Algorithmica (1998) 20: 309-318 Al g O r|th m | Ca

© 1998 Springer-Verlag New York Inc.

Subcubic Cost Algorithms for the All Pairs
Shortest Path Problent

T. Takaok&

Abstract. In this paper we give three subcubic cost algorithms for the all pairs shortest distance (APSD)
and path (APSP) problems. The first is a parallel algorithm that solves the APSD problem for a directed graph

with unit edge costs i (log? n) time with O(n*/, /logn) processors where = 2.688 on an EREW PRAM.

The second parallel algorithm solves the APSP, and consequently APSD, problem for a directed graph with
nonnegative general costs (real number<)itog? n) time with o(n®) subcubic cost. Previously this cost was
greater thar© (n3). Finally we improve with respect tdl the complexityO((Mn)#) of a sequential algorithm

for a graph with edge costs up kb to O(M1/3n®6+)/3(logn)2/3(log logn)/3) in the APSD problem, where

» = 2.376.

Key Words. All pairs shortest path problem, Parallel algorithm, Unit cost problem, General cost problem,
Two-phase algorithm.

1. Introduction. The all pairs shortest path (APSP) problem is to compute shortest
paths between all pairs of vertices of a directed graph with nonnegative real numbers as
edge costs. The all pairs shortest distance (APSD) problem is defined similarly, the word
“paths” replaced by distances. Traditionally the latter was called the APSP problem.
Alon et al. [1] gave a subcubic algorithm for the APSD problem for a graph with small
integer edge costs. Recently Alon et al. [2] distinguished these two problems and faced
a higher complexity for the APSP problem with the same class of graphs. The best time
complexities for the APSD and APSP problems for undirected graphs with unit edge
costs are given by Seidel [12]. On the other hand, the complexity for the APSD problem
with general edge costs was slightly improved by Takaoka [13], from that by Fredman
[6], which isn® divided by the polylog of, very close ta3. With this algorithm [13], we

can solve the APSP problem at the same time, and hence there is no need to distinguish
between APSD and APSP.

The technique for obtaining paths in [2] is based on the concept of withesses for
Boolean matrix multiplication. They compute the witnesses of Boolean matrix multipli-
cation for(n, n) matrices inO(n® log® n) wherec < 5 andw = 2.376. Using this result
they solve other shortest path problems, attachingrags factors to the complexities
of corresponding distance problems.

1 This research was partially supported by Grant-in-Aid No. 07680332 by Monbusho Scientific Research

Program and a research grant from Hitachi Engineering Co., Ltd.

2 Department of Computer Science, Ibaraki University, Hitachi, Ibaraki 316, Japan. takaoka@cis.ibaraki.ac.jp.
Current address: Department of Computer Science, University of Canterbury, Private Bay 4800, Christchurch,
New Zealand. tad@cosc.canterbury.ac.nz.

Received October 15, 1995; revised June 21, 1996. Communicated by G. N. Frederickson.

310 T. Takaoka

In this paper we design a parallel algorithm for the APSD problem for a directed
graph with unit edge costs wit®(log? n) time (worst case) an®(n®+*/2/,/logn)
processors. This result is compared with a parallel version of Seidel’s algorithm [12] for
an undirected graph with unit edge costgddog? n) time andO(n®) processors.

Next we improve the parallel algorithm for the APSP problem with general edge costs
in [13] whose cost= number of processors time) is slightly aboveD (n®). The cost
of O(n®logn) in [4] was also improved by Han et al. [9] @(n®). They state the cost can
beo(n®) by using Fredman’s algorithm without showing how to parallelize it. Previous
efforts in this area were made on improving the cost for distance matrix multiplication
while the outermost structure of repeated squaring or the Floyd—Warshall algorithm [5]
remained intact. The cost of our new algorithm is slightly belowin®) and the time
is the polylog ofn, that is, inNC. Our method is based on the two-phase algorithm
originated in [1].

Finally we present a sequential algorithm for a graph with edge cost Mpwinose
complexity is subcubic wheM = O(n%624),

2. Basic Definitions. Adirected graphisgivenb@ = (V, E),whereV = {0, ..., n—
1} andE is a subset o¥ x V. The edge cost di, j) € E is denoted byl;. The(n, n)
matrix D is one whoséi, j) element isdh;. We assume thak; > 0 andd;; = O for all
i, j. If there is no edge fromto j, we letd;; = oco. The cost, or distance, of a path is
the sum of costs of the edges in the path. The length of a path is the number of edges
in the path. The shortest distance from veiitéa vertex | is the minimum cost over all
paths fromi to j, denoted by . Let D* = {dj;}. We calln the size of the matrices.
Let AandB be(n, n) matrices. The three products are defined using the elements of
A andB as follows:

(1) Ordinary multiplication over a ringd = AB):

n—1
Gj = Y _ aby.
k=0
(2) Boolean matrix multiplication@ = A - B):
n-1
Gj = \/ aik A byj.
k=0
(3) Distance matrix multiplicationG = A x B):
Gij = OS@Q_l{aik + by}

The best algorithm [3] computes (1) @d(n®) time. To compute (2), we can regard the
Boolean values 0 and 1 ih andB as integers and use the algorithm for (1), and convert
nonzero elements in the resulting matrix to 1. Therefore this complex®ig’). Let

Tp(n) (resp.Tp(n)) be the time for (2) or (3) with (resp. without) witnesses, where

andD stand for path and distance. The witnesses of (2) are given in the witness matrix
W = {wj;} wherew;; = k for somek such thatajx A bgj = 1. If there is no suclk,

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 311

wij = 0. The witness matrisV = {wj;} for (3) is defined byw;; = k that gives the
minimum togc;;. If we have an algorithm for (3) witfip (n) (resp.Te(N)) time we can
solve the APSD (resp. APSP) problem@(Tp (n) logn) (resp.O(Tp(n) logn)) time
by the repeated squaring method, described as the repeatedAise ok x A.

Our definition of computing shortest paths is to give a path matrix ofrstaewhich
we can give a shortest path franto j in O(¢) time wheret is the length of the path.
More specifically, ifwi; = k in the path (or witness) matriw = {wjj}, it means that
the path fromi to j goes througlk. Therefore a recursive functigrath(i, j) is defined
by (path(, k), k, path(k, j)) if path(, j) = k > 0 and nil if path(i, j) = 0, where a
path is defined by a list of vertices excluding endpoints. In the following sections, we
recordk in wij whenever we can finkl such that a path fromto j is modified or newly
set up by paths fromto k and fromk to j.

3. The Alon—Galil-Margalit Algorithm and Its Parallelization. We review the al-
gorithm in [1] in this section. Let the costs of edges of the given graph be oneB. et
be thetth approximate matrix foD* defined byd’ = d;: if d” < ¢, anddf’ = oo
otherwise. Then we can compu¥” for r > 2 by the following algorithm.

Algorithm 1 (Shortest distances by Boolean matrix multiplication)

A= {a;} wherea;; = 1if dij < 1, and O otherwise;
B:=1; {Boolean identity matrik
DD := D;

for £ := 2tor do begin
B := A. B; {Boolean matrix multiplicatioh
fori :=0ton—1dofor j :=0ton—1do
if bij = 1thend” := ¢ elsed"” = oo;
if d\" < ¢thend == dff‘lg
end.

O© 00 NOUTS~,WNEE

In this algorithm,D® is computed in increasing order 6fSince we can compute line
5in O(n®) time, the computing time of this algorithm @(rn®).

The following algorithm in [1] for the APSD problem uses Algorithm 1 as an “accel-
erating phase” and repeated squaring as a “cruising phase.”

Algorithm 2 (Solving APSD)

{Accelerating phage
1 for £ :=2tor docomputeD® using Algorithm 1;
{Cruising phasg
L:=r,;
for s:=1to flogs, n/r1 do begin
fori:=0ton—1do

A WODN

312 T. Takaoka

5 Scan théth row of D and find the smallest set of equi{f’s
such thaf'¢/2] < di’ < ¢ and let the set of corresponding indices
j beS; {If S= g, theith row need not be computed in stegjp

6 0y :=[3¢/2];
7 fori :=0ton—1dofor j :=0ton— 1do begin
8 if § #@domj = Lr;isn{dﬁf’ +d,} elsem;j 1= o0;
9 if df’ < ¢thend(" :=d”

10 else ifm;; < ¢; thend® := my

11 else{m; > £1} d* 1= oo

12 end,

13 =14

14 end

Algorithm 2 computeD® from £ = 2 tor in the accelerating phase spendi@g n®)
time and compute®® for ¢ =r, [3r], [3[3r]].....n by repeated squaring in the
cruising phase, whene is the smallest integer in this serieséo$uch that > n. The
key observation in the cruising phase is that we only need to cGeakline 8 whose
size is not larger thanr?¢, since the correct distances between 1 and[3¢/2] can
be obtained as the sudj’ + d;’ for somek satisfying[¢/2] < di’ < ¢. Hence the
computing time of one iteration beginning at line 3@%n%/¢). Thus the time of the
cruising phase is given with = [log; , n/r1 by

N
0o (Z n3/<<§>5r>> = O(n’/r).
s=1

Balancing the two phases witm® = n3/r yields O(n“+3/2) time for the algorithm
withr = O(nG-»/2),

When we have a directed graghwhose edge costs are between 0 &havhereM
is a positive integer, we can convert the gr&pltio G’ = (V’, E’) by adding auxiliary
verticesvy, ..., vm_1 for v € V. The edge set is also modified E. If c(v, w) = ¢, w
is connected fromy,_; in E" wherevy = v. Obviously we can solve the problem fGr
by applying Algorithm 2 taG’, which takesO ((Mn)©*3/2) time.

Now witnesses can be kept at lines 4-7 of Algorithm Dim log® n) time. At line
8 of Algorithm 2 witnesses are obtained by storkag the witness matrix. This does
not increase the order of complexity of the cruising phase. Thus we have the complexity
of the APSP a®(n@+3/2,/(Togn)°®). For the graph with edge costs bf or less, the
complexity become® ((Mn)©@+3/2_ /(Tlog(Mn))°).

We design a parallel algorithm on an EREW PRAM for a directed graph with unit
edge costs. In this section and the next section, we mainly describe our algorithm using
a CREW PRAM for simplicity. The overhead time to copy datadidlogn) time with
a certain number of processors depending on each phase is absorbed in the dominant
complexities. LetA be the adjacency matrix used in Algorithm 1. Thatag, = 1 if
there is an edge fromto j and O otherwise. All diagonal elements are 1. There is a
path fromi to j of length< ¢ if and only if the(i, j) elementA’ is 1, whereA’ is the

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 313

¢th power of A by Boolean matrix multiplication. By repeated squaring, we camijet
(£ =124,...,n")withlog, n' Boolean matrix multiplications, whergis the smallest
integer in this series of such that > n. These matrices give a kind of approximate
estimation on the path lengths. That is, if tiej) element ofAZ becomes 1 for the
first time, we can say that the shortest path length frdmj is between 21 + 1 and

2" forr > 1. Gazit and Miller [7] fill the gap in decreasing orderrgfwhile we do it in
increasing order af by the following algorithm.

Algorithm 3 (Shortest distances up t&p

1 D@ :=D;

2 for s:=1to Rdo begin

3 for ¢ := 251+ 1t0 25do A® := AC-2H . ACD:

4 Letd?” =min¢| ¢ <2 na” =1fori,j=0,....,n-1
5 end

Algorithm 3 is just a reformulation of Algorithm 1 with no gain in efficiency. Its merit
is that it is easy to parallelize. It is well known that we can multiply two matrices
over a ring inO(logn) time with O(n®) processors in parallel. We can perforft2
multiplications in parallel at line 3. At line 4 we can find the minimunOigs) time with
0(25/s) processors. We substitute Algorithm 3 for Algorithm 1 in Algorithm 2 and call
the resulting algorithm Algorithm’2

Turning our attention to the cruising phase of Algorithfyv2e can find the minimum
at line 8 inO(logn) time with O(n/(¢logn)) processors. The rest is absorbed in these
complexities. Now we summarize the complexities for the parallel algorithiis.the
time andP is the number of processors.

Accelerating phase T = O(Rlogn), P =0(n.2R),
Cruising phase T = O(log(n/2R) - logn), P = O(n%/(2Rlogn)).

If we let 2R = n®-»)/2/, /logn, we have the overall complexity as follows:
T = O(log?n), P =n®/2//logn.

If we have a graph with edge costs up ltb we can replace by Mn in the above
complexities.

4. Parallelization for Graphs with General Costs. If edges costs are honnegative
real numbers, we cannot apply the techniques of the previous sections. Even in the
previous section, iM, the magnitude of edge costs,@n), the efficiencies of both
sequential and parallel algorithms get much worse than primitive methods.

Fredman [6] first gave an algorithm for the APSD problemoim®), that is,
O(n3(log logn/logn)*/3) time, by showing that distance matrix multiplication can be
solved in this complexity. Takaoka [13] improved this@gn®(log logn/logn)¥/?) and
pointed out that the APSP problem can be solved in the same complexity. This algo-
rithm was also parallelized in [13]. The parallel version takes the repeated squaring
approach. The parallel algorithm for distance matrix multiplication has complexities of

314 T. Takaoka

T =0(logn) andP = O(n®(log logn)*/?/(log n)*?) onan EREW PRAM. Therefore the
APSP problem can be solved with= O(log? n) andP = O(n3(log logn)¥/2/(logn)¥/2).

In this algorithm we can keep track of witnesses easily and thus the APSP problem can
be solved in the same complexities. The d®3t = O(n°(lognloglogn)¥/?) is slightly
aboveO(n®). Since then, it has been a major open problem whether there NsGan
algorithm whose cost is(n®).

In this section we show that there exists /€ algorithm for the APSP problem,
whose cost i®(n®).

Let a parallel algorithm have time complexityand useP (t) processors at thih
step. Then the cost complexi®yis given byC = P(1)+---+ P(T). Atime intervall;
over which the number of processors is fixed is called a processor phase. Fat &e
equal toR, forallt € I and interval [0.T]is divided as [0.T] = lgU --- U lx_1 where
k is the number of processor phases. Then we RavePyTg + - - - + Px_1Tk_1, where
T; is the size of interval;. Brent's theorem [8] states that other processor phases can
be simulated by a smaller number of processors at the expense of increasing computing
time, without mentioning the overhead time for rescheduling processors. We suggest
that the number of processor phases be finite so that the rescheduling does not cause
too much overhead time. In the following parallel algorithm, the number of processor
phases is two.

The engine, so to speak, in the acceleration phase in Algorithm 2 was a fast algo-
rithm for Boolean matrix multiplication. We use the fast distance matrix multiplication
algorithm in [13] as the engine and modify the cruising phase slightly to fit our parallel
algorithm. In Algorithm 2 there is no difference between distances and lengths of paths
since the edge costs are ones. In line 5 of Algorithm 2, we choosg besed on the
distancesl” (j = 0,...,n — 1) satisfying[¢/2] < d” < ¢ to guarantee the correct
computation of distances betweérand [3¢/2]. We observe that the computation of
S is essentially based on path lengths, not distances. If we keep track of path lengths,
therefore, we can adapt Algorithm 2 to our problem. The definitioq(jefhere is that
it gives the cost of the shortest path whose length is not greaterthime algorithm
follows with a new data structure, arr&y®, such tha‘qi(f) is the length of a path that

i ©
givesd; .

Algorithm 4
{Accelerating phage
0, ifi=]
—1pDD — P OD — (gD D _ 1, ifi#]
1 ¢:=1;D% :=D; QY = {q; }, whereqg;” = and(i.)< E

oo, otherwise
2 for s:=1to [log,r] do begin
3 D@ := D® x D®; {distance matrix multiplication in [13]
a +a’. if d* is updated by
Q(ZZ) - {qi(jZE)}Whereqi(_Zf): di(lf) + dﬁ)

j
qi(f) , otherwise

I

5 =2

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 315

6 end
{Cruising phasg
for s:=1to flogs, n/r1 do begin
fori :=0ton—1do
Scan theth row of Q' and find the smallest set of equ;#)’s

suchthaf¢/2] < qi(f) < ¢ and letthe set of corresponding indices
j bes;

10 {1 :=113¢/27;

11 fori :=0ton—1dofor j :=0ton— 1do begin

© 00~

12 if § # ¥ then begin

13 myj = min{di’ +d’);

14 k := one that gives the above minimum and satisfiesqfféﬂ-
Gy’ is minimum among suck;

15 L= qi +a;

16 end else{§ =@} L := oo;

17 if mj < dff’ then begind* := m;: gf* := L end

18 else begind* :=d”; ¢\ := q” end,

19 =4

20 end

21 end.

As described in [13], we can parallelize the distance matrix multiplication at line 3 on
an EREW PRAM. We index tim& and the number of processdpsin the accelerating
phase and cruising phase by 1 and 2. Then we have

T: = O(logr logn), P, = O(n%(log logn)*?/(logn)®?).

The computation of al§ can be done irD(logn) time with O(n?) processors. The
dominant complexity in the cruising phase is at line 13. This part can be computed in
O(log(n/r)) time with O((n/r)/log (n/r)) processors. Thus we have

T, = O(lognlog(n/r)), P, = O(n?(n/r)/log (n/r)).

Lettingr = (logn/log logn)®/? yields

T, = O(lognloglogn), P; = O(n3(loglogn)¥/2/(logn)®?),

T, = O(log?n), P, = O(n3(log logn)®?/(logn)®/?).
Thus the cost is given by

PiT1+ P, T, = O(n*(loglogn)*?/(logn)*/?) + O(n*(log logn)*?/(logn)*/?)

O(n®(log logn)*?/(logn)*/?)
= o(nd).

We note that we can solve the APSP problem with the same order of cost by this
algorithm. We only need to keep track of witnesses at distance matrix multiplication and
the minimum operation at line 13.

316 T. Takaoka

If we perform the accelerating phase wkh processors, the time for this phase will
becomeO(log? n), and the cost will be the same as above for the whole computation.
That is, we can keep the number of processors uniform and claim that the algorithm has
the above complexities under the traditional definition of cosCby PT.

5. An Algorithm for Graphs with Small Edge Costs. When the edge costs are
bounded by a positive integét, we can do better than we saw in the previous sections.
We briefly review Romani’s algorithm [10] for distance matrix multiplication.

Let A andB be distance matrices whose elements are boundéd byinfinite. Let
the diagonal elements be 0. Then we convedndB into A’ and B’ where

;o nMTaE i g £ oo,
% =o if & = oo,
b — nM-bij if bij # 00,
i 0 if bij = oQ.

LetC’ = A'B’ be the product by ordinary matrix multiplication and@t= A x B be
that by distance matrix multiplication. Then we have

S
=

_ n2M-<a4k+ka), Gj = 2M — |log, Ci/jJ'

=~
I
o

Thus we can comput€ with O(n®) arithmetic operations on integers uprty. Since
these values can be expresseddM logn) bits and Schithage and Strassen’s algo-
rithm [11] for multiplying k-bit numbers take®© (k logk log logk) bit operations, we
can compute& in O(n®M lognlog(M logn) log log(M logn)) time.

We replace the accelerating phase of Algorithm 4 by the following and call the
resulting algorithm Algorithm 5.

Algorithm 5
{Another accelerating phalse
0, ifi=j
1 ¢:=1;D% :=D; QY := {q"}; whereq|” = 11, ifi #jand(,j)eE
00, otherwise
2 for s:=1tor do begin
3 DD .= D® x D; ({distance matrix multiplication by Romani in [[7]
® i @+
S+ 1, if di T is updated
4 D - gD} whereq™? = 0ij . ij
Q e i q. otherwise
5 =041
6 end

{Cruising phaspsame as that in Algorithm 4.

Note that the bouni is replaced by M in the distance matrix multiplication. The time

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 317

for the accelerating phase is given by

O(n“r2M lognlog(r M logn) log log(r M logny).

We assume thatl is O(n*) for some constark. Balancing this complexity with that of
the cruising phase)(n®/r), yields a total computing time of

O(n®**/3(M lognlog(nM logn) log log(nM log n))Y/3)

with the choice of

r = O(n®“/3(M lognlog(nM logn) log log(nM logn))~%3).

This complexity is simplified into

O(M¥3n6&+)3(1o0gn)?3(log logn)Y/3).

The value ofM can be almos©(n®%2%) to keep the complexity subcubic. This bound
on M is a considerable improvement ov@(n®1) given in [1].

In the above we solved only the APSD problem. In the Romani algorithm we cannot

keep track of witnesses. If we could, we would be able to replace the accelerating phase
by that based on repeated squaring and would have a better complexity for both the
APSD and APSP problems with small edge costs.

6. Concluding Remarks. The balancing parameters between the accelerating and
cruising phases change depending on what engine we use in the accelerating phase. We
may find more results if we use other algorithms for the engine in the accelerating phase.

Acknowledgment. The authorthanksthe anonymous referees whose comments helped
improve the presentation of the paper.

(1]
(2]
(3]
(4]

(5]
(6]

(7]
(8]

References

N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path proBler, 32nd
IEEE FOCS(1991), pp. 569-575.

N. Alon, Z. Galil, O. Margalit, and M. Naor, Witnesses for Boolean matrix multiplication and for shortest
paths,Proc. 33d IEEE FOCS(1992), pp. 417-426.

D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressibi@mbolic Com-

put 9 (1990), 251-280.

E. Dekel, D. Nassimi, and S. Sahni, Parallel matrix and graph algorit8ié/ J Comput 10 (1981),
657-675.

R. W. Floyd, Algorithm 97: Shortest patiomm ACM 5(6) (1962), 345.

M. L. Fredman, New bounds on the complexity of the shortest path prolg8&&hy I Comput5 (1976),
49-60.

H. Gazit and G. Miller, An improved parallel algorithm that computes the bfs numbering of a directed
graph,Inform. ProcessLett 28 (1988), 61-65.

A. Gibbons and W. RytteEfficient Parallel AlgorithmsCambridge University Press, Cambridge (1988).

318

19
(20]
(11]

(12]
(23]

T. Takaoka

Y. Han, V. Pan, and J. Reif, Efficient parallel algorithms for computing all pairs shortest paths in directed
graphsProc. 4th ACM SPAA1992), pp. 353-362.

F. Romani, Shortest-path problem is not harder than matrix multiplicatiofesm. ProcessLett 11
(1980), 134-136.

A. Schonhage and V. Strassen, Schnelle Multiplikation GroRRer Zallemputing7 (1971), 281-292.

R. Seidel, On the all-pairs-shortest-path probl@moc. 24th ACM STOQ1990), pp. 213-223.

T. Takaoka, A new upperbound on the complexity of the all pairs shortest path problerm. Process

Lett 43(1992), 195-199.

