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On Pattern Frequency Occurrences in a
Markovian Sequence1

M. Régnier2 and W. Szpankowski3

Abstract. Consider a given patternH and a random textT generated by a Markovian source. We study
the frequency of pattern occurrences in a random text when overlapping copies of the pattern are counted
separately. We present exact and asymptotic formulae for moments (including the variance), and probability of
r pattern occurrences for three different regions ofr , namely: (i)r = O(1), (ii) central limit regime, and (iii)
large deviations regime. In order to derive these results, we first construct certain language expressions that
characterize pattern occurrences which are later translated into generating functions. We then use analytical
methods to extract asymptotic behaviors of the pattern frequency from the generating functions. These findings
are of particular interest to molecular biology problems (e.g., finding patterns with unexpectedly high or low
frequencies, and gene recognition), information theory (e.g., second-order properties of the relative frequency),
and pattern matching algorithms (e.g.,q-gram algorithms).

Key Words. Frequency of pattern occurrences, Markov source, Autocorrelation polynomials, Languages,
Generating functions, Asymptotic analysis, Large deviations.

1. Introduction. Repeated patterns and related phenomena in words (also called se-
quences or strings) are known to play a central role in many facets of computer science,
telecommunications, and molecular biology. One of the most fundamental questions
arising in such studies is the frequency of pattern occurrences in another string known
as thetext. Applications of these results include wireless communications (see [1]),
approximate pattern matching (see [23] and [37]), molecular biology (see [32]), code
synchronization (see [18]–[20]), and source coding (see [8]). In fact, this work and the
one by Fudos et al. [14] were motivated by problems arising in approximate pattern
matching byq-grams (see [23] and [37]), developing performance models for database
systems in wireless communications (see [1]), and gene recognition in a DNA sequence
(see [32]), respectively. Actually, one of the earliest applications appears to be in code
synchronization (see [18]).

We study the problem in a probabilistic framework in which the text is generated
randomly either by a memoryless source (the so-calledBernoulli model) or by a Marko-
vian source (the so-calledMarkovian model). In the former, every symbol of a finite
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632 M. Régnier and W. Szpankowski

alphabet is created independently of the other symbols, and the probabilities of sym-
bol generation are not the same (if all probabilities of symbol generation are the same,
the model is called thesymmetricBernoulli model). In the Markovian model, the next
symbol depends on a finite number of previous symbols.

The problem of pattern occurrences in a random string is a classical one. Feller in
1968 already suggested a solution in his book [10]. Several other authors also contributed
to this problem: e.g., see [3], [5], [22], [27], [31] and references therein. However, the
most important recent contributions belong to Guibas and Odlyzko, who in a series of
papers (see [18]–[20]) laid the foundations of the analysis for the symmetric Bernoulli
model. In particular, the authors of [20] computed the moment generating function for
the number of strings of lengthn that donot contain any one of a given set of patterns.
Certainly, this suffices to estimate the probability of at least one pattern occurrence in
a random string generated by the symmetric Bernoulli model. Furthermore, Guibas and
Odlyzko [20] in a passing remark also presented some basic results for several pattern
occurrences in a random text for the symmetric Bernoulli model, and for the probability
of no occurrence of a given pattern in the asymmetric Bernoulli model. Recently, Fudos
et al. [14] computed the probability of exactlyr occurrences of a pattern in a random
text in theasymmetricBernoulli model, just directly extending the results of Guibas
and Odlyzko. The Markovian model was tackled by Li [27], and Chrysaphinou and
Papastavridis [5] who extended the Guibas and Odlyzko results of no pattern occurrence
to Markovian texts. Prum et al. [33] (see also [36]) obtained the limiting distribution
for the number of pattern occurrences in the Markovian model but without an explicit
computation of the variance. Recently, Flajolet et al. [12] considered pattern occurrences
in a random tree. Some other contributions are [3], [7], [16], [24], [25], [30], [32],
and [39].

In this paper we provide a complete characterization of the frequency of pattern oc-
currences in a random text generated according either to the Bernoulli model or the
Markovian model. Our method of analysis treats both models uniformly, and therefore
we concentrate on discussing the Markovian model. LetOn denote the number of occur-
rences of a given patternH in a random text whenoverlappingcopies of the pattern are
counted separately. In Theorem 2.1 we present the generating function ofOn which can
be used to compute exactly the probability ofr pattern occurrences in the text. Further-
more, this allows for an easy computation of all moments, using for instance a symbolic
computation system. In this paper we present explicit formulae for the mean and the
variance ofOn. We observe that the evaluation of the variance was quite challenging
as pointed out in [32] and [33]. It turns out that the variance depends on the internal
structure of the pattern through the so-calledautocorrelation polynomial. We should
point out that Prum et al. [33] proposed two statistical methods to estimate the variance
which should be compared with our computations (see Theorem 2.2 and Section 3).

We also estimate asymptotically the probability of exactlyr occurrences of the pattern
for three different ranges ofr (see Theorem 2.2); namely, (i)r = O(1), (ii) r =
EOn + x

√
n for x = O(1) (i.e., central limit regime), and (iii)r = (1+ δ)EOn (i.e.,

large deviations regime). For our results to hold we assume thatnP(H)→∞ (see [16]
for other regimes ofnP(H)). However, for agivenpatternH it is natural to assume
that the length of the pattern is constant with respect ton (and we adopt this assumption
throughout).
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Our results should be of particular interest to molecular biology, pattern matching al-
gorithms, and information theory (e.g., relative frequency, code synchronization, coding,
etc.). Two problems of molecular biology can benefit from these results, namely: finding
patterns with unexpectedly (high or low) frequencies (the so-called contrast words) [15],
and recognizing genes by using statistical properties [11]. Statistical methods have been
successfully used from the early ’80s to extract information from sequences of DNA.
In particular, identifying deviant short motifs, the frequency of which is either too high
or too low, might point out unknown biological information (see [11] and others for the
analysis of functions of contrast words in DNA texts). From this perspective, our results
give estimates for the statistical significance of deviations of word occurrences from the
expected values and allow a biologist to build a dictionary of contrast words in genetic
texts. Recently, Coward [6] used our results in the search of exceptional patterns in the
yeast genome.

Another biological problem for which our results might be useful is gene recog-
nition. Most gene recognition techniques rely on the observation that the statistics of
patterns (motifs/codon) occurrences in coding and noncoding regions are different. Our
findings allow the estimation of the statistical significance of such differences, and the
construction of the confidence interval for pattern occurrences.

These results can also be used to recognize statistical properties of various other in-
formation sources such as images, text, etc. In information theory,relative frequency
defined as1n = On/(n − m+ 1), wherem is the length of the pattern, is often used
to assess statistics of information sources. It is well known [8], [29] that1n converges
almost surely to the probabilityP(H) of the patternH , but much less is known about
second-order properties of1n such as the limiting distribution, large deviations, and
rate of convergence. The rate of convergence to the source entropy—which is related
to the rate of convergence of the relative frequency [29]—has recently appeared in the
formulation of some results on data compression (see [28], [38], and [41]). Marton and
Shields [29] proved that1n converges exponentially fast toP(H) for sources satis-
fying the so-calledblow-up property(e.g., Markov sources, hidden Markov, etc.). Our
results characterize precisely such a convergence in the central limit regime and the large
deviations regime for Markovian sources.

In the accompanying paper [34], we extended our results toapproximatepattern
occurrences or a set of pattern occurrences. Such extension is vital to some approximate
pattern matching algorithms. Recently, Sutinen and Szpankowski [37] used these results
for performance evaluation ofq-gram filtration algorithms.

This paper is organized as follows. In the next section we present our main results
and their consequences. The proofs are delayed until the last section. Our derivation
in Section 3.1 use a language approach, thus is also valid for Markovian models since
no probabilistic assumption is made. In Section 3.2 we translate language relationships
into associated generating functions, and finally we use analytical tools in Section 3.3
to derive asymptotic results.

2. Main Results. We consider two strings, a pattern stringH = h1h2 · · · hm and a text
stringT = t1t2 · · · tn of respective lengths equal tom andn over an alphabetS of sizeV .
We writeS = {1,2, . . . ,V} to simplify the presentation. Throughout, we assume that
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the pattern string isfixedand given, while the text string is random. More precisely, we
consider the following two probabilistic models of text generation:

(B) BERNOULLI MODEL. The text is a realization of a sequence of independently, iden-
tically distributed (i.i.d.) random variables, such that a symbols ∈ S occurs with prob-
ability P(s).

(M) MARKOVIAN MODEL. The text is a realization of astationaryMarkov sequence of
orderK , that is, the probability of the next symbol occurrence depends on theK previous
symbols. In most derivations we deal only with the first-order Markov chain (K = 1), and
then we define the transition matrixP = {pi, j }i, j∈S wherepi, j = Pr{tk+1 = j |tk = i }.
By π = (π1, . . . , πV ) we denote the stationary distribution satisfyingπP= π, and we
write5 for the stationary matrix that consists ofV identical rows equal toπ. Finally,
by Z we denote thefundamental matrix Z = (I − (P−5))−1 whereI is the identity
matrix.

Throughout the paper we use systematically the following notation: lowercase bold
letters represents row vectors (e.g.,π), while uppercase bold letters denote matrices
(e.g.,5). To extract a particular element, say with index(i, j ), from a matrix, sayP, we
write [P] i, j = pi, j . Finally, we recall that(I − P)−1 = ∑

k≥0 Pk provided the inverse
matrix exists (i.e., det(I − P) 6= 0 or ‖P‖ < 1 for any matrix norm‖ · ‖). Below,
we write P(H j

i ) = Pr{T j+k
i+k = H j

i } for the probability of an occurrence of substring

H j
i = hi · · · hj in the random textT j+k

i+k between symbolsi + k and j + k for anyk (in
particular,P(H) denotes the probability ofH appearing in the text).

Our goal is to estimate the frequency of multiple pattern occurrences in the text
assuming either the Bernoulli or the Markovian model. We find it convenient and useful
to express our findings in terms of languages. A languageL is a collection of words
satisfying some properties. We associate with a languageL a generating function defined
below.

DEFINITION 1. For any languageL we define its generating functionL(z) as

L(z) =
∑
w∈L

P(w)z|w|,(1)

whereP(w) is the stationary probability of wordw occurrence,|w| is the length ofw,
and we adopt a usual convention thatP(ε) = 1, whereε is the empty word. In addition,
we define theH -conditional generating function ofL as

L H (z) =
∑
w∈L

P(w|w−m = h1 · · ·w−1 = hm)z
|w| =

∑
w∈L

P{w|w−1
−m = H}z|w|,(2)

wherew−i stands for a symbol preceding the first character ofw at distancei .

It turns out that several properties of pattern occurrences depend on the so-called
autocorrelation polynomialthat we define next:
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DEFINITION 2. Given a stringH , we define theautocorrelation setA as

A = {Hm
k+1 : Hk

1 = Hm
m−k+1},(3)

and byHH we denote the set of positionsk satisfyingHk
1 = Hm

m−k+1. The generating
function of languageA is denoted asA(z) and we call it theautocorrelation polynomial.
Its H -conditional generating function is denotedAH (z). In particular,

AH (z) =
∑

k∈H H

P(Hm
k+1|Hk

k )z
m−k(4)

for a Markov chain of orderK = 1.

Before we proceed, we present a simple example illustrating the definitions we have
introduced so far.

EXAMPLE (Autocorrelation Functions). Assume thatH = 101 over a binary alphabet
S = {0,1}. Observe thatHH = {1,3} andA = {ε,01}, whereε is the empty word.
Thus, for the symmetric Bernoulli model (both symbols occur with the same probability
equal to 0.5) we haveA(z) = 1+ z2/4, while for the Markovian model of order 1, we
obtainA101(z) = 1+ p10p01z2.

We can now formulate our main results. In what follows, we denote byOn(H) (or
simply by On) a random variable representing the number of occurrences ofH in a
random textT of sizen. We introduce the generating function of the languageTr of words
that contain exactlyr occurrences ofH , namely,T (r )(z) = ∑

n≥0 Pr{On(H) = r }zn.
We also define a bivariate generating function as follows:

T(z,u) =
∞∑

r=1

T (r )(z)ur =
∞∑

r=1

∞∑
n=0

Pr{On(H) = r }znur(5)

for |z| ≤ 1 and|u| ≤ 1.
Our main results are summarized in the following two theorems. The first theorem

presents exact formulae for the generating functionsT (r )(z) and T(z,u), and can be
used to compute exactly all parameters related to the pattern occurrenceOn(H). In the
second theorem, we provide asymptotic formulae for Pr{On(H) = r } for three regimes
of r , namely: (i)r = O(1), (ii) r = EOn+x

√
Var On whenx = O(1) (i.e., local central

limit), (iii) r = (1+ δ)EOn for someδ (i.e., large deviations). All proofs are presented
in the next section: Section 3.2 contains the proof of Theorem 2.1 while the proof of
Theorem 2.2 can be found in Section 3.3.

THEOREM2.1. Let H be a given pattern of size m, and let T be a random text of length
n generated according to a stationary Markov chain of order1 over a V -ary alphabet
S. The generating functions T(r )(z) and T(z,u) become

T (r )(z) = R(z)Mr−1
H (z)UH (z), r ≥ 1,(6)

T(z,u) = R(z)
u

1− uMH (z)
UH (z),(7)



636 M. Régnier and W. Szpankowski

where

MH (z) = 1+ z− 1

DH (z)
,(8)

UH (z) = 1

DH (z)
,(9)

R(z) = zmP(H)
1

DH (z)
,(10)

with

DH (z) = (1− z)AH (z)+ zmP(H)(1+ (1− z)F(z)).(11)

The function F(z) is defined for|z| ≤ R where R= 1/‖P−5‖ as follows:

F(z) = 1

πh1

[(P−5)(I − (P−5)z)−1]hm,h1,(12)

where h1 and hm are the first and last symbols of H, respectively. In the Bernoulli model,
F(z) = 0, and hence

DH (z) = (1− z)AH (z)+ zmP(H),

with the other formulae as above.

Theorem 2.1 is the starting point of our next finding that deals with asymptotics
for n → ∞ whennP(H) → ∞. The results below are derived in Section 3.3 using
analytical tools.

THEOREM2.2. Let the hypotheses of Theorem2.1 be fulfilled and nP(H)→∞.

(i) Moments. The expectation EOn(H) satisfies, for n ≥ m,

EOn(H) = P(H)(n−m+ 1),(13)

while the variance becomes, for some r> 1,

Var On(H) = nc1+ c2+ O(r−n),(14)

where

c1 = P(H)(2AH (1)− 1− (2m− 1)P(H)+ 2P(H)E1),(15)

c2 = P(H)((m− 1)(3m− 1)P(H)− (m− 1)(2AH (1)− 1)− 2A′H(1))
− 2(2m− 1)P(H)2E1+ 2E2P(H)2,(16)

and the constants E1, E2 are

E1 = 1

πh1

[(P−5)Z]hm,h1,(17)

E2 = 1

πh1

[(P2−5)Z2]hm,h1,(18)
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whereZ = (I − (P−5))−1 is the fundamental matrix of the underlying Markov chain.
In theBernoulli model, E1 = E2 = 0 sinceP= 5, and(14) reduces to an equality for
n ≥ 2m− 1. Thus

Var On(H) = nc1+ c2,(19)

with

c1 = P(H)(2AH (1)− 1− (2m− 1)P(H)),

c2 = P(H)((m− 1)(3m− 1)P(H)− (m− 1)(2AH (1)− 1)− 2A′H (1)).

(ii) Distribution: Caser = O(1). LetρH be the root of DH (z) = 0of smallest modulus
and multiplicity one. ThenρH is real positive and lies outside the unit circle|z| < 1,
and there existsρ > ρH such that

Pr{On(H) = r } =
r+1∑
j=1

(−1) j aj

(
n

j − 1

)
ρ
−(n+ j )
H + O(ρ−n),(20)

where

ar+1 = ρm
H P(H) (ρH − 1)r−1

(D′H (ρH ))r+1
,(21)

and the remaining coefficients can be computed according to

aj = 1

(r + 1− j )!
lim

z→ρH

dr+1− j

dzr+1− j
(T (r )(z)(z− ρH)

r+1)(22)

with j = 1,2, . . . , r .

(iii) Central Limit Regime: Caser = EOn + x
√

Var On. For x = O(1) we have, as
n→∞,

Pr{On(H) = r } = 1√
2πc1n

e−x2/2

(
1+ O

(
1√
n

))
,(23)

where c1 is defined in(15) above.

(iv) Large Deviations: Caser = (1+ δ)EOn. Let a= (1+ δ)P(H) with δ > 0. For
complex t, defineρ(t) to be the root of

1− et MH (e
ρ) = 0,(24)

whileωa andσa are defined as

−ρ ′(ωa) = a,(25)

−ρ ′′(ωa) = σ 2
a .(26)

Then

Pr{On(H)=(1+δ)EOn}= 1

σa
√

2π(n−m+ 1)
e−(n−m+1)I (a)

(
1+O

(
1

n

))
,(27)

where I(a) = aωa + ρ(ωa).
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As mentioned before, the above results find applications in information theory and
molecular biology. For example,relative frequencyis an important concept in information
theory, and it is defined as

1n(H) = On(H)

n−m+ 1
.

Relative frequency appears in the definition of types and typical types (see [8]), and is
often used to estimate information source statistics. As an easy corollary to Theorem
2.2, we obtain the following second-order characterization of1n(H):

COROLLARY 2.1. Under the hypotheses of Theorem2.2, the following hold:

(i) [Central Limit Regime]For x = O(1),

Pr

{
1n(H) = P(H)+ x

√
c1

n−m+ 1

}
= 1√

2πc1n
e−x2/2

(
1+ O

(
1√
n

))
.(28)

(ii) [Large Deviations]For a = (1+ δ)P(H) with δ > 0,

Pr{1n(H) ≥ (1+ δ)P(H)}(29)

= 1

σa
√

2π(n−m+ 1)(1− e−I (a))
e−(n−m+1)I (a)

(
1+ O

(
1

n

))
,

whereωa and I(a) are as defined in Theorem2.2(iii).

3. Analysis. The key element of our analysis is a derivation of the generating function
T(z,u) presented in Theorem 2.1. The first part of the discussion below is quite general
and works uniformly for both the Bernoulli model and the Markovian model. It is based
on constructing some special languages and finding relationships among them. Later, in
Section 3.2 we translate these relations into formulae for generating functions.

3.1. Combinatorial Relationships on Certain Languages. A collection of words shar-
ing a given property is commonly called alanguage. This section is devoted to presenting
combinatorial relationships between some languages that help to derive some results in
a uniform manner. In this section we do not make any probabilistic assumption.

We start with some definitions:

DEFINITION 3. Given a patternH :

(i) Let T be a language of words containing at least one occurrence ofH , and, for any
integerr ≥ 1, let Tr be the language of words containing exactlyr occurrences
of H .

(ii) We defineR as the set of words containing only one occurrence ofH , located at
the right end. We also defineU as

U = {u : H · u ∈ T1},(30)

where the operation·means concatenation of words. In other words, a wordu ∈ U
if H · u has exactly one occurrence ofH at the left end ofH · u.
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(iii) Let M be the language:

M = {w : H · w ∈ T2 andH occurs at the right end ofH · w},

that is,M is a language such thatH ·M has exactly two occurrences ofH at the
left and right ends of a word fromM.

We can now describe languagesT andTr in terms ofR,M, andU . This will further
lead to a simple formula for the generating function ofOn(H).

THEOREM3.1. LanguageT satisfies the fundamental equation

T = R ·M∗ · U .(31)

Notably, languageTr can be represented for any r≥ 1 as follows:

Tr = R ·Mr−1 · U .(32)

Here, by definition,M0 := {ε} andM∗ :=⋃∞r=0Mr .

PROOF. We first prove (32) and obtain our decomposition ofTr as follows: The first
occurrence of H in a word belonging toTr determines a prefixp that is inR. Then a
nonempty wordw that creates the second occurrence ofH is concatenated. Hence,w is
inM. This process is repeatedr − 1 times. Finally, after the lastH occurrence a suffix
u that does not create a new occurrence ofH is added. Equivalently,Hu is such that
u is in U , andw is a proper subword ofHu. Finally, a word belongs toT if, for some
1≤ r <∞, it belongs toTr . The set union

⋃∞
r=1Mr−1 yields preciselyM∗.

We now prove the following result that summarizes relationships between the lan-
guagesR,M andU .

THEOREM3.2. The languagesM, U , andR satisfy⋃
k≥1

Mk = W · H +A− {ε},(33)

U · S = M+ U − {ε},(34)

H ·M = S ·R− (R− H),(35)

whereW is the set, of all words, S is the alphabet set and+ and− are disjoint union
and subtraction of languages. In particular, a combination of(34) and(35) gives

H · U · S − H · U = (S − ε)R.(36)

Additionally, we have

T0 · H = R ·A.(37)
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PROOF. All the relations above are proved in a similar fashion. We first deal with (33).
Let k be the number ofH occurrences inW · H . By definition,k ≥ 1 and the last
occurrence is on the right: this implies thatW · H ⊆ ⋃k≥1Mk. Furthermore, a word
w in

⋃
k≥1Mk is not inW · H iff its size |w| is smaller than|H |. Then the secondH

occurrence inHw overlaps withH , which means thatw is inA− ε.
We now turn to (34). When a characters is added immediately after a wordu from

U , two cases may occur: eitherHus still does not contain a second occurrence ofH ,
which means thatus is a nonempty word ofU , or a newH appears, clearly at the right
end. Thenus is inM. Furthermore, the whole setM+ (U − ε) is attained, i.e., a strict
prefix ofM cannot contain a newH occurrence. Hence, it is inU , and a strict prefix of
aU-word is inU .

We now prove (35). Letx = sw be a word inH ·M wheres is a symbol fromS. As
x contains exactly two occurrences ofH located at its left and right ends,w is inR and
x is inS ·R−R. Reciprocally, if a wordswH fromS ·R is not inR, thenswHcontains
a secondH occurrence starting insw. AswH is inR, the only possible position is at the
left end, and thenx is in H ·M. We now rewrite:

S ·R−R = S ·R− (R ∩ S ·R) = S ·R− (R− H),

which yieldsH ·M− H = (S − ε) ·R.
Deriving (37) is only a little more intricate. Lett be some word inT0. We consider

the factorizationt = w1w2 such thatw2 is the largest suffix that is also an(m−k)-prefix
of H , with k ∈ HH andm = |H |. In other words,w2 is the largest suffix satisfying the
equationw2·H = H ·a, wherea is inA. If w1H were not inR, a second occurrence ofH
would occur inw1H starting inw1. Asw1Ha = w1w2H , this contradicts the maximal
property ofw2. Therefore,T0 · H ⊆ R ·A. Finally, we consider a wordw1Ha inR ·A.
We may rewrite it asH · a = w2 · H . It suffices now to show thatw1w2 ∈ T0. Indeed,
since|w2| < |H |, any occurrence ofH would go acrossw1 andw1H would contain two
occurrences ofH , which contradicts the definition ofR. This provesR · A ⊆ T0 · H ,
and completes the proof of Theorem 3.2.

3.2. Associated Generating Functions. In the previous section we did not make any
probabilisticassumption.Thus,Theorem3.2 is true foranymodel, including theBernoulli
and Markovian ones. In this section we translate the language relationships into gener-
ating functions. Therefore, we need to return to our probabilistic assumptions. Most of
our derivations deal with the Markovian model.

To transfer our language relations into generating functions, we need a few rules as-
sociated with two operations on languages: namely, disjoint union+ and concatenation·
become the sum operation and the multiplication operation on generating functions. We
start with the following simply property that is true for both probabilistic models:

(P1) LetL1 andL2 be two arbitrary languages with generating functionsL1(z) and
L2(z), respectively. Then the languageL = L1+ L2 is transferred into the gener-
ating functionL(z) such that

L(z) = L1(z)+ L2(z).
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To translate the concatenation operation, it is necessary to consider the Bernoulli and
the Markovian models separately. We start with theBernoulli model:

(P2) We now consider a new languageL which is constructed from the concatenation
of two other languages, sayL1 andL2, that is,L = L1 ·L2. In theBernoulli model
the generating functionL(z) of L becomes

L(z) = L1(z)L2(z)

sinceP(wv) = P(w)P(v) for w ∈ L1 andv ∈ L2. In particular, the generating
function L(z) of L = S · L1 is L(z) = zL1(z), whereS is the alphabet set, since
S(z) =∑p∈S P(s)z= z.

In theMarkovian model P(wv) 6= P(w)P(v), thus property (P2) is no longer true.
We have to replace it by a more sophisticated one. We have to conditionL2 on symbols
preceding a word fromL2 (i.e., belonging toL1). In general, for aK -order Markov
chain, one must distinguishV K ending states forL1 andV K initial states forL2. For
simplicity of presentation, we only consider first-order Markov chains (i.e.,K = 1), and
we write`(w) for the last symbol of a wordw. In particular, to rewrite property (P2) we
must introduce the following conditional generating function for a languageL:

L j
i (z) =

∑
w∈L

P(w, `(w) = j |w1 = i )z|w|.

Then for the Markovian model property (P2) becomes:

(P2) LetL =W · V. Then

Ll
k(z) =

∑
i, j∈S

pji W
j

k (z)V
l
i (z),(38)

whereW j
k (z) andVl

i (z) are conditional generating functions forW andV, respec-
tively. To prove this, letw ∈W andv ∈ V. Observe that

P(wv) =
∑
j∈S

P(wv, `(w) = j )

=
∑
j∈S

P(w, `(w) = j )P(v|`(w) = j )

=
∑
j∈S

∑
i∈S

P(w, `(w) = j )pji P(v|v1 = i ).

After conditioning on the first symbol ofW and the last symbol ofV, we prove
(38).

In passing, we observe that in the Markovian model of our problem one actually must
deal only with two kinds of words: We have wordsw for which no assumption is made
on the preceding words (e.g., these are the words in languageRwith generating function
R(z)); and we deal with words for which the preceding word admitsH as a suffix (e.g.,
words inU andM whoseH -conditional generating functions areUH (z) and MH (z),
respectively).

The lemma below together with Theorem 3.1 proves (6) and (7) of Theorem 2.1.
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LEMMA 3.1. The generating functions associated with languagesM,U , andR satisfy

1

1− MH (z)
= AH (z)+ P(H)zm

(
1

1− z
+ F(z)

)
,(39)

UH (z) = MH (z)− 1

z− 1
,(40)

R(z) = P(H)zm ·UH (z),(41)

provided the underlying Markov chain is stationary.

PROOF. We first prove (40). Interestingly, it does not need the stationarity assumption.
We consider the language relationship (34) from Theorem 3.2 which we rewrite as
U ·S−U =M− ε. Observe that

∑
j∈S pi, j z= z. Hence, setU ·S yields (conditioning

on the left occurrence ofH )∑
w∈U

∑
j∈S

P(w j |H)z|w j | =
∑
i∈S

∑
w∈U ,`(w)=i

P(w|H)z|w|
∑
j∈S

pi, j z= UH (z) · z.

Of course,M− ε andU translate intoMH (z)− 1 andUH (z), and (40) is proved.
We now turn our attention to (41), and we use relationship (35) of Theorem 3.2.

Observe thatS ·R can be rewritten as∑
j,i∈S2

∑
iw∈R

P( j iw)z| j iw| = z2
∑
j∈S

∑
i∈S

πj pj,i

∑
iw∈R

P(w|w−1 = i )z|w|.

However, due to the stationarity of the underlying Markov chain
∑

j πj pj,i = πi . As
πi P(w|w−1 = i ) = P(iw), we getzR(z). Furthermore, in (35)H ·M− H translates
into P(H)zm ·(MH (z)−1). Nonetheless, by (40), this becomesP(H)zm ·UH (z)(z−1),
and, after a simplification, we prove (41).

Finally, we deal with (39), and prove it using (33) from Theorem 3.2. The left-hand
side of (33) involves languageM, hence we must condition on the left occurrence of
H . In particular,

⋃
r≥1Mr + ε of (33) translates into 1/(1− MH (z)). Now we deal

withW · H of the right-hand side of (33).Conditioningon the left occurrence ofH , the
generating functionW(z)H(z) ofW · H becomes

WH (z)H(z) =
∑
n≥0

∑
|w|=n

zn+mP(wH |w−1 = `(H))

=
∑
n≥0

∑
|w|=n

zn P(wh1|w−1 = `(H))P(v = h2 · · · hm|v−1 = h1)z
m.

We haveP(v = h2 · · · hm|v−1 = h1)zm = (1/πh1)z
mP(H), and, forn ≥ 0,∑

|w|=n

P(wh1|w−1 = `(H)) = [Pn+1]`(H),h1,

where, we recall,̀ (H) = hm is the last character ofH . In summary: languageW · H
contributesP(H)zm[(1/πh1)

∑
n≥0 Pn+1zn]`(H),h1, while languageA − {ε} introduces

AH (z)− 1. We now observe that, for any symbolsi and j ,[
1

πj

∑
n≥0

5zn

]
i, j

=
∑
n≥0

zn = 1

1− z
.
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Using the equalityPn+1−5 = (P−5)n+1 (which follows from a consecutive application
of the identity:5P= 5), we finally obtain the sum in (39). This completes the proof of
the theorem.

REMARK. The generating function of languageT j
0 (i.e., no H occurrence with the

last symbol of a word fromT j
0 being j ) in the Markov case was previously derived by

Chrysaphinou and Papastavridis in [5]. We observe that the generating functionT (0)(z)
of T0 easily follows from (6) and the equationT (0)(z) = 1/(1− z)−∑r≥1 T (r )(z).

3.3. Moments and Limiting Distribution. In this final subsection we derive the first two
moments ofOn as well as asymptotics for Pr{On = r } for different ranges ofr , that is, we
prove Theorem 2.2. Actually, we should mention that using general results on Markov
chains and renewal theory one immediately guesses that the limiting distribution must be
normal forr = EOn + O(

√
n). However, here the challenge is to estimate precisely the

variance. Our approach offers an easy, uniform, and precise derivation of all moments,
including the variance, as well as local limit distributions (including the convergence
rate) for the central and large deviations regimes. We use an analytic approach (see [2],
[13], [26], and [31]).

A. Moments. First, from Theorem 2.1 we conclude that

Tu(z,1) = zmP(H)

(1− z)2
,

Tuu(z,1) = 2zmP(H)MH (z)DH (z)

(1− z)3
,

whereTu(z,1) andTuu(z,1) are first and second derivatives ofT(z,u) at u = 1. Now,
we observe that both expressions admit as a numerator a function that is analytic beyond
the unit circle. This allows for a very simple computation of the expectation and variance
based on the following basic formula:

[zn](1− z)−p = 0(n+ p)

0(p)0(n+ 1)
,(42)

where [zn] means the coefficient ofzn. To obtainEOn we proceed as follows, forn ≥ m:

EOn = [zn]Tu(z,1) = P(H)[zn−m](1− z)−2 = (n−m+ 1)P(H).

We denote

8(z) = 2zmP(H)MH (z)DH (z),

which is a polynomial in the Bernoulli case. We use the Taylor expansion

8(z) = 8(1)+ (z− 1)8′(1)+ (z− 1)2

2
8′′(1)+ (z− 1)3 f (z),

where f (z) is a polynomial of degree 2m− 2. It follows that [zn](z− 1) f (z) is 0 for
n ≥ 2m− 1 and, using formula (42), we get

EOn(On − 1) = [zn]Tuu(z,1) = 8(1) (n+ 2)(n+ 1)

2
−8′(1)(n+ 1)+ 1

28
′′(1).
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Observing thatMH (z)DH (z) = DH (z) + (1− z), we use MAPLE to obtain a precise
formula for the variance (see (14) of Theorem 2.2). In the Markov case, we have to
compute the additional term

[zn]
2(z2mP(H)2F(z))

(1− z)2
,

where F(z) is analytic beyond the unit circle for|z| ≤ R, with R > 1. The Taylor
expansion ofF(z) is E1 + (1− z)E2 and applying (42) again yields the result. In a
similar manner, we can compute all the moments ofOn.

B. Distribution: Case r= O(1). Now, we prove part (ii) of Theorem 2.2, that is, we
establish an asymptotic expression for Pr{On = r } for r = O(1). We first rewrite the
formula onT (r )(z) as follows:

T (r )(z) = zmP(H)(DH (z)+ z− 1)r−1

Dr+1
H (z)

.(43)

Observe that Pr{On = r } is the coefficient atzn of T (r )(z). By Hadamard’s theorem (see
[31] and [35]), the asymptotics of the coefficients ofT (r )(z) depend on the singularities
of T (r )(z). In our case, the generating function is a rational function, thus we can only
expect poles (for which the denominatorDH (z) vanishes). The next lemma establishes
the existence and properties of such a pole.

LEMMA 3.2. The equation DH (z) = 0 has at least one root, and all its roots are of
modulus greater than1.

PROOF. A root of DH (z) = (1− z)/(1− MH (z)) is clearly a pole of 1/(1− MH (z)).
As 1/(1− MH (z)) is the generating function of a language, it converges for|z| < 1
and has no pole of modulus smaller than 1. SinceDH (1) 6= 0, z = 1 is a simple pole
of 1/(1− MH (z)). As all its coefficients are real and positive, there is no other pole of
modulus|z| = 1. It follows that all roots ofDH (z) are of modulus greater than 1. The
existence of a root is guaranteed sinceDH (z) is either a polynomial (Bernoulli model)
or a ratio of polynomials (Markov model).

In view of the above, the generating functionT (r )(z) can be expanded around its root
of smallest modulus, sayρH , as Laurent’s series (see [26], [35], and [40]):

T (r )(z) =
r+1∑
j=1

aj

(z− ρH ) j
+ T̃ (r )(z),(44)

where T̃ (r )(z) is analytical in|z| < ρ ′ and ρ ′ is defined asρ ′ = inf{|ρ| : ρ >

ρH and DH (ρ) = 0}. The constantsaj satisfy formulae (22). This formula simplifies
into (21) for the leading constanta−r−1. As a consequence of analyticity [40] we have,
for 1< ρH < ρ < ρ ′, [zn]T̃ (r )(z) = O(ρ−n). Hence, the term̃T (r )(z) contributes only
to the lower terms in the asymptotic expansion ofT (r )(z).
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We need an asymptotic expansion for the first terms in (43). This is rather a standard
computation (see [31] and [40]), but for completeness we provide a short proof. The
following chain of identities is easy to justify for anyρ > 0:

r+1∑
j=1

aj

(z− ρ) j )
=

r+1∑
j=1

aj (−1) j

ρ j (1− (z/ρ) j )

=
r+1∑
j=1

(−1) j ajρ
− j
∞∑

n=0

(
n+ j − 1

n

)(
z

ρ

)n

=
∞∑

n=1

zn
min{r+1,n}∑

j=1

(−1) j aj

(
n

j − 1

)
ρ−(n+ j ).

After some algebra, we prove part (ii) of Theorem 2.2.

C. Central Limit Theorem: Case r= EOn + x O(
√

n). We now establish part (iii) of
Theorem 2.2, that is, we compute Pr{On = r } for r = EOn+x

√
Var On whenx = O(1).

Let µn = EOn(H) = (n − m+ 1)P(H) andσ 2
n = Var On(H) ∼ c1n. To establish

asymptotic normality of(On(H)− µn)/σn, it suffices, according to L´evy’s theorem, to
prove the following (see also [2]):

lim
n→∞e−τµn/σn Tn(e

τ/σn) = eτ
2/2(45)

for complexτ . Again, by Cauchy’s theorem

Tn(u) = 1

2π i

∮
T(z,u)

zn+1
dz= 1

2π i

∮
u P(H)

D2
H (z)(1− uMH (z))zn+1−m

dz,

where integration is along a circle around the origin. The evaluation of this integral is
standard and it appeals to the Cauchy residue theorem. Namely, we enlarge the circle of
integration to a bigger one, sayR> 1, such that the bigger circle contains the dominating
pole of the integrand function. Observe that the Cauchy integral over the bigger circle
is O(R−n). We now substitute (for simplicity of further derivations)u = et andz= eρ .
Then the poles of the integrand are the roots of the equation

1− et MH (e
ρ) = 0.(46)

This equation implicitly defines in some neighborhood oft = 0 a uniqueC∞ function
ρ(t), satisfyingρ(0) = 0. Notably, all other rootsρ satisfy inf|ρ| = ρ ′ > 0. Then the
residue theorem witheρ

′
> R> eρ > 1 leads to

Tn(e
t ) = C(t)e−(n+1−m)ρ(t) + O(R−n),(47)

where

C(t) = P(H)

D2
H (ρ(t))M

′
H (ρ(t))

.

To study some properties ofρ(t), we observe that the cumulant formula implies
EOn(H) = [t ] log Tn(et ) andσ 2

n = [t2] log Tn(et ) where, we recall, [tr ] f (t) denotes
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the coefficient of f (t) at tr . In our case,µn ∼ −nρ ′(0) as well asσ 2
n ∼ −nρ ′′(0).

In (47), now sett = τ/σn → 0 for some complexτ . Since uniformly int we have
ρ(t) = tρ ′(0)+ ρ ′′(0)t2/2+ O(t3) for t → 0, our estimate (47) leads to

e−τµn/σn Tn(e
τ/σn) = exp

(
τ 2

2
+ O

(
nτ 3

σ 3
n

))
= eτ

2/2

(
1+ O

(
1√
n

))
,

which completes the proof of Theorem 2.2(iii).
Actually, we can proceed as in [17] or [21] to obtain a much more refined local limit

result. For example, a direct application of results from [17] (see Chapter 4.3.3) leads to
the following forx = o(n1/6):

Pr{On = EOn + x
√

nc1}(48)

= 1√
2πnc1

e−x2/2

(
1− κ3

2c3/2
1

√
n

(
x − x3

3

))
+ O(n−3/2),

whereκ3 is a constant (i.e., the third cumulant).

D. Large Deviations: Case r= (1+ δ)EOn. Finally, we consider the large deviations
result. From (47) we conclude that

lim
n→∞

logTn(et )

n
= −ρ(t).

Thus, directly from the G¨artner–Ellis theorem [4], [9] we prove that

lim
n→∞

log Pr{On > na}
n

= −I (a),

where

I (a) = aωa + ρ(ωa)

with ωa being a solution of−ρ ′(t) = a. A stronger version of the above follows directly
from Theorem 3.1 of [4]. To derive our result of Theorem 2.2, we use (49) and the “shift
of mean” technique as discussed below (see [4], [17], [21], and [31]).

As in the central limit regime, we could use Cauchy’s formula to compute the prob-
ability Pr{On = r } for r = EOn + x O(

√
n). However, formula (49) is only good for

x = O(1). To expand its validity, we shift the mean of the generating functionTn(u) to
a new value, saym= an= (1+ δ)P(H)(n−m+1), so we can again apply the central
limit formula (49) around the new mean. To accomplish this, we rewrite (47) as

Tn(e
t ) = C(t)[g(t)]n−m+1,

whereg(t) = e−ρ(t), and for simplicity of this discussion we dropped theO(R−n)

term. The above suggests thatTn(et ) is the moment generating function of a sumSn

of n − m+ 1 “almost” independent random variablesX1, . . . , Xn−m+1 andY whose
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moment generating functions areg(t) andC(t), respectively. Observe thatE Sn = (n−
m+1)P(H)while we need to estimate the tail ofSn around(1+δ)(n−m+1)P(H). To
achieve it, we introduce a new random variableX̃i whose moment generating function
g̃(t) is

g̃(t) = g(t + ω)
g(ω)

,

whereω will be chosen later. Then the mean and the variance of the new variableX̃ is

EX̃ = g′(ω)
g(ω)

= −ρ ′(ω),

Var X̃ = g′′(ω)
g(ω)

−
(

g′(ω)
g(ω)

)2

= −ρ ′′(ω).

We now chooseωa such that

−ρ ′(ωa) = g′(ωa)

g(ωa)
= a = P(H)(1+ δ).

Then the new sum̃Sn = Y+ X̃1+· · ·+ X̃n−m+1 has a new mean(1+δ)P(H)(n−m+1) =
a(n − m+ 1), and hence we can apply the central limit result (49) toS̃n. To translate
from S̃n to Sn we use the following simple formula:

[et N ]
(
C(t)gn(t)

) = gn(ω)

eωN
[et N ]

(
C(t)gN(t + ω)

gN(ω)

)
,(49)

whereN = a(n−m+ 1) and [etn]g(t) denotes the coefficient ofg(t) at etn. Now we
can apply (49) to the right-hand side of the above to obtain

[et N ]

(
C(t)gN(t + ω)

gN(ω)

)
= 1

σa
√

2π(n−m+ 1)
(1+ O(n−1))+ O(n−5/2).

Finally, using (49) and the above, we prove Theorem 2.2(iv).
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[34] M. Régnier and W. Szpankowski, On the Approximate Pattern Occurrence in a Text,Proc. SEQUENCE
’97, Positano, 1997.

[35] R. Remmert,Theory of Complex Functions, Springer-Verlag, New York, 1991.
[36] S. Schbath, Etude Asymptotique du Nombre d’Occurrences d’un Mot dans une Chaîne de Markov et
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