Algorithmica (1998) 20: 119-135

Algorithmica

© 1998 Springer-Verlag New York Inc.

An Algorithm for Straight-Line Drawing
of Planar Graphs?

D. Haref and M. Sard&s®

Abstract. We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a general-
ization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach,
and Pollack. Our algorithm improves the previous ones in that it does not require a preliminary triangulation
step; triangulation proves problematic in drawing graphs “nicely,” as it has the tendency to ruin the structure
of the input graph. The new algorithm retains the positive features of the previous algorithms: it embeds a
biconnected graph of vertices on a grid of siz&n — 4) x (n — 2) in linear time. We have implemented the
algorithm as part of a software system for drawing graphs nicely.

Key Words. Graph drawing, Planar graphs, Layout, Visual languages.

1. Introduction. Inthis paper we describe a new drawing algorithm for planar graphs.
The algorithm is a central component of a software system we have developed for
drawing graphs “nicely” [HS], and was especially designed for that purpose. (The other
main component of the system described in [HS] is the simulated annealing algorithm of
[DH], which is used in the second stage to “massage” a rough solution into a “nice” one.)
The new algorithm was inspired by an algorithm of Chrobak and Payne [CP], which is
a linear-time variant of an algorithm of de Frayssebal. [FPP].

The algorithm of [CP] draws a graph withvertices on a grid of siz&n—4) x (n—2)
intime O(n), and is quite easy to implement. Vertices are placed on grid points and edges
are crossing-free straight lines.

The bound on the grid size required for the drawing becomes significant when the
goal is aesthetics: If we know that the vertices of the graph will be located on (the
grid-points of) a grid of siz&®(n) x O(n), we are guaranteed that the minimal distance
between pairs of vertices will be no smaller thafOin) of the entire drawing size,
so they will not appear too close to each other. However, if vertices can be drawn at
arbitrary locations, nothing can be guaranteed about the distance between them, which
is a limitation. Another advantage of a small grid is that high-precision operations are
not necessary for calculating vertex positions; all numbers involved are on the order of

1 Part of the first author’s work was carried out during a sabbatical stay at Cornell University in Ithaca, NY,
and was partially supported by Grants AF #F49620-94-1-0198 (to F. Schneider), NSF #CCR-9223183 (to
B. Bloom), NSF #CDA-9024600 (to K. Birman), and ARO #DAAL03-91-C-0027 (to A. Nerode).

2 Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot,
Israel. harel@wisdom.weizmann.ac.il

3 Current address: Orbot Instruments Ltd., Yavneh Industrial Zone, P.O. Box 601, Yavneh, Israel.
meir.sardas@amat.com.

Received September 21, 1995; revised March 15, 1996. Communicated by K. Mehlhorn.

120 D. Harel and M. Sardas

Fig. 1. Sample output of the algorithm of [CP] on a nontriangulated graph.

These features, coupled with its linear running time and relative simplicity, made
the algorithm of [CP] an excellent candidate for us to use when we were designing the
system described in [HS]. However, the algorithm of [CP] has one serious drawback:
it requires the input graph to bmaximalplanar, and we wanted to integrate it in a
system that would handle planar graphs that are not necessarily maximal. The simplest
way to achieve maximality is suggested in [FPP], nanteingulation If the graph is
not maximal, dummy edges are added to make each face triangular. The result is then
subjected to a drawing algorithm, and before producing the final drawing the edges added
in the triangulation stage are deleted.

We tested this scheme and found it unsatisfactory for our purposes. For example,
Figure 1 shows a typical output of the algorithm (after deleting the added edges). The
external face is drawn unacceptably concave. Standard “beautification” techniques, such
as the simulated annealing scheme of [DH] that we use in our system, are in many cases
unable to overcome this kind of distortion, which can become much worse for larger
graphs. The problem stems from the triangulation step, whose dummy edges often ruin
the structure of the original graph, yielding totally unacceptable results.

To overcome this difficulty, we have developed a new algorithm, which is in the
spirit of that of Chrobak and Payne. The new algorithm does not require a maximal
triangulated graph, but works instead directly from the original input graph, which need
only be biconnected and planar. It deals with the graph in steps, making the placement
decisions for vertices in increasingly larger subgraphs. A vertappears irGy, the
graph constructed in thigh step, only if at least one of its neighbors appeargin;.

This avoids the situation of vertax in Figure 1, which was drawn based on dummy
edges that were removed in the final drawing. The two main advantages of the original
algorithm are retained: ours also runs in linear time, and it employs a small bounded
grid.

Before getting into the details of our work, we should mention that another drawing
algorithm based on that of Chrobak and Payne has been developed by Kant [Ka]. This
algorithm is also aimed at producing aesthetic drawings, but it does so by drawing

An Algorithm for Straight-Line Drawing of Planar Graphs 121

all the faces convex, with the external face being drawn as a triangle. Guaranteeing a
convex drawing is stronger than what our approach guarantees, but it requires the input
graph to be triconnected, which is considerably harder to fulfill than our requirement of
biconnectivity.

Section 2 describes the original algorithm of [CP]. Section 3 contains a detailed
description of our new algorithm, and Section 4 proves its correctness, discusses some
issues of implementation, and analyzes its time complexity.

2. The Original Algorithm. This section describes the algorithm of [CP], which

is the starting point for our algorithm. It works in two steps. The first calculates the
canonical orderingwhich is the order in which the vertices will be processed, and the
second (sometimes called thiacement stéhen constructs the drawing incrementally,
adding vertices to the current drawing one by one, according to the canonical ordering.

2.1. The Canonical Ordering

DEFINITION 2.1. LetG be a maximal planar graph drawn in the plane, and et w

be the vertices on the boundary of its exterior face. ddr@onical orderings a labeling
of the vertices of5 in a sequencey, . . ., v, such that; = u, v, = v, andv, = w, and
for every 3< k < n the following hold:

(8) The subgraplsy_; of G induced byvs, ..., vk_1 is biconnected, and the boundary
of its exterior face is a cycl€_1 containing the edgéu, v).

(b) The vertexy is on the exterior face dby_;, and has at least two neighbor<Gi_;.
Moreover, all of its neighbors iGk_; are consecutive on the pa@_; — (u, v).
(See Figure 2.)

The existence of such an ordering is proved in [FPP], which also provides a linear-
time algorithm to compute one. We now describe this algorithm, which is adopted in
[CP].

A prerequisite is the availability oflanar embeddingA planar embedding is not an
actual drawing of the graph, but is a data structure that describes the circular ordering of

Fig. 2. lllustration for the canonical ordering.

122 D. Harel and M. Sardas

neighbors of each vertexin some planar drawing. A linear-time algorithm for constructing
a planar embedding for a planar graph is described in [CNAQO] (see also [MM]), and it
can be used as a preliminary step to the canonical-ordering algorithm now described.
The ordering algorithm works by processing each of the vertices (in an order explained
below) and visiting its neighbors. Vertices are labeled, and when visiting neighbors the
labels can be updated. The labels used are as follewsmeaning “not yet visited”; 0,
meaning “visited once”; and > 0, meaning “visited more than once and those of its
neighbors already visited forimintervals in the circular order around the vertex given
by the planar embedding.”
We start by choosing two vertices, calling thefrandv,, and assigning the labell
to all the othen — 2 vertices. We then processandv,, as we now describe. Processing
a vertexuy is carried out by visiting each of its neighbors and updating the labels of those
neighbors not yet processed. Lelbe a neighbor ofi. Then:

Case(i): v is labeled—1. In this case relabel it with 0.

Case(ii): v is labeled0. This means that has one neighbor that has already been
processed; call iti. Check ifvg is adjacent tau in the circular ordering of neighbors
aroundv (given by the planar embedding). If so, lahelith 1, otherwise label it
with 2.

Case(iii): v is labeled i > 0. Check the two vertices adjacentudgin the circular
ordering around. If both have already been processed, lab&lith i — 1 (i.e., two
intervals have now been merged). If one has been processed and the othisrlabgl
remains . If neither have been processed, lab&ithi + 1.

After processingy (for k > 2), a vertex with label 1 is chosen to bg,; in the
canonical ordering (any such vertex can be chosen), and is thereby processed. This
continues until no suchg; is found. However, the existence of a canonical ordering
guarantees that this procedure will indeed continue until all vertic€sarke processed.

2.2. The Placement Step The second step in the algorithm of [CP] places the vertices
on grid points, to produce a planar drawing of the graph. To describe it, we need some
notation.

Given two grid pointsQ = (X1, Y1), R = (X2, y2), we denote byu(Q, R) the
intersection of the line with slop&1 from Q and the line with slope-1 from R. That
is,

WQ.R) =30 —Y1+Xo+ Yo, —Xi+ Y1+ X2+ o).
TheManhattan distanceetween two grid point® andR is defined to be

MD(Q, R) = [X2 — X1| + |Y2 — V1l

Note thatif this value is even, then so are the valyesy; +xo+ Yo and—Xx; + Y1+ X2+ Vo
that appear in the definition @f. This means that iQ and R are grid points with even
Manhattan distance,(Q, R) must be a grid point too.

In the second part of the algorithm, which we now describ@;) = (X(v), y(v))
denotes the current position of verteon the grid. To each vertex we assign a set

An Algorithm for Straight-Line Drawing of Planar Graphs 123

of verticesL (w), whose meaning is explained below. The algorithm starts by placing
v1, U2, v3 ON a triangle, as follows:

P(v1) := (0, 0); L(vy) := {v1};
P(v2) := (2, 0); L(v2) := {v2};
P(v3) = (1, D); L(v3) := {vs}.

The vertexy is added to the already placed vertiogs. . ., v_; at each step, forming
the graphGy. In order to understand the iterative processing better, it is worth noting the
invariant claim, which captures the fact that at kitle step of the algorithm, the contour
of Gy, termedCy, is of triangle-like shape, and its top portion looks a little like a hilly
landscape. More specifically, the following hold:

(h1) P(vy) = (0,0) andP(vp) = (2k — 4, 0).

(h2) Cx = w1, wy, ..., wy, for somem, wherew; = v1, wyn = vy, andXx(w;y) <
X(w2) < -+ < X(wm).

(h3) The slope of each segmé®(w;), P(wj;1)), fori =1,...,m— 1, is either+1
or—1.

Assume we have carried cki- 1 steps, and (h1)—(h3) hold. We now want to agdtb
the drawing. By the canonical ordering, we can assumevthatsuch that its neighbors
onCy_; are consecutive, and we can therefore denote themyby. . , wq. Here is how
to adduy:

for eachv e Uimzq L (w;) do

X(v) :i= X(v) + 2; (i.e., move these points by two to the right)
for eachv e (Ji,,; L(wi) do

X(v) = X(v) + 1; (i.e., move these points by one to the right)
P (u) := n(P(wp), P(wq));

L (o) = o U UM g, L),

Now, by (h3) we know that ifw; andw; are any two vertices on the contour, and
I = P(w;) andJ = P(wj) are their current positions on the grid, thd (1, J) is even.
As aresult of this and the remark made earjigi? (w,), P(wq)) is always a grid point.

By moving some of the point® (wj) to the right, we ensure that alk’s neighbors
will be visible from P (v). With each vertex that moves we also move the det),
consisting of the vertices that reside “below” it. This is needed to keep the part that has
already been drawn without crossings from having crossings inadvertently introduced.
For details, see Lemma 2 of [CP].

A linear-time implementation of this part of the algorithm is described in [CP]. The
basic idea is to maintain the sdigv) as trees rooted at At stepk, the offspring ofuy
are the verticesp 1, . . ., wq—1, Which are the roots of the tre€gwp1), . . ., L(wg-1).
The trees are implemented as binary trees, ulgfigonto hold the first offspring of a
vertex, andightsonto hold the first sibling to the right of the vertex; see Section 2.3.2
of [Kn]. To achieve constant time for updating this structure at kfépe contour chain

124 D. Harel and M. Sardas

is kept in therightsonarray. We then update as follows:

if wg—1 # wp
then leftsor(vk) = wpy1
elseleftson(vy) := nil

if wg—1 # wp
then rightsonwg—1) := nil;

All other rightsonconnections are inherited automatically from the contour. The contour
chain is updated as follows:

rightsonwyp) := v;
rightson(vy) := wg;

The calculation of the coordinate oty is carried out relative to that of,, and at the
end of the algorithm these relative coordinates are translated into real ones by a single
traversal of the binary tree. Since the vertices of the graph are processed according to
their canonical ordering, a planar drawing is guaranteed.

3. The New Algorithm. The main difference between our drawing algorithm and the
original one is in the canonical ordering step; the placement step is much the same.
First, we note that the two requirements of the canonical ordering (see Definition 2.1)
cannot be fulfilled when the graph is not triangulated. The first of these, clause 2.1(a),
requiresGy to be biconnected. However, if we take a cycle rowertices as input,
any possibles,_; will be a path, which is not biconnected. The second, clause 2.1(b),
requiresvg1 to have consecutive neighbors on the pa@th— (vy, v2) (the contour).
However, consider Figure 3, for example. The exterior faag,is,, X, and in this case
the canonical ordering must havg = x, which impliesC3 = vy, y, vo. However, the
neighbors o4 do not form a consecutive interval @3, sincey is not a neighbor oX.
What this means is that we need a new definition for the canonical ordering, which
will enable us to draw the graph vertex by vertex in the placement step. We call the result
of our new definition théiconnected canonical ordering

3.1. The Right-Hand Walk The new algorithm works on the level of faces of the input
graph, and uses a “right-hand walk” around faces.

X

Y

Fig. 3. Example of a nontriangulated graph.

An Algorithm for Straight-Line Drawing of Planar Graphs 125

For the rest of the papég is regarded as a directed graph, by viewing each undirected
edge(u, v) as the pair of directed edgés, v) and(v, u), both of which are represented
in the drawings by the same straight-line segmantonnectingu andv.

Given an orientation for the edda, v), we may speak of theght face and théeft
face of(u, v). Note that these might be the same, as in the case whaas no incident
edges other thafu, v).

Let G be a planar connected graph drawn on the plane. Shieconnected, the
boundary of each face in the drawing consists of a single connected polygonal line. The
algorithm below producestzundary listfor each face, containing these polygonal lines
in order.

The right-hand walk:

mark all edges o6 as unvisited;
while there are unvisited edges
choose any unvisited edg@e, v) and initialize a new lisb with vy = u,
andvy = v;
seti = 1;
repeat
take a9 ;1 the vertex immediately following; _; in the counterclock-
wise circular ordering of neighbors around
adduj 4 to the listb;
mark the edgév;, vi,1) as visited,;

seti =i+ 1;
until (vi, viz1) = (vo, v1);
close the lisb;
end-while

Execution of this algorithm can be viewed as a person walking along the edges of the
graph, continuously choosing the rightmost option at every vertex. Thus, the resulting
list b(f) represents the boundary of a fatén a clockwise direction.

Clearly, the right face of a directed ed@s v) is also the left face of the dual edge
(v, u). Thus, if f is a face andb(f) = vg, vy, ..., vy is the list produced by the right-
hand walk, the reversed list is another representation of the boundérytrafversing it
in a counterclockwise fashion, arfdis the left face of each of the edges, vi_1). We
refer to the reversed lists asunterclockwise boundary listahile the lists produced by
the algorithm arelockwise boundary listor justboundary listsfor short. Obviously,
the counterclockwise lists can be obtained bgfahand walk algorithm, taking; 1 to
be the vertex following) _; in the clockwisecircular ordering around;.

Each directed edge appears in exactly one boundary list. An undirected edge might
appear in two different boundary lists, once in each direction, or it might appear in the
same boundary list in both directions. As far as vertices go, unléss cut-vertex of
G, it appears at most once in each boundary list: i§ a cut-vertex, each one of the
boundary lists corresponding to the componentS diiat includev will containv more
than once.

Note that to construct the boundary lists we do not need the planar drawing itself; all
we need is a planar embedding, as we only use the circular ordering of neighbors around

126 D. Harel and M. Sardas

each vertex. As mentioned earlier, a planar embedding can be found by the linear-time
algorithm of [CNAQ].

3.2. The Biconnected Canonical OrderingLetG be a biconnected planar graph drawn
in the plane. LeGk be a connected subgraph @f and letCy = wq, wy, ..., wym be
the counterclockwise boundary list of the exterior face&sgf(we call Cy the contour

of Gy). Letv be a vertex inG — Gy that lies in the exterior face @y, and which has
exactly one neighbor iGk. Note that, by planarity, that neighbor must lie Gp (the
contour ofGy), and we can thus assume itig for somei, 1 <i < m.

DEFINITION 3.1.

(a) We say that has aight supportif vimmediately followsw; . in the counterclock-
wise circular ordering around; it has aleft supportif v immediately precedes
wj_1 in the counterclockwise circular ordering around

(b) We say that has degal supporionCy if: i = 1 andv has a right support, ar= m
andv has a left support, or £ i < mandv has a left support or a right support.

Note that sinceCy is cyclic in nature, the starting point of the listy, can be fixed
arbitrarily alongCy.

We now define the biconnected canonical ordering, as follows:

DEFINITION 3.2. LetG be a biconnected planar graph drawn in the plane, arid,|e)
be an edge on the clockwise boundary list of its exterior fackicAnnected canonical
orderingis a labeling of the vertices @ in a sequence, . . ., vy, such thav; = uand
v2 = v, and for every < k < n the following hold:

(a) LetGg be the subgraph d& induced byv;, ..., vk. ThenGy is connected, and the
edge(v, v1) is on Cy, the contour ofGy. Fix w; to bew;, so that we writeCy as
V1 = Wi, W2, ..., Wm = V2.

(b) All vertices inG — G lie within the exterior face o6y.

(c) Fork > 2, the vertexvx has one or more neighbors @_;. If vx has exactly one
neighbor inGy_4, then it has a legal support @x.

This definition of the canonical ordering is a generalization of the original version to
the case of nontriangulated graphs. For triangulated graphs it can be seen to be equivalent
to that of Definition 2.1.

We now describe an algorithm that finds a biconnected canonical ordering. The algo-
rithm can be regarded as a generalization of the original algorithm for canonical orderings
described in Section 2; for triangulated graphs they perform similar steps. However, its
proof of correctness, given in Section 4.1, is quite different.

3.3. Preliminaries Before we proceed, we need to establish some facts. From now
on, we refer only to counterclockwise boundary lists, and often omit their direction.
Assume we have carried dkit- 1 steps, and have obtained an orderinggenl vertices
satisfying the conditions of the biconnected canonical ordering. By induction dn the

An Algorithm for Straight-Line Drawing of Planar Graphs 127

Fig. 4. lllustration for Proposition 3.3.

of Definition 3.2(c), since, for every = 2, ...,k — 1, v; has a neighbor ifG;_;, we
know thatGy_; is connected.
LetCy_; be the contour o6_,, and listitas; = wq, wo, ..., wm = v asdescribed

in Definition 3.2(a). Now, let be a vertex outsid€_1, which has at least one neighbor
in Gx_1. Then, by Definition 3.2(b)y is in the exterior face oGk_1, and therefore lies
on the exterior boundary of the larger grah_1 U v.* SinceGy_; is connectedy is
not a cut-vertex oGx_; U v, and it therefore appears exactly once along the boundary
list of the exterior face of5x_; U v. Let u be the vertex precedingin the boundary
list of the exterior face 065¢_; U v. By the planarity ofG, the neighbors of in G¢_;
must all reside oi€y_4, and thusu is really wi, for some appropriate £ i; <m. If v
has p neighbors orCy_;, we can list them similarly in their counterclockwise circular
ordering around, aswi,, wi,, ..., wj,.

Note that a vertex may appear more than once in the &t 1. This could happen
if it is a cut-vertex of the grapksy_1, andCy_1 “goes around” a component attached
to x. Thus, ifx is one of the neighbors af, we should be more precise in defining the
indexi; that satisfiex = wj;. We do this by considering the circular ordering around
X. Obviously, there is exactly one indexthat satisfiesx = wq, and such that on the
clockwise circular ordering arournxthe order iswq_1, v, wgt1. Thisq is taken to be
the above;.

PROPOSITION3.3. Letwy,, wi,, ..., w;, be the neighbors af on the contour ¢ ; =
wq, W2, ..., Wy, defined as abovdheni < iz < --- < i (see Figured).

(The meaning of this proposition is that the circular ordering arauedincides with
the order along the boundary li8k_;. Bearing in mind that boundary lists are circular
in nature, the proposition also states that at the particular starting point chogan for
(which isw,), the list of neighbors of onCy_; does not “wrap around” the circular list
Ck-1.)

4 We write Gx_1 U v for the subgraph o6 induced by the vertices, . . ., vk, V.

128 D. Harel and M. Sardas

PrOOE Cy_; was defined to be a counterclockwise boundary list, and can be seen to
be an output of the left-hand walk performed on the gr&gh;i. In other words, if
wi_1, Wi, wi41 IS a fragment oy _;, then inGy_ the vertexw;,; immediately follows
wi_1 on the clockwise circular ordering of neighbors around

Consider applying the algorithm to the gra@h_1 U v, and initializing a left-hand
walk with an edge(w;,,, v) satisfying 1< j < p—1. Mark byb(f) the boundary
list being constructed. The first step of the algorithm agdgdgo the listb(f), since by
our definitionsw;; follows wj,,, in the circular ordering around. The next step adds
wi; +1, Since by our choice of the index the vertex following in the clockwise circular
ordering aroundw;; is wj; ;1.

The algorithm now carries out the very same steps that were carried out when con-
structingCy_1, thus creating the lisbi;, wi; 1, wi; 42, . . ., until the initial edgegw, ,, , v)
is reached again. This will be the only point along the traversal that reac¢lsascev
appears at most once in every boundary list because it is not a cut-ve@gx 0f v.

Hence, we have established the fact that no other neighhaf v appears between
wi; andwj;,,, meaning that these two are consecutive on a circular list of neighbers of
ordered by their indices alor@_;.

It remains to show that in the traversal along the fragme@of from w;; to w;,,,,
no wrapping around occurs. This will imply < ij;1, as needed. Accordingly, if we
assume that the walk does pass beyand the edggv,, v1) would be included in the
boundary lisb(f) being constructed. However, this edge resides on the boundary of the
exterior face of the entire grafih, and therefore also on the boundary of the exterior face
of Gx_1 U v. This means thdt(f) is the boundary list of the exterior face Gf_; U v,
and as such it contains the edge,, v), by our definition ofw;,. However, we initial-
izedb(f) with the edge(w,_,, v), and we know that appears exactly once i f).
Since j + 1 cannot be equal to one in the range jef under discussion, this is a
contradiction. O

3.4. The Algorithm The algorithm employs the following one-dimensional arrays:
indexed by the faces of the graph, addndF, indexed by the vertices. During execution
of thekth stage of the algorithmA(f) will contain the number of edges frob f) that
are inGy_;. Also, N (v) will contain the number of neighbors of vertexn Gy_;, and

F (v) will be the number of “ready” faces that haveas their only vertex outsidéy_;.
Here, afacef, thatis not the exterior face @, is said to beeadyif A(f) = |b(f)|—2,
i.e., b(f) has only two edges not iGy_;. (This can only mean that there is a single
vertex inb(f) — Gy_; that is incident to these two edges.)

Before we get into the algorithm itself, we establish some facts about the contents
of N andF, using the following notational conventions. hebe a vertex not irGy_;.
DenoteN(v) by p, and letw;,, ..., wi, be the neighbors af on Cy_;. Also, let f; be
the left face of the edgew;, v), for 1 < j < p. Finally, letL, be the circular ordering
of all neighbors ofv.

PROPOSITION3.4.

) N) > F(v).
(i) N(v) = F(v) + 1iff all the faces f,for 2 < j < p, are ready

An Algorithm for Straight-Line Drawing of Planar Graphs 129

(iii) If N(v) = F(v) + 1, then the neighbors af in Gx_; form a single interval in the
list L,.

ProoOE (i) F(v) contains the ready faces that havas their sole vertex outsidey_1.

Thus, the boundary list of such a face must contain an edge of the(farm), with w;,

in Gyx_;. This implies that each of these ready faces is the left face of one of the edges
(wi;, v), so that the set of ready faces accounted fdfF (m) is a subset of the faces
f1,..., fo. Hence N(v) = p > F(v). To proveN(v) > F(v), we show thatf; cannot

be a ready face.

Note thab(f1) is the boundary list of; on G, so thab(f;) contains the edgewi,, v).

If b(f1) has onlyv as a vertex not il5x_1, it is entirely contained if5x_; U v. By our
choice ofwy,, the left face of the edgew;,, v) in the subgrapl@_; U v is the exterior
face of this subgraph. Nowg,_1 Uv contains the edg@,, v1), which is on the boundary
of the exterior face of the entire graph. Thus;, v1) is on the boundary of the exterior
face of the subgrapty_; U v too, and it therefore belongs t f;). However, in the
entire graphG, the face whose boundary list contains the edgev;) is the exterior
face, which means thdt must be the exterior face &. Recall that the exterior face of
the entire graplc was excluded from the definition of a ready face. Herfgezannot
be a ready face.

(ii) AssumeN(v) = F(v) + 1. The above counting shows that each of the 1
facesf,, ..., f, must be ready. Conversely, since the set of faces accountedfgp)n
consists of those faces from amofg . .., f, that are ready, then if they aadl ready
we must havd-(v) = p — 1, which isN(v) = F(v) + 1.

(iii) Let N(v) = F(v) + 1, and assume thdt, contains a fragment of the form
wi,_,, ..., U, w;, forsome 2< j < p, meaning that there are vertices that separate a pair
of adjacent neighbors af in Gx_;. Recall thatw;,, ..., wi, is the list of neighbors of
v in Gk_1, ordered counterclockwise aroundThus,u cannot be irGy_; (otherwise it
would be one ofv;;_, or wj;). Now, sinceu follows wj; in the clockwise circular ordering
aroundv, the boundary lisb(fj) must contain the edgés);; , v) and(v, u). This implies
that f; has two vertices outsid€x_; (which arev andu), and therefore it cannot be
a ready face. This contradicts the assumptibpy) = F(v) + 1, thus completing the
proof. O

Now to the algorithm. Assume we have just chosgnHere is how the arrays are
updated:

(1) Update v¢'s neighbors:
For each neighbor of vy that is outsideSy, incrementN (v) by 1.

(2) Update faces:
There are two faces to update: The left face of the €dge v«), which is f1, and the
right face of(w;_, vk), which we callf,, ;. For these, incremem(f;) and A(fp,1)
by one. (Recall thaby,, . .., w;, is the ordered list of neighbors of onCy_;. Also,
it might be the case tha = fpi1.)

(3) Update ready faces:
If a face f becomes ready as a result of (2), find the only vertexongb(f) that
is outsideG, and incremenFE (v) by one.

130 D. Harel and M. Sardas

Here now is the algorithm for building the new biconnected canonical ordering:
initialization:
initialize all three arraysA, N, andF, to O;
take agvy, v2) any edge on the boundary of the exterior fac€&of
initialize a list of vertices withv; andv,, and update their neighbors as in
(1) above;
setA(f) to 1 for f, the left face of(vy, vy);
If f is atriangle with vertices, vy, v3, setF (v3) to 1, sincef is ready.
for k from 3tondo
if there is a vertex not on the list, withN(v) > 2andN() = F(v) +1
then add it to the list agy;
elsefind a vertexv not on the list, with legal support ard(v) = 1,
and add it to the list asy;
update the data structures as in (1)—(3) aboveyfor
end-for

So much for computing the canonical ordering. The placement step of our algorithm is
very similar to the original one of [FPP], described in Section 2. The original placement
step relies on the fact that at each stage the vextéxin the exterior face o6x_1 and
has neighbors o€y_;. These conditions are guaranteed in the biconnected canonical
ordering too. Our algorithm uses the saleftsonandrightsonarrays, indexed by the
vertices.

One difference worth mentioning is the update for the case where the vertex has a
support. Assumey has onlyw; as a neighbor ofs,_;, and it should be drawn using
a right support. In this case, we update the data structures as if there were a real edge
(vk, wiy1); this means that the contour as it appears inrifpletsonchain contains the
segmentwi, vk, wi;1. The case for a left support is analogous.

3.5. Remarks (1) By Definition 3.2(c), the vertexy is drawn only after at least one
of its neighbors has already been drawrGi ;. This prevents the situation shown in
Figure 1. Figure 5 shows the same graph as drawn by our algorithm.

Fig. 5. The graph from Figure 1 as drawn by our algorithm.

An Algorithm for Straight-Line Drawing of Planar Graphs 131

(2) The drawing obtained in the original algorithm of [FPP] is of size bounded by
(2n — 4) x (n — 2). This follows from the fact that the algorithm starts the placement
step with the edgév1, v,) drawn with length 2, and it increases this length by 2 at each
step, ending with lengthr— 4. The entire drawing can be enclosed in a triangle whose
base is the edg@:, v2) , and whose sides emanate frofandv, with slopes+1 and
—1, respectively. Hence, the drawing’s maximal height is 2. All this is true for our
algorithm too, so that the same bounds apply.

(3) Our canonical ordering requires the graph to be biconnected. There are examples
of planar nonbiconnected graphs for which no biconnected canonical ordering exists, a
fact that is also reflected in the proof of correctness below. However, every graph can be
made biconnected by adding dummy edges, as follows: (i) given any two disconnected
components, add a dummy edge to connect arbitrarily chosen vertices, one in each of
them; (ii) given two components with a common cut-vertexadd a dummy edge that
connects arbitrary neighbors ofone from each component. Deciding connectivity and
biconnectivity, and identifying biconnected components can all be done in linear time. In
our system we use an algorithm described in [HT] as a preliminary step for the drawing
algorithm; after completing the placement step we remove the dummy edges.

4. Analysis of the Algorithm

4.1. Correctness The following theorem establishes correctness of the computation
of a biconnected canonical ordering, the only part of our algorithm that is sufficiently
new and subtle so as to require special analysis.

THEOREM4.1. Foreach? < k < n,letvy, ..., vk be the sequence of vertices generated
by the algorithm up to stage Khen(i) conditions(a)—(c)of Definition3.2 are satisfied
and (ii) there exists a vertex outside G, such that either Nv) > 2 and N(v) =
F(v) + 1,0r N(v) = 1andv has a legal support

PrROOFE We proceed by induction ok. Fork = 2, G, consists of the single edge
(v1, v2). Conditions (a) and (b) of Definition 3.2 hold immediately, while (c) is vacuous.
Fork > 2, we prove the existence claim (ii) first.

Assume we have built the sequenge. . ., vx_; such that conditions (a)—(c) of Defi-
nition 3.2 hold. We prove that there exists a venias in (ii). The grapl@ is connected,
so there are vertices outsi@_; with N(v) > 0. First, assume that all these vertices
haveN (v) = 1. Letv be such a vertex, and let be its sole neighbor 08i_1. If v itself
does not have a legal support, then the vetiekat immediately followsw; 1 on the
counterclockwise circular ordering of neighbors aroundsatisfiesN (t;) = 1 and has
aright support, and the vertéxthat immediately precedes _; satisfiedN(t;) = 1 and
has a left support. See Figure 6(a). In this case, otearft, must have a legal support,
and it can therefore be chosen tohe

The more difficult case is when there are vertices Wittv) > 2, and in discussing
it we need the notion of apan

Let v be a vertex outsid&_;, which hasp neighbors inGk_;. As before, we let
Ck_1 = w1, wy, ..., wn, Wherew; = v; andwy = ve. By Proposition 3.3 we can

132 D. Harel and M. Sardas

(b)

Fig. 6. lllustrations for proof of Theorem 4.1.

denote thep neighbors ob by wi,, wi,, ..., wi,, as they constitute a subseriesCpf ;.
The fragment ofCy_; betweerw;, andwj, is called thespanof v on Cy_;. Thelength
of the span is defined to lbg — i, (which is the number of vertices therein).

Now assume that there are vertices in the graph With) > 2, and assume, for
contradiction, that none of these vertices satidffv) = F(v) + 1 as required in the
theorem. We chooseto be a vertex witiN (v) > 2 whose span o _; is the shortest
among the vertices witN (v) > 2. Letw,, wi;41, ..., wi, be the span of onCy_;. If
there are two such vertices with equal span length, but with different spans, pick one of
them arbitrarily; if the two have the same span sequence, pick the one claser io
on the circular ordering around;,, taken counterclockwise (i.e., the one closer to the
contourCy_).

By our assumptiony satisfiesN(v) > F(v) + 1, implying that one or more of the
facesf,, ... fpis notready. Leff; ., forsome 1< j < p—1, be one of these, and l&it
be the subgraph d& induced by the closed polygonal ling, , wi, 41, . .., wi;,,, v. AS
mentioned earlier, this does not have to be a simple cycle, sincespmeght appear
twice therein. Lek be the left face of the edgev;,,,, v) in the subgrapiH. If e was
a face in the original grap® too, it must have been ready, since it has only two edges
outsideGg_;. However, by our assumptions, this is impossible. Consequently, the region
ein G is not connected, and hence there is a gaith G that dividese in two.

We now claim thatP cannot be a single edge. First,Rf were an edge connecting
v to some vertexv on Cy_1, thenw must be betweem;, andw;,,,, contradicting the
order in the span of. Second, ifP were an edge connecting twq's, then P would
belong to the subgrapBy_;, and as such, it could not be inside the exterior face of
Gy_1. This is impossible, however, since, by part (b) of the induction hypothesss,
in the exterior face 065¢_1, so that the regioe (which includesP) is in that exterior
face too.

An Algorithm for Straight-Line Drawing of Planar Graphs 133

Therefore,P must have at least one internal vertex, catl.iSince we assume théx
is biconnected, there is a pafin G that connectx andw;; without passing through
v (otherwisev is a cut-vertex ofG). Let w; be the first point orQ (when coming from
x) that is inGg_1, and lety be the point preceding, on Q (see Figure 6(b)). Since,
is on the boundary of andx is in e, y must also be ire.

Now, if y satisfiesN(y) > 1, we have found iry a contradiction to the minimality
assumption omw. Here is why: First, we claim that's span is part ob’s. To see this,
note that every edge emanating frgmmust reside entirely i (by planarity), and it
therefore can only lead to pointséror on its boundary. The intersection of the boundary
of e with Cx_; is the sequenc® = wj,, ..., wj,,, and hencg’s span can only be a
subsequence @, while Sitself is part ofv’s span. This implies that the length g%
span cannot exceed the lengthud; if it is strictly smaller, we have a contradiction to
the choice ofv. If v andy happen to have exactly the same span, the circular ordering
aroundwi, (taken counterclockwise) mustbe .1, ..., Y, ..., v, which contradicts the
second part of the minimality assumptionan

If N(y) = 1, sothaty has only one neighbor d@_1, we find our contradiction a little
further down the line, so to speak. Again, we have two cases to consiaderfuw; , letz
be the neighbor ofy immediately followingw, _; along the clockwise circular ordering
of neighbors arounab. This z might bey itself, or a neighbor ofy, that is closer to
wi—1. Now, by planarityz is also ine, and if N(z) > 1, we have irz a contradiction to
the minimality assumption on, by the same arguments as aboveN i) = 1,z has a
legal left support onw,_1, and therefore it can be chosemgswhich again contradicts
our assumptions.

If w = w;;, we takez to be the neighbor af, immediately followingw, ,; along the
counterclockwise circular ordering of neighbors aroundrhiszis ine, and contradicts
our assumptions similarly (using a right support for the dd¢g) = 1).

This completes the proof of existence. We now show that each of the three parts of
Definition 3.2 holds.

(a) Gk contains the edge,, v1). In the original graplG, this edge is on the boundary
of the exterior face. If inGy the edge&(v,, v1) was on the boundary of an interior
face, it would have to remain interior {& too, since the added vertices when going
from Gy to G can only split faces, and a bounded face will split into bounded faces
only.

(b) Consider the region added to the interior&f_; when the vertexy is added. If
N(vk) = 1, a single edge was added®q_1, going from the exterior boundary of
Gk-1 to a point in the exterior face. This added no region to the interi@.of.. By
the induction hypotheses, all verticeGn- Gx_; were in the exterior face @by _1,
and therefore all vertices i — Gy are in the exterior face dby. If N(vy) > 1,
we added to the interior db¢_; a region taken from its exterior face, and we must
show that this region does not contain vertices fil@m- Gi. In going fromGy_;
to Gx we added the vertex, and all the edgesvk, wi;) with w;; on C¢_;. The
region added to the interior @x_1 contains the face§, ..., f,, which are the left
faces of the edge@vi,, vk), . . ., (wi,, vk) in Gk. However, by our choice afy with
N (vk) = F(vk) + 1, we ensured that these are all actual facé&s,@nd as such they
have no vertices of inside them.

134 D. Harel and M. Sardas

(c) Thatug has at least one neighbor@y_; is straightforward, since thg selected by
the algorithm satisfiell (v) > 1. Also, the algorithm chooseg with one neighbor
only if it has a legal support. O

4.2. Implementation and Running TimeWe would now like to show that if we are
given the circular orderings of neighbors around the vertices and the boundary lists of
the faces ofG, the algorithm described in Section 3 can be implemented to construct
a biconnected canonical ordering in linear time, using a linear amount of memory (to
include the representation of the inputs too).

Here is how the data structures for the inputs are set up. Every directefleadgbas
pointers to the next and previous edges on the circular ordering atgami pointers
to the next and previous edges on the boundary list of the left fatbat contains the
edge. It also has a pointer to the opposite edgel), and a pointer tof . Each vertex
has a pointer to the list representing the circular ordering around it, and each face has a
pointer to its boundary list.

A vertex that satisfies the conditions of Theorem 4.1(ii) is cakedly. The existence
claim in the theorem showed that the set of ready vertices never becomes empty during
execution, and at each stage the algorithm chooses one of the ready vertices as the next
vk. To handle this set of vertices we use a doubly linked queue, termeeatig queuge
which makes it possible to insert and remove a vertex in constant time.

At each stage of the algorithm, a vertex is removed from the ready queue and is taken
to bewy. After doing so, the following steps are carried out:

Updating N: For everyu that is a neighbor ofi, the entryN (u) is updated by running
through the entire list of neighbors of, and incrementindN (u) by one for eachu
not yet inGy. If uis in the ready queue, then after incrementih@)) it is removed,
sinceN (u) = F(u) + 1 no longer holds. Ifi satisfiesN (u) = 1, we check if it has a
legal support, as follows. We find the two faces incident with the dual edges)
and(u, v), inspect the two vertices on either sidevpfalong these faces, and check
if either of them is already iGk. We also need to make sure the support is legal. If
has a legal support we add it to the ready queue.

Updating A: Only the two endmost faces need to be updatdg-the left face of the
edge(wi,, vk), and fp4, the right face of the edgéwi,, vk). For these A(f;) and
A(fp41) are incremented by one. To find these edges, we use Proposition 3.4, to the
effect thatinL,, (the list of neighbors aroundl) the vertices that belong 81, i.e.,
wi,, ..., wi,, form a single interval, whose ends are thus easy to find. Now, if one of
these two faces reached a situation wh&¢é) = b(f) — 2, it is declared ready, and
a traversal of its boundary list is carried out to find the vetteot in Gx. We then
incrementF (v) by one, and if nowN (v) = F(v) + 1, the vertex is inserted into the
ready queue.

To analyze the running time, note that an entire list of neighbors is considered only
when a vertex is chosen as the nextIn total, this means that we traverse every edge
twice, once in each direction. We also traverse edges when we search for thevartex
a ready face. This is done once per face, when the face becomes ready. Since an edge
appears in at most two faces, each edge is traversed twice more, giving a total of four

An Algorithm for Straight-Line Drawing of Planar Graphs 135

traversals per edge. Now, by Euler’s formula, a planar graphmittrtices ane edges
satisfiese < 3n — 3, which implies that the total running time @&(n).

As for memory space requirements, we have arrays with entries for vertices, edges,
and faces. Since another consequence of Euler’s formula is that the number of faces is
also O(n), all these are linear in too. The queue we use for ready vertices does not
hold a vertex twice, and hence its size is also linear.in

As mentioned at the end of Section 3.1, the boundary lists can be derived from the
embedding using a right-hand walk. Thus, it suffices to require that the input contains
lists representing the embedding, and to include a preliminary step in the algorithm that
constructs the boundary lists. Given an e@iges, v;), the beginning of theepeat—until
loop in the right-hand walk algorithm of Section 3.1 reads:

take asvj 1 the vertex immediately following; _; in the counterclock-
wise circular ordering of neighbors around

To implement this we have to establish a mapping, which, given an adgg,
returns the dual edg@, u). In [LEDA] this mapping is constructed in linear time and
space (using bucket-sort). With this in mind, the entire right-hand walk algorithm can
be implemented in linear time and space in a straightforward way, and can be integrated
as the first step of our algorithm without affecting the asymptotic complexity.

Acknowledgments. We wish to thank M. Chrobak and the two referees for their helpful
suggestions.

References

[CNAQ] Chiba, N., T. Nishizeki, S. Abe, and T. Ozawa, A Linear Algorithm for Embedding Planar Graphs
Using P Q-Trees,J. Comput System ScBO0 (1985), 54—76.

[CP] Chrobak, M., and T.H. Payne, A Linear Time Algorithm for Drawing a Planar Graph on a Grid,
Inform. ProcessLett 54 (1995), 241-246.

[DH] Davidson, R., and D. Harel, Drawing Graphs Nicely Using Simulated Annea@M Trans
Graphics 15 (1996), 301-331. (Also, Technical Report, The Weizmann Institute of Science,
Rehovot, 1989; revised 1992, 1993.)

[FPP] Fraysseix, H. de, J. Pach, and R. Pollack, Small Sets Suppoatngfmbeddings of Planar Graphs,
Proc. 20th ACM Sympon Theory of Computingp. 426-433, 1988.

[HS] Harel, D., and M. Sardas, Randomized Graph Drawing with Heavy-Duty Preprocessifsyal
Lang Comput, 6 (1995), 233—-253. (AlsdProc. Workshop on Advanced Visual InterfacA€M
Press, New York, 1994, pp. 19-33.)

[HT] Hopcroft, J.E., and R.E. Tarjan, Efficient Algorithms for Graph Manipulati@omm ACM 16
(1973), 372-378.

[Ka] Kant, G., Drawing Planar Graphs Using tinec—Ordering Proc. 33d IEEE Sympon Foundations
of Computer Sciencd 992, pp. 101-110,

[Kn] Knuth, D.E., The Art of Computer Programmingol. 1, Addison-Wesley, Reading, MA, 1968; 2nd
edn., 1973.

[LEDA] Library of Efficient Datatypes and Algorithms (LEDA), software package, Max-Plankuttii
Informatik, Saarhwcker, 1991.

[MM] Mehlhorn, K., and P. Mutzel, On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing
Algorithm, Algorithmica16 (1996), 233—242. (Also, Technical Report No. 117/94, Max-Planck-
Institut flr Informatik, Saarhrcken, 1994.)

