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On Coloring Unit Disk Graphs1

A. Gräf,2 M. Stumpf,2 and G. Weißenfels2

Abstract. In this paper the coloring problem for unit disk (UD) graphs is considered. UD graphs are the
intersection graphs of equal-sized disks in the plane. Colorings of UD graphs arise in the study of channel
assignment problems in broadcast networks. Improving on a result of Clark et al. [2] it is shown that the
coloring problem for UD graphs remains NP-complete foranyfixed number of colorsk ≥ 3. Furthermore, a
new 3-approximation algorithm for the problem is presented which is based on network flow and matching
techniques.
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1. Introduction. Unit disk (UD) graphsare the intersection graphs of equal-sized
disks in the plane [2]. They can also be described in terms of “distance” or “proximity”
models, which consist of a valued ≥ 0 and an embedding of the vertices in the plane
such thatvw is an edge iffd(v,w) ≤ d, whered(v,w) denotes the Euclidean distance of
v andw in the specified embedding. UD graphs arise in a variety of different problems
related to broadcast networks, see [2]. In particular,coloringsof UD graphs play an
important role in thechannel assignment problem[10]. In this context the vertices of
the graphG represent transmitters of the same power in a broadcast network, and two
transmitters may interfere if they have a distance of at mostd, for some givend ≥ 0.
In the simplest setting, interfering transmitters should be given different channels. Since
the spectrum available to broadcast services is a limited resource, we would also like to
keep the number of channels used in a valid channel assignment of a given network as
small as possible. Obviously, this task can be formulated as a graph coloring problem
on the underlying UD graph.

It is well known that the general graph coloring problem is NP-complete and that even
the problem ofapproximatingthe chromatic number within any constant ratio is NP-hard
[12]. Clark et al. proved in [2] that the coloring problem remains NP-complete for UD
graphs. However, their proof left open the possibility that the problem might become
easier when a fixed number of colorsk > 3 is considered. Employing a generalization
and combination of techniques in [2] and [5], in this paper we improve on this result
by showing that the UD graph coloring problem remains NP-complete forany fixed
number of colorsk ≥ 3. As with the result of [2], we can show that the problem remains
NP-complete when the graph is givenwith its model. This is an important point since
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the UD graphrecognitionproblem (given a graph, decide whether it is a UD graph and
construct a corresponding distance model) is NP-hard [1].

We also consider the problem ofapproximatingthe chromatic number of UD graphs.
It is easy to see that the vertex degrees in a UD graphG containing at least one edge are
always bounded from above by 6ω(G) − 7, whereω(G) denotes the maximum clique
size ofG. HenceG can be colored using at most 6ω(G)− 6 colors using any variation
of the “sequential” coloring algorithm (consider the vertices in a given order and always
assign the “least” color which is allowed at a given vertex). In fact, Peeters has observed
that the sequential coloring algorithm, when applied to a certain “lexicographic” vertex
ordering, colors each UD graphG with at most 3ω(G)− 2 colors [19].

In this paper we present a new approach to the UD graph coloring problem which
is based on the idea of partitioning a UD graph into a collection of special subgraphs
called “stripes.” This approach makes extensive use of the geometric structure of the
UD graph to be colored, and hence requires the graph to be given with its model. Given
an appropriate choice of parameters, the stripes turn out to be cocomparability graphs
which can be colored optimally using M¨ohring’s algorithm [18]. The stripe colorings
are then combined using matching techniques as described in [7]. We prove that this
algorithm achieves a worst-case performance ratio of 3. As our test results indicate, our
algorithm is an alternative worth considering, depending on the structure of the problem
instances for the application at hand.

The paper is organized as follows. In Section 2 we introduce the basic concepts used in
this paper. In Section 3 we prove that the UD graph coloring problem is NP-complete for
all fixed numbers of colorsk ≥ 3. In Section 4 we discuss our approximation algorithm
for UD graph coloring. Section 5 summarizes results and points out open problems. For
proofs, test results, and other technical details omitted here the reader is referred to [8]
and [9].

2. Preliminaries. All graphs in this paper are finite and undirected and do not have
loops or multiple edges, except if explicitly indicated. The sets of vertices and edges
of a graphG are denotedV(G) and E(G), respectively. The subgraphinducedby
V ⊆ V(G) is denotedGV , and we writeG for the complementof G (wherevw ∈
E(G) ⇔ vw /∈ E(G) for all v,w ∈ V(G) = V(G), v 6= w). A graphG is called
completeiff vw ∈ E(G) for all v,w ∈ V(G), v 6= w. A subsetV of V(G) is called a
cliqueof G iff GV is complete and anindependent setiff vw /∈ E(G), ∀v,w ∈ V(G).
A partition of G is a setV consisting of mutually disjoint subsets ofV(G) such that
V(G) = ⋃

V∈V V . A k-coloring is a mappingf : V(G) → I with |I | ≤ k such that
f (v) 6= f (w), ∀vw ∈ E(G). (We also interpret ak-coloring as a partition ofG into at
mostk independent sets.) Thechromatic numberof G,χ(G), is the minimumk for which
G has ak-coloring, and theχ(G)-colorings ofG are calledoptimal. The maximum size
of a clique ofG (theclique number) and the maximum vertex degree ofG are denoted
ω(G) and1(G), respectively.

Clearly,ω(G) ≤ χ(G) for each graphG. A graphG is calledperfectiff χ(GV ) =
ω(GV ) for eachV ⊆ V(G). It is well known (see, e.g., [6]) that the class of perfect
graphs is closed under taking complements. An important class of perfect graphs we
consider in this paper are thecocomparability graphswhich are the complements of
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comparability(or transitively orientable) graphs. We call a graphG a comparability
graph if we can orient the edges ofG in such a manner that the setR of oriented edges
is a transitive relation onV(G). We then say thatR is atransitive orientationof G.

We now discuss the “main character” of this paper. Given two pointsv1 = (x1, y1)

andv2 = (x2, y2) in the plane, letd(v1, v2) denote theEuclidean distancebetweenv1

andv2. For a setV of points in the plane and athresholdvalued ≥ 0 let G(V, d) be
the graph with vertex setV and edgesvw ∈ E(G(V, d)) ⇔ v 6= w ∧ d(v,w) ≤ d.
A graphG is called aunit disk(UD) graph iff G ∼= G(V, d) for some suitable set of
pointsV and threshold valued; we then call(V, d) adistance modelof G. Equivalently,
we may think ofG as the intersection graph of pairwise distinct, closed equal-sized
disks Dv, v ∈ V(G), wherevw ∈ E(G) iff v 6= w and Dv ∩ Dw 6= ∅. In this case,
{Dv|v ∈ V(G)} is called anintersection modelof G.

In contrast to unitinterval graphs, which are the counterpart of UD graphs in one-
dimensional space (see, e.g., [6]), UD graphs arenot necessarily perfect. For instance,
C5, the chordless cycle with five vertices, can easily be seen to be a UD graph, but it is
not perfect asχ(C5) = 3 > 2 = ω(C5). It is also worth noting that while the coloring
problem remains NP-complete on UD graphs, Clark et al. give anO(n4.5) algorithm for
computing the clique number of a UD graph [2].

Another fact which deserves mentioning is that it is always possible to “adjust”
the threshold valued and the pointsv in a distance model of a UD graph within
certain bounds. More precisely, for each model(V, d) there is anε > 0 such that
G(V, d′) ∼= G(V, d), ∀d′ ∈ [d, d + ε] and G(V\{v} ∪ {v′}, d) ∼= G(V, d), ∀v ∈
V, v′ 6∈ V : d(v, v′) ≤ ε. This implies, in particular, that each UD graph has a distance
model(V, d) in which d and the coordinates of the pointsv ∈ V are all integers. Fur-
thermore, we can replace each vertex in a UD graph by a clique of arbitrary size, an
operation which is frequently used in Section 3.

3. The UD k-Colorability Problem. As Clark et al. have shown in [2] thek-colorability
problem for UD graphs is NP-complete, even for fixedk = 3. The reduction employed
in [2] is from planar graph 3-colorability, and so it remains an open question whether
the problem is still NP-complete when restricted to some fixedk > 3 (note that the
k-colorability of planar graphs is NP-complete fork = 3, but not fork > 3 since planar
graphs are all 4-colorable). In this section we use a different reduction to generalize the
cited result as follows:

THEOREM3.1. The UD k-colorability problem is NP-complete for any fixed k≥ 3.

Theorem 3.1 also holds when the UD graphs are givenwith their models. This is an
important observation since the UD graph recognition problem is NP-hard [1].

Our reduction is from the generalk-colorability problem. Given any graphG, we will
show how to construct a corresponding UD graphĜ = (V̂, Ê) which isk-colorable if
and only ifG is. Our construction is somewhat similar to [2] in that we use an embedding
of G into the plane which allows us to replace the edges ofG with suitable UD graph
chains in a simple and systematic fashion, while preserving thek-colorability property.
However, two additional problems arise. First, sinceG is not necessarily planar we
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Fig. 1.Thek-wire W4
k .

have to deal with crossing edges in our embedding. Secondly, we have to cope with
large vertex degrees in relation to the clique number since any UD graphH satisfies the
relation1(H) ≤ 6ω(H)−7 (see Section 4.1). Of course this condition may be violated
in a general graph. Both problems are solved with two special types of auxiliary UD
graphs which we replace for edge crossings and high degree vertices, respectively.

All “auxiliary” graphs we introduce have some distinguished vertices which are used
to connect the graphs to each other; in what follows we refer to these vertices as the
output verticesof the graph. Readers may convince themselves that all auxiliary graphs
are UD graphs. Most of the additional properties stated below follow immediately from
the construction. As already noted in Section 2, our construction makes frequent use of
cliques joined to single vertices. The cliques are represented by circles labeled with the
size of the clique. An edge between a vertexv and a cliqueC means thatv is adjacent
to all members ofC.

First the UD graphs needed to replace the edges in an embedding ofG are introduced.
A k-wire of lengthl , denoted byWl

k, is shown in Figure 1 (withl = 4). The two vertices
at both ends are the output vertices of thek-wire. Obviously ak-wire isk-colorable and
eachk-coloring assigns the same color to both output vertices.

A k-chain of lengthl , denoted byK l
k, is shown in Figure 2 (withl = 3). Again

the output vertices are the two vertices at both ends. Obviously eachk-coloring assigns
different (but freely choosable) colors to both output vertices.

Now the graphs that will replace the high degree vertices ofG are introduced. A
k-clone of sizel ≥ 2, denoted byCl

k, is shown in Figure 3 (withl = 3). The output
vertices are the verticeso0 · · ·ol−1. The main feature of this construction is that in each
k-coloring the same color is assigned to all output vertices.

Finally the graphs needed for replacing the edge crossings in an embedding ofG are
introduced. This construction is a generalization of a graph employed by Fisher, which is
used in [5] to show the NP-completeness of the 3-colorability problem for planar graphs.
Such ak-crossing, denoted byHk, k ≥ 3, is shown in Figure 4. The verticesv0, . . . , v3

are the output vertices of the crossing. Ak-crossing isk-colorable and eachk-coloring f
satisfiesf (v0) = f (v2) and f (v1) = f (v3). Furthermore, there exist coloringsf1 and
f2 which satisfy f1(v0) = f1(v2) = f1(v1) = f1(v3) and f2(v0) = f2(v2) 6= f2(v1) =
f2(v3).

Fig. 2.Thek-chainK 3
k .
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Fig. 3.Thek-cloneC3
k .

Given any graphG we now outline how to compute a distance model of a UD graph
Ĝ which isk-colorable if and only ifG is k-colorable. First we show how to embed the
given graph in a suitable way. After that̂G is constructed in several steps in which the
vertices, edges, and edge crossings of the original graph are replaced by the auxiliary
graphs introduced above.

To solve the problem caused by high degree vertices each such vertex will be replaced
by a k-clone of sizen, wheren is the degree of this vertex. Each neighbor of such a
vertex is connected to one output vertex of thek-clone. This obviously preserves thek-
colorability property. For technical reasons each vertex having degreen ≥ 2 is replaced.
To prepare these replacements, we first constructG′ by replacing each vertexv in G with
an independent setM(v) of n vertices, wheren is the degree ofv. Each vertex of this
set is connected with one neighbor ofv. Obviously each vertex inG′ has degree one.

Now G′ is embedded into the plane. For this purpose the vertices are placed on the
x-axis at equidistant positions (where the vertices in each setM(v) are placed consecu-
tively). Each edge is embedded by one horizontal and two vertical line segments, where
the horizontal line segments have pairwise distincty-coordinates. An example for this
construction is given in Figure 5.

We can finally construct an embedding ofĜ by some simple replacements. First the
vertices contained in those setsM(v) with |M(v)| = n ≥ 2 are replaced by the output

Fig. 4.Thek-crossingHk.
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Fig. 5.Example for the described embedding.

vertices of ak-clone of sizen where the remaining vertices of thek-clone are placed
below thex-axis. Secondly the edge crossings in the embedding ofG′ are replaced by
k-crossings. Finally the line segments which may have been subdivided byk-crossings
in the preceding step are replaced byk-chains andk-wires. If an edge is not crossed
we simply replace it by ak-chain of suitable length. If an edgeuv is crossed by others,
then its line segments are subdivided into the following parts: the part that is connected
to u, the parts which connect thek-crossings (if several are present), and the part that
is connected tov. The latter is replaced by ak-chain of suitable length. The remaining
parts are replaced byk-wires of suitable length. This is illustrated in Figures 6 and 7,
where a clique is represented by a circle without a dot inside.

The resulting grapĥG is obviously a UD graph consisting of the four auxiliary graphs.
We are now ready to prove the main theorem of this section which says that the UDk-
colorability problem is NP-complete for any fixedk ≥ 3.

Fig. 6.Before the replacements.
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Fig. 7.The described replacements.

PROOF OFTHEOREM3.1. LetG = (V, E) be any graph andk ≥ 3. The construction
of the corresponding UD grapĥG = (V̂, Ê) and its embedding can obviously be done in
polynomial time. We have to show the following:G is k-colorable⇔ Ĝ is k-colorable.

Each vertexv ∈ V is replaced by a set of verticesM(v) in the first step. These vertices
are replaced by the output vertices of ak-clone if |M(v)| ≥ 2. The set of these output
vertices is denotedI (v).

(⇒) Let f : V → {1, . . . , k} be ak-coloring of G. We are going to construct a
k-coloringg: V̂ → {1, . . . , k} of Ĝ. First we define,∀v ∈ V ,

g(x):= f (v), ∀x ∈ I (v),

where thek-clones arek-colorable under this condition.
The remaining vertices of̂G are the vertices of thek-chains,k-wires, andk-crossings

which connect the output vertices of differentk-clones. Letx ∈ I (u) be any output
vertex of anyk-clone and lety ∈ I (v) be the one which is connected tox. If x
and y are connected by a singlek-chain, thenuv ∈ E is guaranteed by construction
and thereforef (u) 6= f (v) and henceg(x) 6= g(y) (remember that ak-chain isk-
colorable under this condition). Ifx andy are connected by one or morek-wires, one
or morek-crossings, and a singlek-chain we analogously obtaing(x) 6= g(y). Now let
x = a1,a2,a3, . . . ,a2n−1,a2n = y be the output vertices belonging to this connection,
numbered from “left to right” (Figure 8 shows an example). If we define

g(x) = g(a1)=:g(a2)=: · · · =:g(a2n−1) 6= g(a2n) = g(y),

the auxiliary graphs arek-colorable under these conditions. In this way we obtain a
k-coloring ofĜ.

(⇐) This can be shown in a similar manner by considering the properties of the
auxiliary graphs.

4. An Approximation Algorithm. In the previous section we have shown the ap-
parent intractability of the UD graph coloring problem. Being confronted with such a
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Fig. 8.The output vertices of a crossed edge.

discouraging result, one usually starts the search for special cases of the problem which
can be solved efficiently, and for heuristics which produce suboptimal but acceptable
results at least “most of the time.” Following this line of research, in this section we
consider the problem ofapproximatingthe chromatic number of a UD graph.

Unlike other graph coloring heuristics which are usually quite simple (but nevertheless
often difficult to analyze), our algorithm involves a number of different concepts and
algorithmic techniques which we develop in a bottom-up fashion. In Section 4.1 we
first review the sequential coloring algorithm and discuss how it is applied to the UD
graph case. In Section 4.2 we discuss a technique based on bipartite matching which
allows us to combine an arbitrary number of subgraph colorings. In Section 4.3 we
review Möhring’s algorithm for coloring cocomparability graphs, which is the central
subroutine in our algorithm. Finally, in Section 4.4 we describe our STRIPE algorithm
for coloring UD graphs.

4.1. The Sequential Coloring Algorithm. As its name indicates, the sequential coloring
algorithm considers the vertices of the graphG to be colored in some linear order,
where (starting with 1) the least possible color is assigned to each vertex. Without loss
of generality, we assume that the vertex ordering is fixed before the algorithm starts
(we can always determine the vertex ordering in a separate pass before the coloring
procedure). It is easy to see that the algorithm will actually compute an optimal coloring
if it is started with a suitable vertex ordering. (For example, given an optimal coloring
f : V(G)→ {1, . . . , χ(G)}, order the vertices by their colors.) Another elementary fact
is that the sequential coloring algorithm will color each graphG with at most1(G)+ 1
colors, regardless of the chosen vertex ordering. A better bound for the performance of
this algorithm can be given in terms of a parameter introduced by Matula [17], which we
call thespanof an ordering in the following. For a given ordering< of the vertices ofG,
the span of< is defined as maxv∈V(G)|{vw ∈ E(G)|w < v}|. We also call an ordering
of span≤ k ak-span orderingand we define sp(G), the span ofG, as the minimum span
of an ordering of the vertices ofG. A minimum span ordering can be determined in time
O(|V(G)| + |E(G)|) using a greedy algorithm, see [16]. (More precisely, the algorithm
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in [16] determines a so-calledsmallest-lastordering which is given by a sequence of
verticesv1, . . . , vn such thatvi is a vertex of smallest degree inG{v1,...,vi }.) It is easy to
see that the sequential coloring algorithm, when applied to ak-span ordering, colorsG
using at mostk+ 1 colors, and henceχ(G) ≤ sp(G)+ 1 for each graphG.

For the case of UD graphs, it has been shown by Peeters [19] that eachlexicographic
ordering of the vertices of a UD graph (i.e., order the vertices first by theirx- and
then by theiry-coordinates) achieves a span of at most 3ω(G) − 3. Thus, each UD
graphG can be colored with at most 3ω(G) − 2 colors in linear time (with respect to
the number of vertices and edges). We remark that a straightforward extension of the
Peeters construction can be used to prove that for each UD graphG with ω(G) ≥ 2 we
have that1(G) ≤ 6ω(G) − 7, see [9] for details. A similar but slightly weaker result
has also been obtained in [14].

The original algorithm given in [19] has the disadvantage that it requires lexicographic
ordering and thus the graph must be given with its UD model. It is worth noting that
the same performance bound can be achieved if we simply apply the sequential coloring
algorithm to a minimum span ordering instead. To our knowledge, this is the only known
3-approximation algorithm for the UD graph coloring problem which does not require
the graph to be given with its model.

4.2. Permutative Colorings. In this section we briefly sketch a technique for combining
a given collection of subgraph colorings to a global coloring of a graph (see [7] for further
details). The basic idea is topermutethe subgraph colorings to make them fit together.
This “permutative coloring” technique allows us to solve the coloring problem for a
special class of cocomparability graphs, namely, the complements of bipartite graphs.
In this sense it is a specialization of M¨ohring’s algorithm, to be discussed in Section 4.3.
However, the technique is also useful as a general heuristic for combining subgraph
colorings, and as such it will be applied in the following.

Let G be a graph and letf andg be colorings ofG. We say thatg is apermutation
of f if there is a bijectionπ from the range off to the range ofg such thatg = π ◦ f .
Now consider a partition{V,W} of G and letg andh be colorings ofGV and GW,
respectively. ByI andJ we denote the ranges ofg andh, respectively. A coloringf of
G is called apermutative coloringwith respect tog andh iff fV is a permutation ofg
and fW is a permutation ofh. (Here and in the following,fV denotes the restriction of
f to V ⊆ V(G).) Such a coloring is calledoptimal if it uses as few colors as possible
(with respect to the given coloringsg andh). It is easy to see that an optimal permutative
coloring f with fW = h can be obtained bymatchingas many colorsi in I against
corresponding colorsj in J as possible, in such a manner that each pair of matched
colors (i, j ) is contained in the setM of all pairs (i, j ) such thatvw /∈ E(G) for
all verticesv ∈ V, w ∈ W with g(v) = i andh(w) = j . The maximum matching
determines a bijective mappingπ ′ between a subsetI ′ of I and a corresponding subset
J ′ of J. We then extendπ ′ to a bijective mappingπ by assigning a new color/∈ J to
each unmatched colori ∈ I \I ′. Combining the resulting coloringπ ◦ g with h then
yields a coloring ofG using|I | + |J| − ν(M) colors, whereν(M) denotes the size of a
maximum matching contained inM , and this is optimal. This procedure can obviously
be carried out in timeO((|I | + |J|)2.5+ |V(G)| + |E(G)|), using Hopcroft and Karp’s
well-known bipartite matching algorithm [11].
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The notion of permutative colorings can be generalized to partitionsV of arbitrary
sizes in the obvious way. However, determining an optimal permutative coloring forthree
subgraph colorings instead of two is already an NP-hard problem (see [7]). Therefore
we have to settle for heuristic approaches when combining more than two subgraph
colorings. One such heuristic, thesequential permutative coloring(SPC) algorithm, is
introduced below.

ALGORITHM 4.1 (SPC Algorithm)

Input: GraphG, partitionV of G, and coloringsgV of GV ,V ∈ V.
Output: A coloring f of G.

Method:
1. We consider the members ofV in some given orderV1, . . . ,Vr . Let

f1 = gV1.
2. For eachi , 2 ≤ i ≤ r , determine an optimal permutative coloringfi

with respect tofi−1 andgVi .
3. Return f = fr .

A simple bound for the worst-case performance of Algorithm 4.1 can be given in
terms of the span of the so-calledadjacency graphof the chosen ordering of the partition
V. The adjacency graph is defined as follows:

DEFINITION 4.1. LetG be a graph and letV be a partition ofG. Then theadjacency
graph GV is defined byV(GV) = V and

E(GV) = {V W|V,W ∈ V, V 6= W andvw ∈ E(G) for somev ∈ V, w ∈ W}.

PROPOSITION4.1. Let G be a graph, letV be a partition of G, and let gV be a coloring
of GV for each V ∈ V. Furthermore, let N be the maximum number of colors in the
range of gV over all V ∈ V (i.e., N = maxV∈V |{gV (v)|v ∈ V}|). Then Algorithm4.1,
when applied to a K-span ordering of GV , will color G using at most(K + 1)N colors.

The running time of the SPC algorithm depends on the span of the chosen ordering
and the number of colors used in each element of the partition. We cite the following
result (see [7]).

PROPOSITION4.2. Let G be a graph, letV be a partition of G, and let gV be a coloring
of GV for each V∈ V. Let n= |V(G)|, m = |E(G)|, r = |V|, and let N denote the
maximum number of colors in the range of gV over all V ∈ V. Furthermore, assume
that Algorithm4.1 is applied to a K-span ordering of GV . Then Algorithm4.1 runs in
time O(n+m+ r K 2.5N2.5).

4.3. Möhring’s Algorithm. One of the main parts of the STRIPE algorithm is the
coloring of large subgraphs called “stripes” which are cocomparability graphs. For the
purpose of coloring these subgraphs we employ a general cocomparability graph coloring
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algorithm due to M¨ohring [18] which is sketched in the following. Some details specific
to the case of stripes in UD graphs are covered in Section 4.4.

The basic idea behind M¨ohring’s algorithm is to associate with each cocomparability
graphG a corresponding networkN with lower bounds on the edge capacities such
that each minimum flow inN corresponds to an optimal coloring ofG and vice versa.
Möhring’s definition of the networkN is as follows. LetG be a nonempty cocompara-
bility graph, letH = G be its complement, and letR be a transitive orientation ofH . N
is a directed graph defined by the following rules:

• For eachv ∈ V(G) pick two distinct verticesv′ andv′′ connected by an edgev′v′′ in
N. We refer tov′ andv′′ as thein- andout-verticesfor v, respectively.
• For each edgevw ∈ R, let the corresponding out-vertexv′′ and the in-vertexw′ be

connected by an edgev′′w′ in N.
• Furthermore,N contains two additional vertices,s (the source) andt (the sink), with

edgessv′, w′′t for all in-verticesv′ and out-verticesw′′ in N, respectively.3

Given Möhring’s networkN for a cocomparability graphG, we assign a lower bound
b(v′v′′) = 1 to each edgev′v′′ connecting a pair of corresponding in- and out-vertices,
and zero bounds to all other edges ofN. We refer to these bounds as thestandard bounds
for N. The notion of aflowϕ through the networkN is defined as usual, and we say that
ϕ is anadmissible k-flowiff in addition ϕ(vw) ≥ b(vw), ∀vw ∈ E(G) and thevalue
ϕ(N) of the flow (i.e., the total flow emanating from the sources which equals the total
flow into the sinkt) is at mostk. What Möhring has proved is the following:4

THEOREM4.1 [18]. Let N be the network for a cocomparability graph G with standard
bounds b. Then G has a k-coloring f iff N has an admissible k-flowϕ.

Using Möhring’s construction, we can actually find an optimal coloring of a cocom-
parability graphG by determining an admissible flow for the corresponding networkN
such thatϕ(N) is minimum. This can be done by standard flow techniques. The actual
construction of ak-coloring from the corresponding admissiblek-flow is fairly straight-
forward as there is a simple correspondence between admissible flows in the network
and color classes in the graph. The algorithm can easily be derived from Algorithm 1.27
of [18].

Conversely, we can also derive an admissible flowϕ from each coloring of the original
cocomparability graphG. This is useful for computing an initial admissible flow whose
value can be reduced along “augmenting paths” as usual, see [3]. (This is in contrast to
the standard flowmaximizationproblem in which we can simply start off with a zero
flow. For our purposes, we have to provide an initial flow function which meets the
nonzero bound requirements on the edges between corresponding in- and out-vertices.)

3 Möhring’s original definition actually states thats is only connected to the in-vertices of “minimal” vertices
v with respect toR, andt only to “maximal” out-vertices. Since we introduce techniques to reduce the number
of edges in the network later, we omit this detail here, in order to simplify matters.
4 Möhring actually considers theweighted coloring problemfor cocomparability graphs. The ordinary coloring
problem is a special form of this generalized coloring problem in which all vertices have unit weight, see [18]
for details.
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4.4. The STRIPE Algorithm. We are now ready to present our STRIPE algorithm
for coloring UD graphs. Letxv and yv denote thex- and y-coordinates of a pointv
in the plane. Given a set of pointsV , we define minx V and maxx V as the minimal
and maximalx-coordinates of the points inV . The values miny V and maxy V are
defined analogously. The horizontal and verticalintervalscovered byV are given by
Ix(V) = [minx V,maxx V ] and I y(V) = [miny V,maxy V ]. Finally, thelengthor size
of an arbitrary closed intervalI is denoted|I | = maxI −min I , and thewidthandheight
of V are defined as wd(V) = |Ix(V)| and ht(V) = |I y(V)|.

DEFINITION 4.2. A UD graphG is called ac-stripe(for somec ≥ 0) iff it has a distance
model(V, 1) such thatV has width at mostc.

The basis of the STRIPE algorithm is the following observation:

LEMMA 4.1 (Stripe Lemma).
√

3/2-stripes are cocomparability graphs.

PROOF. Let G = G(V, 1) such that wd(V) ≤ c:=√3/2, and letH = G. Define an
orientationR of the edges ofH by

R= {vw ∈ E(H)|yv < yw}.

Note thatR is well defined sinceyv = yw implies thatvw /∈ E(H) because|xv − xw| ≤
c < 1. In order to prove thatG is a cocomparability graph we show thatR is a transitive
relation onV .

Assume thatuv, vw ∈ Rand leta:=yv−yu, b:=yw−yv. Sinced(u, v),d(v,w) > 1
and wd(V) ≤ c we have thata2, b2 > 1− c2. Thusd(u, w)2 ≥ (a + b)2 > 4− 4c2.
Since 4− 4c2 ≥ 1⇔ c ≤ √3/2, the assertion follows.

Note that the proof of Lemma 4.1 shows that a transitive orientation of the complement
of a
√

3/2-stripe can actually be obtained by ordering the vertices with respect toy-
coordinates. We also remark that the construction in the proof of the Stripe Lemma may
fail for eachc >

√
3/2. In this sense, the valuec = √3/2 is optimal.

Lemma 4.1 implies that
√

3/2-stripes are perfect and thereforeχ(G) = ω(G) for
each
√

3/2-stripeG. Moreover,
√

3/2-stripes can be colored optimally using M¨ohring’s
algorithm, in timeO(|V(G)|3) (see [18]). In the case of

√
3/2-stripes, the running time

can actually be improved toO(|V(G)|ω(G)2). This is achieved by applying two simple
kinds of optimizations:

• Start from a good initial flow, obtained from anO(ω(G))-coloring ofG which can be
constructed using the sequential algorithm. This reduces the number of augmentation
steps in the flow optimization phase of M¨ohring’s algorithm toO(ω(G)).
• Reduce the number of edges in the networkN associated with the

√
3/2-stripeG.

By introducing an additional “pipeline” into the network, it is possible to get around
with only O(|V(G)|ω(G)) edges. This reduces the complexity of each augmentation
step (which essentially is a connectivity problem in a directed graph derived from the
network) toO(|V(G)|ω(G)).
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We describe each of these in turn. Note that the boundO(|V(G)|ω(G)2) is usually
an actual improvement overO(|V(G)|3), since theω(G) term only depends on the
chromatic number we want to compute, but is otherwise independent of the actual size
of the stripe.

We first discuss how to obtain a good initial coloring of a
√

3/2-stripeG. SinceG
in particular is a UD graph, we know that we can colorG with at most 3ω(G) − 2
colors using the sequential algorithm, applied to a suitable vertex ordering which can be
computed in linear time. In fact, we can show that it is possible to reduce the constant
factor to 2:

LEMMA 4.2. For each
√

3/2-stripe G, sp(G) ≤ 2ω(G)− 2.

PROOF. Let G = G(V, 1) with wd(V) ≤ √3/2. Consider the lexicographic ordering
< on V which orders the members ofV first by y- and then byx-coordinates.

Let v ∈ V . Then all neighborsw < v of v, as well asv itself, are contained in the
half-circle C = {u|yu ≤ yv ∧ d(v, u) ≤ 1}. We can coverC ∩ V by two rectangles
R1 and R2 of width

√
3/2 and height12. Note that the maximum distance of any two

points in Ri is 1 (i = 1, 2), and henceR1 ∩ V and R2 ∩ V are cliques ofG. In fact,
(Ri ∩ C ∩ V) ∪ {v} is a clique ofG for i = 1, 2, and thus|C ∩ V\{v}| ≤ 2ω(G) − 2.
This holds for eachv ∈ V , and hence< has span≤ 2ω(G)− 2.

Next we discuss how to reduce the number of edges in the network associated with
a
√

3/2-stripeG. Consider a stripeG = G(V, 1) with wd(V) ≤ √3/2. We partition
G into subgraphsGV1, . . . ,GVr as follows. Letymin = miny V , ymax = maxy V , and
r = d2(ymax− ymin)e. We defineVi as

Vi = {v ∈ V |i = b2(yv − ymin)c + 1}.

In other words,G is partitioned along they-axis into “buckets” of height≤ 1
2.

Since(
√

3/2)2 + ( 1
2)

2 = 1, we have that eachVi is a clique ofG or, equivalently, an
independent set ofG. Also, we have thatd(vi , vj ) > 1 for all vi ∈ Vi , vj ∈ Vj with
|i − j | > 2. Note that by the proof of Lemma 4.1 a transitive orientationR of G is given
by R = {vi vj |vi ∈ Vi , vj ∈ Vj , i < j }. We directly construct the networkN from the
point setV . The basic idea is to introduce an additionalpipelineinto the network which
enables us to eliminate all the “trivial” edgesvw in G, v ∈ Vi , w ∈ Vj , |i − j | > 2.
The network is defined as follows. To distinguish it from M¨ohring’s network, we call it
thestripe network.

• For eachv ∈ V , pick in- and out-verticesv′ andv′′. Each pair of corresponding in-
and out-verticesv′ andv′′ is connected by an edgev′v′′.
• Furthermore,N containsr + 3 distinctpipeline verticesw1, . . . , wr+3, with edges
wiwi+1 (1≤ i < r + 3) connecting each pair of consecutive vertices.
• The out-vertexv′′ of eachv ∈ Vi is connected by an edgev′′w′ to all in-vertices
w′, w ∈ Vj with 0< j − i ≤ 2 andd(v,w) > 1.
• Each pipeline vertexwi is connected by an edgewi v

′ to all in-verticesv′ for v ∈
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Fig. 9.Stripe network.

Vi (1 ≤ i ≤ r ). Furthermore, there is an edgev′′wi+3 between each out-vertexv′′ of
v ∈ Vi and pipeline vertexwi+3 (1≤ i ≤ r ).
• The source ofN is s= w1, andt = wr+3 is its sink.

A sketch of the construction for the case of five buckets is shown in Figure 9. By
V ′i we denote the set of in- and out-vertices of bucketVi . Solid arrows are used to
indicate the edges between pipeline vertices and connections between pipeline vertices
and in- and out-vertices of the corresponding buckets, whereas dashed arrows represent
the “internal” edges between the in- and out-vertices of three consecutive buckets.

Note that for eachs− t path in Möhring’s network there is a corresponding path in the
stripe network which goes through the same edges between pairs of corresponding in-
and out-vertices, and vice versa. Thus, if we assign boundsb(v′v′′) = 1 to edges between
pairs of corresponding in- and out-vertices and zero bounds to the remaining edges, the
stripe network has an admissiblek-flow iff M öhring’s network has one. Summarizing
the results obtained so far, we have the following:5

THEOREM4.2.
√

3/2-stripes G can be colored optimally in time O(|V(G)|ω(G)2).

We still have to discuss how to partition a UD graphG into a collection of
√

3/2-
stripes, and how to combine the individual stripe colorings obtained with M¨ohring’s
algorithm with the SPC algorithm.

DEFINITION 4.3 (Stripe Partition). LetG = G(V, d) be a UD graph. Ac-stripe parti-
tion is a partitionV of G such that eachV ∈ V has width≤ cd.

One way to determine a suitable stripe partition of a given UD graph is the following
“bucket sort” method. It can easily be implemented in linear time (with respect to the

5 Note that in the construction of the stripe network we carry out a constant number of arithmetic operations
involving model coordinates for each vertex ofG. The total time required by these operations is linear with
respect to the size of the (encoding of the) model. However, in the following we simplify matters by assuming
that model coordinates, etc., can be represented in constant space and thus each arithmetic operation is carried
out in constant time.
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size of the encoding of the UD model). Let the model(V, d) andc > 0 be given. We
construct thecanonical c-stripe partitionV of G = G(V, d) as follows:

1. Letxmin = minx V, xmax= maxx V , andr = d(xmax− xmin)/cde.
2. LetVi = {v ∈ V |i = b(xv − xmin)/cdc + 1}, i = 1, . . . , r .
3. LetV = {V1, . . . ,Vr }.

Note that each memberVi of the canonicalc-stripe partitionV indeed induces a
c-stripe onG. Using the orderingV1 < V2 < · · · < Vr we obtain thatGV has span
≤ K , whereK :=d1/ce becauseVi Vj /∈ E(GV), ∀|i − j | > d1/ce. In particular, for
1
2 ≤ c ≤ √3/2 we have thatK = 2 and henceG can be 3ω(G)-colored. The STRIPE
algorithm can now be stated as follows:

ALGORITHM 4.2 (STRIPE Algorithm)

Input: A UD graphG, given by its model(V, d).
Output: A coloring f of G.

Method:
1. Construct the canonicalc-stripe partitionV of G, 1

2 ≤ c ≤ √3/2.
2. For eachV ∈ V, use Möhring’s algorithm to compute an optimal coloring

gV of GV :
(a) Compute a 2ω(GV )-coloringhV of GV using the sequential coloring

algorithm.
(b) Compute the stripe networkNV for GV .
(c) FromhV compute an initial admissible 2ω(GV )-flow ϕ0

V for NV .
(d) Reduce the value ofϕ0

V using standard flow techniques, yielding an
optimal (χ(GV )-) flow ϕV for NV .

(e) ComputegV from ϕV .
3. Combine the stripe coloringsgV , V ∈ V, obtained in step 1 to a coloring

f of G by applying Algorithm 4.1 toG, V, gV , V ∈ V, ordering the
members ofV from “left to right.”

For the purpose of analyzing Algorithm 4.2, letG be a UD graph,n = |V(G)|,
m = |E(G)|, andω = ω(G). Step 1 can be done in timet1 = O(n) (under our
assumption that arithmetic operations are carried out in constant time). Over allV ∈ V,
step 2 can be done in timet2 = O(nω2) by Theorem 4.2. Sincem = O(nω), by
Proposition 4.2 step 3 can be carried out in timet3 = O(nω + rω2.5), wherer = |V| is
the size of the stripe partition. We obtain the following result:

THEOREM4.3. Let G be a UD graph, n, m, ω, and r as above. Then Algorithm4.2
colors G with at most3ω colors in time O(nω2+ rω2.5).

We remark that the cocomparability graph coloring problem can also be solved using
bipartite matching as discussed in Section II.8 of [4]. If we replace our version of
Möhring’s algorithm with this method, step 2 of Algorithm 4.2 can be done in time
t ′2 = O(n2.5) which is better than the boundt2 = O(nω2) if ω > n3/4.
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5. Concluding Remarks. In this paper we considered the coloring problem for UD
graphs. Improving on a result of Clark et al. [2], we have shown that the UD graph
coloring problem remains NP-complete foreachfixed number of colorsk ≥ 3.

We then considered the problem ofapproximatingthe chromatic number of UD
graphs. We first reviewed existing sequential coloring techniques for UD graphs. Then we
discussed an alternative 3-approximation algorithm for the UD graph coloring problem,
the so-calledSTRIPE algorithm. In contrast to the sequential coloring algorithm the
STRIPE algorithm makes extensive use of the UD model which must be given with
the input graph. The basic idea behind the STRIPE algorithm is to partition the input
graph into a sequence of induced subgraphs calledstripes. With an appropriate choice of
parameters, the stripes become cocomparability graphs which can be colored optimally
using Möhring’s algorithm [18]. The individual stripe colorings are then combined with
the permutative coloring technique [7].

We remark that the STRIPE algorithm can be extended to more general kinds of
models (such as “double disk” graphs) and generalized graph coloring problems (such
as the “minimum distance” coloring problem); see [9] and [13] for further details.

We implemented both the STRIPE algorithm and Peeters’ version of the sequential UD
graph coloring algorithm, in order to estimate the practical performance and efficiency
of the STRIPE algorithm and to compare both approaches. Our experimental results
indicate that both algorithms usually achieve comparable performance ratios, with the
STRIPE algorithm slightly outperforming the sequential algorithm when applied to
realistic graphs arising in channel assignment problems in which the points are distributed
nonuniformly [9].

As we pointed out, the UD model is an essential prerequisite for UD graph algorithms
which make extensive use of the geometric structure of the graph. Therefore finding
heuristics for the construction of approximate UD graph models is an interesting field
for further research. Such techniques would have other useful applications, such as the
visualization of graphs which have some apparently geometric structure, but are given
without a model.

A major open question is whether the bound 3ω(G)− 2 on the chromatic number of
a UD graph can be further improved. We do not know of any UD graph where this large
gap between clique and chromatic number actually occurs. Because the clique number
of a UD graph can be computed in polynomial time, any better bound on the chromatic
number in terms of the clique number would enable us to give a tighter approximation
of the chromatic number of a UD graph.
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