex(resp.z) in common
with pr (wg) = pg(wyr). Itis easy to see that Property 5(b) of the realizers is not satisfied
for verticesy andz. O

For each vertex of G theblue region RB(v) is the subgraph of with the external
face formed bypg(v), pr (v), andexi(sy, s ) (see Figure 4). In the same way, iipeen
region Ry(v) is the subgraph o6 with the external face formed bgy,(v), pr (v), and
ext(s, &) and thered region R(v) is the subgraph o with the external face formed

by po(v), pg(v), andexi(s,, Sy).

Fig. 4. The blue, green, red paths and regions of a vertex.
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Fig. 5. (a)—(c) Crossing paths. (d) Noncrossing paths.

LEMMA 9. For each pair of vertices u and of G, two cases are possible

1. there are exactly two colorsj € {b, g,r}, i # j, such that p(v) and g (u) cross
three subcases are possible
(@) u ¢ pi(v) andv ¢ p;j(u) (see Figures(a));
(b) eitherue p;i(v) or v € p;j(u) (see Figures(b));
(c) ue pi(v)andv € p;(u) (see Figures(c));

2. there are no two colors,ij € {b,g,r}, i # j, such that p(v) and g(u) cross in
this case there is exactly one colorek{b, g, r} such that either p(v) C px(u) or
P(U) C pk(v) (see Figured(d)).

ProoF  Consider pathp; (u) (po(u) and pg(u) are analogous). Also, suppose that
andv do not coincide withs,, S5, ands; otherwise the proof can be trivially extended
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but involves some more details. In order to simplify the exposition of the proof of this
property, we defingd (v) = pi(v) — {v}, i € {b,g,r},andR (v) = R(v) — {p;(v) U
pk(U)}, i9 j’ ke {b’ gvr}’ I 7é ] 7é k.

By exploiting Lemmas 5 and 7, we can prove the following propertigs af). Path
pr (u) is composed of four consecutive subpaths(u), pr2(u), pra(u), and pr4(u),
where an endpoint off 4(u) is s.. The vertices of patip1(u) belong toR;: (v). For the
vertices ofp;(u) and pr3(u) two cases are possible: (i) the verticespp$(u) belong
to pp(v) and the vertices opy3(u) belong toF_eg(v); (ii) the vertices ofp,2(u) belong
to py(v) and the vertices ofy3(u) belong toR,(v). The vertices ofp,4(u) belong to
pr (v), if v € pr(U), to pr (v), otherwise.

According to the position ofi with respect tov, some of these subpaths may be
empty:

e if U e R (v), then eithemy»(u) and p;3(u) are both empty, or only,3(u) is empty,
or none of the subpaths is empty;

e if Ue Pp(v) Oru € Py(v), thenp1(u) is empty; alsop,s(u) is possibly empty, while
pr2(u) and pr4(u) are not empty;

e if U Ry(v) oru € Ry(v), thenpy1(u) and pr2(u) are empty;p3(u) and pr4(u) are
not empty;

e if Ue Pr(v), thenprr(u), pr2(u), andpy3(u) are empty;p;4(U) is not empty.

The above properties allow us to prove the claims easily. O

COROLLARY 1. Let u andv be two vertices of GIf there exist two colors,ij €
{b,g,r}, i # j,suchthat p(v) and g(u) crossthen ue Rj(v) andv € R (u).

ProoF Easily follows from the proof of Lemma 9. O

LEmMMA 10. Leti, j, and k be three consecutive colors in the circularly ordered set
{b, g, r}. For each pair of vertices u and of G, if u € R¢(v) the following five cases
are possible

ifu & pi(v) and u¢ pj(v), then R(u) C Re(v);
if u e pi(v) andv & p;(u), then R(u) C Re(v);
if u € pj(v) andv & p;(u), then R(u) C R(v);
if u € pi(v) andv € p;(u), then R(u) = Rc(v);
if u € pj(v) andv € p;(u), then R(u) = Rc(v).

arwdE

PrROOF Casel. By planarity ofG and by Lemma 9, eithep,(u) and p; (v) cross or
pk(u) andp; (v) cross orpe(v) C pr(w); in all three subcases, by Lemmag@(u, Ica;)
andp; (u, Icay) are not external paths & (v), henceR¢(u) C Rc(v).

Case2. Sinceu € pi(v), thenpi(u) C pi(v); by Lemma 9,p;(u, Ica) is not an
external path oRk(v), henceRy(u) C R¢(v).

Case3. Analogous to Case 2.
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Case4. BylLemma7,p(v,u) = pj(u, v), henceRe(u) = Rc(v).

Caseb. Analogous to Case 4. O

The properties of aormal family of path§3] for a plane graph and three distinguished
external vertices, are similar to the properties of Lemmas 6, 8, and 10. Brightwell and
Trotter [3] proved that each triconnected plane graph has a normal family of paths for
any three external vertices. Using the terminology of [3], we can say that Lemmas 6, 8,
and 10 show that the sép; (v)|i € {b,g,r}, v € V}is a normal family of paths for
the three vertices,, 5, ands:. Also, a normal family of paths of a triconnected planar
graph can be constructed, for any three external verticgsandz, by adding a vertex
w adjacent tax, y, andz, by constructing a single-sink realizer (which will be defined
in Section 4.2) rooted at, and then by removing.

3.3. Faces Colored by Realizers Let G be a triconnected plane graph equipped with
a realizerTy, Ty, T;. Let f be an internal (resp. external) face @f and lete be an
edge of f in Ty,. We say thae is positive bluef the orientation ofe in T, follows f
clockwise (resp. counterclockwise); we say thét negative bluéf the orientation ofe

in Ty, follows f counterclockwise (resp. clockwise). We defpasitive greennegative
green positive redandnegative redn a similar way. The following lemmas characterize
the chromatic structure of a face induced by the realizer.

LEMMA 11. An internal face of G can be decomposed into six clockwise consecutive
paths By, Prg, Prb, Pgb, Pyr, Por Where(see Figures):

e Pyy consists of exactly one edge that is either positive ,bbuepositive blue and
negative greeyor negative green

pgb .\

. F)rb ng
'4 °
! !
prg pbr
o

Fig. 6. Internal face coloring.
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e Py consists of a possibly empty sequence of edgmsh positive red and negative
green

e Py, consists of exactly one edge that is either positiveagegositive red and negative
blue or negative blug

e pgyp consists of a possibly empty sequence of gdgeh positive green and negative
blue

e Py consists of exactly one edge that is either positive greepositive green and
negative redor negative red

e Py consists of a possibly empty sequence of edggesh positive blue and negative
red.

PrOOF Let f be an internal face db, and let a clockwise circular order of the vertices
aroundf be defined.

We consider the most general case in whitlcontains no vertex from the set
{%, Sy. 5 }. The cases in whicti contains one or two vertices from the g8, sy, S}
are particular cases of this one.

For each vertex of , by Properties 3 and 4 of the realizers, at least one of the three
outgoing edges does not belongfto

We first prove that, for each colare {b, g, r}, there exists at least one vertex of
f whosei-colored outgoing edge does not belongftoSuppose the contrary; since
each vertex off has exactly oné-colored outgoing edge, these edges would form an
i-colored cycle; a contradiction, sindeis a tree.

Then we prove that, for each colok {b, g, r}, there exists at least one vertexf
f such thatf € R (v). In particular, we prove the result for= r; the other two cases
are analogous.

Let v be a vertex off whose red outgoing edge does not belond fdet u (resp.
w) be the vertex off preceding (resp. following). We consider the clockwise circular
order around of its outgoing edges, aiu, v), and of(v, w). Three cases are possible:

1. (u, v), the outgoing green edge (possibly coincident withv)), the outgoing blue
edge, the outgoing red edge, dndw) appear in this order arounsgithus, f € R (v);
however, by Property 5 of the realize(s;, v) is an outgoing blue edge far, and is
followed, aroundw, by the outgoing red edge and by the outgoing green edge; thus,
f € Rw);

2. (u, v), the outgoing blue edge (possibly coincident with v)), the outgoing red
edge, the outgoing green edge (possibly coincident withw)), and (v, w) appear
in this order around; thus, f € R, (v);

3. (u, v), the outgoing red edge, the outgoing green edge, the outgoing blue edge (possi-
bly coincident with(v, w)), and(v, w) appear in this order aroungthus,f Z R (v);
however, by Property 5 of the realizers, v) is an outgoing green edge far and
is preceded, around by the outgoing red edge and by the outgoing blue edge; thus,
f C R ).

It is also easy to see that if C Ri(v), thenf € Ri(v), i,j € {b,g,r}, i # |;
hence, for each colare {b, g, r}, the vertex off such thatf C R (v) is distinct from
the vertices off for the other two colors.
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By making use of the vertices df whose red region contains, we now prove the
claim for Prp, pgn, andPy;,.

We first consider the case in which there exists only one vartek f such that
f € R (v). Letu (resp.w) be the vertex off preceding (resp. following). The
outgoing blue edge af either follows(u, v) in the clockwise circular order around
or coincides with(u, v); in the first case, by Property 5 of the realizaus, v) is the
outgoing red edge af; in the second case, still by Property 5 of the realiz@rsy) may
or may not be also the outgoing red edgeuoft follows that (u, v) is either positive
red, or positive red and negative blue, or negative blue,®g.= (u, v). Analogously,
(v, w) is either positive green, or positive green and negative red, or negative red, i.e.,
Pyr = (v, w). In this casepgp is empty.

We now consider the case in which there exists more than one veofek such that
f € R (v). Letv,..., vk be these vertices. By Lemma 10, it is easy to prove that all
verticesv,,, 1 < h <k, are consecutive i, andthalR (v1)) = R (v2) = --- = R (wy).
It follows that edge(vh, vhy1), 1 < h < Kk, is an outgoing green edge fog and an
outgoing blue edge fooy,.;1; thus (vh, vhy1) IS positive green and negative blue, i.e.,
Pgb = (v1,v2), ..., (vk-1, k). Letu (resp.w) be the vertex off precedingv: (resp.
following wvy); similarly to the the previous cagé, = (u, v1) and Py, = (vk, w).

The proof of the claim foPy,, pur, and Pog (resp.Pyg, prg, and Pyp) is analogous
and makes use of the vertices bivhose green (resp. blue) region contafns O

LEMMA 12. The external face of G can be decomposed into three counterclockwise
consecutive pathsgp, prg, Por Where(see Figurer):

e pgb consists of a sequence of edgeach positive green and negative hlue
e [rg CoOnsists of a sequence of edgesch positive red and negative green
e ppr Cconsists of a sequence of edgesch positive blue and negative red

ProOOF Immediately follows from Lemma 8. O

Itis well known that the dual graph of a triconnected planar graph is triconnected. We
consider a triconnected planar graplequipped with a realizer, and define théended
dualgraphG* of G as follows:

e each internal face db has a corresponding vertex @i*; the external face o6 has
three corresponding vertice§, vg, andv; in G*;

e each edge o6 has a corresponding edge@®@f;

e two vertices ofG*, different fromuy, vg, andvy, are adjacent if and only if the
corresponding faces @ have an edge in common;

e v} is adjacent to all the vertices @* corresponding to faces @ incident with an
edge ofpg (see Lemma 12)yj is adjacent to all the vertices @&* corresponding
to faces ofG incident with an edge ofy,; v, is adjacent to all the vertices @&*
corresponding to faces @ incident with an edge opgp;

e vy is adjacent tag; vy is adjacent tay'; vy is adjacent tay.

It is easy to see that the extended dual graph of a triconnected planar graph is also
triconnected planar.
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Fig. 7. External face coloring.

LEMMA 13. The realizer of a triconnected planar graph induces a realizer of its ex-
tended dual

PrROOF LetG be atriconnected planar graph equipped with a realizer ai@tlbe its
extended dual. Let* be a vertex of*, different fromuy, v§, andvy, lete be an edge
of G, and lete* be its corresponding edge @*. We color the edges incident wittf as
follows (see Lemma 11):

if eis the edge oP,q and it is positive blue, thee" is an outgoing red and incoming
green edge foo*; if eis positive blue and negative green, the&ris an outgoing red
edge forv*; if eis negative green, thest is an outgoing red and incoming blue edge
for v*;

o if eis an edge ofyg, €* is an incoming blue edge far;
o if eisthe edge oP,, and it is positive red, thee* is an outgoing green and incoming

blue edge fow*; if eis positive red and negative blue, thehis an outgoing green
edge forv*; if eis negative blue, thee* is an outgoing green and incoming red edge
for v*;

o if eis an edge oy, € is an incoming red edge far*;
o if eisthe edge 0Py, and itis positive green, thest is an outgoing blue and incoming

red edge fon*; if e is positive green and negative red, thefnis an outgoing blue
edge forv*; if eis negative red, thee® is an outgoing blue and incoming green edge
for v*;

if eis an edge ofy,, € is an incoming green edge fot;
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e (v5, vg) is an outgoing green edge faf and an outgoing blue edge fo; (vg, vf) is
an outgoing red edge fef; and an outgoing green edge g, (vf, vy) is an outgoing
blue edge fow; and an outgoing red edge fof.

Leti, j, andk be three consecutive colors in the circularly orderedlseg, r}. We
prove that, for each coldt, thek-colored edges form a spanning trgg¢ of G*. Each
vertexv* of G*, different fromv has exactly on&-colored outgoing edge. For each
face of G such thatp;; is not empty, i.e., for each vertex of G* that is not a leaf i,
let u; anduy be the endpoints df; and letvy, va, ..., vg be the vertices op;; . From
the coloring ofP; andp;; in Lemma 11, it follows that Case 4 of Lemma 10 applies for
u; andu,, and forvy andwv,, ... , vg_1 anduvg. Still from Lemma 11, it follows that
either Case 1 or Case 2 of Lemma 10 appliesufoandv;. ThenRg(u;) = Re(up) C
Rq(v1) = Rk(v2) = - -- = Rk(vg), hence there are rlecolored cycles.

As for Properties 1-6 of the realizers, they easily follow from the coloring above and
from Lemmas 11 and 12. O

4. Planar 3-Path Queries. In this section we apply the combinatorial results of Sec-
tion 3 to devise a data structure that supports output-sensitive 3-path queries on a tri-
connected planar graph. The algorithm and its underlying data structure are simple to
implement.

4.1. Preprocessing Let G be a triconnected planar graph. In order to simplify the
algorithm, instead of using a realizer &, we use a slightly modified realizer of a
suitable spanning subgragdt of G, so thatTy, Ty, andT, have a common sink.

If G has no vertex of degree three, we first apply the algorithm of Nagamochi and
Ibaraki [36] to obtain a sparse triconnected spanning subdsaphG, which is guaran-
teed to have a vertex of degree three (see Lemma 2.6 of [36]). Othe@Visddentical
to G. Then arealizer o&’ is computed, as shown in the proof of Lemma 3, with= s,
denoting the vertex of degree three. Finally, the realiz€’a$ modified in the following
way: let(sy, wg) be the edge followingsy, ) in the clockwise order aroungy, and
let (s, wy) be the edge preceding, s,) in the clockwise order arounsl; (sy, S) is
made an outgoing green edge &r (S5, wg) is made an outgoing blue edge fgrand
an outgoing green edge farg; (S, S) is made an outgoing red edge ¢ (s, wr)
is made an outgoing blue edge f®rand an outgoing red edge far; s; ands are
identified withs,. The resulting modified realizer @&’ is called asingle-sink realizer
of G'.

Note that the single-sink realizer & induces a realizer of the subgraph obtained
from G’ by removings, and its three incident edges. The three distinct sinks of the
induced realizer are the three vertices adjacer,tim G’. Such an induced realizer
satisfies all the properties of the realizers described in Section 3.

4.2. Three Disjoint Paths Let G be a triconnected plane graph for which a spanning
subgraph’ and a single-sink realizer & have been computed as shownin Section 4.1.
To answer a 3-path query for verticesandv of G, we assemble three paths between
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andv by suitably traversing the paths (u), pi(v), i € {b, g, r}. Since such paths can
share vertices and edges, a careful choice is needed.

In the rest of paper the following notation is used. The concatenation of two paths
pi(u, w) and pj (v, w), i, j € {b,g,r}, i # j, having only vertexw in common is
denoted bypi (u, w) + pj(v, w). If w = 5 = s, the concatenation of paths (u)
and p; (v) is denoted byp; (u) + p;(v). If pi(v) and p;(u), i # | cross, then we
define bystopvertex (u, v) any vertex of the crossing; in the rest of the paper we use
stopvertey instead oStopvertex (u, v) for brevity, and in the figures we use; instead
of stopvertey.

LEMMA 14. For each pair of vertices u and of G, the subgraph of G formed by the
six paths p(u), pg(u), pr(w), pu(v), pg(v), and p(v) contains three disjoint paths
between u and.

PROOF Let (s, X) be the blue incoming edge &f, let (s,, y) be the green incoming
edge ofs,, and let(s,, 2) be the red incoming edge &f. As noted in Section 4.1, the
single-sink realizer ofs induces a realizer of the subgraph obtained fatwy removing
S and its three incident edges. In the induced realizés,the blue sinky is the green
sink, andz is the red sink.

We first consider the case in which eitheor v is coincident withs,. Without loss of
generality, leu be this vertex. By Lemma G (v, X), pg(v, ¥), andpy (v, z) have only
vertexv in common; thus the three disjoint paths betweeandv are simply p,(v),
Pg(v), andp: (v).

We then consider the case in which neithearor v coincides withs,. By Lemma 9,
two cases are possible forandv:

1. If Case 1 of Lemma 9 applies, then there are exactly two colgrs {b, g,r},i # j,
such that path; (v) and p;(u) cross. These two paths are exploited to determine
a first path with endpoints andv. A second path is determined usipg(v) and
pi(u). Letk = i, j be the other color ifb, g, r}. The third path is the one along
Tk. More formally, the three disjoint paths betweemndv are the following (see
Figure 8(a)—(c), where the portions of the paths that are used to assemble the three
disjoint paths are thicker):
o P1 = pr(u, lcay) + px(v, lcay);
o P2 = pi(W)+ pjv);
e D3 = pj(u, stopvertex) + pi (v, stopvertey).
Note that, ifi, j # b, the crossing betweep (v) and p; (u) may be external.

2. If Case 2 of Lemma 9 applies, then there is exactly one ¢otoKb, g, r} such that
eitherpc(u) C pk(v) or px(v) C pk(u). Without loss of generality, lgi (U) C pk(v),
and leti, j # k be the other two colors ifb, g, r}. The three paths are the subpath
of px(v) betweerv andu, the path alond;, and the path along;. More formally,
the three disjoint paths betwearandv are the following (see Figure 8(d)—(f)):
e pr=pi(u,lca) + pi(v, Ica);
e P2 = p(u,lcay) + pj(v, lcay);
e p3 = pPk(v, U).

We now prove the disjointness @i, p., and ps in both cases. Of the six possible
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choices of colors for, |, andk in each case, we consider only one; the proofs for the
other choices are analogous.

Casel. Leti =g, =r,andk = b (see Figure 8(c)). Itis easy to see that neithay
nor stopvertey, coincides withs,; thus, in proving the disjointness of the three paths
we can considepg(u, y) instead ofpg(u), andpy (v, 2) instead ofpy (v).

First, we prove thap; and p, are disjoint. By Lemma 6py(u, Icay) and pg(u, y)
are disjoint. By Case 1 of Lemma 9, and sing€u) and pg(v) cross,py(u, Ica,) and
pr (v, 2) are disjoint. Analogouslypy (v, Ica,) andp; (v, z) are disjoint, andpy, (v, Icay)
and py(u, y) are disjoint.

Second, we prove thap; and p; are disjoint. By Lemma 6,p,(u, Ica,) and
pr (U, stopvertey,) are disjoint. By Case 1 of Lemma 9 and singeu) and pg(v)
Cross, pp(U, Icay) and py(v, stopvertey,) are disjoint. Analogouslyp,(v, Ica,) and
Pg(v, stopvertey,) are disjoint, and (v, Icap) and pr (u, stopvertey,) are disjoint.

Third, we prove thafp, and ps are disjoint. By Lemma 6p; (u, stopvertey,) and
pg(u, y) are disjoint. Sincep; (u) and pg(v) cross, it follows from Corollary 1 that
pr (U, stopvertey,) C R-(v), while, by Lemma 6 (v) N R (v) = {v}; hence,pr (u,
stopvertey,) and pr (v, 2) are disjoint. Analogouslypg(v, stopvertey) and pr (v, 2)
are disjoint, andg (v, stopvertey;) and pg(u, y) are disjoint.

Finally, we prove thaip;, p., and ps are simple paths. Patty is composed of the
two paths alond}, betweeru or v and their lowest common ancestor. Pagtis simple
by pr (v) and py(u) being simple and noncrossing. Paithis simple byp; (u) and pg(v)
being simple and by Lemma 7.

Case2. Leti =g, j =r, andk = b (see Figure 8(d)). It is easy to see that neither
Icag norlca, coincides withs,.

First, we prove thap; and p; are disjoint. By Lemma 6pg(u, Icag) and py (u, Ica,)
are disjoint. By Case 2 of Lemma 9, and by(u) being a proper subpath qd,(v),
pg(u, Icag) and py (v, Ica,) are disjoint. Analogouslypg(v, Icag) and pr (v, Ica,) are
disjoint, andp (u, Ica, ) and py(v, Icag) are disjoint.

Second, we prove that and ps are disjoint. By Lemma 6pgy(v, Icag) and py(v, u)
are disjoint. By Case 2 of Lemma 9 and Ipy(u) being a proper subpath qi,(v),
pg(u, Icag) and py(v, u) are disjoint.

Third, we prove thaip, and psz are disjoint. By Lemma 6p; (v, Ica;) and pp(v, U)
are disjoint. By Case 2 of Lemma 9 and lpy(u) being a proper subpath qf,(v),
pr (U, Icay) and p, (v, u) are disjoint.

Finally, to prove thap;, p,, andps are simple paths, we observe tipatis composed
of the two paths alondy betweenu or v and their lowest common ancestq, is
composed of the two paths alofigbetweeru or v and their lowest common ancestor,
and thatp; is a subpath of simple pathy(v). O

4.3. Data Structure and Complexity In this section we present a data structure for
performing 3-path queries on a triconnected planar géplith n vertices. By Lemma 3
and by Theorem 2.1 of [36], we assume tfahas been embedded and a single-sink
realizerTy, Ty, T, of G has been constructed; this can be don®(n) time.

TreesTy, Ty, andT, are implemented with parent pointers. We then add to those trees
a component for computingfopvertey andlcay, i, j, k € {b, g, r}.
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For this purpose, we define for each tigei € {b, g, r}, a binary relation|; on the
vertex set of5. For a pair of vertice$u, v}, this relation determines the relative positions
of uandv in T;. Namely,u |; v if uis a vertex of the subtree af rooted atv.

We implement each relatiofy, i € {b, g, r}, through an additional data structure for
T; derived from the “vector representation” of a planar directed acyclic graph [28]. This
representation exploits the fact that planar lattices have order-dimension two [33].

Theleft (resp right) preorder visitof an ordered tree is a preorder visit in which the
children of each vertex are visited from left to right (resp. from right to left). We label
each vertexw of T; with its ranka; (w) in the left preorder visit off; and its rankp; (w)
in the right preorder visit.

As shown in [28], relation,; can be easily tested in the following way. For each pair
of verticesu andv of G, u |; v if and only if one of the following two cases applies:

e Ai(W) < Ai(v) andpi(u) < p; (v);
e i (u) = A (v) (or equivalentlyp; (u) = pj (v)).

Thus, testing iu |; v can be done IO (1) time. It is easy to see that the above data
structure can be constructed@(n) time.

Using this data structure, we can compute the three disjoint paths betwsratv.
The two cases in which eitheror v coincides withs, are trivial. In all other cases, we
consider vertexu and first traverse patpy(u) until one of the following two halting
events occurs:

e Icay, is reached;
e stopvertey, or stopvertey, is reached.

In particular, testing whether we have reactesy requires testing, for each vertex
w of pp(u), if v b w. Testing whether we have reachstbpvertey, or stopvertey,
requires testing, for each vertexof py(u) — {u}, if v {g w orv |, w, respectively.
Note thatlca, may coincide withu or v, and thatstopvertey, or stopvertey, cannot
coincide withu (but may coincide with).

We then travers@q(u) and p (u) in the same way. If, at the end of the process, we
have reached orstopvertey, then Case 1 of the proof of Lemma 14 applies, otherwise
Case 2 applies. During this process, we have only visited vertices and edges that are
contained in the three disjoint paths betwaeandv. The report of the three paths
can now be completed by suitably traversipgv), pg(v), and p; (v) and by possibly
continuing the traversal of one path amamgu), pg(u), andp; (u).

THEOREM2. Let G be a triconnected planar graph with n vertic8here exists an
O(n)-space data structure for G that can be constructed imQtime and supports
3-path queries in @¢) time, where is the size of the reported paths

5. General 3-Path Queries. In this section we extend to general triconnected graphs
the results on planar triconnected graphs of Section 4.

5.1. Preprocessing The realizer used for triconnected planar graphs is replaced by
three independent spanning trees [5], [56]. For three independent spanning trees of a
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triconnected grapfs, the following properties hold:

. In each spanning tree the edge$sodire directed from children to parent.

. The sinks (roots) of the spanning trees are three (possibly coincident) verties of

. Each edge ofs is contained in at most two spanning trees.

. If an edge ofG is contained in two spanning trees, then it has different directions in
the two trees.

. For each vertex of G, the paths fromv to the sinks along the three spanning trees
have only vertex and possibly the sinks (if coincident) in common.

A WNPF

)]

We briefly review the algorithm by Cheriyan and Maheshwari [5] for constructing
three independent spanning trees of a triconnected dggaptth n vertices.

The main step of their algorithm is the computation of a nonseparating ear decom-
position of the triconnected graph. Asar decompositionf a graphG is a partition of
G into an ordered collection of edge-disjoint simple pagsPi, . . ., Py, such that?,
is a cycle, and eacRy, 1 < k < h, has only its two distinct endpoints in common with
Gyk_1 = PhUPLU---U P_;. Each pathP is anear. An ear decomposition is said
to bethrough edgg(vy, v2) and avoiding vertexy, if cycle Py contains edgé&vs, v),
and the last eaP,, different from a single edge contains vertgxas its only internal
vertex. An ear decomposition through edge, v,) and avoiding vertex, is called a
nonseparating ear decompositiifnfor each 0< k < h’, graphG — Gy is connected
and each internal vertex of eB has at least one neighbor @ — Gy.

A nonseparating ear decomposition has at mes? ears different from a single edge
(Po contains at least three vertices). For each verstek G, we define theear number
ear(v) as the index of the first ear inPy, Py, ..., P, containingv.

Given an ear decomposition @fand an edgés, t) of the first eatPy, anst-numbering
of G is consistentwith the ear decomposition if, for each<d k < h, the numbering
induced byGy is anst-numbering ofGy. For each vertex of G, we indicate wittstn(v)
thest-number ofv.

Note that the canonical ordering defined in Section 2.3 is a particular case of nonsep-
arating ear decomposition for triconnected planar graphs.

LEmMMA 15 [5]. Let G be atriconnected graph with n vertices and m edgev1, vz)

be an edge and let, # vq, v, be a vertex of GThere exists a nonseparating ear
decomposition of G througtyy, v2) and avoidingyy. It can be computed in @m) time
and O(m) space

The time complexity of the algorithm can be reduced fr@mm) to O(n?) by
computing a sparse triconnected spanning subg&f G in O(m) time [36] and by
then computing a nonseparating ear decompositidd’ ofAs noted in Section 4.15’ is
guaranteed to have a vertex of degree three.

The three independent spanning tree&b€an be constructed in the following way:

1. letv; be a vertex of degree three, anddgtandv, be two vertices adjacent tq; a
nonseparating ear decompositiorGfthrough(v,, v,) and avoiding,, is computed;
in particular, the last ear, different from a single edge, containing vextas its only
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internal vertex is chosen so that it does not contain edgevy); this is always

possible, since,, has degree at least three, be®gtriconnected;

2. lets = vy andt = v,; anst-numbering ofG consistent with the ear decomposition
is computed;

3. vy, vy, andvy, are the sinks of the blue, green, and red tree, respectively;

4. letvy, vy, - .., Usy+dy» V1, do > 0, be the consecutive vertices B§; (v, v2) is an
outgoing blue edge far, and an outgoing green edge {ar (vs,+4,, v1) IS an outgoing
blue edge forvs,+q,; (vs,, v2) IS @n outgoing green edge fog,; edge (v, vit1),
S <1 < $+do, is an outgoing blue edge for and an outgoing green edge 6r 1;

5. for each 1< k < h, let ¢ andc; be the two endpoints of ed¥, such that either
ear(g) < ear(c) orear(g) = ear(c;) andstn(g) < stn(c;); two cases are possible:
(a) if P is a single edge, thefm,, ¢;) is an outgoing red edge far;

(b) if Pk is not a single edge, l&t, vg, ..., vs+d., G, dc > O, be the consecutive
vertices ofPy; (vs.+4,, G) IS an outgoing blue edge fak, 4, and possibly an
outgoing red edge fag if ¢ has no neighbor iG — G; (vs,, C) iS an outgoing
green edge forg , and possibly an outgoing red edge piif ¢, has no neighbor
in G — Gy; edge(vi, vi41), & < i < S + dk, is an outgoing blue edge for and
an outgoing green edge for, ;.

As for the planar case, we denatg v,, andv, ass,, Sy, ands;, respectively. Prop-
erties 1-4 of the independent spanning trees immediately follow from the previous
construction, while Property 5 can be proved by observing that, from the previous con-
struction:

e for each vertexw # s, of G, let x be the parent o in Ty; ear(x) < ear(v) and
stn(X) < stn(v);

o for each vertexw # s of G, lety be the parent ob in Tg; ear(y) < ear(v) and
stn(y) > stn(v);

o for each vertew # s of G, letz be the parent of in T;; ear(z) > ear(v).

In order to simplify the algorithm, we slightly modify the three independent spanning
trees so that they have a common sink. (sgt wg) be the edge oPy incident withsy
and different from(sy, S); (Sy, S) is made an outgoing green edge $gr (Sq, wy) is
made an outgoing blue edge fgy and an outgoing green edge fog. Note that, by
construction(s, &) is an outgoing red edge fag; it is made an outgoing red edge for
&, instead. Finallysy ands: are identified withs,.

5.2. Three Disjoint Paths

LEMMA 16. Foreach pairof vertices u andof G, ifthere are two colors,ij € {b, g, r},
i # j,suchthat p(v) and g(u) cross then g(v) and p(u) do not cross

PROOF  Six cases are possible foand j:

1.i = bandj = g; let w be a vertex of the crossing betwepp(v) and pgy(u), let
X # u be a vertex ofp,(u), and lety # v be a vertex ofpg(v); stn(x) < stn(u) <
stn(w) < stn(v) < stn(y) holds;
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2. i =gandj = b; analogous to Case 1;

3.i =gandj =r; letw be a vertex of the crossing betwepg(v) and p; (u), let
y # u be a vertex ofpg(u), and letz # v be a vertex ofp; (v); ear(y) < ear(u) <
ear(w) < ear(v) < ear(z) holds;

4. i =r andj = g; analogous to Case 3;

5.i =r andj = b; let w be a vertex of the crossing between(v) and p,(u), let
X # v be a vertex ofpy(v), and letz # u be a vertex ofp; (u); ear(x) < ear(v) <
ear(w) < ear(u) < ear(z) holds;

6. i =bandj =r; analogous to Case 5.

In all the cases it is easy to see tipafv) and p; (u) do not cross. O

With analogous techniques, we can prove the following two lemmas.

LEMMA 17. For each pair of vertices u and of G, if p,(v) and p(u),i € {b, g},
cross then p(u) and g(v), j € {b, g}, j # i, do not cross

LEMMA 18. For each pair of vertices u and of G, py(v) and p(u), or pg(v) and
Py (U), may cross at most oncpyp(v) and g (u), or pr (v) and g, (u), may cross multiple
times pg(v) and p (u), or pr (v) and p(u), may cross multiple times

We now state the equivalent, for general triconnected graphs, of Lemma 9 for planar
graphs. Note how, the graph being nonplanar, the number of possible cases has
increased.

LEMMA 19. For each pair of vertices u and of G, six cases are possible

1. there are three colors,k € {b,g,r}, j € {b,g},i # j # k, such that p(v) and
pj (W), pi(v) and p(u), p;(v) and p(u) cross

2. there are three colorsij, k € {b, g,r},i # j # k, such that p(v) and g(u), pi (v)
and p(u) cross

3. there are three colorsij, k € {b, g,r},i # j # k, such that p(v) and p(u), pk(v)
and p(u) cross(analogous to Cas® with u andv switched;

4. there are three colors i {b, g}, j,k € {b,g,r},i # j # k, such that p(v) and
pj (W), pc(v) and p(u) cross

5. there are exactly two colors j € {b, g,r},i # j, such that p(v) and g(u) cross

6. there are no two colorsij € {b, g,r},i # j, such that p(v) and g(u) cross

PrROOF By Lemma 16, out of the six potential crossings between different colored
paths fromu andv, at most three may exist. It is easy to see that, by Lemmas 16 and 17,
the six claimed cases are exhaustive. O

As for planar graphs, we define Byopvertey, i, j € {b, g,r},i # |, any vertex of
the crossing betweep (v) and p; (u) or betweenp; (v) and p; (u).
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LEMMA 20. For each pair of vertices u and of G, the subgraph of G formed by the
six paths p(u), pg(u), pr(u), Pu(v), pg(v), and p(v) contains three disjoint paths
between u and.

PrROOF We prove the claim by considering Cases 1-4 of Lemma 19. Cases 5 and 6 are
analogous to those of Lemma 14 for planar graphs.

We prove in detail only Case 1 of Lemma 19, in which three crossings occur between
different colored paths from andv. This is the most complex case. The proofs for
Cases 2-4, in which two crossings occur, are similar.

Path p; (v) crosses botlp; (u) and py(u); path px(u) crosses botlp; (v) and p; (v).
Withoutloss of generality, lét= g, j = b, andk = r. We first prove thastopvertey; “is
closer tov” along pg(v) thanstopvertey,, or, more formally, thapy (v, stopvertey,) C
Pg(v, stopvertey,). This follows fromear(stopvertey,) < ear(u) < ear(stopvertey;,)
< ear(v).

Then we considestopvertey, andstopvertey,. Two cases are possible:

1. stopvertey, “is closer tou” along pr(u) than stopvertey,, or, more formally,
Pr (U, stopvertey,) C pr (U, stopvertey,); the three disjoint paths are, as inthe planar
case, the following:
e 1= Pp(U, Icay) + po(v, Icay);
e P2 = pg(u) + pr(v);
e ps = pr(u, stopvertey,) + pg(v, stopvertey, );
since we use neithgm (stopvertey; ) nor pr (stopvertey, ) — pg(v) in the construction
of the three disjoint paths, we can simply ignstepvertey; andstopvertey,;
2. stopvertey, “is closer tou” along pr(u) than stopvertey,, or, more formally,
pr (U, stopvertey,) C pr (U, stopvertey,); in this case it is not possible to construct
the three disjoint paths as in the planar case; however, three disjoint paths still exist:
e P1i= pg(u) + pr(v);
e P2 = Pp(u, Stopvertey,) + pg(v, stopvertey,);
e D3 = pr (U, stopvertex,) + pu(v, Stopvertey,);
since we do not usp; (stopvertey,) — pqy(v) in the construction of the three disjoint
paths, we can simply ignostopvertey; .

In both cases, the disjointnessmf, p,, andp; can be easily proved by the ear number
andst-number properties of the colored paths frarandv. O

5.3. Data Structure and Complexity In this section we present a data structure for
performing 3-path queries in a triconnected gré&ptvith n vertices. By Lemma 15 and
by Theorem 2.1 of [36], we assume that three independent spannindgrdgsandT,
of G with a common sink have been constructed:; this can be do®&nA) time.

As for planar graphs, tre€ly, Ty, andT, are implemented with parent pointers, and
are augmented with the component implementing the binary relatignss {b, g, r},
on the vertex set 0B. It is easy to see that the above data structure can be constructed
in O(n) time.

Using this data structure, we can compute the three disjoint paths betwsaaw
similarly to the planar case. However, by Lemma fi8v) may crossp,(u) and pg(u)
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multiple times, orp: (u) may crossp,(v) and pg(v) multiple times. In the proof of
Lemma 20, we have seen that only the first crossing, if any, found travepsingfrom

uor pr (v) fromv need be considered. This implies that, differently from the planar case,
the first traversed path & (u); the halting events for the traversal are the same as in the
planar case; if a crossing withy, (v) or pg(v) is found, then we continue by traversing
po(u) and pg(u); otherwise, we switch to, first traversep, (v), and then traverspy (v)

and pg(v).

At the end of the process, we have all the necessary information to recognize which
case of Lemma 19 applies. We have only visited vertices and edges that are contained in
the three disjoint paths betweamandv. The report of these paths can now be completed
by suitably traversing the remaining paths froner v and by possibly continuing the
traversal of some of the already traversed paths.

THEOREM 3. Let G be atriconnected graph with n verticébere exists an (n)-space
data structure for G that can be constructed irfr) time and support8-path queries
in O(£) time wheret is the size of the reported paths

6. Graphs of Arbitrary Connectivity. In this section we extended the results of
Theorems 1-3 to graphs of arbitrary connectikity: 3.

We first consider biconnected (nontriconnected) graphs. We use a suitably augmented
version of theSPQR-tre@lata structure for 3-connectivity queries [15]. A description of
the SPQR-tree is contained in Appendix B for the reader’s convenience. An example of
an SPQR-tree is shown in Figure 9.

LetG be abiconnected graph wittvertices andn edges, and €k be an SPQR-tree of
G.Each R-node of T is equipped with a realizer skeletoriw). If G is nonplanar, then,
for each R-node: of T, instead of storingkeletoriw), we store a sparse triconnected
spanning subgraph akeletoii) [36]; this reduces the space requirementim).
Computing the spanning subgraphs require©am) total time.

As usual, leu andv be the two vertices on which we want to perform a 3-path query.
We first perform a 3-connectivity query anandv as shown in [15].

LEMMA 21 [15]. A 3-connectivity query on vertices u amdeturns true if and only if
there is a P-node or an R-nodeof T such that u ana are both allocated at.. Node
u can be determined in Q) time

If the 3-connectivity query on verticasandv returns true, the 3-path query can be
answered as follows.

If «is a P-nodey andv are the poles oft and the endpoints of at least three virtual
edges irskeletori). Three disjoint paths betweenandv in skeletoriw) are obtained
by taking three of these virtual edges. Note that, since we are considering simple graphs,
at least two of these three virtual edges are nontrivial.

If uis an R-node, we determine three disjoint paths betwesardv in skeletotiu) as
shown in Sections 4 and 5. In general, these three paths contain some nontrivial virtual
edges (see Figure 9(b)).

In both cases, lep,1, p,2, and p,3 be the three disjoint paths betweerandv in
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€Y (b)

(©

Fig. 9.(a) A biconnected grapB. (b) The split components used in the report of three disjoint paths between
verticesvg andvi4 of G. (c) The SPQR-tree dB with respect to reference edges, v7) and the skeletons of
its nodes.

skeletoriw). Three disjoint paths betweerandv in G can be obtained frorp,1, p,2,
andp,s by recursively replacing each nontrivial virtual edgecorresponding to a node
v of T, with a pathp, between the poles akeletoriv). The graph can be preprocessed
so that for each node of T a pathp, in skeletoriv) between its poles (different from
the virtual edge corresponding to the parentvah T) is stored. In the example of
Figure 9(b), the edges of each pathare represented with thick black segments.
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It remains to be proved that this recursive process requitesme. We need the
following lemma.

LEMMA 22 [15]. Two S-nodes cannotbe adjacentinfWwo P-nodes cannot be adjacent
inT.

During the recursive process, each virtual edgeontained in one of the three paths
is replaced with a patp,. Pathp, contains exactly one edge and this edge is nontrivial
virtual only if v is a P-node. In all other cases, is either a trivial virtual edge or contains
more than one edge. Thus, by Lemma 22, the total number of virtual edges substituted
with a path during the recursive process, i.e., the total number of nodeyvisfted, is
o).

If, on the contrary, the 3-connectivity query on verticeandv returns false, we can
answer a 2-path query using the data structure of Theorem 1.

We now consider connected (nonbiconnected) graphs. We use a suitably augmented
version of theBC-treedata structure for 3-connectivity queries [15]. A description of
the BC-tree is contained in Appendix C for the reader’s convenience.

LetG be a connected graph andTebe a BC-tree o6. Each B-node of is equipped
with an augmented SPQR-tree described above.

Let againu andv be the two vertices on which we want to perform a 3-path query.
We first perform a 2-connectivity query anandv as shown in [15].

LEMMA 23 [15]. A 2-connectivity query on vertices u amdreturns true if and only
if there is a B-nodes of T such that u an@ are both allocated at.. Nodeu can be
determined in @1) time

If the 2-connectivity query on verticasandv returns true, then we can apply the
methods described above for answering a 3-path or a 2-path query.

If, on the contrary, the 2-connectivity query on verticeandv returns false, we can
easily answer a 1-path query using a spanning trég. of

Finally, we consider nonconnected graphs. We usB@dorestdata structure, which
is a forest of the BC-trees of the connected component of

We first perform a 1-connectivity query anandv simply testing ifu andv are both
allocated in the same BC-tree of the BC-forest; this can be doi@(in time. If the
1-connectivity query on verticas andv returns true, then we can apply the methods
described above for answering a 3-path, 2-path, or 1-path query.

The results described in this section can be summarized in the following two theorems.

THEOREM4. Let G be a planar graph with n verticeBhere exists an (h)-space data
structure for G that can be constructed ini®+ m) time and support$-, 2-, and3-path
queries in Q) time, wheref is the size of the reported paths

THEOREMS5. Let G be a graph with n verticeThere exists an )-space data struc-
ture for G that can be constructed in(6?) time and supports-, 2-, and3-path queries
in O(¢) time, where? is the size of the reported paths
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7. Applications of Realizers to Graph Drawing. In this section we show a graph
drawing application of the realizers of triconnected planar graphs.

A straight-linedrawing is a drawing in which each edge is mapped to a straight-line
segment. Planar straight-line drawings of planar graphs are a classical topic in graph
drawing (a survey on graph drawing can be found in [14]).

A classical result independently established by Steinitz and Rademacher [44],
Wagner [52], Fary [20], and Stein [43] shows that every planar graph has a planar straight-
line drawing.

A grid drawing is a drawing in which the vertices have integer coordinates. Indepen-
dently, de Fraysseix etal. [12] and Schnyder [40], [41] have shown that every planar graph
with n vertices has a planar straight-line grid drawing wiiin?) area. In particular,
they presented algorithms for computing a planar straight-line grid drawing of a maximal
planar graph. de Fraysseix et al. define the canonical ordering for maximal planar graphs;
a drawing is constructed by assigning integer coordinates to the vertices according to a
canonical ordering. Schnyder defines the realizers for maximal planar graphs; by using
a realizer, the vertices are assigned integer coordinates in three-dimensional space that
have a purely combinatorial meaning and such that all the vertices lie on a plane. A
drawing in the plane is then obtained by projection.

Planar straight-line drawings have also been studied with the constraint that all faces
be represented by convex polygogsifvexdrawings). Tutte [50], [51] has shown that
for a triconnected planar graph a convex drawing can be constructed by solving a system
of linear equations. Kant [30] has presented an algorithm for constructing grid convex
drawings of triconnected planar graphs with quadratic area. The constant factors for
the area have been reduced by Chrobak and Kant [8]. Chrobak et al. [7] have presented
algorithms for constructing convex drawings in the plane and in three-dimensional space
with integer or rational coordinates under various resolution rules. Kant's approach can be
seen as the natural extension to triconnected planar graphs of the result by de Fraysseix
et al. for maximal planar graphs. He defines the canonical ordering for triconnected
planar graphs recalled in Section 2.3 and the drawing is constructed assigning integer
coordinates to the vertices according to the canonical ordering.

The realizers we have defined for triconnected planar graphs in Section 3 naturally
extend those defined by Schnyder [40], [41] for maximal planar graphs, and can be used
to devise a new algorithm for constructing grid convex drawings of triconnected planar
graphs with quadratic area, as shown below.

We recall here the definition of a weak barycentric representation of a graph given by
Schnyder [40], [41]. Aweak barycentric representatiaf a graphG is a mapping of
each vertew of G to a distinct point(v,, vg, vr) in three-dimensional space such that
the following conditions are satisfied:

1. For each vertex of G, v, + vg + v = ¢, wherec is a constant dependent @h
2. For each edgéu, w) and each vertex # u, w of G, there exist two coordinates
i, ] €{b,g,r}suchthatu;, uj) <iex (vi, vj) and(wi, wj) <iex (vi, vj).

Following Schnyder [40], [41], we can obtain a weak barycentric representation of a
triconnected planar graph by using a realizer to assign coordinates to the vertices; these
coordinates have a purely combinatorial meaning.
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LEMMA 24. Let G be a triconnected planar graph equipped with a realiger each
vertexv of G, let I,(v), I4(v), and k (v) be the number of faces in,R), Ry(v), and
R: (v), respectivelyThe mappingup, vg, vr) = (In(v), Ig(v), Iy (v)) is a weak barycen-
tric representation

ProOF Condition 1 of the weak barycentric representations is trivially satisfied, since,
for each vertew, v, + vg + v =1 — 1, wherd is the number of faces @.
As for Condition 2, let, j, andk be three consecutive colors in the circularly ordered
set{b, g, r}; let (u, w) be an edge o6 and letv # u, w be a vertex ofG. In order
to simplify the exposition of the proof, we defii® (v) = R (v) — {pj(v) U pc(v)},
Ri(v) = R(v) — {p«(v) U pi (v)}, andRk(v) = R«(v) — {pi(v) U pj(v)}. Without loss
of generality, letu € R (v). If u € R (v), then, by planarity oG, w ¢ Rj(v) and
w ¢ Re(v). Thus, the following five cases are possible:

1. u,w € R (v); by Lemma 10R (u) ¢ R (v) andR; (w) C R (v); henceu; < v; and
wp < Vi,
2.u e R() andw € pc(v); by Lemma 10,R (u) C R (v), henceu; < v;; two
subcases are possible:
(@) v & pj(w); by Lemma 10R; (w) C R (v), hencew; < v;;
(b) v € pj(w); by Lemma 10,R (w) = R;(v), hencew; = v;; however, still by
Lemma 10,R; (w) C R;j(v), hencew; < vj;
3. u e R(v) andw € pj(v); analogous to Case 2;
4. u, w € pk(v); without loss of generality, lab be an ancestor afin Ty; four subcases
are possible:
(@ u ¢ pj(w) andv ¢ pj(u); by Lemma 10,R (w) C R(u) C R(v) hence
wp < Ui < v,
() u € pj(w) andv ¢ p;(u); by Lemma 10,R (w) = R(u) C R (v), hence
wj = Uj < vj,
(€)u & pj(w) andv € p;j(u); by Lemma 10,R (w) C R (u) = Ri(v), hence
wi < U; = vj; however, still by Lemma 10R; (u) C R; (v), hencey; < vj;
(d) u € pj(w) andv € pj(u); by Lemma 10,R (w) = R(u) = R (v), hence
wi = Ui = v;; however, still by Lemma 10R;(w) C Rj(u) C Rj(v), hence
wj < Llj < v,—;
5. u, w € pj(v); analogous to Case 4.

In all five cases, Condition 2 is satisfied. O

THEOREMG6. Let G be atriconnected plane graph with n vertices and | faeonvex
grid drawing of G with height - 2 and width |— 2 can be computed in @) time and
O(n) space

PrOOF LetT be the straight-line drawing d& resulting from the weak barycentric
representation of Lemma 24.

First, note that, by Condition 1 of the weak barycentric representations, all the points
representing vertices & lie on a planer in three-dimensional space defined by equation
b+g+r =1 —1;in particular, vertices,, S;, ands, are mapped to point$ — 1, 0, 0),

(0,1 —1,0), (0,0, — 1), respectively.
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Iy

Fig. 10.The blue, green, and red wedges of a vertex.

The planarity of” follows from Lemma 2.1 in [41].

The convexity ofl" can be proved as follows. Letbe an internal vertex d&. By
Condition 1 of the weak barycentric representations, if we fix coordingtéhen the
point representing lies on a lindy, of 7, which is the projection om of lineg+r = ¢,
of theg— plane, where, = | —1—wj,. Linesly andl, and constantsy andc; are defined
in a similar way. Sincer intersects thé-, g-, andr -axis at the same coordindte- 1,
lineslp, lg, andl, cross ai(wy, vg, vr) and form six 60 angles (see Figure 10). For each
linel;,i € {b, g,r}, let the positive (resp. negative) half-plane be the open half-space
containing (resp. not containing). Let the blue positive (resp. negative) wedge be the
portion of the positive (resp. negative) half-spacé,afelimited byly andl,; the green
and red positive (resp. negative) wedges are defined in a similar way, lyetandz
be the parents af in Ty, Ty, andT;, respectively. Thus € Ry(x), and by Lemma 10
(Case 1, 2, or3withk = b,i =g,andj =r) Ry(v) C Ry(X), hencev, < Xy; still by
Lemma 10,Ry(X) € Ry(v) andR: (x) € R (v) (where only one equality may hold),
hencexy < vg andx, < v, (Where only one equality may hold). If we fix coordinatg
then the point representinglies on a linel;, of , which is the projection o of line

g+r = ¢, of theg—~ plane, where, =1 — 1 — x, < c,. Hence)] lies in the positive
half-space ofy. In a similar way] lies in the negative half-space lgfor | = 14, and
[; lies in the negative half-space lefor I, = I, (where only one equality may hold). It

follows that the point representingmust lie in the positive blue wedge of Similarly
it can be proved that the points representyngndz must lie in the positive green and
red wedges ob, respectively. Hence, no angle aroundan be greater then 180

As for the external face, the points representings;, ands are the vertices of
an equilateral triangle. Let, j, andk be three consecutive colors in the circularly
ordered setb, g, r}. For each two consecutive verticasand v of exf(s, §), ux =
vk = 0. It follows that, by Condition 1 of the weak barycentric representations, all the
vertices ofext(s, s;) are collinear. Thus, the external face is also represented as a convex
polygon.

A convex grid drawing with height— 2 and width — 2 in the plane can be obtained
by projectingl’, e.g., by dropping the red coordinate.
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Finally, we prove the time and space complexity. To compute the coordinates we use
both a realizefT,, Ty, T; of G, and the induced realizél;, Ty, TF of the extended
dual graphG* of G. The extended dual graph & can be easily constructed in linear
time. By Lemma 3, a realizer @& and the induced realizer &* can be constructed in
linear time and space. Thus we only have to prove that the coordinates for the vertices
of G can be computed in linear time. In particular, we prove that, for each vernbéx
G, coordinatey, i.e., the number of faces iR¢(v), can be computed by visiting, T;,
andT;.

For each vertex of G, we initialize coordinatey tol —1, i.e., to the number of internal
faces ofG. We then subtract fromy, the number of faces that are not containe®j);
this can be done as follows. First we compute, for each vertekT.", the number of its
descendants, including itself, and store it in variablaumdescendant&*); this can
be done by a postorder visit @f*. Second, we perform a preorder visithf we use an
auxiliary variablesumdescendantmitialized to 0. For each edde, v) traversed during
the visit, let(u*, v*) be the dual edge @fi, v), wherev* is the vertex of5* corresponding
to the face ofG on the left of(u, v); if (u*, v*) € T, we sumnumdescendant&®™)
to sumdescendantand then subtracitumdescendantfrom coordinatev,. Third, we
perform a similar preorder visit of;. The only difference with the previous visit of

Fig. 11.A convex grid drawing of the triconnected plane graph of Figure 1.
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T; is that now, for each edgeu, v) traversed during the visiyy* is the vertex ofG*
corresponding to the face & on the right of(u, v).

It is easy to see that, at the end of the process, for each weales coordinateyy is
equal to the number of faces Rk (v). O

A result similar to Theorem 6 was claimed by Schnyder and Trotter [42], but, to the
best of our knowledge, no proof has been published.

A convex grid drawing of the triconnected plane graph of Figure 1 produced by the
above algorithm is shown in Figure 11.

8. Conclusions. The contributions of this paper can be summarized as follows:

e We have defined, analyzed, and shown how to compute efficiently realizers of tri-
connected planar graphs, a combinatorial structure that unifies and extends various
previous constructions. Realizers play for triconnected planar graphs a similar role as
bipolar orientations for biconnected planar graphs.

o We have presented the first data structure that supports output-sensitive 1-, 2-, and 3-
path queries in general graphs. The previous best methods for performing path queries
in general graphs with vertices do not exploit preprocessing and h&@) time
complexity, irrespectively of the output size. Our data structure and query algorithm
are both theoretically optimal and practically useful.

¢ We have presented a né@\(n)-time algorithm for constructing a@ (n?)-area convex
grid drawing of a triconnected planar graph witkiertices. The algorithm extends the
barycentric drawing method for maximal planar graphs to triconnected planar graphs.

Appendix A. Results onk-Path and k-Connectivity Queries. Table 1 summarizes
the previous and new results on methodskigrath andk-connectivity queries.

Table 1. Summary of results on methods fopath andk-connectivity queries.

Graph k Space Preprocessing k-Conn. k-Path References

Previous results

General Any on+my — o(myn) O@myn) [18]
General Fixed OoOn+my — O(n+m) OM+m) [18]
Planar Any Oo(n) — O(n) Oo(n) [38]
(k —1)-Conn. Fixek >4 O(n) o(n*m) o) o(n) [10]
General k<3 O(n) O(n+m) o O(n) [15], [45], [53]
General k=4 o(n) OMa(m,n)+m) O() Oo(n) [29]
General k=1 o(n) Oo(n+m) o) o) —

New results
General k=2 O(n) O(n) (014 o) Section 2.2
Planar k=3 Oo(n) O(n) o o) Section 4
General k=3 o(n) 0(n?) o) o) Section 5
Planar k<3 Oo(n) O(n) o o) Section 6
General k<3 o(n) 0O(n?) o) o) Section 6
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Appendix B. The SPQR-Tree. In this appendix th&PQR-tregoresented in [15] and
[16] is described. LeG be a biconnected graph. $plit pair of G is either a pair of
adjacent vertices or a separation pair. In the former case the split pair is talial

in the latternontrivial. A split componendf a split pair{u, v} is either an edgéu, v)
or a maximal subgrap of G such thatC containsu andv, and{u, v} is not a split
pair of C. In the former case the split component is catigdal, in the lattemontrivial.
Note that each vertex @ distinct fromu andv belongs to exactly one nontrivial split
component ofu, v}. Let{s, t} be a split pair of5. A maximal split pair{u, v} of G with
respect tds, t} is a split pair ofG distinct from{s, t} such that, for any other split pair
{u’, v’} of G, there exists a split component{af, v’} containing vertices, v, s, andt.

In the graph of Figure 9(ajus, vs} is a trivial split pair,{vg, v12} iS a nontrivial split
pair, edggvy, vs) is a trivial split component, the subgraph inducedvbyvig, v11, and
v12is a nontrivial split component, split pdiv;, v1s} is maximal with respect tvs, v7},
while split pair{vi, v12} is not maximal with respect tfws, v7}.

Lete = (s,t) be an edge 06, called thereference edgeThe SPQR-tred of G
with respect tee describes a recursive decomposition®induced by its split pairs.
TreeT is a rooted ordered tree whose nodes are of four types: S, P, Q, and R. Each node
wu of T has an associated biconnected multigraph, calledkbietorof 1« and denoted
by skeletoriw). Also, each node of T (except the root) is associated with an edge of
the skeleton of the parentof u, called thevirtual edgeof w1 in skeletoriv); at the same
time, v is associated with a virtual edgeskeletoriw). TreeT is recursively defined as
follows:

Trivial Case If G consists of exactly two parallel edges betweeandt, thenT
consists of a single Q-node whose skeletoB i¢self.

Parallel Caselfthe split pair{s, t} has atleast three splitcompone@is= e, Gy, .. .,
Gk, k > 2, then the root off is a P-nodes. Graphskeletotiu) consists ok + 1
parallel edges betweerandt, denotecs,, e,,, ..., €, Whereg,, = e.

Series Casdf the split pair{s, t} has exactly two split components and one of them
has at least one cut-vertex, then the rooffois an S-nodes. One of the split
components ofs, t} is the reference edge Letcy, ..., ¢_1, K > 2, be the cut-
vertices that partitiols — e into its blocksGy, . . ., G, in this order froms to t.
Graphskeletonu) is the cyclee,, e,,, ..., &,, whereg,, = € C =S, Cc = t,
ande, connects;_; withc,i =1,...,k

Rigid Caself none of the cases above applies, then the rodt fan R-node.. Let
{s1,t1}, ..., {&, t}, k = 1, be the maximal split pairs @& with respect tds, t},
and, fori = 1,...,k, let G; be the union of all the split components {f, t; }
except the one containing the reference edg€&raphskeletoriu) is obtained
from G by replacing each subgraj@) with the edgee,, betweers andt;.

For each split componed;,i =1, ..., k, lete, be an additional edge between the
two vertices of the split pair identifyinG;. Except for the trivial casgy has children
W1, - .., uk in this order, such that; is the root of the SPQR-tree of gragh U e,

i = 1,...,k, with respect to reference edgg. The tree so obtained has a Q-node
associated with each edge @f except the reference edgeWe complete the SPQR-
tree by replacing the reference edgén skeletoiie) with a virtual edge, by adding
another Q-node, representiegand by making it the parent qf so that it becomes
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the root. An example of an SPQR-tree is shown in Figure 9(c), where the Q-nodes are
represented by squares and the skeletons of the Q-nodes are not shown.

The virtual edge of nodg; is edgee,, of skeletoiiu), while edgee, of skeletoriy;)
is the virtual edge of node. A virtual edgee,; is said to bdrivial if the corresponding
nodey; is a Q-nodenontrivial otherwise. The endpoints ef, are called th@olesof ;.
GraphG; is called thepertinent graplof nodey;, and theexpansion graplof edgee,, .

In Figure 9 the nontrivial virtual edges are represented by dotted lines and the trivial
virtual edges are represented by solid lines.

Let u be a node off . We have:

e if u is an R-node, theskeletoriw) is a triconnected simple graph;

o if uis an S-node, theskeletoriw) is a cycle;

o if uis a P-node, theskeletoriu) is a triconnected multigraph consisting of a bundle
of multiple edges;

o if u is a Q-node, therskeletoriw) is a biconnected multigraph consisting of two
multiple edges.

The skeletons of the nodes &f are homeomorphic to subgraphs ®f Also, the
union of the sets of split pairs of the skeletons of the nod€E ©f equal to the set of
split pairs of G. It is possible to show that SPQR-trees of the same graph with respect
to different reference edges are isomorphic and are obtained one from the other by
selecting a different Q-node as the root. SPQR-trees are closely related to the classical
decomposition of biconnected graphs into triconnected components [23]. Namely, the
triconnected components of a biconnected gr&pare in one-to-one correspondence
with the skeletons of the non-Q-nodes of the SPQR-tré& tife skeletons of the R-nodes
correspond to triconnected simple graphs, the skeletons of the S-nodes to “polygons”,
and the skeletons of the P-nodes to “bonds.”

Let v be a vertex ofs. Theallocation node®f v are the nodes of whose skeleton
containw. The lowest common ancestor of the allocation nodes®itself an allocation
node ofv and is called thgroper allocation node of, denotedoroper(v). If v = s
or v = t (the endpoints of the reference edge) we conventionally defimger(v) as
the unique child of the root of (recall that the root ofl is the Q-node representing
to the reference edge). if # s, t, nodeproper(v) is either an R-node or an S-node;
also,proper(v) is the only allocation nodg of v such thaw is not a pole ofx. The set
of verticesv with proper allocation nodg is denotedpropersetw). If w is a (proper)
allocation node of), we say thav is (properly) allocated at.

The SPQR-tre@& of a graph witm vertices andn edges hasm Q-nodes an® (n) S-,
P-, and R-nodes. The total number of vertices of the skeletons stored at the nddes of
is O(n). Also, it can be constructed i@(n + m) time using a variation of the algorithm
givenin[23].

Appendix C. The BC-Tree. In this appendix th&C-treepresented in [15] and [16]

is described. LeG be a connected graph withvertices. The BC-tred& of G has a
B-node for each block (biconnected componentsofind a C-node for each cutvertex
of G. Edges inT connect each B-node to the C-nodes associated with the cutvertices
in the block ofw. The BC-tree is rooted at an arbitrary B-node. Also the B-node of each
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nontrivial block B stores the SPQR-tree &. Observe that the number of blocks®f
is O(n), and the total number of vertices in the blocks®fs O(n) as well.

The BC-tree is a variation of the data structures for maintaining biconnected compo-
nents described in [45] and [53]. The main difference is that an SPQR-tree is attached
at each B-node.

If vertex v is a cutvertexbcpropeKv) denotes the C-node associated wittfOther-
wise,bcpropelv) denotes the B-node of the unique block containinyj is easy to see
that, knowingu; = bcpropeKv;) andu, = bcpropelv,), we can determine i®© (1)
time whether; andv, are in the same block d& [45]: namely the block associated
with nodeu contains vertices; andv; if and only if the undirected path af between
u1 andu, containsy but no other B-node.

The BC-tree of a graph with vertices anan edges can be constructed@in + m)
time.
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