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On Pattern Frequency Occurrences in a
Markovian Sequencé

M. Régnief and W. Szpankowski

Abstract. Consider a given patterd and a random text generated by a Markovian source. We study

the frequency of pattern occurrences in a random text when overlapping copies of the pattern are counted
separately. We present exact and asymptotic formulae for moments (including the variance), and probability of
r pattern occurrences for three different regions,afamely: (i)r = O(2), (ii) central limit regime, and (iii)

large deviations regime. In order to derive these results, we first construct certain language expressions that
characterize pattern occurrences which are later translated into generating functions. We then use analytical
methods to extract asymptotic behaviors of the pattern frequency from the generating functions. These findings
are of particular interest to molecular biology problems (e.g., finding patterns with unexpectedly high or low
frequencies, and gene recognition), information theory (e.g., second-order properties of the relative frequency),
and pattern matching algorithms (e.g-gram algorithms).

Key Words. Frequency of pattern occurrences, Markov source, Autocorrelation polynomials, Languages,
Generating functions, Asymptotic analysis, Large deviations.

1. Introduction. Repeated patterns and related phenomena in words (also called se-
guences or strings) are known to play a central role in many facets of computer science,
telecommunications, and molecular biology. One of the most fundamental questions
arising in such studies is the frequency of pattern occurrences in another string known
as thetext Applications of these results include wireless communications (see [1]),
approximate pattern matching (see [23] and [37]), molecular biology (see [32]), code
synchronization (see [18]-[20]), and source coding (see [8]). In fact, this work and the
one by Fudos et al. [14] were motivated by problems arising in approximate pattern
matching byg-grams (see [23] and [37]), developing performance models for database
systems in wireless communications (see [1]), and gene recognition in a DNA sequence
(see [32)]), respectively. Actually, one of the earliest applications appears to be in code
synchronization (see [18]).

We study the problem in a probabilistic framework in which the text is generated
randomly either by a memoryless source (the so-c@khoulli mode) or by a Marko-
vian source (the so-calledarkovian modél In the former, every symbol of a finite
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alphabet is created independently of the other symbols, and the probabilities of sym-
bol generation are not the same (if all probabilities of symbol generation are the same,
the model is called theymmetricBernoulli model). In the Markovian model, the next
symbol depends on a finite number of previous symbols.

The problem of pattern occurrences in a random string is a classical one. Feller in
1968 already suggested a solution in his book [10]. Several other authors also contributed
to this problem: e.qg., see [3], [5], [22], [27], [31] and references therein. However, the
most important recent contributions belong to Guibas and Odlyzko, who in a series of
papers (see [18]-[20]) laid the foundations of the analysis for the symmetric Bernoulli
model. In particular, the authors of [20] computed the moment generating function for
the number of strings of lengtithat donot contain any one of a given set of patterns.
Certainly, this suffices to estimate the probability of at least one pattern occurrence in
a random string generated by the symmetric Bernoulli model. Furthermore, Guibas and
Odlyzko [20] in a passing remark also presented some basic results for several pattern
occurrences in a random text for the symmetric Bernoulli model, and for the probability
of no occurrence of a given pattern in the asymmetric Bernoulli model. Recently, Fudos
et al. [14] computed the probability of exactlyoccurrences of a pattern in a random
text in theasymmetricBernoulli model, just directly extending the results of Guibas
and Odlyzko. The Markovian model was tackled by Li [27], and Chrysaphinou and
Papastavridis [5] who extended the Guibas and Odlyzko results of no pattern occurrence
to Markovian texts. Prum et al. [33] (see also [36]) obtained the limiting distribution
for the number of pattern occurrences in the Markovian model but without an explicit
computation of the variance. Recently, Flajolet et al. [12] considered pattern occurrences
in a random tree. Some other contributions are [3], [7], [16], [24], [25], [30], [32],
and [39].

In this paper we provide a complete characterization of the frequency of pattern oc-
currences in a random text generated according either to the Bernoulli model or the
Markovian model. Our method of analysis treats both models uniformly, and therefore
we concentrate on discussing the Markovian model Q:edlenote the number of occur-
rences of a given pattetd in a random text wheoverlappingcopies of the pattern are
counted separately. In Theorem 2.1 we present the generating func@diich can
be used to compute exactly the probabilityr gfattern occurrences in the text. Further-
more, this allows for an easy computation of all moments, using for instance a symbolic
computation system. In this paper we present explicit formulae for the mean and the
variance ofOn. We observe that the evaluation of the variance was quite challenging
as pointed out in [32] and [33]. It turns out that the variance depends on the internal
structure of the pattern through the so-calldocorrelation polynomialWe should
point out that Prum et al. [33] proposed two statistical methods to estimate the variance
which should be compared with our computations (see Theorem 2.2 and Section 3).

We also estimate asymptotically the probability of exactigcurrences of the pattern
for three different ranges af (see Theorem 2.2); namely, @) = O(1), (i) r =
EOQ, + x4/n for x = O(1) (i.e., central limit regime), and (iii) = (1 + §)EQ, (i.e.,
large deviations regime). For our results to hold we assumat@tl ) — oo (see [16]
for other regimes ofiP(H)). However, for agivenpatternH it is natural to assume
that the length of the pattern is constant with respent(@nd we adopt this assumption
throughout).
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Our results should be of particular interest to molecular biology, pattern matching al-
gorithms, and information theory (e.qg., relative frequency, code synchronization, coding,
etc.). Two problems of molecular biology can benefit from these results, namely: finding
patterns with unexpectedly (high or low) frequencies (the so-called contrast words) [15],
and recognizing genes by using statistical properties [11]. Statistical methods have been
successfully used from the early '80s to extract information from sequences of DNA.
In particular, identifying deviant short motifs, the frequency of which is either too high
or too low, might point out unknown biological information (see [11] and others for the
analysis of functions of contrast words in DNA texts). From this perspective, our results
give estimates for the statistical significance of deviations of word occurrences from the
expected values and allow a biologist to build a dictionary of contrast words in genetic
texts. Recently, Coward [6] used our results in the search of exceptional patterns in the
yeast genome.

Another biological problem for which our results might be useful is gene recog-
nition. Most gene recognition techniques rely on the observation that the statistics of
patterns (motifs/codon) occurrences in coding and noncoding regions are different. Our
findings allow the estimation of the statistical significance of such differences, and the
construction of the confidence interval for pattern occurrences.

These results can also be used to recognize statistical properties of various other in-
formation sources such as images, text, etc. In information theslatjve frequency
defined asA, = O,/(n — m + 1), wherem is the length of the pattern, is often used
to assess statistics of information sources. It is well known [8], [29] thatonverges
almost surely to the probabilit(H) of the patternH, but much less is known about
second-order properties d@,, such as the limiting distribution, large deviations, and
rate of convergence. The rate of convergence to the source entropy—which is related
to the rate of convergence of the relative frequency [29]—has recently appeared in the
formulation of some results on data compression (see [28], [38], and [41]). Marton and
Shields [29] proved thaf\, converges exponentially fast ®(H) for sources satis-
fying the so-callelow-up property(e.g., Markov sources, hidden Markov, etc.). Our
results characterize precisely such a convergence in the central limit regime and the large
deviations regime for Markovian sources.

In the accompanying paper [34], we extended our resulEpfroximatepattern
occurrences or a set of pattern occurrences. Such extension is vital to some approximate
pattern matching algorithms. Recently, Sutinen and Szpankowski [37] used these results
for performance evaluation ofgram filtration algorithms.

This paper is organized as follows. In the next section we present our main results
and their consequences. The proofs are delayed until the last section. Our derivation
in Section 3.1 use a language approach, thus is also valid for Markovian models since
no probabilistic assumption is made. In Section 3.2 we translate language relationships
into associated generating functions, and finally we use analytical tools in Section 3.3
to derive asymptotic results.

2. Main Results. We consider two strings, a pattern stridg= hih, - - - hy, and a text
stringT = tyt; - - - t, of respective lengths equalmeandn over an alphabef of sizeV.
We writeS = {1, 2, ..., V} to simplify the presentation. Throughout, we assume that
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the pattern string iixedand given, while the text string is random. More precisely, we
consider the following two probabilistic models of text generation:

(B) BERNOULLI MODEL.  The text is a realization of a sequence of independently, iden-
tically distributed (i.i.d.) random variables, such that a syn#elS occurs with prob-
ability P(s).

(M) MARKOVIAN MODEL. The textis a realization ofgtationaryMarkov sequence of
orderK, thatis, the probability of the next symbol occurrence depends dk firevious
symbols. In most derivations we deal only with the first-order Markov chfie=(1), and
then we define the transition matfx= {p; j}i jes Wherep; ; = Pr{ty;1 = |tk =1}.
By 7w = (71, ..., mv) we denote the stationary distribution satisfyimB = =, and we
write IT for the stationary matrix that consists \éfidentical rows equal ter. Finally,
by Z we denote théundamental matrix Z = (I — (P — IT))~* wherel is the identity
matrix.

Throughout the paper we use systematically the following notation: lowercase bold
letters represents row vectors (e.gq), while uppercase bold letters denote matrices
(e.g.,IT). To extract a particular element, say with indexj ), from a matrix, say, we
write [P]ij = pi.j. Finally, we recall thatl — P)~* = }",_, P* provided the inverse
matrix exists (i.e., dét — P) # 0 or |P|| < 1 for any matrix norm - ||). Below,
we write P(H) = PHT}1* = H/} for the probability of an occurrence of substring
H, = hi---h;j in the random texil'if,'(k between symbols+ k and j + k for anyk (in
particular,P(H) denotes the probability dfi appearing in the text).

Our goal is to estimate the frequency of multiple pattern occurrences in the text
assuming either the Bernoulli or the Markovian model. We find it convenient and useful
to express our findings in terms of languages. A language a collection of words
satisfying some properties. We associate with a langdaggenerating function defined
below.

DerFINITION 1. For any languag€ we define its generating functidn(z) as
(1) L@ =) Pwz",
weLl

whereP(w) is the stationary probability of word occurrencejw| is the length ofw,
and we adopt a usual convention tigE) = 1, wheres is the empty word. In addition,
we define theH -conditional generating function af as

2 Lu@ =) P@lwm=hi-wq=hpz" =" Plwwy =H}z",

weLl weLl

wherew_; stands for a symbol preceding the first character aft distance.

It turns out that several properties of pattern occurrences depend on the so-called
autocorrelation polynomiathat we define next:
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DEFINITION 2. Given a stringH, we define thewutocorrelation set4 as
(3) A= {H1: H = H ),

and byHH we denote the set of positiokssatisfying H{‘ = H .1 The generating
function of languagel is denoted a#\(z) and we call it theautocorrelation polynomial

Its H-conditional generating function is denotég (z). In particular,

@) An@ = Y P(HILHHZ™*
keHH

for a Markov chain of ordeK = 1.

Before we proceed, we present a simple example illustrating the definitions we have
introduced so far.

ExAMPLE (Autocorrelation Functions). Assume thdt= 101 over a binary alphabet

S = {0, 1}. Observe thaHH = {1, 3} and A = {¢, 01}, wheree is the empty word.
Thus, for the symmetric Bernoulli model (both symbols occur with the same probability
equal to 05) we haveA(z) = 1 + z/4, while for the Markovian model of order 1, we
obtain Aj01(z) = 1 + p1oPorZ®.

We can now formulate our main results. In what follows, we denot©k¢H) (or
simply by Op) a random variable representing the number of occurrencés iof a
random tex@ of sizen. We introduce the generating function of the langugef words
that contain exactly occurrences oH, namely,T"(z) = Y _,P{On(H) = r}z".
We also define a bivariate generating function as follows:

n>0

o0

(5) Tzw=>)Y TO@u =) > POy H) =r}z"u'
r=1

r=1 n=0

for |zl < 1andju| < 1.

Our main results are summarized in the following two theorems. The first theorem
presents exact formulae for the generating functiofis(z) and T (z, u), and can be
used to compute exactly all parameters related to the pattern occufgide. In the
second theorem, we provide asymptotic formulae f¢OR¢H) = r} for three regimes
of r, namely: (iyy = O(), (ii) r = EG, + x4/Var O, whenx = O(1) (i.e., local central
limit), (i) r = (14 §)EQ, for somes (i.e., large deviations). All proofs are presented
in the next section: Section 3.2 contains the proof of Theorem 2.1 while the proof of
Theorem 2.2 can be found in Section 3.3.

THEOREM2.1. Let H be a given pattern of size,land let T be a random text of length
n generated according to a stationary Markov chain of orilever a V -ary alphabet
S. The generating functions(z) and T(z, u) become

(6) 772 = ROM{'@Uu@. =1,

u
(7) T(z,u) R(Z)mUH (2),
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where

z—1
(8) Mu(2 = 1+ m,

1

©)] Unh(2 = D)’
10 R(z) = zZ"P(H ,
(10) (20 = Z"P( )DH(Z)
with
(11) D@ =01A-2Au(@+2Z"P(H)1+ 1—-2)F(2).

The function Kz) is defined follz| < R where R=1/||P — I1|| as follows
1
(12) F@ = —lP—I( — (P~ M)2) by, by
where h and hy, are the first and last symbols of, llespectivelyin the Bernoulli model
F(z) = 0,and hence
Du(2 = (1 -2Au(2) +Z"P(H),

with the other formulae as above

Theorem 2.1 is the starting point of our next finding that deals with asymptotics
forn - oo whennP(H) — oo. The results below are derived in Section 3.3 using
analytical tools.

THEOREM2.2. Let the hypotheses of Theorem be fulfiled and nRH) — oc.
(i) Moments. The expectation EQH) satisfiesfor n > m,

(13) EGh(H) = P(H)(n—m+1),

while the variance becomg®r some r> 1,

(14) Var Op(H) =ng + ¢+ O ™),

where

(15) ¢ = P(H)2Au(1) —1— 2m—1)P(H) + 2P(H)Ey),
c; = P(H)((M—-1)@m—-1HPH) — (m—-1D(A4(1) — 1) — 2AL(D)
(16) —2(2m — 1)P(H)?E; + 2E,P(H)?,

and the constants £ E, are

1
(17) E: = n_[(P_ I Z]h by s

hy

1
(18) E; = —[(P*— IDZ%n,n,.
7'L'h1
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whereZ = (I — (P — IT)) ! is the fundamental matrix of the underlying Markov chain
In theBernoulli model, E; = E, = 0sinceP = I1, and(14) reduces to an equality for
n>2m-1.Thus

(19) Var O,(H) = nc¢, + ¢y,
with
¢ = P(H)QAH(D) —1-(2m—-1)P(H)),
c; = P(H)Y((M-1D@Bm—-1HP(H) — (m—-12A4 (D) — 1) — 2A, (D).

(ii) Distribution: Case = O(1). Letpy betherootof [ (z) = 0of smallest modulus
and multiplicity one Thenpy is real positive and lies outside the unit cirdlg < 1,
and there existp > py such that

r+1 )
@ Pro=n = > via( " )am o,
j=1
where
1) a1y — PHP(H) (on — 't
=

(D (pp)) 17
and the remaining coefficients can be computed according to

a = 1 lim drt TO@ @z - p)'™h
ST A 1_ ) oo dZ PH
with j =1,2,...,r.

(iii) Central Limit Regime: Case = EO, + x4/Var O,. For x = O(1) we haveas
n— oo,

1 2 1
23 Pr{On(H) = =——X/2(1 o(—>>,
(23) f{On(H) =1} Tclne + NG
where g is defined in(15) above

(iv) Large Deviations: Case= (1+ §)EG,. Leta= (14 §)P(H) withs > 0. For
complex t definep (t) to be the root of

(22)

(24) 1—eMy(e) =0,

while w, ando, are defined as

(25) —p'(wa) = a,
(26) —p"(wa) = o?.
Then

(27)  PH{On(H)=(1+8)EC,} =

1 oM @ <1+O (l))
oav/2r(N—m+ 1) n

where () = awa + p(wa).
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As mentioned before, the above results find applications in information theory and
molecular biology. For exampleslative frequencis animportant conceptininformation
theory, and it is defined as

On(H)
n—m+1"
Relative frequency appears in the definition of types and typical types (see [8]), and is
often used to estimate information source statistics. As an easy corollary to Theorem
2.2, we obtain the following second-order characterization qfH):

An(H) =

COROLLARY 2.1. Under the hypotheses of Theor@rg, the following hold
() [Central Limit Regime]For x = O(2),

-P o) = e (10 ()
(28)Pr{An(H)_P(H)+x n_m+1}_ =" (1vo( 7))

(i) [Large DeviationsJFora = (1+ §)P(H) with$ > 0,

(29) Pr{AL(H) = (14 8)P(H)}

— 1 e (—m+1)1 @ <1+ o) (E))
oa/2r(n—m+ 11 —e'@) n)/)’

wherew, and I(a) are as defined in Theorein2(iii).

3. Analysis. The key element of our analysis is a derivation of the generating function

T (z, u) presented in Theorem 2.1. The first part of the discussion below is quite general
and works uniformly for both the Bernoulli model and the Markovian model. It is based
on constructing some special languages and finding relationships among them. Later, in
Section 3.2 we translate these relations into formulae for generating functions.

3.1. Combinatorial Relationships on Certain Language#\ collection of words shar-
ing a given property is commonly calledeanguage This section is devoted to presenting
combinatorial relationships between some languages that help to derive some results in
a uniform manner. In this section we do not make any probabilistic assumption.

We start with some definitions:

DEFINITION 3.  Given a pattert:

() Let7 be alanguage of words containing at least one occurrenide anhd, for any
integerr > 1, let7; be the language of words containing exactlgccurrences
of H.

(i) We defineR as the set of words containing only one occurrenceél pfocated at
the right end. We also defiri¢ as

(30) U={u: H-ueTy},

where the operationmeans concatenation of words. In other words, a woed/
if H - u has exactly one occurrence idfat the left end oH - u.
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(iii) Let M be the language:
M ={w: H-w e T,andH occurs at the right end dfl - w},

that is, M is a language such thét - M has exactly two occurrences Hf at the
left and right ends of a word from1.

We can now describe languagésand7Z; in terms ofR, M, andl{. This will further
lead to a simple formula for the generating function@f(H).

THEOREM3.1. Language? satisfies the fundamental equation
(31) T=R - M"-U.

Notably languageZ; can be represented for anyx 1 as follows
(32) T =R MU

Here, by definition M° := {¢} and M* = [ 72, M.

PrROOFE  We first prove (32) and obtain our decompositioriZpfas follows: The first
occurrence of H in a word belonging  determines a prefiy that is inR. Then a
nonempty wordp that creates the second occurrencéldas concatenated. Hence,is
in M. This process is repeated- 1 times. Finally, after the ladti occurrence a suffix
u that does not create a new occurrenceHofs added. EquivalentlyHu is such that
uisinl, andw is a proper subword dflu. Finally, a word belongs ta@ if, for some
1 <r < oo, it belongs taZ;. The set unior J;2; M"~! yields preciselyM*. O

We now prove the following result that summarizes relationships between the lan-
guagesk, M andU.

THEOREM3.2. The languaged\, U, andR satisfy

(33) UM =W H+A— ()
k>1

(34) U-S=M+U- e},

(35) HM=8R-—(R-H),

where)V is the setof all words S is the alphabet set angt and — are disjoint union
and subtraction of languageb particular, a combination 0{34) and (35) gives

(36) H-U-S—H-U=(S—e)R.

Additionally, we have

(37) To-H=TR-A
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PrOOFE  All the relations above are proved in a similar fashion. We first deal with (33).
Let k be the number oH occurrences iV - H. By definition,k > 1 and the last
occurrence is on the right: this implies that- H < |J,., M¥. Furthermore, a word

w in Uk>1Mk is notinW - H iff its size |w| is smaller thanH|. Then the secondi
occurrence irHw overlaps withH, which means thaw is in A — ¢.

We now turn to (34). When a characteis added immediately after a wordfrom
U, two cases may occur: eithetus still does not contain a second occurrencegf
which means thats is a nonempty word d¥, or a newH appears, clearly at the right
end. Therusis in M. Furthermore, the whole s@tl + (U/ — ¢) is attained, i.e., a strict
prefix of M cannot contain a nei occurrence. Hence, itis i, and a strict prefix of
al-word is inl4.

We now prove (35). Lex = sw be aword inH - M wheresis a symbol fromS. As
X contains exactly two occurrenceslidflocated at its left and right ends,is in R and
xisinS - R —R. Reciprocally, if awordwHfrom S - R is notinR, thenswH contains
a secondH occurrence starting isw. AswH is in R, the only possible position is at the
left end, and thex is in H - M. We now rewrite:

S R-R=SR-—(RNS-R)=S-R—(R—H),

which yieldsH - M —H = (S —¢) - R.

Deriving (37) is only a little more intricate. Létbe some word ir¥y. We consider
the factorizatiort = w;w, such thatw, is the largest suffix that is also &m — k)-prefix
of H, with k € HH andm = |H|. In other wordsw; is the largest suffix satisfying the
equatiorw,-H = H-a,whereaisin A. If w;H were notinR, a second occurrence kif
would occur inw1H starting inw;. Aswy;Ha = wywoH, this contradicts the maximal
property ofw,. ThereforeZo- H C R - A. Finally, we consider aword;Hain R - A.
We may rewrite it aH - a = wy - H. It suffices now to show thatiw, € 7. Indeed,
since|w,| < |H|, any occurrence dfi would go across; andw; H would contain two
occurrences of, which contradicts the definition d2. This provesR - A C 75 - H,
and completes the proof of Theorem 3.2. O

3.2. Associated Generating Functiansin the previous section we did not make any
probabilistic assumption. Thus, Theorem 3.2 is true for any model, including the Bernoulli
and Markovian ones. In this section we translate the language relationships into gener-
ating functions. Therefore, we need to return to our probabilistic assumptions. Most of
our derivations deal with the Markovian model.

To transfer our language relations into generating functions, we need a few rules as-
sociated with two operations on languages: namely, disjoint uhiand concatenation
become the sum operation and the multiplication operation on generating functions. We
start with the following simply property that is true for both probabilistic models:

(P1) Let£; and £, be two arbitrary languages with generating functidngz) and
L2(2), respectively. Then the language= L1 + £, is transferred into the gener-
ating functionL (z) such that

L@ =L1(2) + L2(2).
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To translate the concatenation operation, it is necessary to consider the Bernoulli and
the Markovian models separately. We start with Beenoulli model:

(P2) We now consider a new languagevhich is constructed from the concatenation
of two other languages, sa and.,, thatis,L = £; - £,. In theBernoulli model
the generating functioh (z) of £ becomes

L) =L1(9L22)

sinceP(wv) = P(w)P(v) for w € £1 andv € L. In particular, the generating
functionL(z2) of L = S - L1 is L(2) = zL1(2), whereS is the alphabet set, since
S(z) = ZpeS P(s)z=1z.

In the Markovian model P(wv) # P(w)P(v), thus property (P2) is no longer true.
We have to replace it by a more sophisticated one. We have to condition symbols
preceding a word fronC; (i.e., belonging tal;). In general, for aK-order Markov
chain, one must distinguistiX ending states for; andV K initial states forZ,. For
simplicity of presentation, we only consider first-order Markov chains fKe= 1), and
we write £(w) for the last symbol of a word:. In particular, to rewrite property (P2) we
must introduce the following conditional generating function for a languzge

L@ =) P tw) = jw =iz".

weLl
Then for the Markovian model property (P2) becomes:
(P2) LetL =W - V. Then

(38) L@ =Y mW @V @,

ijes

whereWkj (2) andV/' (2) are conditional generating functions fdf andV, respec-
tively. To prove this, leiv € W andv € V. Observe that

Pwv) = Y Pwv, £(w)=])
jeS
=Y P, Lw)=j)Pltw) = j)
jeS
=Y > P, tw) = j)p;i P@lv =1).
jeS ieS
After conditioning on the first symbol oy and the last symbol of, we prove
(38).

In passing, we observe that in the Markovian model of our problem one actually must
deal only with two kinds of words: We have wordsfor which no assumption is made
on the preceding words (e.g., these are the words in langRagjth generating function
R(2)); and we deal with words for which the preceding word adrhitas a suffix (e.g.,
words ini/ and M whoseH -conditional generating functions ath; (z) and My (2),
respectively).

The lemma below together with Theorem 3.1 proves (6) and (7) of Theorem 2.1.
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LemmMA 3.1. The generating functions associated with languafyed/, andR satisfy

1 ol 1
M -1
(40) Unid) = =2
(41) R = P(H)Z"-Uu(2),

provided the underlying Markov chain is stationary

PrOOF We first prove (40). Interestingly, it does not need the stationarity assumption.
We consider the language relationship (34) from Theorem 3.2 which we rewrite as
U-S—U=M-—e. Observethal s pi,jz = z. Hence, sel/ - S yields (conditioning

on the left occurrence dfl)

DY PwiH)Z =3 3" P@HZ") piz=Un@ -z
wel jeS ieS weld, L(w)=i jeS
Of course M — ¢ andl/ translate intdMy (z) — 1 andUy (2), and (40) is proved.
We now turn our attention to (41), and we use relationship (35) of Theorem 3.2.
Observe tha$ - R can be rewritten as
YO PGIWZ™ =2 "> "mpi Y Pwlwy=i)z".
jieS2ZiweR jeS ieS iweR
However, due to the stationarity of the underlying Markov chEpJTj pi = m. As
i P(wlw_; = i) = P(iw), we getzR(z). Furthermore, in (35H - M — H translates
into P(H)z™- (My (2) — 1). Nonetheless, by (40), this beconfeeH)z™-Uy (2)(z— 1),
and, after a simplification, we prove (41).

Finally, we deal with (39), and prove it using (33) from Theorem 3.2. The left-hand
side of (33) involves languag#t, hence we must condition on the left occurrence of
H. In particular,| J,., M" + ¢ of (33) translates into A1 — My (2)). Now we deal
with W - H of the right-hand side of (33 onditioningon the left occurrence df, the
generating functioW(z)H (z) of W - H becomes

Wh@H@) = Y > 2""PwH|w_y = £(H))

n>0 |w|=n
=Y > 2"Pwhyjw_y = L(H))P@w=hyhplv_y = hy)z™.
n>0 |w|=n
We haveP(v = hy- - - hplv_1 = h1)Z" = (1/7h,)Z"P(H), and, forn > 0,
Y Pwhijw g = £(H)) = [P™ e,
lw|=n

where, we recall{(H) = hy, is the last character dfi. In summary: languagg/ - H
contributesP (H)z™[(1/7h,) } p-0 P12 y(Hy.n,, While languaged — {¢} introduces
A (2) — 1. We now observe that, for any symboland j,

[ian“] :Zzn:%z'

JT] n>0 i ] n>0
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Using the equalitpP"1—I1 = (P—IT)"*! (which follows from a consecutive application
of the identity:ITP = IT), we finally obtain the sum in (39). This completes the proof of
the theorem. O

REMARK. The generating function of Ianguag%J (i.e., noH occurrence with the
last symbol of a word fron‘ifoJ being j) in the Markov case was previously derived by
Chrysaphinou and Papastavridis in [5]. We observe that the generating fuliéctice)

of 75 easily follows from (6) and the equatidi®(z) = 1/(1—-2) — > ,., T (2).

3.3. Moments and Limiting Distributian In this final subsection we derive the first two
moments 0f0,, as well as asymptotics for FD,, = r } for different ranges df, that is, we

prove Theorem 2.2. Actually, we should mention that using general results on Markov
chains and renewal theory one immediately guesses that the limiting distribution must be
normal forr = EQ, + O(,/n). However, here the challenge is to estimate precisely the
variance. Our approach offers an easy, uniform, and precise derivation of all moments,
including the variance, as well as local limit distributions (including the convergence
rate) for the central and large deviations regimes. We use an analytic approach (see [2],
[13], [26], and [31]).

A. Moments First, from Theorem 2.1 we conclude that

_ Z"P(H)
Tu(z, 1 = -2
Tz 1) = 22"P(H)My (2D (@)
(1-23

whereT,(z, 1) andTyu(z, 1) are first and second derivatives bz, u) atu = 1. Now,

we observe that both expressions admit as a numerator a function that is analytic beyond
the unit circle. This allows for a very simple computation of the expectation and variance
based on the following basic formula:

_ i+ p)
(42) [Z11-27P = F(Orn+ D)’
where "] means the coefficient af'. To obtainEQ, we proceed as follows, for > m:
EO, = [2"]Tu(z, 1) = P(H)[Z"™M(1 - 22 = (n—m+ 1)P(H).
We denote
®(2) = 22"P(H)Mu (2) Dy (2),
which is a polynomial in the Bernoulli case. We use the Taylor expansion

(Z - 1)2 "

2 =21+ (z—1Hd'QQ) + " (1) + (z—1)°%f(2),

where f (z) is a polynomial of degreerd — 2. It follows that "](z — 1) f (2) is O for
n > 2m — 1 and, using formula (42), we get

(n+2)(n+1)

EOh(On — 1) =[2"]Tuu(z, 1) = ®(1) >

—d' M +1) + 39"(D).
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Observing thaMy (z2)Dy (z2) = Dy (2) + (1 — 2), we use MAPLE to obtain a precise
formula for the variance (see (14) of Theorem 2.2). In the Markov case, we have to
compute the additional term

2(Z"P(H)*F(2))

e aa

where F(2) is analytic beyond the unit circle fde|] < R, with R > 1. The Taylor
expansion ofF (2) is E; + (1 — 2)E, and applying (42) again yields the result. In a
similar manner, we can compute all the moment®gpf

B. Distribution: Case r= O(1). Now, we prove part (ii) of Theorem 2.2, that is, we
establish an asymptotic expression fof®y = r} for r = O(1). We first rewrite the
formula onT ) (z) as follows:

Z"P(H)(Dn(2) +2— 1)’

43 TO(2) =
(43) 2 D)

Observe that RO, = r} is the coefficient ax" of T()(z). By Hadamard's theorem (see
[31] and [35]), the asymptotics of the coefficientsTdf’ (z) depend on the singularities

of T (2). In our case, the generating function is a rational function, thus we can only
expect poles (for which the denominair, (z) vanishes). The next lemma establishes
the existence and properties of such a pole.

LEMMA 3.2. The equation [} (2) = 0 has at least one roptand all its roots are of
modulus greater that.

PrOOF Arootof Dy(z2) = (1—2)/(1 — Myx(2) is clearly a pole of 1(1 — My (2)).

As 1/(1 — My (2)) is the generating function of a language, it convergeg4px 1

and has no pole of modulus smaller than 1. SiBgg(1) # 0,z = 1 is a simple pole

of 1/(1 — My (2). As all its coefficients are real and positive, there is no other pole of
modulus|z| = 1. It follows that all roots ofDy (z) are of modulus greater than 1. The
existence of a root is guaranteed sifizg(2) is either a polynomial (Bernoulli model)

or a ratio of polynomials (Markov model). O

In view of the above, the generating functidfi’ (z) can be expanded around its root
of smallest modulus, sayy, as Laurent’s series (see [26], [35], and [40]):

r+1

a ~
44 T =) —— +TO(»,

9 2 T

where T®)(z) is analytical in|z] < p’ and p’ is defined aso’ = inf{lp| : p >

pn and Dy (p) = 0}. The constants; satisfy formulae (22). This formula simplifies
into (21) for the leading constaat, ;. As a consequence of analyticity [40] we have,
forl<pn <p < p,[2"1TV(2) = O(p™™"). Hence, the ternT ) (z) contributes only
to the lower terms in the asymptotic expansioéf ().
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We need an asymptotic expansion for the first terms in (43). This is rather a standard
computation (see [31] and [40]), but for completeness we provide a short proof. The
following chain of identities is easy to justify for any> 0:

r+1 r+1 i
aj . a,-(—l)l
Z(z—p)i) B ZpJ‘(l—(z/p)i)

=1 =1

r+1 ) =) n+j—1 Z\"
e 50

Jo
) min{r +1,n} n

— n _Nia —(n+j)

-yr 3 ()l )
= j=1

After some algebra, we prove part (ii) of Theorem 2.2.

C. Central Limit TheoremCase r= EQ, + xO(,/n). We now establish part (iii) of
Theorem 2.2, thatis, we computg B =r } forr = EQ,+x+/Var O, whenx = O(1).
Let un = EOh(H) = (n—m+ 1)P(H) andan2 = Var O,(H) ~ c¢1n. To establish
asymptotic normality ofOn(H) — un)/on, it suffices, according toévy’s theorem, to
prove the following (see also [2]):

(45) lim e #/onT, (e7/n) = e7/2

n—o0
for complext. Again, by Cauchy’s theorem

T(u)—i T(z,u) 17§ uP(H)
e D (2)(1 — uMy (2))z" 1

7Tl S ’

where integration is along a circle around the origin. The evaluation of this integral is
standard and it appeals to the Cauchy residue theorem. Namely, we enlarge the circle of
integration to a bigger one, s&/> 1, such that the bigger circle contains the dominating
pole of the integrand function. Observe that the Cauchy integral over the bigger circle
is O(R™"). We now substitute (for simplicity of further derivations)= € andz = e°.

Then the poles of the integrand are the roots of the equation

(46) 1—e'My(e) =0.

This equation implicitly defines in some neighborhood ef 0 a uniqueC® function
p(1), satisfyingp(0) = 0. Notably, all other rootg satisfy infp| = p’ > 0. Then the
residue theorem wite” > R > e’ > 1 leads to

(47) Ta(eh) = C(t)eMH=mr® L o(R™),
where
chy=— P
D2 (p(1)M{, (0 (1))

To study some properties @f(t), we observe that the cumulant formula implies
EOn(H) = [t]log T.(€) ando? = [t?]log Ta(€") where, we recall,t[] f (t) denotes
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the coefficient off (t) att". In our caseun ~ —np’(0) as well aso> ~ —np”(0).
In (47), now set = t/0, — 0 for some complex. Since uniformly int we have
p(t) =tp’'(0) + p”(0)t?/2 + O(t3) for t — 0, our estimate (47) leads to

2 n 3
e T/ T, (677 = exp(% +0 <%>>
[of

n

(oo

which completes the proof of Theorem 2.2(iii).

Actually, we can proceed as in [17] or [21] to obtain a much more refined local limit
result. For example, a direct application of results from [17] (see Chapter 4.3.3) leads to
the following forx = o(n%/®):

(48)  PHO, = EO, + x/Ncy)

1 2 K3 X3
=——¢¥% /2<1— _— <x - —)) +0(n~%?,
J27ng ZCf/Zﬁ 3 ( )

wherexks is a constant (i.e., the third cumulant).

D. Large DeviationsCase r= (1+§)EQ,. Finally, we consider the large deviations
result. From (47) we conclude that

n—o0

. log T, (¢!
mOQT(e)z—p(t).

Thus, directly from the @ftner—Ellis theorem [4], [9] we prove that

lim IogPr{O+>na} = 1),

n—oo
where
I (@) = awa + p(wa)

with w, being a solution of-p’(t) = a. A stronger version of the above follows directly
from Theorem 3.1 of [4]. To derive our result of Theorem 2.2, we use (49) and the “shift
of mean” technique as discussed below (see [4], [17], [21], and [31]).

As in the central limit regime, we could use Cauchy’s formula to compute the prob-
ability P{O, = r} forr = EQ, + xO(y/n). However, formula (49) is only good for
x = O(1). To expand its validity, we shift the mean of the generating functjgm) to
anew value, sagn = an = (14 §)P(H)(n— m+ 1), so we can again apply the central
limit formula (49) around the new mean. To accomplish this, we rewrite (47) as

Ta(e) = C(O[gM®]" ™,

whereg(t) = e”®, and for simplicity of this discussion we dropped t@¢R™")
term. The above suggests thgfe') is the moment generating function of a si@n
of n — m + 1 “almost” independent random variabl¥s, ..., X,_my1 andY whose
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moment generating functions agét) andC(t), respectively. Observe th&tS, = (n —
m+ 1) P(H) while we need to estimate the tail §f around(1+38)(n—m+1)P(H). To
achieve it, we introduce a new random varialflewhose moment generating function
g is

~ gt + w)
t) = ——,
a(t) 9
wherew will be chosen later. Then the mean and the variance of the new vaiaisle
v g,(w) /
EX = = — (Cl)),
g
4 / 2
Var)'z — g (w) _ (g (C())) — —,o”(w).
g(w) g(w)
We now choose, such that
) = 29 —a— Pyt 5).
g(wa)

Thenthe new surffi1 =Y+ >~(1+- . -+>~(n_m+1 hasanewmeafl+3)P(H)(n—m+1) =
a(n —m+ 1), and hence we can apply the central limit result (49%toTo translate
from S, to §, we use the following simple formula:

tN n 9w N C(t)gN(t-|-a))>
(49) eMcma®) = Lt (SU5 ),

whereN = a(n — m+ 1) and E™]g(t) denotes the coefficient gf(t) ate™". Now we
can apply (49) to the right-hand side of the above to obtain

(N C(t)gN(t+w)>_ 1 . o
e ]< gV (@) = ol LT Om ) oM.

Finally, using (49) and the above, we prove Theorem 2.2(iv).
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