
Algorithmica (1998) 20: 309–318 Algorithmica
© 1998 Springer-Verlag New York Inc.

Subcubic Cost Algorithms for the All Pairs
Shortest Path Problem1

T. Takaoka2

Abstract. In this paper we give three subcubic cost algorithms for the all pairs shortest distance (APSD)
and path (APSP) problems. The first is a parallel algorithm that solves the APSD problem for a directed graph

with unit edge costs inO(log2 n) time with O(nµ/
√

logn) processors whereµ = 2.688 on an EREW PRAM.
The second parallel algorithm solves the APSP, and consequently APSD, problem for a directed graph with
nonnegative general costs (real numbers) inO(log2 n) time witho(n3) subcubic cost. Previously this cost was
greater thanO(n3). Finally we improve with respect toM the complexityO((Mn)µ) of a sequential algorithm
for a graph with edge costs up toM to O(M1/3n(6+ω)/3(logn)2/3(log logn)1/3) in the APSD problem, where
ω = 2.376.

Key Words. All pairs shortest path problem, Parallel algorithm, Unit cost problem, General cost problem,
Two-phase algorithm.

1. Introduction. The all pairs shortest path (APSP) problem is to compute shortest
paths between all pairs of vertices of a directed graph with nonnegative real numbers as
edge costs. The all pairs shortest distance (APSD) problem is defined similarly, the word
“paths” replaced by distances. Traditionally the latter was called the APSP problem.
Alon et al. [1] gave a subcubic algorithm for the APSD problem for a graph with small
integer edge costs. Recently Alon et al. [2] distinguished these two problems and faced
a higher complexity for the APSP problem with the same class of graphs. The best time
complexities for the APSD and APSP problems for undirected graphs with unit edge
costs are given by Seidel [12]. On the other hand, the complexity for the APSD problem
with general edge costs was slightly improved by Takaoka [13], from that by Fredman
[6], which isn3 divided by the polylog ofn, very close ton3. With this algorithm [13], we
can solve the APSP problem at the same time, and hence there is no need to distinguish
between APSD and APSP.

The technique for obtaining paths in [2] is based on the concept of witnesses for
Boolean matrix multiplication. They compute the witnesses of Boolean matrix multipli-
cation for(n, n)matrices inO(nω logc n) wherec < 5 andω = 2.376. Using this result
they solve other shortest path problems, attaching logc n as factors to the complexities
of corresponding distance problems.

1 This research was partially supported by Grant-in-Aid No. 07680332 by Monbusho Scientific Research
Program and a research grant from Hitachi Engineering Co., Ltd.
2 Department of Computer Science, Ibaraki University, Hitachi, Ibaraki 316, Japan. takaoka@cis.ibaraki.ac.jp.
Current address: Department of Computer Science, University of Canterbury, Private Bay 4800, Christchurch,
New Zealand. tad@cosc.canterbury.ac.nz.

Received October 15, 1995; revised June 21, 1996. Communicated by G. N. Frederickson.

310 T. Takaoka

In this paper we design a parallel algorithm for the APSD problem for a directed
graph with unit edge costs withO(log2 n) time (worst case) andO(n(3+ω)/2/

√
logn)

processors. This result is compared with a parallel version of Seidel’s algorithm [12] for
an undirected graph with unit edge costs inO(log2 n) time andO(nω) processors.

Next we improve the parallel algorithm for the APSP problem with general edge costs
in [13] whose cost(= number of processors× time) is slightly aboveO(n3). The cost
of O(n3 logn) in [4] was also improved by Han et al. [9] toO(n3). They state the cost can
beo(n3) by using Fredman’s algorithm without showing how to parallelize it. Previous
efforts in this area were made on improving the cost for distance matrix multiplication
while the outermost structure of repeated squaring or the Floyd–Warshall algorithm [5]
remained intact. The cost of our new algorithm is slightly belowO(n3) and the time
is the polylog ofn, that is, inNC. Our method is based on the two-phase algorithm
originated in [1].

Finally we present a sequential algorithm for a graph with edge cost up toM whose
complexity is subcubic whenM = O(n0.624).

2. Basic Definitions. A directed graph is given byG = (V, E), whereV = {0, . . . ,n−
1} andE is a subset ofV × V . The edge cost of(i, j) ∈ E is denoted bydi j . The(n, n)
matrix D is one whose(i, j) element isdi j . We assume thatdi j ≥ 0 anddii = 0 for all
i, j . If there is no edge fromi to j , we letdi j = ∞. The cost, or distance, of a path is
the sum of costs of the edges in the path. The length of a path is the number of edges
in the path. The shortest distance from vertexi to vertex j is the minimum cost over all
paths fromi to j , denoted byd∗i j . Let D∗ = {d∗i j }. We calln the size of the matrices.

Let A andB be(n, n)matrices. The three products are defined using the elements of
A andB as follows:

(1) Ordinary multiplication over a ring (C = AB):

ci j =
n−1∑
k=0

aikbk j .

(2) Boolean matrix multiplication (C = A · B):

ci j =
n−1∨
k=0

aik ∧ bkj .

(3) Distance matrix multiplication (C = A× B):

ci j = min
0≤k≤n−1

{aik + bkj }.

The best algorithm [3] computes (1) inO(nω) time. To compute (2), we can regard the
Boolean values 0 and 1 inA andB as integers and use the algorithm for (1), and convert
nonzero elements in the resulting matrix to 1. Therefore this complexity isO(nω). Let
TP(n) (resp.TD(n)) be the time for (2) or (3) with (resp. without) witnesses, whereP
andD stand for path and distance. The witnesses of (2) are given in the witness matrix
W = {wi j } wherewi j = k for somek such thataik ∧ bkj = 1. If there is no suchk,

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 311

wi j = 0. The witness matrixW = {wi j } for (3) is defined bywi j = k that gives the
minimum toci j . If we have an algorithm for (3) withTD(n) (resp.TP(n)) time we can
solve the APSD (resp. APSP) problem inO(TD(n) logn) (resp.O(TP(n) logn)) time
by the repeated squaring method, described as the repeated use ofA← A× A.

Our definition of computing shortest paths is to give a path matrix of sizen by which
we can give a shortest path fromi to j in O(`) time wherè is the length of the path.
More specifically, ifwi j = k in the path (or witness) matrixW = {wi j }, it means that
the path fromi to j goes throughk. Therefore a recursive functionpath(i, j) is defined
by (path(i, k), k, path(k, j)) if path(i, j) = k > 0 and nil if path(i, j) = 0, where a
path is defined by a list of vertices excluding endpoints. In the following sections, we
recordk in wi j whenever we can findk such that a path fromi to j is modified or newly
set up by paths fromi to k and fromk to j .

3. The Alon–Galil–Margalit Algorithm and Its Parallelization. We review the al-
gorithm in [1] in this section. Let the costs of edges of the given graph be ones. LetD(`)

be the`th approximate matrix forD∗ defined byd(`)i j = d∗i j if d(`)i j ≤ `, andd(`)i j = ∞
otherwise. Then we can computeD(r) for r ≥ 2 by the following algorithm.

Algorithm 1 (Shortest distances by Boolean matrix multiplication)

1 A := {ai j } whereai j = 1 if di j ≤ 1, and 0 otherwise;
2 B := I ; {Boolean identity matrix}
3 D(1) := D;
4 for ` := 2 to r do begin
5 B := A · B; {Boolean matrix multiplication}
6 for i := 0 to n− 1 do for j := 0 to n− 1 do
7 if bi j = 1 then d(`)i j := ` elsed(`)i j = ∞;

8 if d(`−1)
i j ≤ ` then d(`)i j := d(`−1)

i j

9 end.

In this algorithm,D(`) is computed in increasing order of`. Since we can compute line
5 in O(nω) time, the computing time of this algorithm isO(rnω).

The following algorithm in [1] for the APSD problem uses Algorithm 1 as an “accel-
erating phase” and repeated squaring as a “cruising phase.”

Algorithm 2 (Solving APSD)

{Accelerating phase}
1 for ` := 2 to r do computeD(`) using Algorithm 1;
{Cruising phase}

2 ` := r ;
3 for s := 1 to dlog3/2 n/r e do begin
4 for i := 0 to n− 1 do

312 T. Takaoka

5 Scan thei th row of D(`) and find the smallest set of equald(`)i j ’s

such thatd`/2e ≤ d(`)i j ≤ ` and let the set of corresponding indices
j beSi ; {If S= ∅, thei th row need not be computed in steps}

6 `1 := d3`/2e;
7 for i := 0 to n− 1 do for j := 0 to n− 1 do begin
8 if Si 6= ∅ do mi j := min

k∈Si

{d(`)ik + d(`)k j } elsemi j := ∞;

9 if d(`)i j ≤ ` then d(`1)
i j := d(`)i j

10 else ifmi j ≤ `1 then d(`1)
i j := mi j

11 else{mi j > `1} d(`1)
i j := ∞

12 end;
13 ` := `1

14 end

Algorithm 2 computesD(`) from ` = 2 to r in the accelerating phase spendingO(rn3)

time and computesD(`) for ` = r ,
⌈

3
2r
⌉
,
⌈

3
2

⌈
3
2r
⌉⌉
, . . . ,n′ by repeated squaring in the

cruising phase, wheren′ is the smallest integer in this series of` such that̀ ≥ n. The
key observation in the cruising phase is that we only need to checkSi at line 8 whose
size is not larger than 2n/`, since the correct distances between` + 1 andd3`/2e can
be obtained as the sumd(`)ik + d(`)k j for somek satisfyingd`/2e ≤ d(`)ik ≤ `. Hence the
computing time of one iteration beginning at line 3 isO(n3/`). Thus the time of the
cruising phase is given withN = dlog3/2 n/r e by

O

(
N∑

s=1

n3/((3
2)

sr)

)
= O(n3/r).

Balancing the two phases withrnω = n3/r yields O(n(ω+3)/2) time for the algorithm
with r = O(n(3−ω)/2).

When we have a directed graphG whose edge costs are between 0 andM whereM
is a positive integer, we can convert the graphG to G′ = (V ′, E′) by adding auxiliary
verticesv1, . . . , vM−1 for v ∈ V . The edge set is also modified toE′. If c(v,w) = `, w
is connected fromv`−1 in E′ wherev0 = v. Obviously we can solve the problem forG
by applying Algorithm 2 toG′, which takesO((Mn)(ω+3)/2) time.

Now witnesses can be kept at lines 4–7 of Algorithm 1 inO(nω logc n) time. At line
8 of Algorithm 2 witnesses are obtained by storingk in the witness matrix. This does
not increase the order of complexity of the cruising phase. Thus we have the complexity
of the APSP asO(n(ω+3)/2√(logn)c). For the graph with edge costs ofM or less, the
complexity becomesO((Mn)(ω+3)/2√(log(Mn))c).

We design a parallel algorithm on an EREW PRAM for a directed graph with unit
edge costs. In this section and the next section, we mainly describe our algorithm using
a CREW PRAM for simplicity. The overhead time to copy data inO(logn) time with
a certain number of processors depending on each phase is absorbed in the dominant
complexities. LetA be the adjacency matrix used in Algorithm 1. That is,ai j = 1 if
there is an edge fromi to j and 0 otherwise. All diagonal elements are 1. There is a
path fromi to j of length≤ ` if and only if the(i, j) elementA` is 1, whereA` is the

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 313

`th power ofA by Boolean matrix multiplication. By repeated squaring, we can getA`

(` = 1, 2, 4, . . . ,n′)with log2 n′ Boolean matrix multiplications, wheren′ is the smallest
integer in this series of̀ such that̀ ≥ n. These matrices give a kind of approximate
estimation on the path lengths. That is, if the(i, j) element ofA2r

becomes 1 for the
first time, we can say that the shortest path length fromi to j is between 2r−1 + 1 and
2r for r ≥ 1. Gazit and Miller [7] fill the gap in decreasing order ofr , while we do it in
increasing order ofr by the following algorithm.

Algorithm 3 (Shortest distances up to 2R)

1 D(1) := D;
2 for s := 1 to R do begin
3 for ` := 2s−1+ 1 to 2s do A(`) := A(`−2s−1) · A(2s−1);
4 Letd(2

s)
i j = min{` | ` ≤ 2s ∧ a(`)i j = 1} for i, j = 0, . . . ,n− 1

5 end.

Algorithm 3 is just a reformulation of Algorithm 1 with no gain in efficiency. Its merit
is that it is easy to parallelize. It is well known that we can multiply two matrices
over a ring inO(logn) time with O(nω) processors in parallel. We can perform 2s−1

multiplications in parallel at line 3. At line 4 we can find the minimum inO(s) time with
O(2s/s) processors. We substitute Algorithm 3 for Algorithm 1 in Algorithm 2 and call
the resulting algorithm Algorithm 2′.

Turning our attention to the cruising phase of Algorithm 2′, we can find the minimum
at line 8 inO(logn) time with O(n/(` logn)) processors. The rest is absorbed in these
complexities. Now we summarize the complexities for the parallel algorithm.T is the
time andP is the number of processors.

Accelerating phase T = O(R logn), P = O(nω · 2R),

Cruising phase T = O(log(n/2R) · logn), P = O(n3/(2R logn)).

If we let 2R = n(3−ω)/2/
√

logn, we have the overall complexity as follows:

T = O(log2 n), P = n(3+ω)/2/
√

logn.

If we have a graph with edge costs up toM we can replacen by Mn in the above
complexities.

4. Parallelization for Graphs with General Costs. If edges costs are nonnegative
real numbers, we cannot apply the techniques of the previous sections. Even in the
previous section, ifM , the magnitude of edge costs, isO(n), the efficiencies of both
sequential and parallel algorithms get much worse than primitive methods.

Fredman [6] first gave an algorithm for the APSD problem ino(n3), that is,
O(n3(log logn/logn)1/3) time, by showing that distance matrix multiplication can be
solved in this complexity. Takaoka [13] improved this toO(n3(log logn/logn)1/2) and
pointed out that the APSP problem can be solved in the same complexity. This algo-
rithm was also parallelized in [13]. The parallel version takes the repeated squaring
approach. The parallel algorithm for distance matrix multiplication has complexities of

314 T. Takaoka

T=O(logn)andP=O(n3(log logn)1/2/(logn)3/2)on an EREW PRAM. Therefore the
APSP problem can be solved withT=O(log2 n)andP=O(n3(log logn)1/2/(logn)3/2).
In this algorithm we can keep track of witnesses easily and thus the APSP problem can
be solved in the same complexities. The costPT = O(n3(logn log logn)1/2) is slightly
aboveO(n3). Since then, it has been a major open problem whether there is anNC
algorithm whose cost iso(n3).

In this section we show that there exists anNC algorithm for the APSP problem,
whose cost iso(n3).

Let a parallel algorithm have time complexityT and useP(t) processors at thet th
step. Then the cost complexityC is given byC = P(1)+· · ·+ P(T). A time intervalIi

over which the number of processors is fixed is called a processor phase. That is,P(t) are
equal toPi for all t ∈ Ii and interval [0..T] is divided as [0..T] = I0∪ · · · ∪ Ik−1 where
k is the number of processor phases. Then we haveC = P0T0+ · · · + Pk−1Tk−1, where
Ti is the size of intervalIi . Brent’s theorem [8] states that other processor phases can
be simulated by a smaller number of processors at the expense of increasing computing
time, without mentioning the overhead time for rescheduling processors. We suggest
that the number of processor phases be finite so that the rescheduling does not cause
too much overhead time. In the following parallel algorithm, the number of processor
phases is two.

The engine, so to speak, in the acceleration phase in Algorithm 2 was a fast algo-
rithm for Boolean matrix multiplication. We use the fast distance matrix multiplication
algorithm in [13] as the engine and modify the cruising phase slightly to fit our parallel
algorithm. In Algorithm 2 there is no difference between distances and lengths of paths
since the edge costs are ones. In line 5 of Algorithm 2, we choose setSi based on the
distancesd(`)i j (j = 0, . . . ,n− 1) satisfyingd`/2e ≤ d(`)i j ≤ ` to guarantee the correct
computation of distances between` andd3`/2e. We observe that the computation of
Si is essentially based on path lengths, not distances. If we keep track of path lengths,
therefore, we can adapt Algorithm 2 to our problem. The definition ofd(`)i j here is that
it gives the cost of the shortest path whose length is not greater than`. The algorithm
follows with a new data structure, arrayQ(`), such thatq(`)i j is the length of a path that

givesd(`)i j .

Algorithm 4

{Accelerating phase}

1 ` := 1; D(1) := D; Q(1) := {q(1)i j }, whereq(1)i j =


0, if i = j
1, if i 6= j

and(i, j)∈E
∞, otherwise;

2 for s := 1 to dlog2 r e do begin
3 D(2`) := D(`) × D(`); {distance matrix multiplication in [13]}

4 Q(2`) := {q(2`)i j }whereq(2`)i j =


q(`)ik + q(`)k j , if d(2`)i j is updated by

d(`)ik + d(`)k j

q(`)i j , otherwise;
5 ` := 2`

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 315

6 end;
{Cruising phase}

7 for s := 1 to dlog3/2 n/r e do begin
8 for i := 0 to n− 1 do
9 Scan thei th row of Q(`) and find the smallest set of equalq(`)i j ’s

such thatd`/2e ≤ q(`)i j ≤ ` and let the set of corresponding indices
j beSi ;

10 `1 := d3`/2e;
11 for i := 0 to n− 1 do for j := 0 to n− 1 do begin
12 if Si 6= ∅ then begin
13 mi j := min

k∈Si

{d(`)ik + d(`)k j };
14 k := one that gives the above minimum and satisfies thatq(`)ik +

q(`)k j is minimum among suchk;

15 L := q(`)ik + q(`)k j ;
16 end else{Si = ∅} L := ∞;
17 if mi j < d(`)i j then begind(`1)

i j := mi j ;q(`1)
i j := L end

18 else begind(`1)
i j := d(`)i j ; q(`1)

i j := q(`)i j end;
19 ` := `1

20 end
21 end.

As described in [13], we can parallelize the distance matrix multiplication at line 3 on
an EREW PRAM. We index timeT and the number of processorsP in the accelerating
phase and cruising phase by 1 and 2. Then we have

T1 = O(logr logn), P1 = O(n3(log logn)1/2/(logn)3/2).

The computation of allSi can be done inO(logn) time with O(n2) processors. The
dominant complexity in the cruising phase is at line 13. This part can be computed in
O(log(n/r)) time with O((n/r)/log(n/r)) processors. Thus we have

T2 = O(logn log(n/r)), P2 = O(n2(n/r)/log(n/r)).

Letting r = (logn/log logn)3/2 yields

T1 = O(logn log logn), P1 = O(n3(log logn)1/2/(logn)3/2),
T2 = O(log2 n), P2 = O(n3(log logn)3/2/(logn)5/2).

Thus the cost is given by

P1T1+ P2T2 = O(n3(log logn)3/2/(logn)1/2)+ O(n3(log logn)3/2/(logn)1/2)

= O(n3(log logn)3/2/(logn)1/2)

= o(n3).

We note that we can solve the APSP problem with the same order of cost by this
algorithm. We only need to keep track of witnesses at distance matrix multiplication and
the minimum operation at line 13.

316 T. Takaoka

If we perform the accelerating phase withP2 processors, the time for this phase will
becomeO(log2 n), and the cost will be the same as above for the whole computation.
That is, we can keep the number of processors uniform and claim that the algorithm has
the above complexities under the traditional definition of cost byC = PT.

5. An Algorithm for Graphs with Small Edge Costs. When the edge costs are
bounded by a positive integerM , we can do better than we saw in the previous sections.
We briefly review Romani’s algorithm [10] for distance matrix multiplication.

Let A andB be distance matrices whose elements are bounded byM or infinite. Let
the diagonal elements be 0. Then we convertA andB into A′ andB′ where

a′i j =
{

nM−ai j if ai j 6= ∞,
0 if ai j = ∞,

b′i j =
{

nM−bi j if bi j 6= ∞,
0 if bi j = ∞.

Let C′ = A′B′ be the product by ordinary matrix multiplication and letC = A× B be
that by distance matrix multiplication. Then we have

c′i j =
n−1∑
k=0

n2M−(aik+bkj), ci j = 2M − blogn c′i j c.

Thus we can computeC with O(nω) arithmetic operations on integers up tonM . Since
these values can be expressed byO(M logn) bits and Sch¨onhage and Strassen’s algo-
rithm [11] for multiplying k-bit numbers takesO(k logk log logk) bit operations, we
can computeC in O(nωM logn log(M logn) log log(M logn)) time.

We replace the accelerating phase of Algorithm 4 by the following and call the
resulting algorithm Algorithm 5.

Algorithm 5

{Another accelerating phase}

1 ` := 1; D(1) := D; Q(1) := {q(1)i j }; whereq(1)i j =
0, if i = j

1, if i 6= j and(i, j) ∈ E
∞, otherwise

2 for s := 1 to r do begin
3 D(`+1) := D(`) × D; {distance matrix multiplication by Romani in [7]}
4 Q(`+1) := {q(`+1)

i j }; whereq(`+1)
i j =

{
q(`)i j + 1, if d(`+1)

i j is updated

q(`)i j , otherwise
5 ` := `+ 1
6 end;
{Cruising phase} same as that in Algorithm 4.

Note that the boundM is replaced bỳ M in the distance matrix multiplication. The time

Subcubic Cost Algorithms for the All Pairs Shortest Path Problem 317

for the accelerating phase is given by

O(nωr 2M logn log(r M logn) log log(r M logn)).

We assume thatM is O(nk) for some constantk. Balancing this complexity with that of
the cruising phase,O(n3/r), yields a total computing time of

O(n(6+ω)/3(M logn log(nM logn) log log(nM logn))1/3)

with the choice of

r = O(n(3−ω)/3(M logn log(nM logn) log log(nM logn))−1/3).

This complexity is simplified into

O(M1/3n(6+ω)/3(logn)2/3(log logn)1/3).

The value ofM can be almostO(n0.624) to keep the complexity subcubic. This bound
on M is a considerable improvement overO(n0.116) given in [1].

In the above we solved only the APSD problem. In the Romani algorithm we cannot
keep track of witnesses. If we could, we would be able to replace the accelerating phase
by that based on repeated squaring and would have a better complexity for both the
APSD and APSP problems with small edge costs.

6. Concluding Remarks. The balancing parameters between the accelerating and
cruising phases change depending on what engine we use in the accelerating phase. We
may find more results if we use other algorithms for the engine in the accelerating phase.

Acknowledgment. The author thanks the anonymous referees whose comments helped
improve the presentation of the paper.

References

[1] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path problem,Proc. 32nd
IEEE FOCS(1991), pp. 569–575.

[2] N. Alon, Z. Galil, O. Margalit, and M. Naor, Witnesses for Boolean matrix multiplication and for shortest
paths,Proc. 33rd IEEE FOCS(1992), pp. 417–426.

[3] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions,J. Symbolic Com-
put. 9 (1990), 251–280.

[4] E. Dekel, D. Nassimi, and S. Sahni, Parallel matrix and graph algorithms,SIAM J. Comput. 10 (1981),
657–675.

[5] R. W. Floyd, Algorithm 97: Shortest path,Comm. ACM 5(6) (1962), 345.
[6] M. L. Fredman, New bounds on the complexity of the shortest path problem,SIAM J. Comput. 5 (1976),

49–60.
[7] H. Gazit and G. Miller, An improved parallel algorithm that computes the bfs numbering of a directed

graph,Inform. Process. Lett. 28 (1988), 61–65.
[8] A. Gibbons and W. Rytter,Efficient Parallel Algorithms, Cambridge University Press, Cambridge (1988).

318 T. Takaoka

[9] Y. Han, V. Pan, and J. Reif, Efficient parallel algorithms for computing all pairs shortest paths in directed
graphs,Proc. 4th ACM SPAA(1992), pp. 353–362.

[10] F. Romani, Shortest-path problem is not harder than matrix multiplications,Inform. Process. Lett. 11
(1980), 134–136.

[11] A. Schönhage and V. Strassen, Schnelle Multiplikation Großer Zahlen,Computing7 (1971), 281–292.
[12] R. Seidel, On the all-pairs-shortest-path problem,Proc. 24th ACM STOC(1990), pp. 213–223.
[13] T. Takaoka, A new upperbound on the complexity of the all pairs shortest path problem,Inform. Process.

Lett. 43 (1992), 195–199.

