
Algorithmica (1999) 23: 302–340 Algorithmica
© 1999 Springer-Verlag New York Inc.

Output-Sensitive Reporting of Disjoint Paths1

G. Di Battista,2 R. Tamassia,3 and L. Vismara3

Abstract. A k-path query on a graph consists of computingk vertex-disjoint paths between two given
vertices of the graph, whenever they exist. In this paper we study the problem of performingk-path queries,
with k ≤ 3, in a graphG with n vertices. We denote with̀the total length of the reported paths. Fork ≤ 3, we
present an optimal data structure forG that usesO(n) space and executesk-path queries in output-sensitive
O(`) time. For triconnected planar graphs, our results make use of a new combinatorial structure that plays the
same role as bipolar (st) orientations for biconnected planar graphs. This combinatorial structure also yields
an alternative construction of convex grid drawings of triconnected planar graphs.

Key Words. Connectivity, Triconnected graph, Biconnected graph, Disjoint paths, Coloring, Graph drawing.

1. Introduction. Connectivity is a fundamental property of graphs, and has been ex-
tensively studied in the graph algorithms literature. In particular, biconnectivity and
triconnectivity properties play a special role in a number of graph algorithms.

In this paper we investigate data structures that support the following fundamental
k-path query, with k ≤ 3, on a graph: given verticesu andv, computek vertex-disjoint
paths betweenu andv, whenever they exist. A variation of the above query, called ak-
connectivity query, determines whether such paths exist (i.e., provides a yes/no answer)
but does not return the paths. We denote withn andm the number of vertices and edges
of the graph, respectively, and with̀the total length (number of edges) of the paths
returned by ak-path query.

We are interested in constructing a space-efficient data structure for the graph such
that the time for ak-path query is output-sensitive, i.e.,O(f (n)+ `) with f (n) = o(n).
Ideally, we would like to achievef (n) = O(1) with linear space.

1 This research was supported in part by the National Science Foundation under Grants CCR-9423847 and
CCR-9732327, by the NATO Scientific Affairs Division under collaborative research Grant 911016, by the U.S.
Army Research Office under Grant DAAH04-96-1-0013, by the Progetto Coordinato Ambienti di Supporto
alla Progettazione di Sistemi Informativi of the Consiglio Nazionale delle Ricerche, by the Progetto Bilaterale
94.23.CT07 Italia–USA of the Consiglio Nazionale delle Ricerche, and by the ESPRIT Long Term Research
of the European Community under Project No. 20244 (ALCOM-IT). Research performed in part while the first
author was with the Dipartimento di Ingegneria e Fisica dell’Ambiente, Universit`a degli Studi della Basilicata.
Research performed in part while the third author was with the Dipartimento di Informatica e Sistemistica,
Università degli Studi di Roma “La Sapienza” and with the Istituto di Analisi dei Sistemi ed Informatica,
Consiglio Nazionale delle Ricerche.
2 Dipartimento di Informatica e Automazione, Universit`a degli Studi di Roma Tre, Via della Vasca Navale 79,
00146 Roma, Italy. gdb@dia.uniroma3.it.
3 Center for Geometric Computing, Department of Computer Science, Brown University, Providence, RI
02912-1910, USA.{rt,lv}@cs.brown.edu.

Received August 24, 1996; revised April 8, 1997. Communicated by J.-Y. Cai and C. K. Wong.

Output-Sensitive Reporting of Disjoint Paths 303

1.1. Previous Results on Path and Connectivity Queries. In this section we overview
previous results onk-path andk-connectivity queries. First, we consider algorithms that
do not exploit preprocessing. Using network flow techniques [18], ak-path query can
be answered inO(m

√
n) time for arbitraryk, and inO(n + m) time for any fixedk.

Regarding planar graphs, it has been shown that ak-path query can be performed in
O(n) time for anyk [38].

Faster query time can be achieved if preprocessing is allowed. Fork = 1, it is easy
to see that a spanning forest allows one to perform 1-connectivity queries inO(1) time
and 1-path queries inO(`) time. For general graphs andk ≤ 4, or for(k−1)-connected
graphs and fixedk > 4, there areO(n)-space data structures that performk-connectivity
queries inO(1) time, but do not support output-sensitivek-path queries (see [45] and
[53] for k = 2, [15] for k = 3, [29] for k = 4, and [10] fork > 4).

Table 1 in Appendix 8 summarizes previous and new results on methods fork-path
andk-connectivity queries.

1.2. Previous Results on Orientations and Orderings of Graphs. Orientations and or-
derings are powerful combinatorial structures that have been successfully applied to
solving various graph problems. Here, we overview previous work related to our com-
binatorial results.

Bipolar orientations andst-numberings of biconnected graphs were first defined in
conjunction with a planarity testing algorithm [19], [35], and were later used for a variety
of topological and geometric graph problems, such as embedding (see, e.g., [6], [16], and
[45]), visibility (see, e.g., [39], [46], and [55]), drawing (see, e.g., [1], [13], and [47]),
point location (see, e.g., [37] and [48]), and floorplanning (see, e.g., [31]). One of the
notable properties of planar bipolar orientations is that they induce a two-dimensional
lattice [33] on the vertices of the graph. See [11] for a comprehensive study of bipolar
orientations.

Canonical orderings were first defined by de Fraysseix et al. [12] for maximal planar
graphs and later extended by Kant [30] to triconnected planar graphs. They have been
successfully applied to the construction of various types of planar drawings (straight-line,
orthogonal, and polyline) (see, e.g., [9], [12], and [30]).

Schnyder [40] defines realizers of maximal planar graphs in his study of the order
dimension of planar graphs, and shows their application to planar straight-line draw-
ings [41]. The construction of realizers of maximal planar graphs can also be efficiently
parallelized [32]. Brightwell and Trotter [3], [4] define normal families of paths for a
class of planar graphs that includes triconnected planar graphs. Normal families of paths
are related to Schnyder’s realizers. However, they do not analyze the time complexity
of their construction. Normal families of paths are important for the study of the order
dimension of convex polytopes and planar maps.

Graph drawing methods based on orientations, numberings, and realizers are surveyed
in [22].

1.3. Previous Results on Independent Spanning Trees. In recent years the problem of
finding independent spanning trees of a given graph has received increasing attention.
Two spanning trees of a graphG having the same rootr are calledindependentif for
each vertexv of G the two paths betweenv andr along the two trees are vertex-disjoint.

304 G. Di Battista, R. Tamassia, and L. Vismara

Independent spanning trees find applications in fault-tolerant protocols for distributed
computing networks.

An interesting conjecture about independent spanning trees is the following: for each
k-connected graphG and each vertexr of G, there existk independent spanning trees of
G rooted atr . The conjecture has been proved fork = 2 by Itai and Rodeh [27], and for
k = 3, independently, by Cheriyan and Maheshwari [5] and Zehavi and Itai [56]. While
the proof of Zehavi and Itai is existential, the proofs of Itai and Rodeh and of Cheriyan
and Maheshwari are constructive. In particular, Itai and Rodeh used bipolar orientations,
while Cheriyan and Maheshwari proved that every triconnected graph has a nonsepa-
rating ear decomposition and presented an algorithm to construct such a decomposition
and the three spanning trees.

For generalk-connected graphs withk ≥ 4 the conjecture is still open, but Huck has
proved it fork-connected planar graphs withk = 4 [24] andk = 5 [26] (i.e., for all
planar graphs, since 6-connected graphs are nonplanar).

Similar conjectures have been formulated considering edge-connectivity instead of
vertex-connectivity [27], [34] and for directed graphs [17], [25], [49], [54].

1.4. New Results. Our new results are outlined as follows:

• We define realizers of triconnected planar graphs, and show how to construct them
in linear time. Our definition naturally extends the one by Schnyder [40] using a
chromatic framework such that each edge of the graph has one or two colors from
the set{blue, green, red}. Our realizers induce an orientation of a triconnected planar
graph with properties closely related to those of bipolar orientations for biconnected
planar graphs. OurO(n)-time construction of a realizer of triconnected planar graph
G with n vertices has the following additional applications:
— We show how to compute a normal family of paths [3], [4] forG in O(n) time.

Brightwell and Trotter [3], [4] previously showed the existence of such families,
but did not study the time complexity of their construction.

— We give an alternativeO(n)-time algorithm for constructing a convex grid drawing
of G with O(n2) area. (A convex grid drawing is a planar straight-line drawing
with faces drawn as convex polygons and vertices placed at integer coordinates.)
This extends Schnyder’s barycentric drawing method for maximal planar graphs
to triconnected planar graphs [40], [41], and gives an alternative proof of Kant’s
result [30].

• Based on realizers, we show how to construct a linear-space data structure that supports
output-sensitive 3-path queries on a triconnected planar graph. Using this result, we
show how to construct inO(n) time a data structure for ann-vertex planar graphG (of
arbitrary connectivity) that usesO(n) space and supportsk-path queries, fork ≤ 3,
in O(`) time, wherè is the total size of the reported paths.
• By exploiting the result of Cheriyan and Maheshwari [5], we show how to construct

a linear-space data structure that supports output-sensitive 3-path queries on a tri-
connected graph. Using this result, we show how to construct inO(n2) time a data
structure for ann-vertex graphG (of arbitrary connectivity) that usesO(n) space
and supportsk-path queries, fork ≤ 3, in O(`) time, wherè is the total size of the
reported paths.

Output-Sensitive Reporting of Disjoint Paths 305

The rest of this paper is organized as follows. In Section 2 we present preliminary
results on output-sensitive 2-path queries. Realizers of triconnected planar graphs and
their combinatorial properties are introduced in Section 3. The data structure and the
output-sensitive algorithm for 3-path queries in triconnected planar graphs are given in
Section 4. The data structure and the output-sensitive algorithm for 3-path queries in
general triconnected graphs are given in Section 5. The extension to graphs of arbitrary
connectivity is contained in Section 6. In Section 7 we present the algorithm for convex
grid drawing of triconnected planar graphs. Conclusions are contained in Section 8.

2. Preliminaries. In this section we define basic concepts used in the paper, present
preliminary results on output-sensitive 2-path queries, and overview previous results on
canonical orderings.

2.1. Basic Definitions. We assume familiarity with graph theory [2], [21]. We recall
some basic definitions on connectivity. Aseparating k-setof a graph is a set ofk
vertices whose removal disconnects the graph; separating 1-sets and 2-sets are called
cutverticesandseparation pairs, respectively. A graph isk-connected if there exists no
separating(k − 1)-set; 1-connected, 2-connected, and 3-connected graphs are usually
calledconnected, biconnected, andtriconnected, respectively.

Unless otherwise specified, all the paths referred to in this paper are simple. Two paths
are vertex-disjoint when they have no vertex in common except, possibly, the endpoints.
Since we deal only with vertex connectivity, for brevity we saydisjoint instead of vertex-
disjoint. Two pathscrosswhen they share at least one vertex distinct from their endpoints
or one edge. The set of vertices and edges shared by two crossing paths is called acrossing.

A drawingof a graphG is a mapping of each vertex ofG to a distinct point of the
plane and of each edge(u, v) of G to a simple Jordan curve with endpointsu andv. A
drawing isplanar if no two edges intersect, except, possibly, at common endpoints. A
graph is planar if it has a planar drawing.

Two planar drawings of a planar graphG areequivalentif, for each vertexv, they
have the same circular clockwise sequence of edges incident withv. Hence, the planar
drawings ofG are partitioned into equivalence classes. Each of those classes is called
an embeddingof G. An embeddedplanar graph (alsoplanegraph) is a planar graph
with a prescribed embedding. A triconnected planar graph has a unique embedding, up
to a reflection. A planar drawing divides the plane into topologically connected regions
delimited by cycles; these cycles are calledfaces. Theexternalface is the cycle delimiting
the unbounded region. Two equivalent planar drawings have the same faces.

Let G be a plane graph. A vertex or edge ofG is said to beexternalif it lies on the
external face, andinternal otherwise. A path or crossing ofG is said to beexternalif it
consists only of external vertices and edges and is said to beinternal if it consists only
of internal vertices and edges.

2.2. Bipolar Orientations and2-Path Queries. In this section we show how to perform
output-sensitive 2-path queries on biconnected graphs.

Let G be ann-vertex graph with an edge(s, t). A bipolar orientation(also called
st-orientation) [11], [35] of G with respect to an edge(s, t) is an orientation of the edges

306 G. Di Battista, R. Tamassia, and L. Vismara

of G such that the resulting digraphD is acyclic,s is the unique source ofD, andt is
the unique sink ofD. A biconnected graph admits a bipolar orientation with respect to
any edge(s, t), which can be computed in linear time [19]. Anst-numberingof G is
a numberingv1, . . . , vn of the vertices ofG such thats = v1, t = vn, and each other
vertexvi , 1 < i < n, is adjacent to at least one vertexvj , j < i , and to at least one
vertexvk, k > i .

Given a bipolar orientation of a biconnected graphG, we construct two spanning
trees ofG, Ts andTt , rooted ats andt , respectively, as shown by Itai and Rodeh [27].
TreeTs is obtained by selecting an incoming edge for every vertex distinct froms (for
vertext an incoming edge distinct from(s, t)). TreeTt is similarly obtained by selecting
an outgoing edge for every vertex distinct fromt (for vertexs an outgoing edge distinct
from (s, t)). Clearly, for every vertexv of G, the pathps(v) alongTs betweenv and
s and the pathpt (v) along Tt betweenv and t are disjoint. As shown in the follow-
ing lemma, treesTs andTt contain all the information needed to answer 2-path queries
in G.

LEMMA 1. For each pair of vertices u andv of G, the subgraph of G formed by edge
(s, t) and by the four paths ps(u), pt (u), ps(v), and pt (v) contains two disjoint paths
between u andv.

PROOF. With respect to the bipolar orientation used to constructTs andTt , we indicate,
for each vertexw of G, thest-number ofw with stn(w). Without loss of generality, let
stn(u) < stn(v). Two cases are possible foru andv:

1. Pathsps(v)andpt (u)do not cross. Letlcas (resp.lcat) be the lowest common ancestor
of u andv in Ts (resp.Tt). The first path betweenu andv is obtained by concatenating
the path betweenu and lcas with the path betweenv and lcas; note thatlcas may
coincide withu. The second path betweenu andv is obtained by concatenating the
path betweenu andlcat with the path betweenv andlcat ; note thatlcat may coincide
with v. The two paths betweenu andv are clearly disjoint: for each ancestorx of u
or v in Ts and each ancestory of u or v in Tt , stn(x) < stn(y) holds.

2. Pathsps(v) and pt (u) cross. Letstopvertexst be any vertex of the crossing. The first
path betweenu andv is obtained by concatenating the path betweenu andstopvertexst
with the path betweenv andstopvertexst. The second path betweenu andv is obtained
by concatenating the path betweenu ands, with edge(s, t), with the path between
v and t . The two paths betweenu and v are clearly disjoint:(s, t) is neither an
edge ofTs nor an edge ofTt , and for each ancestorx of u in Ts, each ancestory
of v in Tt , and each vertexw of the path betweenu andv including stopvertexst,
stn(x) < stn(w) < stn(y) holds.

Note thatps(u) andpt (v) cannot cross, since, for each ancestorx of u in Ts and each
ancestory of v in Tt , stn(x) < stn(y) holds.

THEOREM1. Let G be a biconnected graph with n vertices and m edges. There exists
an O(n)-space data structure for G that can be constructed in O(n + m) time and
supports2-path queries in O(`) time, where` is the size of the reported paths.

Output-Sensitive Reporting of Disjoint Paths 307

PROOF. The data structure simply stores rooted treesTs andTt with parent pointers. It is
easy to see that this data structure can be constructed in timeO(n+m) and requiresO(n)
space [19]. A 2-path query for verticesu andv, with stn(u) < stn(v), is performed by
traversing pathsps(u), ps(v), pt (u), andpt (v) one edge at the time, alternating between
them, until one of the two following halting events occur:

• lcas andlcat are reached;
• stopvertexst is reached.

If both lcas and lcat are reached, then Case 1 of the proof of Lemma 1 applies. If
stopvertexst is reached, then Case 2 of the proof of Lemma 1 applies.

Once the appropriate case has been determined, reporting the two paths betweenu
andv can be done inO(`) time by simply traversing treesTs andTt . Thus, it remains
to be proved that the computation oflcas andlcat , or of stopvertexst, can be carried out
in O(`) time. This is guaranteed by the alternating traversal technique and by the fact
that the longest subpath explored to computelcas andlcat , or stopvertexst, is reused for
constructing one of the two paths betweenu andv.

2.3. Canonical Orderings. In this section we recall the definition of canonical order-
ings of triconnected plane graphs, as given by Kant [30].

Let G be a triconnected plane graph withn vertices, and letu0, u1, u2 be three
consecutive external vertices ofG. A canonical orderingof G (see Figure 1) is an ordering
v1, . . . , vn of the vertices ofG that can be partitioned into subsequencesV1, . . . ,Vh,
whereVk = {vsk , . . . , vsk+dk}, 1 ≤ k ≤ h, 1 = s1 < s2 < · · · < sh < sh+1 = n + 1,
dk = sk+1− sk − 1, such that the following conditions are verified:

1. v1 = u1, v2 = u2, andV1 = {v1, v2}.
2. Let Gk be the plane subgraph ofG induced byV1 ∪ · · · ∪ Vk, 1 ≤ k ≤ h, and

let Ck be the external face ofGk. For each 2≤ k ≤ h− 1 one of the following cases
occurs:
(a) Vk = {vsk} is a vertex ofCk and has at least one neighbor inG− Gk;
(b) Vk = {vsk , . . . , vsk+dk} is a subpath ofCk, and eachvi , sk ≤ i ≤ sk + dk, has

degree two inGk and has at least one neighbor inG− Gk.
3. Each subgraphGk is biconnected and internally triconnected, i.e., removing two

internal vertices ofGk does not disconnect it.
4. vn = u0 andVh = {vn}.

In the example of Figure 1, each vertex is labeled with its rank in the canonical
ordering, and the partition of the vertices is given byV1 = {v1, v2}, V2 = {v3, v4, v5},
V3 = {v6, v7}, V4 = {v8}, V5 = {v9, v10}, V6 = {v11}, V7 = {v12}, V8 = {v13},
V9 = {v14}, V10 = {v15, v16}, V11 = {v17, v18}, V12 = {v19}, V13 = {v20}, V14 = {v21}.

LEMMA 2 [30]. Each triconnected plane graph has a canonical ordering, which can
be computed in linear time and space.

308 G. Di Battista, R. Tamassia, and L. Vismara

(a) (b)

(c)

21

1 2

3
4

5

67
8

9
10

11
1213

15
1614

1718

19

20

21

1 2

3
4

5

67
8

9
10

11
1213

15
1614

1718

19

20

1 2

21

3
4

5

67
8

9
10

11
1213

15
1614

1718

19

20

Fig. 1. A realizer of a triconnected planar graphG. (a) The blue tree ofG. (b) The green tree ofG. (c) The
red tree ofG.

3. Realizers of Triconnected Planar Graphs

3.1. Definition. A realizerof a triconnected plane graphG is a triplet of rooted directed
spanning trees ofG with the following properties (see Figure 1):

1. In each spanning tree, the edges ofG are directed from children to parent.
2. The sinks (roots) of the spanning trees are three external vertices ofG.
3. Each edge ofG is contained in at least one and in at most two spanning trees.
4. If an edge ofG is contained in two spanning trees, then it has different directions in

the two trees.
5. Consider the edges ofG with the directions they have in the three spanning trees,

where an edge with two opposite directions is considered twice:
(a) Each nonsink vertexv of G has exactly threeoutgoing edges; the circular order of

the outgoing edges aroundv induces a circular order of the spanning trees around
v; all the nonsink vertices ofG have the same circular order of the spanning trees.

Output-Sensitive Reporting of Disjoint Paths 309

(a) (b)

Fig. 2.Two examples of Property 5 of the realizers.

(b) For each vertex ofG the incoming edgesthat belong to the same spanning tree
appear consecutively between the outgoing edges of the two other spanning trees
(the first and last incoming edges are possibly coincident with the outgoing edges).

6. For the sink of each spanning tree, all the incoming edges belong to that spanning
tree.

Let Tb, Tg, andTr be the spanning trees forming a realizer of a triconnected plane
graphG (see Figure 1(b),(c)). We assign a color to the edges ofG contained inTb, Tg,
andTr , sayblue, green, andred, respectively. In the figures, we use dark grey for blue,
light grey for green, and medium grey for red. According to Property 3 of the realizers,
each edge ofG is assigned one or two colors, and is said to be 1-coloredor 2-colored,
respectively. For example, in the realizer shown in Figure 1, edge(v4, v11) is 1-colored,
while edge(v4, v5) is 2-colored. From now on, we represent a 2-colored edge half with
one color and half with the other; dashes represent optionality. In Figure 2, two examples
of Property 5 of the realizers are represented in this way.

LEMMA 3. Each triconnected plane graph G has a realizer, which can be computed in
linear time and space.

PROOF. A realizer can be constructed by assigning colors and directions to the edges
of G as follows:

1. a canonical ordering of the vertices ofG is computed;
2. v1, v2, andvn are the sinks of the blue, green, and red tree, respectively;
3. (v1, v2) is an outgoing blue edge forv2 and an outgoing green edge forv1;
4. for each 2≤ k ≤ h:

(a) if Vk = {vsk}, let cr , . . . , cl be the consecutive neighbors ofvsk onCk−1; (vsk , cl)

is an outgoing blue edge forvsk , and possibly an outgoing red edge forcl if
cl has no neighbor inG − Gk; (vsk , cr) is an outgoing green edge forvsk , and

310 G. Di Battista, R. Tamassia, and L. Vismara

(a) (b)
v1

vsk+dk
vsk

v2

cl cr

vsk

cl cr

v1 v2

Fig. 3.The coloring of the edges in the construction of a realizer. (a)Vk = {vsk }. (b) Vk = {vsk , . . . , vsk+dk }.

possibly an outgoing red edge forcr if cr has no neighbor inG − Gk; edges
(vsk , ci), r < i < l , are outgoing red edges forci (see Figure 3(a));

(b) if Vk = {vsk , . . . , vsk+dk}, let cr and cl be the neighbors ofvsk and vsk+dk on
Ck−1, respectively;(vsk+dk , cl) is an outgoing blue edge forvsk+dk , and possibly
an outgoing red edge forcl if cl has no neighbor inG−Gk; (vsk , cr) is an outgoing
green edge forvsk , and possibly an outgoing red edge forcr if cr has no neighbor
in G−Gk; edge(vi , vi+1), sk ≤ i < sk+ dk is an outgoing blue edge forvi and
an outgoing green edge forvi+1 (see Figure 3(b)).

Note thatv1 has no outgoing blue edge,v2 has no outgoing green edge, andvn has
no outgoing red edge. Besides, for each 2≤ k ≤ h, the following invariants hold:

• every vertex ofVk has exactly one outgoing blue edge, exactly one outgoing green
edge, and no outgoing red edge; the outgoing blue edge precedes the outgoing green
edge in the clockwise circular order of the edges ofCk, and all the (possible) incoming
red edges are incident with vertices ofGk − Vk;
• for every vertex ofCk the (possible) incoming blue edge ofCk follows the (possible)

incoming green edge ofCk in the clockwise circular order of the edges ofCk;
• no vertex ofCk−1 has an outgoing blue or green edge incident with a vertex ofVk;
• every vertex ofCk−1 with no neighbor inG−Gk has exactly one outgoing red edge,

while every vertex ofCk−1 with neighbors inG− Gk has no outgoing red edge;
• Gk contains no cycle such that a common color is assigned to all its edges.

All the properties of a realizer easily follow from these invariants. By Lemma 2, the
above construction can be carried out in linear time and space.

3.2. Properties. In this section we consider a triconnected plane graphG equipped
with a realizerTb, Tg, Tr . We denotev1, v2, andvn assb, sg, andsr , respectively. For each
vertexv of G, theblue path pb(v) is the path ofG alongTb with endpointsv andsb. In
the same way, we define thegreen path pg(v) as the path ofG alongTg with endpoints
v andsg and thered path pr (v) as the path ofG alongTr with endpointsv andsr . In
the rest of the paper the subpath of pathpi (v), i ∈ {b, g, r }, with endpointsv and the
ancestoru of v in Ti is denoted bypi (v,u).

The subpath of the external face with endpointssg andsr and not containingsb is

Output-Sensitive Reporting of Disjoint Paths 311

denoted byext(sg, sr). Similarly, the subpath of the external face with endpointssr and
sb and not containingsg is denoted byext(sr , sb) and the subpath of the external face
with endpointssb andsg and not containingsr is denoted byext(sb, sg).

The lowest common ancestor of verticesu andv in Ti , i ∈ {b, g, r }, is denoted by
lcai (u, v); in the rest of the paper we uselcai instead oflcai (u, v) for brevity.

From the construction in the proof of Lemma 3, it follows that, for each vertex
of G, the colors of the three outgoing edges appear in the following counterclockwise
circular order: blue, green, red. Without loss of generality, set{b, g, r }will be considered
accordingly ordered in the rest of the paper.

LEMMA 4. Let G be a triconnected plane graph with n vertices and m edges. For every
realizer of G, the number of2-colored edges of G is3n−m− 3.

PROOF. For each planar graph,m≤ 3n− 6. Each tree withn vertices hasn− 1 edges;
thus the total number of edges in the three spanning trees of the realizer is 3(n−1) > m.
The thesis follows from Property 3 of the realizers.

LEMMA 5. Let v be a vertex of G and let i, j , k be three consecutive colors in the
circularly ordered set{b, g, r }. Let x 6= sj be a vertex of pj (v) and let y be its parent
in Tj . The i-colored(resp. k-colored) outgoing edge of x is on the right(resp. left) of
pj (v), while each(possible) i -colored (resp. k-colored) incoming edge of x different
from (y, x) is on the left(resp. right) of pj (v).

PROOF. Easily follows from Properties 5(a) and 5(b) of the realizers, from the circular
order of set{b, g, r }, and from the planarity ofG.

LEMMA 6. For each vertexv of G, pb(v), pg(v), and pr (v) have only vertexv in
common.

PROOF. Let i , j , andk be three consecutive colors in the circularly ordered set{b, g, r }.
Suppose, for a contradiction, thatpi (v) and pj (v) have vertexx in common and that
pi (v, x) and pj (v, x) have no vertex in common withpk(v). By Property 6 of the
realizers,x 6= sj . From Property 5(a) of the realizers and by planarity ofG, it
follows that the edge ofpi (v) incoming tox is on the right ofpj (v), thus contradicting
Lemma 5.

LEMMA 7. Let u andv be two vertices of G. If there exist two colors i, j ∈ {b, g, r }, i 6=
j , such thatv ∈ pi (u) and u∈ pj (v), then pi (u, v) = pj (v,u).

PROOF. Suppose, for a contradiction, thatpi (u, v) and pj (v,u) have only verticesu
andv in common. SinceG is planar, two cases are possible:pj (v,u) is an internal path
in the subgraph with the external face formed bypi (u), pj (u), andext(si , sj), or pi (u, v)
is an internal path in the subgraph with the external face formed bypi (v), pj (v), and
ext(si , sj). It is easy to see that in the first case Property 5(b) of the realizers is not
satisfied for vertexu, and in the second case it is not satisfied for vertexv. Thus,pi (u, v)

312 G. Di Battista, R. Tamassia, and L. Vismara

and pj (v,u) have a third vertexw in common besidesu andv. The same argument
can be recursively applied topi (u, w) andpj (w,u), and topi (w, v) andpj (v,w). This
completes the proof.

LEMMA 8. For vertices sb, sg, and sr of G the following properties hold: pr (sg) =
pg(sr) = ext(sg, sr); pb(sr) = pr (sb) = ext(sr , sb); pg(sb) = pb(sg) = ext(sb, sg).

PROOF. We prove thatpr (sg) = pg(sr) = ext(sg, sr); the other two cases are analogous.
Equality pr (sg) = pg(sr) follows from Lemma 7, so we only have to prove that

pr (sg) = pg(sr) is external.
We first prove that the first edge(sg, wg) and the last edge(wr , sr) of pr (sg) = pg(sr)

are external. By Properties 5(a) and 6 of the realizers, the outgoing blue edge and the
outgoing red edge ofsg are consecutive in the counterclockwise circular order of the
edges aroundsg. Suppose, for a contradiction, that the edge ofext(sg, sr) incident with
sg is not the outgoing red edge ofsg. By planarity ofG, pb(sg) and pr (sg) have at least
one vertex in common, thus contradicting Lemma 6. Similarly, it can be proved that the
edge ofext(sg, sr) incident withsr is the outgoing green edge ofsr .

We now complete the proof by showing that the other edges ofpr (sg) = pg(sr)are also
external. Suppose, for a contradiction, thatpr (sg) = pg(sr) 6= ext(sg, sr); hence, there
exists a vertexx 6= sg, wg, sr , wr of ext(sg, sr) that is not a vertex ofpr (wg) = pg(wr).
Since the graph is planar,pg(x) (resp.pr (x)) has at least a vertexy (resp.z) in common
with pr (wg) = pg(wr). It is easy to see that Property 5(b) of the realizers is not satisfied
for verticesy andz.

For each vertexv of G theblue region Rb(v) is the subgraph ofG with the external
face formed bypg(v), pr (v), andext(sg, sr) (see Figure 4). In the same way, thegreen
region Rg(v) is the subgraph ofG with the external face formed bypb(v), pr (v), and
ext(sr , sb) and thered region Rr (v) is the subgraph ofG with the external face formed
by pb(v), pg(v), andext(sb, sg).

sb sg

sr

v

pb(v)

pr(v)

pg(v)

Rb(v)
Rg(v)

Rr(v)

Fig. 4.The blue, green, red paths and regions of a vertex.

Output-Sensitive Reporting of Disjoint Paths 313

sb sg

sr

v

u

(a) (b)

(c) (d)
sb sg

sr

v

u

sb sg

sr

u

v

sb sg

sr

v

u

Fig. 5. (a)–(c) Crossing paths. (d) Noncrossing paths.

LEMMA 9. For each pair of vertices u andv of G, two cases are possible:

1. there are exactly two colors i, j ∈ {b, g, r }, i 6= j , such that pi (v) and pj (u) cross;
three subcases are possible:
(a) u 6∈ pi (v) andv 6∈ pj (u) (see Figure5(a));
(b) either u∈ pi (v) or v ∈ pj (u) (see Figure5(b));
(c) u ∈ pi (v) andv ∈ pj (u) (see Figure5(c));

2. there are no two colors i, j ∈ {b, g, r }, i 6= j , such that pi (v) and pj (u) cross; in
this case there is exactly one color k∈ {b, g, r } such that either pk(v) ⊂ pk(u) or
pk(u) ⊂ pk(v) (see Figure5(d)).

PROOF. Consider pathpr (u) (pb(u) and pg(u) are analogous). Also, suppose thatu
andv do not coincide withsb, sg, andsr ; otherwise the proof can be trivially extended

314 G. Di Battista, R. Tamassia, and L. Vismara

but involves some more details. In order to simplify the exposition of the proof of this
property, we definēpi (v) = pi (v)− {v}, i ∈ {b, g, r }, andR̄i (v) = Ri (v)− {pj (v) ∪
pk(v)}, i, j, k ∈ {b, g, r }, i 6= j 6= k.

By exploiting Lemmas 5 and 7, we can prove the following properties ofpr (u). Path
pr (u) is composed of four consecutive subpathspr 1(u), pr 2(u), pr 3(u), and pr 4(u),
where an endpoint ofpr 4(u) is sr . The vertices of pathpr 1(u) belong toR̄r (v). For the
vertices ofpr 2(u) and pr 3(u) two cases are possible: (i) the vertices ofpr 2(u) belong
to p̄b(v) and the vertices ofpr 3(u) belong toR̄g(v); (ii) the vertices ofpr 2(u) belong
to p̄g(v) and the vertices ofpr 3(u) belong toR̄b(v). The vertices ofpr 4(u) belong to
pr (v), if v ∈ pr (u), to p̄r (v), otherwise.

According to the position ofu with respect tov, some of these subpaths may be
empty:

• if u ∈ R̄r (v), then eitherpr 2(u) and pr 3(u) are both empty, or onlypr 3(u) is empty,
or none of the subpaths is empty;
• if u ∈ p̄b(v) or u ∈ p̄g(v), thenpr 1(u) is empty; also,pr 3(u) is possibly empty, while

pr 2(u) and pr 4(u) are not empty;
• if u ∈ R̄b(v) or u ∈ R̄g(v), thenpr 1(u) and pr 2(u) are empty;pr 3(u) and pr 4(u) are

not empty;
• if u ∈ p̄r (v), thenpr 1(u), pr 2(u), andpr 3(u) are empty;pr 4(u) is not empty.

The above properties allow us to prove the claims easily.

COROLLARY 1. Let u andv be two vertices of G. If there exist two colors i, j ∈
{b, g, r }, i 6= j , such that pi (v) and pj (u) cross, then u∈ Rj (v) andv ∈ Ri (u).

PROOF. Easily follows from the proof of Lemma 9.

LEMMA 10. Let i, j , and k be three consecutive colors in the circularly ordered set
{b, g, r }. For each pair of vertices u andv of G, if u ∈ Rk(v) the following five cases
are possible:

1. if u 6∈ pi (v) and u 6∈ pj (v), then Rk(u) ⊂ Rk(v);
2. if u ∈ pi (v) andv 6∈ pj (u), then Rk(u) ⊂ Rk(v);
3. if u ∈ pj (v) andv 6∈ pi (u), then Rk(u) ⊂ Rk(v);
4. if u ∈ pi (v) andv ∈ pj (u), then Rk(u) = Rk(v);
5. if u ∈ pj (v) andv ∈ pi (u), then Rk(u) = Rk(v).

PROOF. Case1. By planarity ofG and by Lemma 9, eitherpk(u) and pi (v) cross or
pk(u) andpj (v) cross orpk(v) ⊂ pk(u); in all three subcases, by Lemma 9,pi (u, lcai)

and pj (u, lcaj) are not external paths ofRk(v), henceRk(u) ⊂ Rk(v).

Case2. Sinceu ∈ pi (v), then pi (u) ⊂ pi (v); by Lemma 9,pj (u, lcaj) is not an
external path ofRk(v), henceRk(u) ⊂ Rk(v).

Case3. Analogous to Case 2.

Output-Sensitive Reporting of Disjoint Paths 315

Case4. By Lemma 7,pi (v,u) = pj (u, v), henceRk(u) = Rk(v).

Case5. Analogous to Case 4.

The properties of anormal family of paths[3] for a plane graph and three distinguished
external vertices, are similar to the properties of Lemmas 6, 8, and 10. Brightwell and
Trotter [3] proved that each triconnected plane graph has a normal family of paths for
any three external vertices. Using the terminology of [3], we can say that Lemmas 6, 8,
and 10 show that the set{pi (v)|i ∈ {b, g, r }, v ∈ V} is a normal family of paths for
the three verticessb, sg, andsr . Also, a normal family of paths of a triconnected planar
graph can be constructed, for any three external verticesx, y, andz, by adding a vertex
w adjacent tox, y, andz, by constructing a single-sink realizer (which will be defined
in Section 4.2) rooted atw, and then by removingw.

3.3. Faces Colored by Realizers. Let G be a triconnected plane graph equipped with
a realizerTb, Tg, Tr . Let f be an internal (resp. external) face ofG, and lete be an
edge of f in Tb. We say thate is positive blueif the orientation ofe in Tb follows f
clockwise (resp. counterclockwise); we say thate is negative blueif the orientation ofe
in Tb follows f counterclockwise (resp. clockwise). We definepositive green, negative
green, positive red, andnegative redin a similar way. The following lemmas characterize
the chromatic structure of a face induced by the realizer.

LEMMA 11. An internal face of G can be decomposed into six clockwise consecutive
paths Pbg, prg, Prb, pgb, Pgr , pbr where(see Figure6):

• Pbg consists of exactly one edge that is either positive blue, or positive blue and
negative green, or negative green;

pgb

prg pbr

Pbg

PgrPrb

Fig. 6. Internal face coloring.

316 G. Di Battista, R. Tamassia, and L. Vismara

• prg consists of a possibly empty sequence of edges, each positive red and negative
green;
• Prb consists of exactly one edge that is either positive red, or positive red and negative

blue, or negative blue;
• pgb consists of a possibly empty sequence of edges, each positive green and negative

blue;
• Pgr consists of exactly one edge that is either positive green, or positive green and

negative red, or negative red;
• pbr consists of a possibly empty sequence of edges, each positive blue and negative

red.

PROOF. Let f be an internal face ofG, and let a clockwise circular order of the vertices
around f be defined.

We consider the most general case in whichf contains no vertex from the set
{sb, sg, sr }. The cases in whichf contains one or two vertices from the set{sb, sg, sr }
are particular cases of this one.

For each vertex off , by Properties 3 and 4 of the realizers, at least one of the three
outgoing edges does not belong tof .

We first prove that, for each colori ∈ {b, g, r }, there exists at least one vertex of
f whosei -colored outgoing edge does not belong tof . Suppose the contrary; since
each vertex off has exactly onei -colored outgoing edge, these edges would form an
i -colored cycle; a contradiction, sinceTi is a tree.

Then we prove that, for each colori ∈ {b, g, r }, there exists at least one vertexv of
f such thatf ⊆ Ri (v). In particular, we prove the result fori = r ; the other two cases
are analogous.

Let v be a vertex off whose red outgoing edge does not belong tof ; let u (resp.
w) be the vertex off preceding (resp. following)v. We consider the clockwise circular
order aroundv of its outgoing edges, of(u, v), and of(v,w). Three cases are possible:

1. (u, v), the outgoing green edge (possibly coincident with(u, v)), the outgoing blue
edge, the outgoing red edge, and(v,w)appear in this order aroundv; thus, f 6⊆ Rr (v);
however, by Property 5 of the realizers,(w, v) is an outgoing blue edge forw, and is
followed, aroundw, by the outgoing red edge and by the outgoing green edge; thus,
f ⊆ Rr (w);

2. (u, v), the outgoing blue edge (possibly coincident with(u, v)), the outgoing red
edge, the outgoing green edge (possibly coincident with(v,w)), and(v,w) appear
in this order aroundv; thus, f ⊆ Rr (v);

3. (u, v), the outgoing red edge, the outgoing green edge, the outgoing blue edge (possi-
bly coincident with(v,w)), and(v,w)appear in this order aroundv; thus, f 6⊆ Rr (v);
however, by Property 5 of the realizers,(u, v) is an outgoing green edge foru, and
is preceded, aroundu, by the outgoing red edge and by the outgoing blue edge; thus,
f ⊆ Rr (u).

It is also easy to see that iff ⊆ Ri (v), then f 6⊆ Rj (v), i, j ∈ {b, g, r }, i 6= j ;
hence, for each colori ∈ {b, g, r }, the vertex off such thatf ⊆ Ri (v) is distinct from
the vertices off for the other two colors.

Output-Sensitive Reporting of Disjoint Paths 317

By making use of the vertices off whose red region containsf , we now prove the
claim for Prb, pgb, andPgr .

We first consider the case in which there exists only one vertexv of f such that
f ⊆ Rr (v). Let u (resp.w) be the vertex off preceding (resp. following)v. The
outgoing blue edge ofv either follows(u, v) in the clockwise circular order aroundv
or coincides with(u, v); in the first case, by Property 5 of the realizers,(u, v) is the
outgoing red edge ofu; in the second case, still by Property 5 of the realizers,(u, v)may
or may not be also the outgoing red edge ofu. It follows that (u, v) is either positive
red, or positive red and negative blue, or negative blue, i.e.,Prb = (u, v). Analogously,
(v,w) is either positive green, or positive green and negative red, or negative red, i.e.,
Pgr = (v,w). In this casepgb is empty.

We now consider the case in which there exists more than one vertexv of f such that
f ⊆ Rr (v). Let v1, . . . , vk be these vertices. By Lemma 10, it is easy to prove that all
verticesvh, 1≤ h ≤ k, are consecutive inf , and thatRr (v1) = Rr (v2) = · · · = Rr (vk).
It follows that edge(vh, vh+1), 1 ≤ h < k, is an outgoing green edge forvh and an
outgoing blue edge forvh+1; thus (vh, vh+1) is positive green and negative blue, i.e.,
pgb = (v1, v2), . . . , (vk−1, vk). Let u (resp.w) be the vertex off precedingv1 (resp.
following vk); similarly to the the previous casePrb = (u, v1) andPgr = (vk, w).

The proof of the claim forPgr , pbr , and Pbg (resp.Pbg, prg, and Prb) is analogous
and makes use of the vertices off whose green (resp. blue) region containsf .

LEMMA 12. The external face of G can be decomposed into three counterclockwise
consecutive paths pgb, prg, pbr where(see Figure7):

• pgb consists of a sequence of edges, each positive green and negative blue;
• prg consists of a sequence of edges, each positive red and negative green;
• pbr consists of a sequence of edges, each positive blue and negative red.

PROOF. Immediately follows from Lemma 8.

It is well known that the dual graph of a triconnected planar graph is triconnected. We
consider a triconnected planar graphG equipped with a realizer, and define theextended
dualgraphG∗ of G as follows:

• each internal face ofG has a corresponding vertex inG∗; the external face ofG has
three corresponding verticesv∗b, v∗g, andv∗r in G∗;
• each edge ofG has a corresponding edge inG∗;
• two vertices ofG∗, different fromv∗b, v∗g, andv∗r , are adjacent if and only if the

corresponding faces ofG have an edge in common;
• v∗b is adjacent to all the vertices ofG∗ corresponding to faces ofG incident with an

edge ofprg (see Lemma 12);v∗g is adjacent to all the vertices ofG∗ corresponding
to faces ofG incident with an edge ofpbr ; v∗r is adjacent to all the vertices ofG∗

corresponding to faces ofG incident with an edge ofpgb;
• v∗b is adjacent tov∗g; v∗g is adjacent tov∗r ; v∗r is adjacent tov∗b.

It is easy to see that the extended dual graph of a triconnected planar graph is also
triconnected planar.

318 G. Di Battista, R. Tamassia, and L. Vismara

pgb

prgpbr

sb sg

sr

Fig. 7.External face coloring.

LEMMA 13. The realizer of a triconnected planar graph induces a realizer of its ex-
tended dual.

PROOF. Let G be a triconnected planar graph equipped with a realizer and letG∗ be its
extended dual. Letv∗ be a vertex ofG∗, different fromv∗b, v∗g, andv∗r , let e be an edge
of G, and lete∗ be its corresponding edge inG∗. We color the edges incident withv∗ as
follows (see Lemma 11):

• if e is the edge ofPbg and it is positive blue, thene∗ is an outgoing red and incoming
green edge forv∗; if e is positive blue and negative green, thene∗ is an outgoing red
edge forv∗; if e is negative green, thene∗ is an outgoing red and incoming blue edge
for v∗;
• if e is an edge ofprg, e∗ is an incoming blue edge forv∗;
• if e is the edge ofPrb and it is positive red, thene∗ is an outgoing green and incoming

blue edge forv∗; if e is positive red and negative blue, thene∗ is an outgoing green
edge forv∗; if e is negative blue, thene∗ is an outgoing green and incoming red edge
for v∗;
• if e is an edge ofpgb, e∗ is an incoming red edge forv∗;
• if e is the edge ofPgr and it is positive green, thene∗ is an outgoing blue and incoming

red edge forv∗; if e is positive green and negative red, thene∗ is an outgoing blue
edge forv∗; if e is negative red, thene∗ is an outgoing blue and incoming green edge
for v∗;
• if e is an edge ofpbr , e∗ is an incoming green edge forv∗;

Output-Sensitive Reporting of Disjoint Paths 319

• (v∗b, v∗g) is an outgoing green edge forv∗b and an outgoing blue edge forv∗g; (v∗g, v
∗
r) is

an outgoing red edge forv∗g and an outgoing green edge forv∗r ; (v∗r , v
∗
b) is an outgoing

blue edge forv∗r and an outgoing red edge forv∗b.

Let i , j , andk be three consecutive colors in the circularly ordered set{b, g, r }. We
prove that, for each colork, thek-colored edges form a spanning treeT∗k of G∗. Each
vertexv∗ of G∗, different fromv∗k has exactly onek-colored outgoing edge. For each
face ofG such thatpji is not empty, i.e., for each vertexv∗ of G∗ that is not a leaf inT∗k ,
let u1 andu2 be the endpoints ofPi j and letv1, v2, . . . , vd be the vertices ofpji . From
the coloring ofPi j andpji in Lemma 11, it follows that Case 4 of Lemma 10 applies for
u1 andu2, and forv1 andv2, . . . , vd−1 andvd. Still from Lemma 11, it follows that
either Case 1 or Case 2 of Lemma 10 applies foru1 andv1. ThenRk(u1) = Rk(u2) ⊂
Rk(v1) = Rk(v2) = · · · = Rk(vd), hence there are nok-colored cycles.

As for Properties 1–6 of the realizers, they easily follow from the coloring above and
from Lemmas 11 and 12.

4. Planar 3-Path Queries. In this section we apply the combinatorial results of Sec-
tion 3 to devise a data structure that supports output-sensitive 3-path queries on a tri-
connected planar graph. The algorithm and its underlying data structure are simple to
implement.

4.1. Preprocessing. Let G be a triconnected planar graph. In order to simplify the
algorithm, instead of using a realizer ofG, we use a slightly modified realizer of a
suitable spanning subgraphG′ of G, so thatTb, Tg, andTr have a common sink.

If G has no vertex of degree three, we first apply the algorithm of Nagamochi and
Ibaraki [36] to obtain a sparse triconnected spanning subgraphG′ of G, which is guaran-
teed to have a vertex of degree three (see Lemma 2.6 of [36]). Otherwise,G′ is identical
to G. Then a realizer ofG′ is computed, as shown in the proof of Lemma 3, withv1 = sb

denoting the vertex of degree three. Finally, the realizer ofG′ is modified in the following
way: let (sg, wg) be the edge following(sg, sb) in the clockwise order aroundsg, and
let (sr , wr) be the edge preceding(sr , sb) in the clockwise order aroundsr ; (sg, sb) is
made an outgoing green edge forsg, (sg, wg) is made an outgoing blue edge forsg and
an outgoing green edge forwg; (sr , sb) is made an outgoing red edge forsr ; (sr , wr)

is made an outgoing blue edge forsr and an outgoing red edge forwr ; sg andsr are
identified withsb. The resulting modified realizer ofG′ is called asingle-sink realizer
of G′.

Note that the single-sink realizer ofG′ induces a realizer of the subgraph obtained
from G′ by removingsb and its three incident edges. The three distinct sinks of the
induced realizer are the three vertices adjacent tosb in G′. Such an induced realizer
satisfies all the properties of the realizers described in Section 3.

4.2. Three Disjoint Paths. Let G be a triconnected plane graph for which a spanning
subgraphG′ and a single-sink realizer ofG′ have been computed as shown in Section 4.1.
To answer a 3-path query for verticesu andv of G, we assemble three paths betweenu

320 G. Di Battista, R. Tamassia, and L. Vismara

andv by suitably traversing the pathspi (u), pi (v), i ∈ {b, g, r }. Since such paths can
share vertices and edges, a careful choice is needed.

In the rest of paper the following notation is used. The concatenation of two paths
pi (u, w) and pj (v,w), i, j ∈ {b, g, r }, i 6= j , having only vertexw in common is
denoted bypi (u, w) + pj (v,w). If w = si = sj , the concatenation of pathspi (u)
and pj (v) is denoted bypi (u) + pj (v). If pi (v) and pj (u), i 6= j cross, then we
define bystopvertexi j (u, v) any vertex of the crossing; in the rest of the paper we use
stopvertexi j instead ofstopvertexi j (u, v) for brevity, and in the figures we usesvi j instead
of stopvertexi j .

LEMMA 14. For each pair of vertices u andv of G, the subgraph of G formed by the
six paths pb(u), pg(u), pr (u), pb(v), pg(v), and pr (v) contains three disjoint paths
between u andv.

PROOF. Let (sb, x) be the blue incoming edge ofsb, let (sb, y) be the green incoming
edge ofsb, and let(sb, z) be the red incoming edge ofsb. As noted in Section 4.1, the
single-sink realizer ofG induces a realizer of the subgraph obtained fromG by removing
sb and its three incident edges. In the induced realizer,x is the blue sink,y is the green
sink, andz is the red sink.

We first consider the case in which eitheru or v is coincident withsb. Without loss of
generality, letu be this vertex. By Lemma 6,pb(v, x), pg(v, y), andpr (v, z) have only
vertexv in common; thus the three disjoint paths betweenu andv are simplypb(v),
pg(v), andpr (v).

We then consider the case in which neitheru nor v coincides withsb. By Lemma 9,
two cases are possible foru andv:

1. If Case 1 of Lemma 9 applies, then there are exactly two colorsi, j ∈ {b, g, r }, i 6= j ,
such that pathspi (v) and pj (u) cross. These two paths are exploited to determine
a first path with endpointsu andv. A second path is determined usingpj (v) and
pi (u). Let k 6= i, j be the other color in{b, g, r }. The third path is the one along
Tk. More formally, the three disjoint paths betweenu andv are the following (see
Figure 8(a)–(c), where the portions of the paths that are used to assemble the three
disjoint paths are thicker):
• p1 = pk(u, lcak)+ pk(v, lcak);
• p2 = pi (u)+ pj (v);
• p3 = pj (u, stopvertexi j)+ pi (v, stopvertexi j).
Note that, ifi, j 6= b, the crossing betweenpi (v) and pj (u) may be external.

2. If Case 2 of Lemma 9 applies, then there is exactly one colork ∈ {b, g, r } such that
eitherpk(u) ⊂ pk(v)or pk(v) ⊂ pk(u). Without loss of generality, letpk(u) ⊂ pk(v),
and leti, j 6= k be the other two colors in{b, g, r }. The three paths are the subpath
of pk(v) betweenv andu, the path alongTi , and the path alongTj . More formally,
the three disjoint paths betweenu andv are the following (see Figure 8(d)–(f)):
• p1 = pi (u, lcai)+ pi (v, lcai);
• p2 = pj (u, lcaj)+ pj (v, lcaj);
• p3 = pk(v,u).

We now prove the disjointness ofp1, p2, and p3 in both cases. Of the six possible

Output-Sensitive Reporting of Disjoint Paths 321

lcar

v

u

lcab

lcar

lcab
svbg

u v

sb = sg = sr

sb = sg = sr

sb = sg = sr

(a) (b)

(c) (d)

(e) (f)

svgr

v

u

lcab

sb = sg = sr

u

v

lcag

lcar

sb = sg = sr

u

v lcag
lcab

sb = sg = sr

lcag

svrb

u

v

lcab

Fig. 8.The cases of disjoint paths with endpointsu andv.

322 G. Di Battista, R. Tamassia, and L. Vismara

choices of colors fori , j , andk in each case, we consider only one; the proofs for the
other choices are analogous.

Case1. Leti = g, j = r , andk = b (see Figure 8(c)). It is easy to see that neitherlcab

nor stopvertexgr coincides withsb; thus, in proving the disjointness of the three paths
we can considerpg(u, y) instead ofpg(u), andpr (v, z) instead ofpr (v).

First, we prove thatp1 and p2 are disjoint. By Lemma 6,pb(u, lcab) and pg(u, y)
are disjoint. By Case 1 of Lemma 9, and sincepr (u) and pg(v) cross,pb(u, lcab) and
pr (v, z) are disjoint. Analogously,pb(v, lcab) andpr (v, z) are disjoint, andpb(v, lcab)

and pg(u, y) are disjoint.
Second, we prove thatp1 and p3 are disjoint. By Lemma 6,pb(u, lcab) and

pr (u, stopvertexgr) are disjoint. By Case 1 of Lemma 9 and sincepr (u) and pg(v)

cross, pb(u, lcab) and pg(v, stopvertexgr) are disjoint. Analogously,pb(v, lcab) and
pg(v, stopvertexgr) are disjoint, andpb(v, lcab) and pr (u, stopvertexgr) are disjoint.

Third, we prove thatp2 and p3 are disjoint. By Lemma 6,pr (u, stopvertexgr) and
pg(u, y) are disjoint. Sincepr (u) and pg(v) cross, it follows from Corollary 1 that
pr (u, stopvertexgr) ⊂ Rr (v), while, by Lemma 6,pr (v) ∩ Rr (v) = {v}; hence,pr (u,
stopvertexgr) and pr (v, z) are disjoint. Analogously,pg(v, stopvertexgr) and pr (v, z)
are disjoint, andpg(v, stopvertexgr) and pg(u, y) are disjoint.

Finally, we prove thatp1, p2, and p3 are simple paths. Pathp1 is composed of the
two paths alongTb betweenu or v and their lowest common ancestor. Pathp2 is simple
by pr (v) andpg(u) being simple and noncrossing. Pathp3 is simple bypr (u) andpg(v)

being simple and by Lemma 7.

Case2. Let i = g, j = r , andk = b (see Figure 8(d)). It is easy to see that neither
lcag nor lcar coincides withsb.

First, we prove thatp1 andp2 are disjoint. By Lemma 6,pg(u, lcag) andpr (u, lcar)

are disjoint. By Case 2 of Lemma 9, and bypb(u) being a proper subpath ofpb(v),
pg(u, lcag) and pr (v, lcar) are disjoint. Analogously,pg(v, lcag) and pr (v, lcar) are
disjoint, andpr (u, lcar) and pg(v, lcag) are disjoint.

Second, we prove thatp1 andp3 are disjoint. By Lemma 6,pg(v, lcag) andpb(v,u)
are disjoint. By Case 2 of Lemma 9 and bypb(u) being a proper subpath ofpb(v),
pg(u, lcag) and pb(v,u) are disjoint.

Third, we prove thatp2 and p3 are disjoint. By Lemma 6,pr (v, lcar) and pb(v,u)
are disjoint. By Case 2 of Lemma 9 and bypb(u) being a proper subpath ofpb(v),
pr (u, lcar) and pb(v,u) are disjoint.

Finally, to prove thatp1, p2, andp3 are simple paths, we observe thatp1 is composed
of the two paths alongTg betweenu or v and their lowest common ancestor,p2 is
composed of the two paths alongTr betweenu or v and their lowest common ancestor,
and thatp3 is a subpath of simple pathpb(v).

4.3. Data Structure and Complexity. In this section we present a data structure for
performing 3-path queries on a triconnected planar graphG with n vertices. By Lemma 3
and by Theorem 2.1 of [36], we assume thatG has been embedded and a single-sink
realizerTb, Tg, Tr of G has been constructed; this can be done inO(n) time.

TreesTb, Tg, andTr are implemented with parent pointers. We then add to those trees
a component for computingstopvertexi j andlcak, i, j, k ∈ {b, g, r }.

Output-Sensitive Reporting of Disjoint Paths 323

For this purpose, we define for each treeTi , i ∈ {b, g, r }, a binary relation↓i on the
vertex set ofG. For a pair of vertices{u, v}, this relation determines the relative positions
of u andv in Ti . Namely,u ↓i v if u is a vertex of the subtree ofTi rooted atv.

We implement each relation↓i , i ∈ {b, g, r }, through an additional data structure for
Ti derived from the “vector representation” of a planar directed acyclic graph [28]. This
representation exploits the fact that planar lattices have order-dimension two [33].

The left (resp. right) preorder visitof an ordered tree is a preorder visit in which the
children of each vertex are visited from left to right (resp. from right to left). We label
each vertexw of Ti with its rankλi (w) in the left preorder visit ofTi and its rankρi (w)

in the right preorder visit.
As shown in [28], relation↓i can be easily tested in the following way. For each pair

of verticesu andv of G, u ↓i v if and only if one of the following two cases applies:

• λi (u) < λi (v) andρi (u) < ρi (v);
• λi (u) = λi (v) (or equivalentlyρi (u) = ρi (v)).

Thus, testing ifu ↓i v can be done inO(1) time. It is easy to see that the above data
structure can be constructed inO(n) time.

Using this data structure, we can compute the three disjoint paths betweenu andv.
The two cases in which eitheru or v coincides withsb are trivial. In all other cases, we
consider vertexu and first traverse pathpb(u) until one of the following two halting
events occurs:

• lcab is reached;
• stopvertexbg or stopvertexrb is reached.

In particular, testing whether we have reachedlcab requires testing, for each vertex
w of pb(u), if v ↓b w. Testing whether we have reachedstopvertexbg or stopvertexrb
requires testing, for each vertexw of pb(u) − {u}, if v ↓g w or v ↓r w, respectively.
Note thatlcab may coincide withu or v, and thatstopvertexbg or stopvertexrb cannot
coincide withu (but may coincide withv).

We then traversepg(u) and pr (u) in the same way. If, at the end of the process, we
have reached onestopvertexi j , then Case 1 of the proof of Lemma 14 applies, otherwise
Case 2 applies. During this process, we have only visited vertices and edges that are
contained in the three disjoint paths betweenu and v. The report of the three paths
can now be completed by suitably traversingpb(v), pg(v), and pr (v) and by possibly
continuing the traversal of one path amongpb(u), pg(u), andpr (u).

THEOREM2. Let G be a triconnected planar graph with n vertices. There exists an
O(n)-space data structure for G that can be constructed in O(n) time and supports
3-path queries in O(`) time, where` is the size of the reported paths.

5. General 3-Path Queries. In this section we extend to general triconnected graphs
the results on planar triconnected graphs of Section 4.

5.1. Preprocessing. The realizer used for triconnected planar graphs is replaced by
three independent spanning trees [5], [56]. For three independent spanning trees of a

324 G. Di Battista, R. Tamassia, and L. Vismara

triconnected graphG, the following properties hold:

1. In each spanning tree the edges ofG are directed from children to parent.
2. The sinks (roots) of the spanning trees are three (possibly coincident) vertices ofG.
3. Each edge ofG is contained in at most two spanning trees.
4. If an edge ofG is contained in two spanning trees, then it has different directions in

the two trees.
5. For each vertexv of G, the paths fromv to the sinks along the three spanning trees

have only vertexv and possibly the sinks (if coincident) in common.

We briefly review the algorithm by Cheriyan and Maheshwari [5] for constructing
three independent spanning trees of a triconnected graphG with n vertices.

The main step of their algorithm is the computation of a nonseparating ear decom-
position of the triconnected graph. Anear decompositionof a graphG is a partition of
G into an ordered collection of edge-disjoint simple pathsP0, P1, . . . , Ph, such thatP0

is a cycle, and eachPk, 1≤ k ≤ h, has only its two distinct endpoints in common with
Gk−1 = P0 ∪ P1 ∪ · · · ∪ Pk−1. Each pathPk is anear. An ear decomposition is said
to be through edge(v1, v2) and avoiding vertexvn if cycle P0 contains edge(v1, v2),
and the last earPh′ different from a single edge contains vertexvn as its only internal
vertex. An ear decomposition through edge(v1, v2) and avoiding vertexvn is called a
nonseparating ear decompositionif, for each 0≤ k ≤ h′, graphG − Gk is connected
and each internal vertex of earPk has at least one neighbor inG− Gk.

A nonseparating ear decomposition has at mostn−2 ears different from a single edge
(P0 contains at least three vertices). For each vertexv of G, we define theear number
ear(v) as the indexk of the first ear inP0, P1, . . . , Ph containingv.

Given an ear decomposition ofG and an edge(s, t) of the first earP0, anst-numbering
of G is consistentwith the ear decomposition if, for each 1≤ k ≤ h, the numbering
induced byGk is anst-numbering ofGk. For each vertexv of G, we indicate withstn(v)
thest-number ofv.

Note that the canonical ordering defined in Section 2.3 is a particular case of nonsep-
arating ear decomposition for triconnected planar graphs.

LEMMA 15 [5]. Let G be a triconnected graph with n vertices and m edges. Let(v1, v2)

be an edge and letvn 6= v1, v2 be a vertex of G. There exists a nonseparating ear
decomposition of G through(v1, v2) and avoidingvn. It can be computed in O(nm) time
and O(m) space.

The time complexity of the algorithm can be reduced fromO(nm) to O(n2) by
computing a sparse triconnected spanning subgraphG′ of G in O(m) time [36] and by
then computing a nonseparating ear decomposition ofG′. As noted in Section 4.1,G′ is
guaranteed to have a vertex of degree three.

The three independent spanning trees ofG′ can be constructed in the following way:

1. letv1 be a vertex of degree three, and letv2, andvn be two vertices adjacent tov1; a
nonseparating ear decomposition ofG′ through(v1, v2) and avoidingvn is computed;
in particular, the last ear, different from a single edge, containing vertexvn as its only

Output-Sensitive Reporting of Disjoint Paths 325

internal vertex is chosen so that it does not contain edge(v1, vn); this is always
possible, sincevn has degree at least three, beingG′ triconnected;

2. lets = v1 andt = v2; anst-numbering ofG consistent with the ear decomposition
is computed;

3. v1, v2, andvn are the sinks of the blue, green, and red tree, respectively;
4. let v2, vs0, . . . , vs0+d0, v1,d0 ≥ 0, be the consecutive vertices ofP0; (v1, v2) is an

outgoing blue edge forv2 and an outgoing green edge forv1; (vs0+d0, v1) is an outgoing
blue edge forvs0+d0; (vs0, v2) is an outgoing green edge forvs0; edge(vi , vi+1),
s0 ≤ i < s0+d0, is an outgoing blue edge forvi and an outgoing green edge forvi+1;

5. for each 1≤ k ≤ h, let cl andcr be the two endpoints of earPk, such that either
ear(cl) < ear(cr) or ear(cl) = ear(cr) andstn(cl) < stn(cr); two cases are possible:
(a) if Pk is a single edge, then(cl , cr) is an outgoing red edge forcl ;
(b) if Pk is not a single edge, letcr , vsk , . . . , vsk+dk , cl ,dk ≥ 0, be the consecutive

vertices ofPk; (vsk+dk , cl) is an outgoing blue edge forvsk+dk , and possibly an
outgoing red edge forcl if cl has no neighbor inG−Gk; (vsk , cr) is an outgoing
green edge forvsk , and possibly an outgoing red edge forcr if cr has no neighbor
in G−Gk; edge(vi , vi+1), sk ≤ i < sk + dk, is an outgoing blue edge forvi and
an outgoing green edge forvi+1.

As for the planar case, we denotev1, v2, andvn assb, sg, andsr , respectively. Prop-
erties 1–4 of the independent spanning trees immediately follow from the previous
construction, while Property 5 can be proved by observing that, from the previous con-
struction:

• for each vertexv 6= sb of G, let x be the parent ofv in Tb; ear(x) ≤ ear(v) and
stn(x) < stn(v);
• for each vertexv 6= sg of G, let y be the parent ofv in Tg; ear(y) ≤ ear(v) and

stn(y) > stn(v);
• for each vertexv 6= sr of G, let z be the parent ofv in Tr ; ear(z) > ear(v).

In order to simplify the algorithm, we slightly modify the three independent spanning
trees so that they have a common sink. Let(sg, wg) be the edge ofP0 incident withsg

and different from(sg, sb); (sg, sb) is made an outgoing green edge forsg; (sg, wg) is
made an outgoing blue edge forsg and an outgoing green edge forwg. Note that, by
construction,(sr , sb) is an outgoing red edge forsb; it is made an outgoing red edge for
sr , instead. Finally,sg andsr are identified withsb.

5.2. Three Disjoint Paths

LEMMA 16. For each pair of vertices u andv of G, if there are two colors i, j ∈ {b, g, r },
i 6= j , such that pi (v) and pj (u) cross, then pj (v) and pi (u) do not cross.

PROOF. Six cases are possible fori and j :

1. i = b and j = g; let w be a vertex of the crossing betweenpb(v) and pg(u), let
x 6= u be a vertex ofpb(u), and lety 6= v be a vertex ofpg(v); stn(x) < stn(u) <
stn(w) < stn(v) < stn(y) holds;

326 G. Di Battista, R. Tamassia, and L. Vismara

2. i = g and j = b; analogous to Case 1;
3. i = g and j = r ; let w be a vertex of the crossing betweenpg(v) and pr (u), let

y 6= u be a vertex ofpg(u), and letz 6= v be a vertex ofpr (v); ear(y) ≤ ear(u) ≤
ear(w) ≤ ear(v) < ear(z) holds;

4. i = r and j = g; analogous to Case 3;
5. i = r and j = b; let w be a vertex of the crossing betweenpr (v) and pb(u), let

x 6= v be a vertex ofpb(v), and letz 6= u be a vertex ofpr (u); ear(x) ≤ ear(v) ≤
ear(w) ≤ ear(u) < ear(z) holds;

6. i = b and j = r ; analogous to Case 5.

In all the cases it is easy to see thatpj (v) and pi (u) do not cross.

With analogous techniques, we can prove the following two lemmas.

LEMMA 17. For each pair of vertices u andv of G, if pr (v) and pi (u), i ∈ {b, g},
cross, then pr (u) and pj (v), j ∈ {b, g}, j 6= i , do not cross.

LEMMA 18. For each pair of vertices u andv of G, pb(v) and pg(u), or pg(v) and
pb(u), may cross at most once, pb(v) and pr (u), or pr (v) and pb(u), may cross multiple
times, pg(v) and pr (u), or pr (v) and pg(u), may cross multiple times.

We now state the equivalent, for general triconnected graphs, of Lemma 9 for planar
graphs. Note how, the graph being nonplanar, the number of possible cases has
increased.

LEMMA 19. For each pair of vertices u andv of G, six cases are possible:

1. there are three colors i, k ∈ {b, g, r }, j ∈ {b, g}, i 6= j 6= k, such that pi (v) and
pj (u), pi (v) and pk(u), pj (v) and pk(u) cross;

2. there are three colors i, j, k ∈ {b, g, r }, i 6= j 6= k, such that pi (v) and pj (u), pi (v)

and pk(u) cross;
3. there are three colors i, j, k ∈ {b, g, r }, i 6= j 6= k, such that pj (v) and pi (u), pk(v)

and pi (u) cross(analogous to Case2 with u andv switched);
4. there are three colors i∈ {b, g}, j, k ∈ {b, g, r }, i 6= j 6= k, such that pi (v) and

pj (u), pk(v) and pi (u) cross;
5. there are exactly two colors i, j ∈ {b, g, r }, i 6= j , such that pi (v) and pj (u) cross;
6. there are no two colors i, j ∈ {b, g, r }, i 6= j , such that pi (v) and pj (u) cross.

PROOF. By Lemma 16, out of the six potential crossings between different colored
paths fromu andv, at most three may exist. It is easy to see that, by Lemmas 16 and 17,
the six claimed cases are exhaustive.

As for planar graphs, we define bystopvertexi j , i, j ∈ {b, g, r }, i 6= j , any vertex of
the crossing betweenpi (v) and pj (u) or betweenpj (v) and pi (u).

Output-Sensitive Reporting of Disjoint Paths 327

LEMMA 20. For each pair of vertices u andv of G, the subgraph of G formed by the
six paths pb(u), pg(u), pr (u), pb(v), pg(v), and pr (v) contains three disjoint paths
between u andv.

PROOF. We prove the claim by considering Cases 1–4 of Lemma 19. Cases 5 and 6 are
analogous to those of Lemma 14 for planar graphs.

We prove in detail only Case 1 of Lemma 19, in which three crossings occur between
different colored paths fromu andv. This is the most complex case. The proofs for
Cases 2–4, in which two crossings occur, are similar.

Pathpi (v) crosses bothpj (u) and pk(u); path pk(u) crosses bothpi (v) and pj (v).
Without loss of generality, leti = g, j = b, andk = r . We first prove thatstopvertexgr “is
closer tov” along pg(v) thanstopvertexbg, or, more formally, thatpg(v, stopvertexgr) ⊂
pg(v, stopvertexbg). This follows fromear(stopvertexbg) ≤ ear(u) < ear(stopvertexgr)

≤ ear(v).
Then we considerstopvertexgr andstopvertexbg. Two cases are possible:

1. stopvertexgr “is closer to u” along pr (u) than stopvertexrb, or, more formally,
pr (u, stopvertexgr) ⊂ pr (u, stopvertexrb); the three disjoint paths are, as in the planar
case, the following:
• p1 := pb(u, lcab)+ pb(v, lcab);
• p2 := pg(u)+ pr (v);
• p3 := pr (u, stopvertexgr)+ pg(v, stopvertexgr);
since we use neitherpg(stopvertexgr)nor pr (stopvertexgr)−pg(v) in the construction
of the three disjoint paths, we can simply ignorestopvertexbg andstopvertexrb;

2. stopvertexrb “is closer to u” along pr (u) than stopvertexgr , or, more formally,
pr (u, stopvertexrb) ⊂ pr (u, stopvertexgr); in this case it is not possible to construct
the three disjoint paths as in the planar case; however, three disjoint paths still exist:
• p1 := pg(u)+ pr (v);
• p2 := pb(u, stopvertexbg)+ pg(v, stopvertexbg);
• p3 := pr (u, stopvertexrb)+ pb(v, stopvertexrb);
since we do not usepr (stopvertexrb)− pg(v) in the construction of the three disjoint
paths, we can simply ignorestopvertexgr .

In both cases, the disjointness ofp1, p2, andp3 can be easily proved by the ear number
andst-number properties of the colored paths fromu andv.

5.3. Data Structure and Complexity. In this section we present a data structure for
performing 3-path queries in a triconnected graphG with n vertices. By Lemma 15 and
by Theorem 2.1 of [36], we assume that three independent spanning treesTb, Tg, andTr

of G with a common sink have been constructed; this can be done inO(n2) time.
As for planar graphs, treesTb, Tg, andTr are implemented with parent pointers, and

are augmented with the component implementing the binary relations↓i , i ∈ {b, g, r },
on the vertex set ofG. It is easy to see that the above data structure can be constructed
in O(n) time.

Using this data structure, we can compute the three disjoint paths betweenu andv
similarly to the planar case. However, by Lemma 18,pr (v) may crosspb(u) and pg(u)

328 G. Di Battista, R. Tamassia, and L. Vismara

multiple times, orpr (u) may crosspb(v) and pg(v) multiple times. In the proof of
Lemma 20, we have seen that only the first crossing, if any, found traversingpr (u) from
u or pr (v) fromv need be considered. This implies that, differently from the planar case,
the first traversed path ispr (u); the halting events for the traversal are the same as in the
planar case; if a crossing withpb(v) or pg(v) is found, then we continue by traversing
pb(u) andpg(u); otherwise, we switch tov, first traversepr (v), and then traversepb(v)

and pg(v).
At the end of the process, we have all the necessary information to recognize which

case of Lemma 19 applies. We have only visited vertices and edges that are contained in
the three disjoint paths betweenu andv. The report of these paths can now be completed
by suitably traversing the remaining paths fromu or v and by possibly continuing the
traversal of some of the already traversed paths.

THEOREM3. Let G be a triconnected graph with n vertices. There exists an O(n)-space
data structure for G that can be constructed in O(n2) time and supports3-path queries
in O(`) time, where` is the size of the reported paths.

6. Graphs of Arbitrary Connectivity. In this section we extended the results of
Theorems 1–3 to graphs of arbitrary connectivityk < 3.

We first consider biconnected (nontriconnected) graphs. We use a suitably augmented
version of theSPQR-treedata structure for 3-connectivity queries [15]. A description of
the SPQR-tree is contained in Appendix B for the reader’s convenience. An example of
an SPQR-tree is shown in Figure 9.

LetG be a biconnected graph withnvertices andmedges, and letT be an SPQR-tree of
G. Each R-nodeµ of T is equipped with a realizer ofskeleton(µ). If G is nonplanar, then,
for each R-nodeµ of T , instead of storingskeleton(µ), we store a sparse triconnected
spanning subgraph ofskeleton(µ) [36]; this reduces the space requirements toO(n).
Computing the spanning subgraphs requires anO(m) total time.

As usual, letu andv be the two vertices on which we want to perform a 3-path query.
We first perform a 3-connectivity query onu andv as shown in [15].

LEMMA 21 [15]. A 3-connectivity query on vertices u andv returns true if and only if
there is a P-node or an R-nodeµ of T such that u andv are both allocated atµ. Node
µ can be determined in O(1) time.

If the 3-connectivity query on verticesu andv returns true, the 3-path query can be
answered as follows.

If µ is a P-node,u andv are the poles ofµ and the endpoints of at least three virtual
edges inskeleton(µ). Three disjoint paths betweenu andv in skeleton(µ) are obtained
by taking three of these virtual edges. Note that, since we are considering simple graphs,
at least two of these three virtual edges are nontrivial.

If µ is an R-node, we determine three disjoint paths betweenu andv in skeleton(µ) as
shown in Sections 4 and 5. In general, these three paths contain some nontrivial virtual
edges (see Figure 9(b)).

In both cases, letpµ1, pµ2, and pµ3 be the three disjoint paths betweenu andv in

Output-Sensitive Reporting of Disjoint Paths 329

(b)(a)

v2

v3

v4

v5

v6

v7

v8

v9

v10 v11

v12

v13

v14 v15

v16

v1

(c)

R

S S

S

R

R

P

Fig. 9. (a) A biconnected graphG. (b) The split components used in the report of three disjoint paths between
verticesv6 andv14 of G. (c) The SPQR-tree ofG with respect to reference edge(v3, v7) and the skeletons of
its nodes.

skeleton(µ). Three disjoint paths betweenu andv in G can be obtained frompµ1, pµ2,
andpµ3 by recursively replacing each nontrivial virtual edgeeν , corresponding to a node
ν of T , with a pathpν between the poles ofskeleton(ν). The graph can be preprocessed
so that for each nodeν of T a pathpν in skeleton(ν) between its poles (different from
the virtual edge corresponding to the parent ofν in T) is stored. In the example of
Figure 9(b), the edges of each pathpν are represented with thick black segments.

330 G. Di Battista, R. Tamassia, and L. Vismara

It remains to be proved that this recursive process requires(`) time. We need the
following lemma.

LEMMA 22 [15]. Two S-nodes cannot be adjacent in T.Two P-nodes cannot be adjacent
in T .

During the recursive process, each virtual edgeeν contained in one of the three paths
is replaced with a pathpν . Pathpν contains exactly one edge and this edge is nontrivial
virtual only if ν is a P-node. In all other cases,pν is either a trivial virtual edge or contains
more than one edge. Thus, by Lemma 22, the total number of virtual edges substituted
with a path during the recursive process, i.e., the total number of nodes ofT visited, is
O(`).

If, on the contrary, the 3-connectivity query on verticesu andv returns false, we can
answer a 2-path query using the data structure of Theorem 1.

We now consider connected (nonbiconnected) graphs. We use a suitably augmented
version of theBC-treedata structure for 3-connectivity queries [15]. A description of
the BC-tree is contained in Appendix C for the reader’s convenience.

LetG be a connected graph and letT be a BC-tree ofG. Each B-node ofT is equipped
with an augmented SPQR-tree described above.

Let againu andv be the two vertices on which we want to perform a 3-path query.
We first perform a 2-connectivity query onu andv as shown in [15].

LEMMA 23 [15]. A 2-connectivity query on vertices u andv returns true if and only
if there is a B-nodeµ of T such that u andv are both allocated atµ. Nodeµ can be
determined in O(1) time.

If the 2-connectivity query on verticesu andv returns true, then we can apply the
methods described above for answering a 3-path or a 2-path query.

If, on the contrary, the 2-connectivity query on verticesu andv returns false, we can
easily answer a 1-path query using a spanning tree ofG.

Finally, we consider nonconnected graphs. We use theBC-forestdata structure, which
is a forest of the BC-trees of the connected components ofG.

We first perform a 1-connectivity query onu andv simply testing ifu andv are both
allocated in the same BC-tree of the BC-forest; this can be done inO(1) time. If the
1-connectivity query on verticesu andv returns true, then we can apply the methods
described above for answering a 3-path, 2-path, or 1-path query.

The results described in this section can be summarized in the following two theorems.

THEOREM4. Let G be a planar graph with n vertices. There exists an O(n)-space data
structure for G that can be constructed in O(n+m) time and supports1-, 2-, and3-path
queries in O(`) time, where` is the size of the reported paths.

THEOREM5. Let G be a graph with n vertices. There exists an O(n)-space data struc-
ture for G that can be constructed in O(n2) time and supports1-, 2-, and3-path queries
in O(`) time, where` is the size of the reported paths.

Output-Sensitive Reporting of Disjoint Paths 331

7. Applications of Realizers to Graph Drawing. In this section we show a graph
drawing application of the realizers of triconnected planar graphs.

A straight-linedrawing is a drawing in which each edge is mapped to a straight-line
segment. Planar straight-line drawings of planar graphs are a classical topic in graph
drawing (a survey on graph drawing can be found in [14]).

A classical result independently established by Steinitz and Rademacher [44],
Wagner [52], Fary [20], and Stein [43] shows that every planar graph has a planar straight-
line drawing.

A grid drawing is a drawing in which the vertices have integer coordinates. Indepen-
dently, de Fraysseix et al. [12] and Schnyder [40], [41] have shown that every planar graph
with n vertices has a planar straight-line grid drawing withO(n2) area. In particular,
they presented algorithms for computing a planar straight-line grid drawing of a maximal
planar graph. de Fraysseix et al. define the canonical ordering for maximal planar graphs;
a drawing is constructed by assigning integer coordinates to the vertices according to a
canonical ordering. Schnyder defines the realizers for maximal planar graphs; by using
a realizer, the vertices are assigned integer coordinates in three-dimensional space that
have a purely combinatorial meaning and such that all the vertices lie on a plane. A
drawing in the plane is then obtained by projection.

Planar straight-line drawings have also been studied with the constraint that all faces
be represented by convex polygons (convexdrawings). Tutte [50], [51] has shown that
for a triconnected planar graph a convex drawing can be constructed by solving a system
of linear equations. Kant [30] has presented an algorithm for constructing grid convex
drawings of triconnected planar graphs with quadratic area. The constant factors for
the area have been reduced by Chrobak and Kant [8]. Chrobak et al. [7] have presented
algorithms for constructing convex drawings in the plane and in three-dimensional space
with integer or rational coordinates under various resolution rules. Kant’s approach can be
seen as the natural extension to triconnected planar graphs of the result by de Fraysseix
et al. for maximal planar graphs. He defines the canonical ordering for triconnected
planar graphs recalled in Section 2.3 and the drawing is constructed assigning integer
coordinates to the vertices according to the canonical ordering.

The realizers we have defined for triconnected planar graphs in Section 3 naturally
extend those defined by Schnyder [40], [41] for maximal planar graphs, and can be used
to devise a new algorithm for constructing grid convex drawings of triconnected planar
graphs with quadratic area, as shown below.

We recall here the definition of a weak barycentric representation of a graph given by
Schnyder [40], [41]. Aweak barycentric representationof a graphG is a mapping of
each vertexv of G to a distinct point(vb, vg, vr) in three-dimensional space such that
the following conditions are satisfied:

1. For each vertexv of G, vb + vg + vr = c, wherec is a constant dependent onG.
2. For each edge(u, w) and each vertexv 6= u, w of G, there exist two coordinates

i, j ∈ {b, g, r } such that(ui ,uj) <lex (vi , vj) and(wi , wj) <lex (vi , vj).

Following Schnyder [40], [41], we can obtain a weak barycentric representation of a
triconnected planar graph by using a realizer to assign coordinates to the vertices; these
coordinates have a purely combinatorial meaning.

332 G. Di Battista, R. Tamassia, and L. Vismara

LEMMA 24. Let G be a triconnected planar graph equipped with a realizer. For each
vertexv of G, let lb(v), l g(v), and lr (v) be the number of faces in Rb(v), Rg(v), and
Rr (v), respectively. The mapping(vb, vg, vr) = (lb(v), l g(v), lr (v)) is a weak barycen-
tric representation.

PROOF. Condition 1 of the weak barycentric representations is trivially satisfied, since,
for each vertexv, vb + vg + vr = l − 1, wherel is the number of faces ofG.

As for Condition 2, leti , j , andk be three consecutive colors in the circularly ordered
set {b, g, r }; let (u, w) be an edge ofG and letv 6= u, w be a vertex ofG. In order
to simplify the exposition of the proof, we definēRi (v) = Ri (v) − {pj (v) ∪ pk(v)},
R̄j (v) = Rj (v)− {pk(v) ∪ pi (v)}, andR̄k(v) = Rk(v)− {pi (v) ∪ pj (v)}. Without loss
of generality, letu ∈ Ri (v). If u ∈ R̄i (v), then, by planarity ofG, w 6∈ R̄j (v) and
w 6∈ R̄k(v). Thus, the following five cases are possible:

1. u, w ∈ R̄i (v); by Lemma 10,Ri (u) ⊂ Ri (v) andRi (w) ⊂ Ri (v); henceui < vi and
wi < vi ;

2. u ∈ R̄i (v) andw ∈ pk(v); by Lemma 10,Ri (u) ⊂ Ri (v), henceui < vi ; two
subcases are possible:
(a) v 6∈ pj (w); by Lemma 10,Ri (w) ⊂ Ri (v), hencewi < vi ;
(b) v ∈ pj (w); by Lemma 10,Ri (w) = Ri (v), hencewi = vi ; however, still by

Lemma 10,Rj (w) ⊂ Rj (v), hencewj < vj ;
3. u ∈ R̄i (v) andw ∈ pj (v); analogous to Case 2;
4. u, w ∈ pk(v); without loss of generality, letw be an ancestor ofu in Tk; four subcases

are possible:
(a) u 6∈ pj (w) and v 6∈ pj (u); by Lemma 10,Ri (w) ⊂ Ri (u) ⊂ Ri (v) hence

wi < ui < vi ;
(b) u ∈ pj (w) and v 6∈ pj (u); by Lemma 10,Ri (w) = Ri (u) ⊂ Ri (v), hence

wi = ui < vi ;
(c) u 6∈ pj (w) and v ∈ pj (u); by Lemma 10,Ri (w) ⊂ Ri (u) = Ri (v), hence

wi < ui = vi ; however, still by Lemma 10,Rj (u) ⊂ Rj (v), henceuj < vj ;
(d) u ∈ pj (w) and v ∈ pj (u); by Lemma 10,Ri (w) = Ri (u) = Ri (v), hence

wi = ui = vi ; however, still by Lemma 10,Rj (w) ⊂ Rj (u) ⊂ Rj (v), hence
wj < uj < vj ;

5. u, w ∈ pj (v); analogous to Case 4.

In all five cases, Condition 2 is satisfied.

THEOREM6. Let G be a triconnected plane graph with n vertices and l faces. A convex
grid drawing of G with height l− 2 and width l− 2 can be computed in O(n) time and
O(n) space.

PROOF. Let 0 be the straight-line drawing ofG resulting from the weak barycentric
representation of Lemma 24.

First, note that, by Condition 1 of the weak barycentric representations, all the points
representing vertices ofG lie on a planeπ in three-dimensional space defined by equation
b+ g+ r = l −1; in particular, verticessb, sg, andsr are mapped to points(l −1,0,0),
(0, l − 1,0), (0,0, l − 1), respectively.

Output-Sensitive Reporting of Disjoint Paths 333

v

lb

lr

lg

Fig. 10.The blue, green, and red wedges of a vertex.

The planarity of0 follows from Lemma 2.1 in [41].
The convexity of0 can be proved as follows. Letv be an internal vertex ofG. By

Condition 1 of the weak barycentric representations, if we fix coordinatevb, then the
point representingv lies on a linelb of π , which is the projection onπ of line g+ r = cb

of theg–r plane, wherecb = l−1−vb. Linesl g andlr and constantscg andcr are defined
in a similar way. Sinceπ intersects theb-, g-, andr -axis at the same coordinatel − 1,
lineslb, l g, andlr cross at(vb, vg, vr) and form six 60◦ angles (see Figure 10). For each
line l i , i ∈ {b, g, r }, let the positive (resp. negative) half-plane be the open half-space
containing (resp. not containing)si . Let the blue positive (resp. negative) wedge be the
portion of the positive (resp. negative) half-space oflb delimited byl g andlr ; the green
and red positive (resp. negative) wedges are defined in a similar way. Letx, y, andz
be the parents ofv in Tb, Tg, andTr , respectively. Thusv ∈ Rb(x), and by Lemma 10
(Case 1, 2, or 3 withk = b, i = g, and j = r) Rb(v) ⊂ Rb(x), hencevb < xb; still by
Lemma 10,Rg(x) ⊆ Rg(v) and Rr (x) ⊆ Rr (v) (where only one equality may hold),
hencexg ≤ vg andxr ≤ vr (where only one equality may hold). If we fix coordinatexb,
then the point representingx lies on a linel ′b of π , which is the projection onπ of line
g+ r = c′b of theg–r plane, wherec′b = l − 1− xb < cb. Hence,l ′b lies in the positive
half-space oflb. In a similar way,l ′g lies in the negative half-space ofl g or l ′g = l g, and
l ′r lies in the negative half-space oflr or l ′r = lr (where only one equality may hold). It
follows that the point representingx must lie in the positive blue wedge ofv. Similarly
it can be proved that the points representingy andz must lie in the positive green and
red wedges ofv, respectively. Hence, no angle aroundv can be greater then 180◦.

As for the external face, the points representingsb, sg, andsr are the vertices of
an equilateral triangle. Leti , j , and k be three consecutive colors in the circularly
ordered set{b, g, r }. For each two consecutive verticesu and v of ext(si , sj), uk =
vk = 0. It follows that, by Condition 1 of the weak barycentric representations, all the
vertices ofext(si , sj) are collinear. Thus, the external face is also represented as a convex
polygon.

A convex grid drawing with heightl − 2 and widthl − 2 in the plane can be obtained
by projecting0, e.g., by dropping the red coordinate.

334 G. Di Battista, R. Tamassia, and L. Vismara

Finally, we prove the time and space complexity. To compute the coordinates we use
both a realizerTb, Tg, Tr of G, and the induced realizerT∗b , T∗g , T∗r of the extended
dual graphG∗ of G. The extended dual graph ofG∗ can be easily constructed in linear
time. By Lemma 3, a realizer ofG and the induced realizer ofG∗ can be constructed in
linear time and space. Thus we only have to prove that the coordinates for the vertices
of G can be computed in linear time. In particular, we prove that, for each vertexv of
G, coordinatevk, i.e., the number of faces inRk(v), can be computed by visitingT∗k , Ti ,
andTj .

For each vertexv of G, we initialize coordinatevk to l−1, i.e., to the number of internal
faces ofG. We then subtract fromvk the number of faces that are not contained inRk(v);
this can be done as follows. First we compute, for each vertexv∗ of T∗k , the number of its
descendants, includingv∗ itself, and store it in variablenumdescendantsk(v

∗); this can
be done by a postorder visit ofT∗k . Second, we perform a preorder visit ofTi ; we use an
auxiliary variablesumdescendantsi initialized to 0. For each edge(u, v) traversed during
the visit, let(u∗, v∗)be the dual edge of(u, v), wherev∗ is the vertex ofG∗ corresponding
to the face ofG on the left of(u, v); if (u∗, v∗) ∈ T∗k , we sumnumdescendantsk(v

∗)
to sumdescendantsi and then subtractsumdescendantsi from coordinatevk. Third, we
perform a similar preorder visit ofTj . The only difference with the previous visit of

g

r

b

π21

1 2345

67
8

9

10

11
12

13

15
1614

1718

19

20

Fig. 11.A convex grid drawing of the triconnected plane graph of Figure 1.

Output-Sensitive Reporting of Disjoint Paths 335

Ti is that now, for each edge(u, v) traversed during the visit,v∗ is the vertex ofG∗

corresponding to the face ofG on the right of(u, v).
It is easy to see that, at the end of the process, for each vertexv of G coordinatevk is

equal to the number of faces inRk(v).

A result similar to Theorem 6 was claimed by Schnyder and Trotter [42], but, to the
best of our knowledge, no proof has been published.

A convex grid drawing of the triconnected plane graph of Figure 1 produced by the
above algorithm is shown in Figure 11.

8. Conclusions. The contributions of this paper can be summarized as follows:

• We have defined, analyzed, and shown how to compute efficiently realizers of tri-
connected planar graphs, a combinatorial structure that unifies and extends various
previous constructions. Realizers play for triconnected planar graphs a similar role as
bipolar orientations for biconnected planar graphs.
• We have presented the first data structure that supports output-sensitive 1-, 2-, and 3-

path queries in general graphs. The previous best methods for performing path queries
in general graphs withn vertices do not exploit preprocessing and haveO(n) time
complexity, irrespectively of the output size. Our data structure and query algorithm
are both theoretically optimal and practically useful.
• We have presented a newO(n)-time algorithm for constructing anO(n2)-area convex

grid drawing of a triconnected planar graph withn vertices. The algorithm extends the
barycentric drawing method for maximal planar graphs to triconnected planar graphs.

Appendix A. Results onk-Path and k-Connectivity Queries. Table 1 summarizes
the previous and new results on methods fork-path andk-connectivity queries.

Table 1.Summary of results on methods fork-path andk-connectivity queries.

Graph k Space Preprocessing k-Conn. k-Path References

Previous results

General Any O(n+m) — O(m
√

n) O(m
√

n) [18]
General Fixed O(n+m) — O(n+m) O(n+m) [18]
Planar Any O(n) — O(n) O(n) [38]

(k− 1)-Conn. Fixedk > 4 O(n) O(n4m) O(1) O(n) [10]
General k ≤ 3 O(n) O(n+m) O(1) O(n) [15], [45], [53]
General k = 4 O(n) O(nα(m,n)+m) O(1) O(n) [29]

General k = 1 O(n) O(n+m) O(1) O(`) —

New results

General k = 2 O(n) O(n) O(1) O(`) Section 2.2
Planar k = 3 O(n) O(n) O(1) O(`) Section 4
General k = 3 O(n) O(n2) O(1) O(`) Section 5
Planar k ≤ 3 O(n) O(n) O(1) O(`) Section 6
General k ≤ 3 O(n) O(n2) O(1) O(`) Section 6

336 G. Di Battista, R. Tamassia, and L. Vismara

Appendix B. The SPQR-Tree. In this appendix theSPQR-treepresented in [15] and
[16] is described. LetG be a biconnected graph. Asplit pair of G is either a pair of
adjacent vertices or a separation pair. In the former case the split pair is calledtrivial ,
in the latternontrivial. A split componentof a split pair{u, v} is either an edge(u, v)
or a maximal subgraphC of G such thatC containsu andv, and{u, v} is not a split
pair ofC. In the former case the split component is calledtrivial , in the latternontrivial.
Note that each vertex ofG distinct fromu andv belongs to exactly one nontrivial split
component of{u, v}. Let {s, t} be a split pair ofG. A maximal split pair{u, v} of G with
respect to{s, t} is a split pair ofG distinct from{s, t} such that, for any other split pair
{u′, v′} of G, there exists a split component of{u′, v′} containing verticesu, v, s, andt .

In the graph of Figure 9(a),{v1, v5} is a trivial split pair,{v9, v12} is a nontrivial split
pair, edge(v1, v5) is a trivial split component, the subgraph induced byv9, v10, v11, and
v12 is a nontrivial split component, split pair{v1, v15} is maximal with respect to{v3, v7},
while split pair{v1, v12} is not maximal with respect to{v3, v7}.

Let e = (s, t) be an edge ofG, called thereference edge. The SPQR-treeT of G
with respect toe describes a recursive decomposition ofG induced by its split pairs.
TreeT is a rooted ordered tree whose nodes are of four types: S, P, Q, and R. Each node
µ of T has an associated biconnected multigraph, called theskeletonof µ and denoted
by skeleton(µ). Also, each nodeµ of T (except the root) is associated with an edge of
the skeleton of the parentν of µ, called thevirtual edgeof µ in skeleton(ν); at the same
time,ν is associated with a virtual edge inskeleton(µ). TreeT is recursively defined as
follows:

Trivial Case: If G consists of exactly two parallel edges betweens and t , thenT
consists of a single Q-node whose skeleton isG itself.

Parallel Case: If the split pair{s, t}has at least three split componentsG0 = e,G1, . . . ,

Gk, k ≥ 2, then the root ofT is a P-nodeµ. Graphskeleton(µ) consists ofk+ 1
parallel edges betweens andt , denotedeµ0,eµ1, . . . ,eµk , whereeµ0 = e.

Series Case: If the split pair{s, t} has exactly two split components and one of them
has at least one cut-vertex, then the root ofT is an S-nodeµ. One of the split
components of{s, t} is the reference edgee. Let c1, . . . , ck−1, k ≥ 2, be the cut-
vertices that partitionG − e into its blocksG1, . . . ,Gk, in this order froms to t .
Graphskeleton(µ) is the cycleeµ0,eµ1, . . . ,eµk , whereeµ0 = e, c0 = s, ck = t ,
andeµi connectsci−1 with ci , i = 1, . . . , k.

Rigid Case: If none of the cases above applies, then the root ofT is an R-nodeµ. Let
{s1, t1}, . . . , {sk, tk}, k ≥ 1, be the maximal split pairs ofG with respect to{s, t},
and, fori = 1, . . . , k, let Gi be the union of all the split components of{si , ti }
except the one containing the reference edgee. Graphskeleton(µ) is obtained
from G by replacing each subgraphGi with the edgeeµi betweensi andti .

For each split componentGi , i = 1, . . . , k, let eµ be an additional edge between the
two vertices of the split pair identifyingGi . Except for the trivial case,µ has children
µ1, . . . , µk in this order, such thatµi is the root of the SPQR-tree of graphGi ∪ eµ,
i = 1, . . . , k, with respect to reference edgeeµ. The tree so obtained has a Q-node
associated with each edge ofG, except the reference edgee. We complete the SPQR-
tree by replacing the reference edgee in skeleton(µ) with a virtual edge, by adding
another Q-node, representinge, and by making it the parent ofµ so that it becomes

Output-Sensitive Reporting of Disjoint Paths 337

the root. An example of an SPQR-tree is shown in Figure 9(c), where the Q-nodes are
represented by squares and the skeletons of the Q-nodes are not shown.

The virtual edge of nodeµi is edgeeµi of skeleton(µ), while edgeeµ of skeleton(µi)

is the virtual edge of nodeµ. A virtual edgeeµi is said to betrivial if the corresponding
nodeµi is a Q-node,nontrivialotherwise. The endpoints ofeµi are called thepolesofµi .
GraphGi is called thepertinent graphof nodeµi , and theexpansion graphof edgeeµi .

In Figure 9 the nontrivial virtual edges are represented by dotted lines and the trivial
virtual edges are represented by solid lines.

Letµ be a node ofT . We have:

• if µ is an R-node, thenskeleton(µ) is a triconnected simple graph;
• if µ is an S-node, thenskeleton(µ) is a cycle;
• if µ is a P-node, thenskeleton(µ) is a triconnected multigraph consisting of a bundle

of multiple edges;
• if µ is a Q-node, thenskeleton(µ) is a biconnected multigraph consisting of two

multiple edges.

The skeletons of the nodes ofT are homeomorphic to subgraphs ofG. Also, the
union of the sets of split pairs of the skeletons of the nodes ofT is equal to the set of
split pairs of G. It is possible to show that SPQR-trees of the same graph with respect
to different reference edges are isomorphic and are obtained one from the other by
selecting a different Q-node as the root. SPQR-trees are closely related to the classical
decomposition of biconnected graphs into triconnected components [23]. Namely, the
triconnected components of a biconnected graphG are in one-to-one correspondence
with the skeletons of the non-Q-nodes of the SPQR-tree ofG: the skeletons of the R-nodes
correspond to triconnected simple graphs, the skeletons of the S-nodes to “polygons”,
and the skeletons of the P-nodes to “bonds.”

Let v be a vertex ofG. Theallocation nodesof v are the nodes ofT whose skeleton
containsv. The lowest common ancestor of the allocation nodes ofv is itself an allocation
node ofv and is called theproper allocation node ofv, denotedproper(v). If v = s
or v = t (the endpoints of the reference edge) we conventionally defineproper(v) as
the unique child of the root ofT (recall that the root ofT is the Q-node representing
to the reference edge). Ifv 6= s, t , nodeproper(v) is either an R-node or an S-node;
also,proper(v) is the only allocation nodeµ of v such thatv is not a pole ofµ. The set
of verticesv with proper allocation nodeµ is denotedproperset(µ). If µ is a (proper)
allocation node ofv, we say thatv is (properly) allocated atµ.

The SPQR-treeT of a graph withn vertices andm edges hasm Q-nodes andO(n)S-,
P-, and R-nodes. The total number of vertices of the skeletons stored at the nodes ofT
is O(n). Also, it can be constructed inO(n+m) time using a variation of the algorithm
given in [23].

Appendix C. The BC-Tree. In this appendix theBC-treepresented in [15] and [16]
is described. LetG be a connected graph withn vertices. The BC-treeT of G has a
B-node for each block (biconnected component) ofG, and a C-node for each cutvertex
of G. Edges inT connect each B-nodeµ to the C-nodes associated with the cutvertices
in the block ofµ. The BC-tree is rooted at an arbitrary B-node. Also the B-node of each

338 G. Di Battista, R. Tamassia, and L. Vismara

nontrivial blockB stores the SPQR-tree ofB. Observe that the number of blocks ofG
is O(n), and the total number of vertices in the blocks ofG is O(n) as well.

The BC-tree is a variation of the data structures for maintaining biconnected compo-
nents described in [45] and [53]. The main difference is that an SPQR-tree is attached
at each B-node.

If vertex v is a cutvertex,bcproper(v) denotes the C-node associated withv. Other-
wise,bcproper(v) denotes the B-node of the unique block containingv. It is easy to see
that, knowingµ1 = bcproper(v1) andµ2 = bcproper(v2), we can determine inO(1)
time whetherv1 andv2 are in the same block ofG [45]: namely the block associated
with nodeµ contains verticesv1 andv2 if and only if the undirected path ofT between
µ1 andµ2 containsµ but no other B-node.

The BC-tree of a graph withn vertices andm edges can be constructed inO(n+m)
time.

References

[1] T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.Comput. Geom. Theory Appl.,
9:159–180, 1998.

[2] J. A. Bondy and U. S. R. Murty.Graph Theory with Applications. North-Holland, Amsterdam, 1976.
[3] G. R. Brightwell and W. T. Trotter. The order dimension of convex polytopes.SIAM J. Discrete Math.,

6(2):230–245, 1993.
[4] G. R. Brightwell and W. T. Trotter. The order dimension of planar maps.SIAM J. Discrete Math.,

10(4):515–528, 1997.
[5] J. Cheriyan and S. N. Maheshwari. Finding nonseparating induced cycles and independent spanning

trees in 3-connected graphs.J. Algorithms, 9:507–537, 1988.
[6] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs using

PQ-trees.J. Comput. System Sci., 30(1):54–76, 1985.
[7] M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of graphs in two and three dimensions.

In Proc. 12th Ann. ACM Symp. Comput. Geom., pages 319–328, 1996.
[8] M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs.Internat. J. Comput.

Geom. Appl., 7(3):211–223, 1997.
[9] M. Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs.Comput. Geom. Theory

Appl., 11(1):29–54, 1998.
[10] R. F. Cohen, G. Di Battista, A. Kanevsky, and R. Tamassia. Reinventing the wheel: An optimal data

structure for connectivity queries. InProc. 25th Ann. ACM Symp. Theory Comput., pages 194–200,
1993.

[11] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. Bipolar orientations revisited.Discrete Appl.
Math., 56:157–179, 1995.

[12] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.Combinatorica,
10(1):41–51, 1990.

[13] H. de Fraysseix and P. Rosenstiehl. Structures combinatoires pour des traces automatiques de reseaux.
In Proc. 3rd European Conf. on CAD/CAM and Computer Graphics, pages 332–337, 1984.

[14] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated
bibliography.Comput. Geom. Theory Appl., 4(5):235–282, 1994.

[15] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with SPQR-trees.
Algorithmica, 15(3):302–318, 1996.

[16] G. Di Battista and R. Tamassia. On-line planarity testing.SIAM J. Comput., 25(5):956–997, 1996.
[17] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor,Combinatorial Algorithms, pages 91–96.

Algorithmics Press, New York, 1972.
[18] S. Even and R. E. Tarjan. Network flow and testing graph connectivity.SIAM J. Comput., 4:507–518,

1975.

Output-Sensitive Reporting of Disjoint Paths 339

[19] S. Even and R. E. Tarjan. Computing an st-numbering.Theoret. Comput. Sci., 2:339–344, 1976.
[20] I. Fary. On straight lines representation of planar graphs.Acta Sci. Math. Szeged., 11:229–233, 1948.
[21] F. Harary.Graph Theory. Addison-Wesley, Reading, MA, 1969.
[22] X. He and M.-Y. Kao. Regular edge labelings and drawings of planar graphs. In R. Tamassia and I. G.

Tollis, editors,Graph Drawing(Proc. GD ’94), volume 894 of Lecture Notes in Computer Science,
pages 96–103. Springer-Verlag, Berlin, 1995.

[23] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.SIAM J.Comput., 2(3):135–
158, 1973.

[24] A. Huck. Independent trees in graphs.Graphs Combin., 10(1):29–45, 1994.
[25] A. Huck. Disproof of a conjecture about independent branchings ink-connected directed graphs.

J. Graph Theory, 20(2):235–239, 1995.
[26] A. Huck. Independent trees and branchings in planar multigraphs.Graphs Combin., to appear.
[27] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.Inform.and Comput.,

79(1):43–59, 1988.
[28] T. Kameda. On the vector representation of the reachability in planar directed graphs.Inform. Process.

Lett., 3(3):75–77, 1975.
[29] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of the four-connected

components of a graph. InProc. 32nd Ann. IEEE Symp. Found. Comput. Sci., pages 793–801, 1991.
[30] G. Kant. Drawing planar graphs using the canonical ordering.Algorithmica, 16(1):4–32, 1996. Special

Issue on Graph Drawing, G. Di Battista and R. Tamassia, editors.
[31] G. Kant and X. He. Two algorithms for finding rectangular duals of planar graphs. In J. van Leeuwen,

editor,Graph-Theoretic Concepts in Computer Science(Proc. WG ’93), volume 790 of Lecture Notes
in Computer Science, pages 396–410. Springer-Verlag, Berlin, 1993.

[32] M.-Y. Kao, M. Fürer, X. He, and B. Raghavachari. Optimal parallel algorithms for straight-line grid
embeddings of planar graphs.SIAM J. Discrete Math., 7(4):632–646, 1994.

[33] D. Kelly and I. Rival. Planar lattices.Canad. J. Math., 27(3):636–665, 1975.
[34] S. Khuller and B. Schieber. On independent spanning trees.Inform. Process. Lett., 42(6):321–323, 1992.
[35] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. InTheory of

Graphs: International Symposium, pages 215–232. Gordon and Breach, New York, 1967.
[36] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparsek-connected spanning sub-

graph of ak-connected graph.Algorithmica, 7:583–596, 1992.
[37] F. P. Preparata and R. Tamassia. Fully dynamic point location in a monotone subdivision.SIAM J.

Comput., 18:811–830, 1989.
[38] H. Ripphausen-Lipa, D. Wagner, and K. Weihe. The vertex-disjoint Menger problem in planar graphs.

SIAM J. Comput., 26(2):331–349, 1997.
[39] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs.

Discrete Comput. Geom., 1(4):343–353, 1986.
[40] W. Schnyder. Planar graphs and poset dimension.Order, 5:323–343, 1989.
[41] W. Schnyder. Embedding planar graphs on the grid. InProc. 1st Ann. ACM–SIAM Symp. Discrete

Algorithms, pages 138–148, 1990.
[42] W. Schnyder and W. T. Trotter. Convex embeddings of 3-connected plane graphs.Abstracts Amer. Math.

Soc., 13(5):502, 1992.
[43] S. K. Stein. Convex maps.Proc. Amer. Math. Soc., 2(3):464–466, 1951.
[44] E. Steinitz and H. Rademacher.Vorlesungen̈uber die Theorie der Polyeder. Julius Springer, Berlin,

1934.
[45] R. Tamassia. On-line planar graph embedding.J. Algorithms, 21(2):201–239, 1996.
[46] R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs.Discrete

Comput. Geom., 1(4):321–341, 1986.
[47] R. Tamassia and I. G. Tollis. Planar grid embedding in linear time.IEEE Trans. Circuits and Systems,

CAS-36(9):1230–1234, 1989.
[48] R. Tamassia and J. S. Vitter. Parallel transitive closure and point location in planar structures.SIAM J.

Comput., 20(4):708–725, 1991.
[49] P. Tong and E. L. Lawler. A faster algorithm for finding edge-disjoint branchings.Inform. Process. Lett.,

17(2):73–76, 1983.
[50] W. T. Tutte. Convex representations of graphs.Proc. London Math. Soc., 10(38):304–320, 1960.

340 G. Di Battista, R. Tamassia, and L. Vismara

[51] W. T. Tutte. How to draw a graph.Proc. London Math. Soc., 13(52):743–768, 1963.
[52] K. Wagner. Bemerkungen zum vierfarbenproblem.Jahresber. Deutsch. Math.-Verein., 46:26–32, 1936.
[53] J. Westbrook and R. E. Tarjan. Maintaining bridge-connected and biconnected components on-line.

Algorithmica, 7(5/6):433–464, 1992.
[54] R. W. Whitty. Vertex-disjoint paths and edge-disjoint branchings in directed graphs.J. Graph Theory,

11(3):349–358, 1987.
[55] S. K. Wismath. Characterizing bar line-of-sight graphs. InProc. 1st Ann. ACM Symp. Comput. Geom.,

pages 147–152, 1985.
[56] A. Zehavi and A. Itai. Three tree-paths.J. Graph Theory, 13(2):175–188, 1989.

