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On Coloring Unit Disk Graphs*
A. Graf? M. Stumpf? and G. WeiRenfefs

Abstract.  In this paper the coloring problem for unit disk (UD) graphs is considered. UD graphs are the
intersection graphs of equal-sized disks in the plane. Colorings of UD graphs arise in the study of channel
assignment problems in broadcast networks. Improving on a result of Clark et al. [2] it is shown that the
coloring problem for UD graphs remains NP-completednyfixed number of color& > 3. Furthermore, a

new 3-approximation algorithm for the problem is presented which is based on network flow and matching
techniques.
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1. Introduction. Unit disk (UD) graphsare the intersection graphs of equal-sized
disks in the plane [2]. They can also be described in terms of “distance” or “proximity”
models, which consist of a valuk> 0 and an embedding of the vertices in the plane
suchthabvw is an edge iffi(v, w) < d, whered(v, w) denotes the Euclidean distance of

v andw in the specified embedding. UD graphs arise in a variety of different problems
related to broadcast networks, see [2]. In particutatprings of UD graphs play an
important role in thechannel assignment problefh0]. In this context the vertices of

the graphG represent transmitters of the same power in a broadcast network, and two
transmitters may interfere if they have a distance of at rdp&r some giverd > 0.

In the simplest setting, interfering transmitters should be given different channels. Since
the spectrum available to broadcast services is a limited resource, we would also like to
keep the number of channels used in a valid channel assignment of a given network as
small as possible. Obviously, this task can be formulated as a graph coloring problem
on the underlying UD graph.

Itis well known that the general graph coloring problem is NP-complete and that even
the problem ofipproximatinghe chromatic number within any constant ratio is NP-hard
[12]. Clark et al. proved in [2] that the coloring problem remains NP-complete for UD
graphs. However, their proof left open the possibility that the problem might become
easier when a fixed number of coldes> 3 is considered. Employing a generalization
and combination of techniques in [2] and [5], in this paper we improve on this result
by showing that the UD graph coloring problem remains NP-completarigifixed
number of colork > 3. As with the result of [2], we can show that the problem remains
NP-complete when the graph is giveiith its model This is an important point since
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the UD graplrecognitionproblem (given a graph, decide whether it is a UD graph and
construct a corresponding distance model) is NP-hard [1].

We also consider the problem approximatinghe chromatic number of UD graphs.

Itis easy to see that the vertex degrees in a UD gfapgbntaining at least one edge are
always bounded from above bw6G) — 7, wherew (G) denotes the maximum clique
size of G. HenceG can be colored using at mosb6G) — 6 colors using any variation

of the “sequential” coloring algorithm (consider the vertices in a given order and always
assign the “least” color which is allowed at a given vertex). In fact, Peeters has observed
that the sequential coloring algorithm, when applied to a certain “lexicographic” vertex
ordering, colors each UD gragh with at most 2 (G) — 2 colors [19].

In this paper we present a new approach to the UD graph coloring problem which
is based on the idea of partitioning a UD graph into a collection of special subgraphs
called “stripes.” This approach makes extensive use of the geometric structure of the
UD graph to be colored, and hence requires the graph to be given with its model. Given
an appropriate choice of parameters, the stripes turn out to be cocomparability graphs
which can be colored optimally usingiing’s algorithm [18]. The stripe colorings
are then combined using matching techniques as described in [7]. We prove that this
algorithm achieves a worst-case performance ratio of 3. As our test results indicate, our
algorithm is an alternative worth considering, depending on the structure of the problem
instances for the application at hand.

The paper is organized as follows. In Section 2 we introduce the basic concepts used in
this paper. In Section 3 we prove that the UD graph coloring problem is NP-complete for
all fixed numbers of colork > 3. In Section 4 we discuss our approximation algorithm
for UD graph coloring. Section 5 summarizes results and points out open problems. For
proofs, test results, and other technical details omitted here the reader is referred to [8]
and [9].

2. Preliminaries. All graphs in this paper are finite and undirected and do not have
loops or multiple edges, except if explicitly indicated. The sets of vertices and edges
of a graphG are denotedV(G) and E(G), respectively. The subgrapghducedby

V C V(G) is denotedGy, and we writeG for the complemenbf G (wherevw e
E(G) « vw ¢ E(G) forallv,w € V(G) = V(G), v # w). A graphG is called
completéff vw € E(G) forall v, w € V(G), v # w. A subsetV of V(G) is called a
cligueof G iff Gy is complete and amdependent séff vw ¢ E(G), Vv, w € V(G).

A partition of G is a setV consisting of mutually disjoint subsets ¥f(G) such that
V(G) = Uyey V. A k-coloringis a mappingf: V(G) — | with [I| < k such that
f(v) # f(w), YVow € E(G). (We also interpret &-coloring as a partition o6 into at
mostk independent sets.) Tlebromatic numbeof G, x (G), is the minimunk for which

G has &-coloring, and theg (G)-colorings ofG are callecbptimal The maximum size

of a clique ofG (theclique nhumbeyand the maximum vertex degree@fare denoted
w(G) andA(G), respectively.

Clearly,w(G) < x(G) for each graplG. A graphG is calledperfectiff x (Gy) =
w(Gy) for eachV C V(G). It is well known (see, e.g., [6]) that the class of perfect
graphs is closed under taking complements. An important class of perfect graphs we
consider in this paper are tlttwcomparability graphsvhich are the complements of
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comparability (or transitively orientablg graphs We call a graphG a comparability
graph if we can orient the edges @fin such a manner that the detof oriented edges
is a transitive relation ol (G). We then say thaR is atransitive orientatiorof G.

We now discuss the “main character” of this paper. Given two paints (X1, Y1)
andv, = (Xg, ¥2) in the plane, letl(vy, v,) denote theEuclidean distancéetweenv;
andv,. For a setV of points in the plane and thresholdvalued > 0 let G(V, d) be
the graph with vertex s&f and edgesw € E(G(V,d)) & v # w Ad(v,w) < d.

A graphG is called aunit disk(UD) graphiff G = G(V, d) for some suitable set of
pointsV and threshold valud; we then callV, d) adistance modedf G. Equivalently,

we may think ofG as the intersection graph of pairwise distinct, closed equal-sized
disksD,, v € V(G), wherevw € E(G) iff v # w andD, N D,, # @. In this case,
{D,|v € V(G)} is called anintersection modedf G.

In contrast to uniinterval graphs, which are the counterpart of UD graphs in one-
dimensional space (see, e.g., [6]), UD graphsrertenecessarily perfect. For instance,
Cs, the chordless cycle with five vertices, can easily be seen to be a UD graph, but it is
not perfect ag (Cs) = 3 > 2 = w(Cs). It is also worth noting that while the coloring
problem remains NP-complete on UD graphs, Clark et al. giv® arf-°) algorithm for
computing the cligue number of a UD graph [2].

Another fact which deserves mentioning is that it is always possible to “adjust”
the threshold valuel and the pointsv in a distance model of a UD graph within
certain bounds. More precisely, for each mo@é| d) there is ane > 0 such that
G(\V,d) = G(V,d), vd' € [d,d + ¢] and G(V\{v} U {v'},d) = G(V,d), Vv €
V,v' ¢ V:d(v,v) < e. This implies, in particular, that each UD graph has a distance
model(V, d) in which d and the coordinates of the pointss V are all integers. Fur-
thermore, we can replace each vertex in a UD graph by a clique of arbitrary size, an
operation which is frequently used in Section 3.

3. The UD k-Colorability Problem. AsClark etal. have shownin [2] thkecolorability
problem for UD graphs is NP-complete, even for fixee: 3. The reduction employed

in [2] is from planar graph 3-colorability, and so it remains an open question whether
the problem is still NP-complete when restricted to some fiked 3 (note that the
k-colorability of planar graphs is NP-complete foe= 3, but not fork > 3 since planar
graphs are all 4-colorable). In this section we use a different reduction to generalize the
cited result as follows:

THEOREM3.1. The UD k-colorability problem is NP-complete for any fixed 8.

Theorem 3.1 also holds when the UD graphs are gt their modelsThis is an
important observation since the UD graph recognition problem is NP-hard [1].

Our reduction is from the generiaicolorability problem. Given any grap, we will
show how to construct a corresponding UD gr&pk= (V, E) which isk-colorable if
and only ifG is. Our construction is somewhat similar to [2] in that we use an embedding
of G into the plane which allows us to replace the edge& afith suitable UD graph
chains in a simple and systematic fashion, while preserving-tt@orability property.
However, two additional problems arise. First, si@es not necessarily planar we
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Fig. 1. Thek-wire W

have to deal with crossing edges in our embedding. Secondly, we have to cope with
large vertex degrees in relation to the cligue number since any UD gtagdtisfies the
relationA(H) < 6w (H) — 7 (see Section 4.1). Of course this condition may be violated

in a general graph. Both problems are solved with two special types of auxiliary UD
graphs which we replace for edge crossings and high degree vertices, respectively.

All “auxiliary” graphs we introduce have some distinguished vertices which are used
to connect the graphs to each other; in what follows we refer to these vertices as the
output vertice®f the graph. Readers may convince themselves that all auxiliary graphs
are UD graphs. Most of the additional properties stated below follow immediately from
the construction. As already noted in Section 2, our construction makes frequent use of
cligues joined to single vertices. The cliques are represented by circles labeled with the
size of the clique. An edge between a verbeand a cliqueC means that is adjacent
to all members of.

First the UD graphs needed to replace the edges in an embeddinarefintroduced.

A k-wire of lengthl, denoted bwvi'(, is shown in Figure 1 (with = 4). The two vertices
at both ends are the output vertices of kheire. Obviously &-wire isk-colorable and
eachk-coloring assigns the same color to both output vertices.

A Kk-chain of lengthl, denoted byKL, is shown in Figure 2 (with = 3). Again
the output vertices are the two vertices at both ends. Obviouslyleacloring assigns
different (but freely choosable) colors to both output vertices.

Now the graphs that will replace the high degree vertice& aire introduced. A
k-clone of sizel > 2, denoted byCl, is shown in Figure 3 (with = 3). The output
vertices are the vertices - - - 0_1. The main feature of this construction is that in each
k-coloring the same color is assigned to all output vertices.

Finally the graphs needed for replacing the edge crossings in an embed@rayef
introduced. This construction is a generalization of a graph employed by Fisher, which is
used in [5] to show the NP-completeness of the 3-colorability problem for planar graphs.
Such &k-crossing, denoted by, k > 3, is shown in Figure 4. The vertices, ..., v3
are the output vertices of the crossingk&rossing ik-colorable and eadk-coloring f
satisfiesf (vg) = f(vp) and f (v1) = f(v3). Furthermore, there exist colorinds and
fo which satisfy f1(vg) = f1(v2) = f1(v1) = f1(v3) and fa(vg) = fa(v2) # fa(vy) =
f2(v3).

S aC R

Fig. 2. Thek-chainK 2.
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Fig. 3. Thek-cloneC}.

Given any grapl we now outline how to compute a distance model of a UD graph
G which isk-colorable if and only ifG is k-colorable. First we show how to embed the
given graph in a suitable way. After th@is constructed in several steps in which the
vertices, edges, and edge crossings of the original graph are replaced by the auxiliary
graphs introduced above.

To solve the problem caused by high degree vertices each such vertex will be replaced
by ak-clone of sizen, wheren is the degree of this vertex. Each neighbor of such a
vertex is connected to one output vertex of khelone. This obviously preserves the
colorability property. For technical reasons each vertex having degre® is replaced.

To prepare these replacements, we first cons@ubly replacing each vertaxin G with
an independent séfl (v) of n vertices, where is the degree of. Each vertex of this
set is connected with one neighborwofObviously each vertex i6’ has degree one.

Now G’ is embedded into the plane. For this purpose the vertices are placed on the
X-axis at equidistant positions (where the vertices in eacMse} are placed consecu-
tively). Each edge is embedded by one horizontal and two vertical line segments, where
the horizontal line segments have pairwise distipcoordinates. An example for this
construction is given in Figure 5.

We can finally construct an embedding@by some simple replacements. First the
vertices contained in those séiv) with [M(v)| = n > 2 are replaced by the output

Fig. 4. Thek-crossingH.
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One possible embedding of G':

Original G :

UL U2 Vs

Vg U3

L J L J L I | |
M(vy) M(va) M(vz) M(vy) M(vs)

Fig. 5. Example for the described embedding.

vertices of ak-clone of sizen where the remaining vertices of ttkeclone are placed
below thex-axis. Secondly the edge crossings in the embeddir@ afre replaced by
k-crossings. Finally the line segments which may have been subdividiedtnssings
in the preceding step are replaced bghains andk-wires. If an edge is not crossed
we simply replace it by &-chain of suitable length. If an edge is crossed by others,
then its line segments are subdivided into the following parts: the part that is connected
to u, the parts which connect thecrossings (if several are present), and the part that
is connected t@. The latter is replaced bylachain of suitable length. The remaining
parts are replaced tywires of suitable length. This is illustrated in Figures 6 and 7,
where a clique is represented by a circle without a dot inside.

The resulting grapks is obviously a UD graph consisting of the four auxiliary graphs.
We are now ready to prove the main theorem of this section which says that the UD
colorability problem is NP-complete for any fixéd> 3.

Fig. 6. Before the replacements.
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Fig. 7. The described replacements.

PROOF OFTHEOREM3.1. LetG = (V, E) be any graph anll > 3. The construction
of the corresponding UD grapfﬁ (V E) and its embedding can obviously be done in
polynomial time. We have to show the followinG: is k-colorables G is k-colorable.

Each vertex € V isreplaced by a set of verticd(v) in the first step. These vertices
are replaced by the output vertices df-glone if [M (v)| > 2. The set of these output
vertices is denotetl(v).

(=) Let f: V. — {1,...,k} be ak-coloring of G. We are going to construct a
k-coloringg: V> {1,. ,k} of G. First we defineyv € V,

g(x):=f(v), vx e | (v),

where thek-clones arék-colorable under this condition.

The remaining vertices & are the vertices of the-chains k-wires, andk-crossings
which connect the output vertices of differdatlones. Letx € | (u) be any output
vertex of anyk-clone and lety € |(v) be the one which is connected %o If x
andy are connected by a singlechain, thenuv € E is guaranteed by construction
and thereforef (u) # f(v) and hencgy(x) # g(y) (remember that &-chain isk-
colorable under this condition). ¥ andy are connected by one or mdkewires, one
or morek-crossings, and a singkechain we analogously obtag(x) # g(y). Now let
X =a,ap, as, ..., axn_1, dn = Yy be the output vertices belonging to this connection,
numbered from “left to right” (Figure 8 shows an example). If we define

9(x) = g(@)=:g(@)=:"--=:9(@n-1) # 9(@n) = 9(y),

the auxiliary graphs ark&-colorable under these conditions. In this way we obtain a
k-coloring of G.

(«) This can be shown in a similar manner by considering the properties of the
auxiliary graphs. O

4. An Approximation Algorithm. In the previous section we have shown the ap-
parent intractability of the UD graph coloring problem. Being confronted with such a
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Fig. 8. The output vertices of a crossed edge.

discouraging result, one usually starts the search for special cases of the problem which
can be solved efficiently, and for heuristics which produce suboptimal but acceptable
results at least “most of the time.” Following this line of research, in this section we
consider the problem afpproximatingthe chromatic number of a UD graph.

Unlike other graph coloring heuristics which are usually quite simple (but nevertheless
often difficult to analyze), our algorithm involves a number of different concepts and
algorithmic techniques which we develop in a bottom-up fashion. In Section 4.1 we
first review the sequential coloring algorithm and discuss how it is applied to the UD
graph case. In Section 4.2 we discuss a technique based on bipartite matching which
allows us to combine an arbitrary number of subgraph colorings. In Section 4.3 we
review Mohring’s algorithm for coloring cocomparability graphs, which is the central
subroutine in our algorithm. Finally, in Section 4.4 we describe our STRIPE algorithm
for coloring UD graphs.

4.1. The Sequential Coloring Algorithm As its name indicates, the sequential coloring
algorithm considers the vertices of the gra@hto be colored in some linear order,
where (starting with 1) the least possible color is assigned to each vertex. Without loss
of generality, we assume that the vertex ordering is fixed before the algorithm starts
(we can always determine the vertex ordering in a separate pass before the coloring
procedure). It is easy to see that the algorithm will actually compute an optimal coloring
if it is started with a suitable vertex ordering. (For example, given an optimal coloring
f: V(G) — {1, ..., x(G)}, order the vertices by their colors.) Another elementary fact

is that the sequential coloring algorithm will color each gr&ptvith at mostA(G) + 1

colors, regardless of the chosen vertex ordering. A better bound for the performance of
this algorithm can be given in terms of a parameter introduced by Matula [17], which we
call thespanof an ordering in the following. For a given orderirgof the vertices o5,

the span ok is defined as maxy ) |{vw € E(G)|w < v}|. We also call an ordering

of span< k ak-span orderingand we define 9(65), the span o5, as the minimum span

of an ordering of the vertices @. A minimum span ordering can be determined in time
O(IV(G)| + |E(G)]|) using a greedy algorithm, see [16]. (More precisely, the algorithm
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in [16] determines a so-callesmallest-lasrdering which is given by a sequence of
verticesv, .. ., vy such thatw; is a vertex of smallest degree @,,, . ,,;.) It is easy to
see that the sequential coloring algorithm, when appliedk®pan ordering, color&
using at mosk + 1 colors, and hencg(G) < sp(G) + 1 for each grapl.

For the case of UD graphs, it has been shown by Peeters [19] thaesaxgraphic
ordering of the vertices of a UD graph (i.e., order the vertices first by theand
then by theiry-coordinates) achieves a span of at mas{@) — 3. Thus, each UD
graphG can be colored with at most.3G) — 2 colors in linear time (with respect to
the number of vertices and edges). We remark that a straightforward extension of the
Peeters construction can be used to prove that for each UD @ayith o (G) > 2 we
have thatA(G) < 6w (G) — 7, see [9] for details. A similar but slightly weaker result
has also been obtained in [14].

The original algorithm given in [19] has the disadvantage that it requires lexicographic
ordering and thus the graph must be given with its UD model. It is worth noting that
the same performance bound can be achieved if we simply apply the sequential coloring
algorithm to a minimum span ordering instead. To our knowledge, this is the only known
3-approximation algorithm for the UD graph coloring problem which does not require
the graph to be given with its model.

4.2. Permutative Colorings Inthis section we briefly sketch atechnique for combining
a given collection of subgraph colorings to a global coloring of a graph (see [7] for further
details). The basic idea is ermutethe subgraph colorings to make them fit together.
This “permutative coloring” technique allows us to solve the coloring problem for a
special class of cocomparability graphs, namely, the complements of bipartite graphs.
In this sense it is a specialization ofdlifing’s algorithm, to be discussed in Section 4.3.
However, the technique is also useful as a general heuristic for combining subgraph
colorings, and as such it will be applied in the following.

Let G be a graph and let andg be colorings ofG. We say thap is apermutation
of f if there is a bijectionr from the range off to the range ofy such thag == o f.
Now consider a partitiofV, W} of G and letg andh be colorings ofGy and Gy,
respectively. By andJ we denote the ranges gfandh, respectively. A coloring of
G is called apermutative coloringvith respect tay andh iff fy is a permutation ofy
and fy is a permutation oh. (Here and in the followingfy,, denotes the restriction of
f toV C V(G).) Such a coloring is calledptimalif it uses as few colors as possible
(with respect to the given coloringsandh). It is easy to see that an optimal permutative
coloring f with fyy = h can be obtained bynatchingas many color$ in | against
corresponding color$ in J as possible, in such a manner that each pair of matched
colors (i, j) is contained in the set of all pairs (i, j) such thatvw ¢ E(G) for
all verticesv € V, w € W with g(v) = i andh(w) = j. The maximum matching
determines a bijective mapping between a subsét of | and a corresponding subset
J’ of J. We then extend’ to a bijective mappingr by assigning a new colat J to
each unmatched coldare 1\1’. Combining the resulting coloring o g with h then
yields a coloring ofG using|l | + | J| — v(M) colors, wherev(M) denotes the size of a
maximum matching contained M, and this is optimal. This procedure can obviously
be carried out in tim@®((|1 | + |I)?° + [V(G)| + |E(G)|), using Hopcroft and Karp’s
well-known bipartite matching algorithm [11].
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The notion of permutative colorings can be generalized to partiiboarbitrary
sizes in the obvious way. However, determining an optimal permutative coloritiyéer
subgraph colorings instead of two is already an NP-hard problem (see [7]). Therefore
we have to settle for heuristic approaches when combining more than two subgraph
colorings. One such heuristic, tBequential permutative coloringPC) algorithm, is
introduced below.

ALGORITHM 4.1 (SPC Algorithm)

Input GraphG, partitionV of G, and coloringgyy of Gy, V € V.
Output A coloring f of G.

Method
1. We consider the members dfin some given ordeWNy, ..., V;. Let
f1 = 0v,.

2. Foreach, 2 < i < r, determine an optimal permutative coloririg
with respect tof;_; andgy; .
3. Returnf = f;.

A simple bound for the worst-case performance of Algorithm 4.1 can be given in
terms of the span of the so-calladjacency graplof the chosen ordering of the partition
V. The adjacency graph is defined as follows:

DEFINITION 4.1. LetG be a graph and l&¢ be a partition ofG. Then theadjacency
graph G is defined bV (GY) = V and

E(GY) = {VW|V,W € V,V # W andvw € E(G) for somev € V, w € W}.

ProOPOSITION4.1. Let G be a graphlet) be a partition of G and let g, be a coloring
of Gy for each V € V. Furthermore let N be the maximum number of colors in the
range of g overall V € V (i.e,, N = max/ey|{gv(v)|v € V}|). Then Algorithnd.1,
when applied to a K -span ordering oPGwill color G using at mostK + 1)N colors

The running time of the SPC algorithm depends on the span of the chosen ordering
and the number of colors used in each element of the partition. We cite the following
result (see [7]).

PrROPOSITION4.2. Let G be a graphlet) be a partition of G and let g; be a coloring
of Gy foreachVe V. Letn= |[V(G)|, m = |[E(G)|,r = |V], and let N denote the
maximum number of colors in the range af gver all V € V. Furthermore assume
that Algorithm4.1is applied to a K -span ordering of G Then Algorithn¥.1runs in
time O(n + m+ r K 25N25),

4.3. Mohring’s Algorithm One of the main parts of the STRIPE algorithm is the
coloring of large subgraphs called “stripes” which are cocomparability graphs. For the
purpose of coloring these subgraphs we employ a general cocomparability graph coloring
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algorithm due to Mhring [18] which is sketched in the following. Some details specific
to the case of stripes in UD graphs are covered in Section 4.4.

The basic idea behind dkiring’s algorithm is to associate with each cocomparability
graphG a corresponding networkl with lower bounds on the edge capacities such
that each minimum flow ifN corresponds to an optimal coloring Gfand vice versa.
Mbohring’s definition of the networl is as follows. LetG be a nonempty cocompara-
bility graph, letH = G be its complement, and I& be a transitive orientation ¢f. N
is a directed graph defined by the following rules:

e For eachv € V(G) pick two distinct vertices’ andv” connected by an edgév” in
N. We refer tov’ andv” as thein- andout-verticedor v, respectively.

e For each edgew € R, let the corresponding out-verteX and the in-vertexw’ be
connected by an edg€w’ in N.

e FurthermoreN contains two additional vertices(the source) and(the sink), with
edgessv’, w”t for all in-verticesv’ and out-vertices” in N, respectively.

Given Mohring’s networkN for a cocomparability grap&, we assign a lower bound
b(v'v”) = 1 to each edge’v” connecting a pair of corresponding in- and out-vertices,
and zero bounds to all other edges\afWe refer to these bounds as gtandard bounds
for N. The notion of dlow ¢ through the networl is defined as usual, and we say that
¢ is anadmissible k-flowff in addition ¢ (vw) > b(vw), Vow € E(G) and thevalue
¢(N) of the flow (i.e., the total flow emanating from the sousaehich equals the total
flow into the sinkt) is at mosk. What Méhring has proved is the followirfy:

THEOREM4.1 [18]. Let N be the network for a cocomparability graph G with standard
bounds bThen G has a k-coloring f iff N has an admissible k-flow

Using Mahring’s construction, we can actually find an optimal coloring of a cocom-
parability graphG by determining an admissible flow for the corresponding netvrk
such thaip(N) is minimum. This can be done by standard flow techniques. The actual
construction of &-coloring from the corresponding admissibidlow is fairly straight-
forward as there is a simple correspondence between admissible flows in the network
and color classes in the graph. The algorithm can easily be derived from Algorithm 1.27
of [18].

Conversely, we can also derive an admissible fidwom each coloring of the original
cocomparability grapks. This is useful for computing an initial admissible flow whose
value can be reduced along “augmenting paths” as usual, see [3]. (This is in contrast to
the standard flonmaximizationproblem in which we can simply start off with a zero
flow. For our purposes, we have to provide an initial flow function which meets the
nonzero bound requirements on the edges between corresponding in- and out-vertices.)

3 Mohring’s original definition actually states treis only connected to the in-vertices of “minimal” vertices

v with respect taR, andt only to “maximal” out-vertices. Since we introduce technigques to reduce the number
of edges in the network later, we omit this detail here, in order to simplify matters.

4 Mohring actually considers theeighted coloring problerfor cocomparability graphs. The ordinary coloring
problem is a special form of this generalized coloring problem in which all vertices have unit weight, see [18]
for details.
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4.4, The STRIPE Algorithm We are now ready to present our STRIPE algorithm
for coloring UD graphs. Lek, andy, denote thex- and y-coordinates of a point

in the plane. Given a set of points, we define mipV and maxV as the minimal
and maximalx-coordinates of the points iN. The values mipV and mayV are
defined analogously. The horizontal and verticagrvals covered byV are given by
Ix(V) = [miny V, max V] and I, (V) = [miny V, max, V]. Finally, thelengthor size

of an arbitrary closed intervéalis denotedl | = max| —min |, and thewidthandheight
of V are defined as W) = |Ix(V)| and htV) = |1, (V).

DerFINITION 4.2. A UD graphG is called ac-stripe(for somec > 0) iff it has a distance
model(V, 1) such thatv has width at most.

The basis of the STRIPE algorithm is the following observation:

LEMMA 4.1 (Stripe Lemma). +/3/2-stripes are cocomparability graphs

PROOF LetG = G(V, 1) such that weV) < c:=+/3/2, and letH = G. Define an
orientationR of the edges of by

R= {vw € E(H)lyv < yw}

Note thatR is well defined sincg, = vy, implies thatvw ¢ E(H) becausex, — x,,| <
¢ < 1. In order to prove thab is a cocomparability graph we show tHais a transitive
relation onV.

Assume thativ, vw € Rand leta:=y, —yy, b=y, —V,. Sinced(u, v), d(v, w) > 1
and wdV) < ¢ we have that?, b?> > 1 — ¢ Thusd(u, w)? > (a+ b)? > 4 — 4c?.
Since 4—- 4c? > 1 & ¢ < +/3/2, the assertion follows. O

Note that the proof of Lemma 4.1 shows that a transitive orientation of the complement
of a +/3/2-stripe can actually be obtained by ordering the vertices with respagt to
coordinates. We also remark that the construction in the proof of the Stripe Lemma may
fail for eachc > +/3/2. In this sense, the value= +/3/2 is optimal.

Lemma 4.1 implies that/3/2-stripes are perfect and thereforéG) = »(G) for
eachy/3/2-stripeG. Moreover/3/2-stripes can be colored optimally usinghting’s
algorithm, in timeO(|V (G)|3) (see [18]). In the case af3/2-stripes, the running time
can actually be improved O (]V (G)|w (G)?). This is achieved by applying two simple
kinds of optimizations:

e Start from a good initial flow, obtained from &(w (G))-coloring of G which can be
constructed using the sequential algorithm. This reduces the number of augmentation
steps in the flow optimization phase ofdkfing’s algorithm toO (w (G)).

e Reduce the number of edges in the netwbrlassociated with the/3/2-stripeG.

By introducing an additional “pipeline” into the network, it is possible to get around
with only O(|V (G)|w(G)) edges. This reduces the complexity of each augmentation
step (which essentially is a connectivity problem in a directed graph derived from the
network) toO(|V (G)|w(G)).
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We describe each of these in turn. Note that the boDV (G)|w(G)?) is usually
an actual improvement oved(|V (G)|®), since thew(G) term only depends on the
chromatic number we want to compute, but is otherwise independent of the actual size
of the stripe.

We first discuss how to obtain a good initial coloring of/8/2-stripeG. SinceG
in particular is a UD graph, we know that we can cof®mwith at most (G) — 2
colors using the sequential algorithm, applied to a suitable vertex ordering which can be
computed in linear time. In fact, we can show that it is possible to reduce the constant
factor to 2:

LEMMA 4.2. For eachy/3/2-stripe G, sp(G) < 2w(G) — 2.

PROOF LetG = G(V, 1) with wd(V) < +/3/2. Consider the lexicographic ordering
< onV which orders the members bffirst by y- and then by-coordinates.

Letv € V. Then all neighborsy < v of v, as well asv itself, are contained in the
half-circleC = {ulyy, < y, A d(v,u) < 1}. We can coveC NV by two rectangles
R; and R; of width +/3/2 and height%. Note that the maximum distance of any two
points inR; is 1 ( = 1, 2), and hencd; NV andR, NV are cliques ofG. In fact,
(R NCNV)U{v}isaclique ofG fori = 1, 2, and thugC N V\{v}| < 20(G) — 2.
This holds for eaclv € V, and hence< has spar< 20 (G) — 2. O

Next we discuss how to reduce the number of edges in the network associated with
a +/3/2-stripeG. Consider a strip& = G(V, 1) with wd(V) < +/3/2. We partition
G into subgraphssy,, ..., Gy, as follows. Letyyin = miny V, Ymax = max, V, and
I = [2(Ymax— Ymin)1. We defineV; as

Vi ={veVli =12(Yy = Ymin)] +1}.

In other words,G is partitioned along the/-axis into “buckets” of height< %

Since(v/3/2)2 + (%)2 = 1, we have that eacl; is a clique ofG or, equivalently, an
independent set d&. Also, we have thatl (v;, vj)) > 1forally € Vi, v; € V; with
li —j| > 2. Note that by the proof of Lemma 4.1 a transitive orientafoof G is given
by R = {vivj|vi € Vi, vj € V;,i < j}. We directly construct the networlK from the
point setV. The basic idea is to introduce an additiopgdelineinto the network which
enables us to eliminate all the “trivial” edges in G, v e Vi, w € Vi, i —j| > 2.
The network is defined as follows. To distinguish it fronoMing’s network, we call it
thestripe network

e For eachv € V, pick in- and out-vertices’ andv”. Each pair of corresponding in-
and out-vertices’ andv” is connected by an edgév”.

e FurthermoreN containsr + 3 distinctpipeline verticeswy, ..., wy 3, with edges
wiwiy1 (1 <1 < r + 3) connecting each pair of consecutive vertices.

e The out-vertexv” of eachv € V, is connected by an edg€w’ to all in-vertices
w, weVwith0 < j —i <2andd(v, w) > 1.

e Each pipeline vertexw; is connected by an edge; v’ to all in-verticesv’ for v €
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Fig. 9. Stripe network.

Vi (1 <i <r). Furthermore, there is an edgéw; . 3 between each out-vertex of
v € V; and pipeline vertexvj,3 (1 <i <r).
e The source oN iss = w1, andt = wy, 3 is its sink.

A sketch of the construction for the case of five buckets is shown in Figure 9. By
V/ we denote the set of in- and out-vertices of bucketSolid arrows are used to
indicate the edges between pipeline vertices and connections between pipeline vertices
and in- and out-vertices of the corresponding buckets, whereas dashed arrows represent
the “internal” edges between the in- and out-vertices of three consecutive buckets.

Note that for eack —t path in Mshring’s network there is a corresponding path in the
stripe network which goes through the same edges between pairs of corresponding in-
and out-vertices, and vice versa. Thus, if we assign bolifids”) = 1 to edges between
pairs of corresponding in- and out-vertices and zero bounds to the remaining edges, the
stripe network has an admissitkelow iff M'ohring’s network has one. Summarizing
the results obtained so far, we have the following:

THEOREM4.2. +/3/2-stripes G can be colored optimally in time(¥ (G) |w (G)?).

We still have to discuss how to partition a UD gra@hinto a collection of/3/2-
stripes, and how to combine the individual stripe colorings obtained withrig’s
algorithm with the SPC algorithm.

DEFINITION 4.3 (Stripe Partition). LeG = G(V, d) be a UD graph. Ac-stripe parti-
tionis a partition) of G such that eackl € V has width< cd.

One way to determine a suitable stripe partition of a given UD graph is the following
“bucket sort” method. It can easily be implemented in linear time (with respect to the

5 Note that in the construction of the stripe network we carry out a constant number of arithmetic operations
involving model coordinates for each vertex®f The total time required by these operations is linear with
respect to the size of the (encoding of the) model. However, in the following we simplify matters by assuming
that model coordinates, etc., can be represented in constant space and thus each arithmetic operation is carried
out in constant time.
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size of the encoding of the UD model). Let the mo@é| d) andc > 0 be given. We
construct theanonical c-stripe partitio of G = G(V, d) as follows:

1. LetXmin = Mingk V, Xmax = MaX V, andr = [(Xmax — Xmin)/Cd].
2. LetVi={veV]i=|(X —Xmn)/cd] +1}, i =1,...,r.
3. LetV ={V1,..., ;.

Note that each membar; of the canonicak-stripe partition) indeed induces a
c-stripe onG. Using the ordering/; < V, < --- < V; we obtain thatGY has span
< K, whereK:=[1/c] because;V; ¢ E(GY), V|i — j| > [1/c]. In particular, for
1 < ¢ < /3/2 we have thaK = 2 and hencé& can be 3 (G)-colored. The STRIPE

2
algorithm can now be stated as follows:

ALGORITHM 4.2 (STRIPE Algorithm)

Input A UD graphG, given by its mode(V, d).
Output A coloring f of G.

Method
1. Construct the canonicelstripe partitiony of G, £ < ¢ < v/3/2.
2. Foreach/ € V, use Mshring’s algorithm to compute an optimal coloring
gv of Gy:
(a) Compute a@(Gy)-coloringhy, of Gy using the sequential coloring
algorithm.
(b) Compute the stripe netwoiky for Gy.
(c) Fromhy compute an initial admissiblex2 Gy )-flow ¢J for Ny .
(d) Reduce the value afd using standard flow techniques, yielding an
optimal (x (Gy)-) flow ¢y for Ny.
(e) Computegy from ¢y .
3. Combine the stripe coloringg,, V € V, obtained in step 1 to a coloring
f of G by applying Algorithm 4.1 toG, V, gy, V € V, ordering the
members ol from “left to right.”

For the purpose of analyzing Algorithm 4.2, Iétbe a UD graphn = [V (G)|,
m = |[E(G)|, andw = »(G). Step 1 can be done in timg = O(n) (under our
assumption that arithmetic operations are carried out in constant time). Oveall,
step 2 can be done in timg = O(nw?) by Theorem 4.2. Sincen = O(nw), by
Proposition 4.2 step 3 can be carried out in time- O(nw + r v>®), wherer = |V| is
the size of the stripe partition. We obtain the following result:

THEOREM4.3. Let G be a UD graphn, m, w, and r as aboveThen Algorithm4.2
colors G with at mosBw colors in time Qnw? + r w°).

We remark that the cocomparability graph coloring problem can also be solved using
bipartite matching as discussed in Section 11.8 of [4]. If we replace our version of
Mbohring’s algorithm with this method, step 2 of Algorithm 4.2 can be done in time
t, = O(n?%) which is better than the bourgl= O(n?) if w > %4,
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5. Concluding Remarks. In this paper we considered the coloring problem for UD
graphs. Improving on a result of Clark et al. [2], we have shown that the UD graph
coloring problem remains NP-complete feaichfixed number of color& > 3.

We then considered the problem approximatingthe chromatic number of UD
graphs. We first reviewed existing sequential coloring techniques for UD graphs. Thenwe
discussed an alternative 3-approximation algorithm for the UD graph coloring problem,
the so-calledSTRIPE algorithmIn contrast to the sequential coloring algorithm the
STRIPE algorithm makes extensive use of the UD model which must be given with
the input graph. The basic idea behind the STRIPE algorithm is to partition the input
graph into a sequence of induced subgraphs cattgoes With an appropriate choice of
parameters, the stripes become cocomparability graphs which can be colored optimally
using Mohring’s algorithm [18]. The individual stripe colorings are then combined with
the permutative coloring technique [7].

We remark that the STRIPE algorithm can be extended to more general kinds of
models (such as “double disk” graphs) and generalized graph coloring problems (such
as the “minimum distance” coloring problem); see [9] and [13] for further details.

We implemented both the STRIPE algorithm and Peeters’ version of the sequential UD
graph coloring algorithm, in order to estimate the practical performance and efficiency
of the STRIPE algorithm and to compare both approaches. Our experimental results
indicate that both algorithms usually achieve comparable performance ratios, with the
STRIPE algorithm slightly outperforming the sequential algorithm when applied to
realistic graphs arising in channel assignment problems in which the points are distributed
nonuniformly [9].

As we pointed out, the UD model is an essential prerequisite for UD graph algorithms
which make extensive use of the geometric structure of the graph. Therefore finding
heuristics for the construction of approximate UD graph models is an interesting field
for further research. Such techniques would have other useful applications, such as the
visualization of graphs which have some apparently geometric structure, but are given
without a model.

A major open question is whether the bounra(&) — 2 on the chromatic number of
a UD graph can be further improved. We do not know of any UD graph where this large
gap between clique and chromatic number actually occurs. Because the clique number
of a UD graph can be computed in polynomial time, any better bound on the chromatic
number in terms of the clique number would enable us to give a tighter approximation
of the chromatic number of a UD graph.
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