
Algorithmica (1998) 20: 119–135 Algorithmica
© 1998 Springer-Verlag New York Inc.

An Algorithm for Straight-Line Drawing
of Planar Graphs1

D. Harel2 and M. Sardas2,3

Abstract. We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a general-
ization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach,
and Pollack. Our algorithm improves the previous ones in that it does not require a preliminary triangulation
step; triangulation proves problematic in drawing graphs “nicely,” as it has the tendency to ruin the structure
of the input graph. The new algorithm retains the positive features of the previous algorithms: it embeds a
biconnected graph ofn vertices on a grid of size(2n− 4)× (n− 2) in linear time. We have implemented the
algorithm as part of a software system for drawing graphs nicely.

Key Words. Graph drawing, Planar graphs, Layout, Visual languages.

1. Introduction. In this paper we describe a new drawing algorithm for planar graphs.
The algorithm is a central component of a software system we have developed for
drawing graphs “nicely” [HS], and was especially designed for that purpose. (The other
main component of the system described in [HS] is the simulated annealing algorithm of
[DH], which is used in the second stage to “massage” a rough solution into a “nice” one.)
The new algorithm was inspired by an algorithm of Chrobak and Payne [CP], which is
a linear-time variant of an algorithm of de Fraysseixet al. [FPP].

The algorithm of [CP] draws a graph withn vertices on a grid of size(2n−4)×(n−2)
in timeO(n), and is quite easy to implement. Vertices are placed on grid points and edges
are crossing-free straight lines.

The bound on the grid size required for the drawing becomes significant when the
goal is aesthetics: If we know that the vertices of the graph will be located on (the
grid-points of) a grid of sizeO(n)× O(n), we are guaranteed that the minimal distance
between pairs of vertices will be no smaller than 1/O(n) of the entire drawing size,
so they will not appear too close to each other. However, if vertices can be drawn at
arbitrary locations, nothing can be guaranteed about the distance between them, which
is a limitation. Another advantage of a small grid is that high-precision operations are
not necessary for calculating vertex positions; all numbers involved are on the order ofn.

1 Part of the first author’s work was carried out during a sabbatical stay at Cornell University in Ithaca, NY,
and was partially supported by Grants AF #F49620-94-1-0198 (to F. Schneider), NSF #CCR-9223183 (to
B. Bloom), NSF #CDA-9024600 (to K. Birman), and ARO #DAAL03-91-C-0027 (to A. Nerode).
2 Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot,
Israel. harel@wisdom.weizmann.ac.il
3 Current address: Orbot Instruments Ltd., Yavneh Industrial Zone, P.O. Box 601, Yavneh, Israel.
meir sardas@amat.com.

Received September 21, 1995; revised March 15, 1996. Communicated by K. Mehlhorn.

120 D. Harel and M. Sardas

Fig. 1.Sample output of the algorithm of [CP] on a nontriangulated graph.

These features, coupled with its linear running time and relative simplicity, made
the algorithm of [CP] an excellent candidate for us to use when we were designing the
system described in [HS]. However, the algorithm of [CP] has one serious drawback:
it requires the input graph to bemaximalplanar, and we wanted to integrate it in a
system that would handle planar graphs that are not necessarily maximal. The simplest
way to achieve maximality is suggested in [FPP], namelytriangulation. If the graph is
not maximal, dummy edges are added to make each face triangular. The result is then
subjected to a drawing algorithm, and before producing the final drawing the edges added
in the triangulation stage are deleted.

We tested this scheme and found it unsatisfactory for our purposes. For example,
Figure 1 shows a typical output of the algorithm (after deleting the added edges). The
external face is drawn unacceptably concave. Standard “beautification” techniques, such
as the simulated annealing scheme of [DH] that we use in our system, are in many cases
unable to overcome this kind of distortion, which can become much worse for larger
graphs. The problem stems from the triangulation step, whose dummy edges often ruin
the structure of the original graph, yielding totally unacceptable results.

To overcome this difficulty, we have developed a new algorithm, which is in the
spirit of that of Chrobak and Payne. The new algorithm does not require a maximal
triangulated graph, but works instead directly from the original input graph, which need
only be biconnected and planar. It deals with the graph in steps, making the placement
decisions for vertices in increasingly larger subgraphs. A vertexv appears inGk, the
graph constructed in thekth step, only if at least one of its neighbors appears inGk−1.
This avoids the situation of vertexw in Figure 1, which was drawn based on dummy
edges that were removed in the final drawing. The two main advantages of the original
algorithm are retained: ours also runs in linear time, and it employs a small bounded
grid.

Before getting into the details of our work, we should mention that another drawing
algorithm based on that of Chrobak and Payne has been developed by Kant [Ka]. This
algorithm is also aimed at producing aesthetic drawings, but it does so by drawing

An Algorithm for Straight-Line Drawing of Planar Graphs 121

all the faces convex, with the external face being drawn as a triangle. Guaranteeing a
convex drawing is stronger than what our approach guarantees, but it requires the input
graph to be triconnected, which is considerably harder to fulfill than our requirement of
biconnectivity.

Section 2 describes the original algorithm of [CP]. Section 3 contains a detailed
description of our new algorithm, and Section 4 proves its correctness, discusses some
issues of implementation, and analyzes its time complexity.

2. The Original Algorithm. This section describes the algorithm of [CP], which
is the starting point for our algorithm. It works in two steps. The first calculates the
canonical ordering, which is the order in which the vertices will be processed, and the
second (sometimes called theplacement step) then constructs the drawing incrementally,
adding vertices to the current drawing one by one, according to the canonical ordering.

2.1. The Canonical Ordering

DEFINITION 2.1. LetG be a maximal planar graph drawn in the plane, and letu, v, w
be the vertices on the boundary of its exterior face. Thecanonical orderingis a labeling
of the vertices ofG in a sequencev1, . . . , vn such thatv1 = u, v2 = v, andvn = w, and
for every 3≤ k ≤ n the following hold:

(a) The subgraphGk−1 of G induced byv1, . . . , vk−1 is biconnected, and the boundary
of its exterior face is a cycleCk−1 containing the edge(u, v).

(b) The vertexvk is on the exterior face ofGk−1, and has at least two neighbors inGk−1.
Moreover, all of its neighbors inGk−1 are consecutive on the pathCk−1 − (u, v).
(See Figure 2.)

The existence of such an ordering is proved in [FPP], which also provides a linear-
time algorithm to compute one. We now describe this algorithm, which is adopted in
[CP].

A prerequisite is the availability of aplanar embedding. A planar embedding is not an
actual drawing of the graph, but is a data structure that describes the circular ordering of

Fig. 2. Illustration for the canonical ordering.

122 D. Harel and M. Sardas

neighbors of each vertex in some planar drawing. A linear-time algorithm for constructing
a planar embedding for a planar graph is described in [CNAO] (see also [MM]), and it
can be used as a preliminary step to the canonical-ordering algorithm now described.

The ordering algorithm works by processing each of the vertices (in an order explained
below) and visiting its neighbors. Vertices are labeled, and when visiting neighbors the
labels can be updated. The labels used are as follows:−1, meaning “not yet visited”; 0,
meaning “visited once”; andi > 0, meaning “visited more than once and those of its
neighbors already visited formi intervals in the circular order around the vertex given
by the planar embedding.”

We start by choosing two vertices, calling themv1 andv2, and assigning the label−1
to all the othern−2 vertices. We then processv1 andv2, as we now describe. Processing
a vertexvk is carried out by visiting each of its neighbors and updating the labels of those
neighbors not yet processed. Letv be a neighbor ofvk. Then:

Case(i): v is labeled−1. In this case relabel it with 0.

Case(ii): v is labeled0. This means thatv has one neighbor that has already been
processed; call itu. Check ifvk is adjacent tou in the circular ordering of neighbors
aroundv (given by the planar embedding). If so, labelv with 1, otherwise label it
with 2.

Case(iii): v is labeled i > 0. Check the two vertices adjacent tovk in the circular
ordering aroundv. If both have already been processed, labelv with i − 1 (i.e., two
intervals have now been merged). If one has been processed and the other not,v’s label
remainsi . If neither have been processed, labelv with i + 1.

After processingvk (for k ≥ 2), a vertex with label 1 is chosen to bevk+1 in the
canonical ordering (any such vertex can be chosen), and is thereby processed. This
continues until no suchvk+1 is found. However, the existence of a canonical ordering
guarantees that this procedure will indeed continue until all vertices ofG are processed.

2.2. The Placement Step. The second step in the algorithm of [CP] places the vertices
on grid points, to produce a planar drawing of the graph. To describe it, we need some
notation.

Given two grid pointsQ = (x1, y1), R = (x2, y2), we denote byµ(Q, R) the
intersection of the line with slope+1 from Q and the line with slope−1 from R. That
is,

µ(Q, R) = 1
2(x1− y1+ x2+ y2, −x1+ y1+ x2+ y2).

TheManhattan distancebetween two grid pointsQ andR is defined to be

MD(Q,R) = |x2− x1| + |y2− y1|.

Note that if this value is even, then so are the valuesx1−y1+x2+y2 and−x1+y1+x2+y2

that appear in the definition ofµ. This means that ifQ andR are grid points with even
Manhattan distance,µ(Q, R) must be a grid point too.

In the second part of the algorithm, which we now describe,P(v) = (x(v), y(v))
denotes the current position of vertexv on the grid. To each vertexw we assign a set

An Algorithm for Straight-Line Drawing of Planar Graphs 123

of verticesL(w), whose meaning is explained below. The algorithm starts by placing
v1, v2, v3 on a triangle, as follows:

P(v1) := (0, 0); L(v1) := {v1};
P(v2) := (2, 0); L(v2) := {v2};
P(v3) := (1, 1); L(v3) := {v3}.

The vertexvk is added to the already placed verticesv1, . . . , vk−1 at each step, forming
the graphGk. In order to understand the iterative processing better, it is worth noting the
invariant claim, which captures the fact that at thekth step of the algorithm, the contour
of Gk, termedCk, is of triangle-like shape, and its top portion looks a little like a hilly
landscape. More specifically, the following hold:

(h1) P(v1) = (0, 0) andP(v2) = (2k− 4, 0).
(h2) Ck = w1, w2, . . . , wm, for somem, wherew1 = v1, wm = v2, and x(w1) <

x(w2) < · · · < x(wm).
(h3) The slope of each segment(P(wi), P(wi+1)), for i = 1, . . . ,m− 1, is either+1

or−1.

Assume we have carried outk−1 steps, and (h1)–(h3) hold. We now want to addvk to
the drawing. By the canonical ordering, we can assume thatvk is such that its neighbors
onCk−1 are consecutive, and we can therefore denote them bywp, . . . , wq. Here is how
to addvk:

for eachv ∈⋃m
i=q L(wi) do

x(v) := x(v)+ 2; (i.e., move these points by two to the right)
for eachv ∈⋃q−1

i=p+1 L(wi) do
x(v) := x(v)+ 1; (i.e., move these points by one to the right)

P(vk) := µ(P(wp), P(wq));
L(vk) := {vk} ∪

⋃q−1
i=p+1 L(wi).

Now, by (h3) we know that ifwi andwj are any two vertices on the contour, and
I = P(wi) andJ = P(wj) are their current positions on the grid, thenMD(I , J) is even.
As a result of this and the remark made earlier,µ(P(wp), P(wq)) is always a grid point.

By moving some of the pointsP(wi) to the right, we ensure that allvk’s neighbors
will be visible from P(vk). With each vertexv that moves we also move the setL(v),
consisting of the vertices that reside “below” it. This is needed to keep the part that has
already been drawn without crossings from having crossings inadvertently introduced.
For details, see Lemma 2 of [CP].

A linear-time implementation of this part of the algorithm is described in [CP]. The
basic idea is to maintain the setsL(v) as trees rooted atv. At stepk, the offspring ofvk

are the verticeswp+1, . . . , wq−1, which are the roots of the treesL(wp+1), . . . , L(wq−1).
The trees are implemented as binary trees, usingleftsonto hold the first offspring of a
vertex, andrightsonto hold the first sibling to the right of the vertex; see Section 2.3.2
of [Kn]. To achieve constant time for updating this structure at stepk, the contour chain

124 D. Harel and M. Sardas

is kept in therightsonarray. We then update as follows:

if wq−1 6= wp

then leftson(vk) := wp+1

elseleftson(vk) := nil
if wq−1 6= wp

then rightson(wq−1) := nil;

All other rightsonconnections are inherited automatically from the contour. The contour
chain is updated as follows:

rightson(wp) := vk;
rightson(vk) := wq;

The calculation of thex coordinate ofvk is carried out relative to that ofwp, and at the
end of the algorithm these relative coordinates are translated into real ones by a single
traversal of the binary tree. Since the vertices of the graph are processed according to
their canonical ordering, a planar drawing is guaranteed.

3. The New Algorithm. The main difference between our drawing algorithm and the
original one is in the canonical ordering step; the placement step is much the same.

First, we note that the two requirements of the canonical ordering (see Definition 2.1)
cannot be fulfilled when the graph is not triangulated. The first of these, clause 2.1(a),
requiresGk to be biconnected. However, if we take a cycle onn vertices as input,
any possibleGn−1 will be a path, which is not biconnected. The second, clause 2.1(b),
requiresvk+1 to have consecutive neighbors on the pathCk − (v1, v2) (the contour).
However, consider Figure 3, for example. The exterior face isv1, v2, x, and in this case
the canonical ordering must havev4 = x, which impliesC3 = v1, y, v2. However, the
neighbors ofv4 do not form a consecutive interval onC3, sincey is not a neighbor ofx.

What this means is that we need a new definition for the canonical ordering, which
will enable us to draw the graph vertex by vertex in the placement step. We call the result
of our new definition thebiconnected canonical ordering.

3.1. The Right-Hand Walk. The new algorithm works on the level of faces of the input
graph, and uses a “right-hand walk” around faces.

Fig. 3.Example of a nontriangulated graph.

An Algorithm for Straight-Line Drawing of Planar Graphs 125

For the rest of the paper,G is regarded as a directed graph, by viewing each undirected
edge(u, v) as the pair of directed edges(u, v) and(v, u), both of which are represented
in the drawings by the same straight-line segmentuv connectingu andv.

Given an orientation for the edge(u, v), we may speak of theright face and theleft
face of(u, v). Note that these might be the same, as in the case wherev has no incident
edges other than(u, v).

Let G be a planar connected graph drawn on the plane. SinceG is connected, the
boundary of each face in the drawing consists of a single connected polygonal line. The
algorithm below produces aboundary listfor each face, containing these polygonal lines
in order.

The right-hand walk:

mark all edges ofG as unvisited;
while there are unvisited edgesdo

choose any unvisited edge(u, v) and initialize a new listb with v0 = u,
andv1 = v;

seti = 1;
repeat

take asvi+1 the vertex immediately followingvi−1 in the counterclock-
wise circular ordering of neighbors aroundvi ;

addvi+1 to the listb;
mark the edge(vi , vi+1) as visited;
seti = i + 1;

until (vi , vi+1) = (v0, v1);
close the listb;

end-while

Execution of this algorithm can be viewed as a person walking along the edges of the
graph, continuously choosing the rightmost option at every vertex. Thus, the resulting
list b(f) represents the boundary of a facef in a clockwise direction.

Clearly, the right face of a directed edge(u, v) is also the left face of the dual edge
(v, u). Thus, if f is a face andb(f) = v0, v1, . . . , vm is the list produced by the right-
hand walk, the reversed list is another representation of the boundary off , traversing it
in a counterclockwise fashion, andf is the left face of each of the edges(vi , vi−1). We
refer to the reversed lists ascounterclockwise boundary lists, while the lists produced by
the algorithm areclockwise boundary lists, or justboundary listsfor short. Obviously,
the counterclockwise lists can be obtained by aleft-hand walk algorithm, takingvi+1 to
be the vertex followingvi−1 in theclockwisecircular ordering aroundvi .

Each directed edge appears in exactly one boundary list. An undirected edge might
appear in two different boundary lists, once in each direction, or it might appear in the
same boundary list in both directions. As far as vertices go, unlessv is a cut-vertex of
G, it appears at most once in each boundary list. Ifv is a cut-vertex, each one of the
boundary lists corresponding to the components ofG that includev will containv more
than once.

Note that to construct the boundary lists we do not need the planar drawing itself; all
we need is a planar embedding, as we only use the circular ordering of neighbors around

126 D. Harel and M. Sardas

each vertex. As mentioned earlier, a planar embedding can be found by the linear-time
algorithm of [CNAO].

3.2. The Biconnected Canonical Ordering. LetG be a biconnected planar graph drawn
in the plane. LetGk be a connected subgraph ofG, and letCk = w1, w2, . . . , wm be
the counterclockwise boundary list of the exterior face ofGk (we callCk the contour
of Gk). Let v be a vertex inG − Gk that lies in the exterior face ofGk, and which has
exactly one neighbor inGk. Note that, by planarity, that neighbor must lie onCk (the
contour ofGk), and we can thus assume it iswi for somei, 1≤ i ≤ m.

DEFINITION 3.1.

(a) We say thatv has aright supportif v immediately followswi+1 in the counterclock-
wise circular ordering aroundwi ; it has aleft supportif v immediately precedes
wi−1 in the counterclockwise circular ordering aroundwi .

(b) We say thatv has alegal supportonCk if: i = 1 andv has a right support, ori = m
andv has a left support, or 1< i < m andv has a left support or a right support.

Note that sinceCk is cyclic in nature, the starting point of the list,w1, can be fixed
arbitrarily alongCk.

We now define the biconnected canonical ordering, as follows:

DEFINITION 3.2. LetG be a biconnected planar graph drawn in the plane, and let(u, v)
be an edge on the clockwise boundary list of its exterior face. Abiconnected canonical
orderingis a labeling of the vertices ofG in a sequencev1, . . . , vn, such thatv1 = u and
v2 = v, and for every 2≤ k ≤ n the following hold:

(a) LetGk be the subgraph ofG induced byv1, . . . , vk. ThenGk is connected, and the
edge(v2, v1) is onCk, the contour ofGk. Fix w1 to bev1, so that we writeCk as
v1 = w1, w2, . . . , wm = v2.

(b) All vertices inG− Gk lie within the exterior face ofGk.
(c) Fork > 2, the vertexvk has one or more neighbors inGk−1. If vk has exactly one

neighbor inGk−1, then it has a legal support onCk.

This definition of the canonical ordering is a generalization of the original version to
the case of nontriangulated graphs. For triangulated graphs it can be seen to be equivalent
to that of Definition 2.1.

We now describe an algorithm that finds a biconnected canonical ordering. The algo-
rithm can be regarded as a generalization of the original algorithm for canonical orderings
described in Section 2; for triangulated graphs they perform similar steps. However, its
proof of correctness, given in Section 4.1, is quite different.

3.3. Preliminaries. Before we proceed, we need to establish some facts. From now
on, we refer only to counterclockwise boundary lists, and often omit their direction.
Assume we have carried outk−1 steps, and have obtained an ordering onk−1 vertices
satisfying the conditions of the biconnected canonical ordering. By induction on thek

An Algorithm for Straight-Line Drawing of Planar Graphs 127

Fig. 4. Illustration for Proposition 3.3.

of Definition 3.2(c), since, for everyj = 2, . . . , k − 1, vj has a neighbor inGj−1, we
know thatGk−1 is connected.

LetCk−1 be the contour ofGk−1, and list it asv1 = w1, w2, . . . , wm = v2 as described
in Definition 3.2(a). Now, letv be a vertex outsideGk−1, which has at least one neighbor
in Gk−1. Then, by Definition 3.2(b),v is in the exterior face ofGk−1, and therefore lies
on the exterior boundary of the larger graphGk−1 ∪ v.4 SinceGk−1 is connected,v is
not a cut-vertex ofGk−1 ∪ v, and it therefore appears exactly once along the boundary
list of the exterior face ofGk−1 ∪ v. Let u be the vertex precedingv in the boundary
list of the exterior face ofGk−1 ∪ v. By the planarity ofG, the neighbors ofv in Gk−1

must all reside onCk−1, and thusu is reallywi1 for some appropriate 1≤ i1 ≤ m. If v
hasp neighbors onCk−1, we can list them similarly in their counterclockwise circular
ordering aroundv, aswi1, wi2, . . . , wi p .

Note that a vertexx may appear more than once in the listCk−1. This could happen
if it is a cut-vertex of the graphGk−1, andCk−1 “goes around” a component attached
to x. Thus, ifx is one of the neighbors ofv, we should be more precise in defining the
index i j that satisfiesx = wi j . We do this by considering the circular ordering around
x. Obviously, there is exactly one indexq that satisfiesx = wq, and such that on the
clockwise circular ordering aroundx the order iswq−1, v, wq+1. This q is taken to be
the abovei j .

PROPOSITION3.3. Letwi1, wi2, . . . , wi p be the neighbors ofv on the contour Ck−1 =
w1, w2, . . . , wm, defined as above. Then i1 < i2 < · · · < i p (see Figure4).

(The meaning of this proposition is that the circular ordering aroundv coincides with
the order along the boundary listCk−1. Bearing in mind that boundary lists are circular
in nature, the proposition also states that at the particular starting point chosen forCk−1

(which isw1), the list of neighbors ofv onCk−1 does not “wrap around” the circular list
Ck−1.)

4 We writeGk−1 ∪ v for the subgraph ofG induced by the verticesv1, . . . , vk, v.

128 D. Harel and M. Sardas

PROOF. Ck−1 was defined to be a counterclockwise boundary list, and can be seen to
be an output of the left-hand walk performed on the graphGk−1. In other words, if
wi−1, wi , wi+1 is a fragment ofCk−1, then inGk−1 the vertexwi+1 immediately follows
wi−1 on the clockwise circular ordering of neighbors aroundwi .

Consider applying the algorithm to the graphGk−1 ∪ v, and initializing a left-hand
walk with an edge(wi j+1, v) satisfying 1≤ j ≤ p− 1. Mark by b(f) the boundary
list being constructed. The first step of the algorithm addswi j to the listb(f), since by
our definitionswi j follows wi j+1 in the circular ordering aroundv. The next step adds
wi j+1, since by our choice of the indexi j , the vertex followingv in the clockwise circular
ordering aroundwi j iswi j+1.

The algorithm now carries out the very same steps that were carried out when con-
structingCk−1, thus creating the listwi j , wi j+1, wi j+2, . . ., until the initial edge(wi j+1, v)

is reached again. This will be the only point along the traversal that reachesv, sincev
appears at most once in every boundary list because it is not a cut-vertex ofGk−1 ∪ v.

Hence, we have established the fact that no other neighborwiq of v appears between
wi j andwi j+1, meaning that these two are consecutive on a circular list of neighbors ofv

ordered by their indices alongCk−1.
It remains to show that in the traversal along the fragment ofCk−1 fromwi j towi j+1,

no wrapping around occurs. This will implyi j < i j+1, as needed. Accordingly, if we
assume that the walk does pass beyondwm, the edge(v2, v1) would be included in the
boundary listb(f) being constructed. However, this edge resides on the boundary of the
exterior face of the entire graphG, and therefore also on the boundary of the exterior face
of Gk−1 ∪ v. This means thatb(f) is the boundary list of the exterior face ofGk−1 ∪ v,
and as such it contains the edge(wi1, v), by our definition ofwi1. However, we initial-
ized b(f) with the edge(wi j+1, v), and we know thatv appears exactly once inb(f).
Since j + 1 cannot be equal to one in the range ofj ’s under discussion, this is a
contradiction.

3.4. The Algorithm. The algorithm employs the following one-dimensional arrays:A,
indexed by the faces of the graph, andN andF , indexed by the vertices. During execution
of thekth stage of the algorithm,A(f) will contain the number of edges fromb(f) that
are inGk−1. Also, N(v) will contain the number of neighbors of vertexv in Gk−1, and
F(v) will be the number of “ready” faces that havev as their only vertex outsideGk−1.
Here, a facef , that is not the exterior face ofG, is said to bereadyif A(f) = |b(f)|−2,
i.e., b(f) has only two edges not inGk−1. (This can only mean that there is a single
vertex inb(f)− Gk−1 that is incident to these two edges.)

Before we get into the algorithm itself, we establish some facts about the contents
of N andF , using the following notational conventions. Letv be a vertex not inGk−1.
DenoteN(v) by p, and letwi1, . . . , wi p be the neighbors ofv on Ck−1. Also, let f j be
the left face of the edge(wi j , v), for 1≤ j ≤ p. Finally, let Lv be the circular ordering
of all neighbors ofv.

PROPOSITION3.4.

(i) N(v) > F(v).
(ii) N(v) = F(v)+ 1 iff all the faces fj , for 2≤ j ≤ p, are ready.

An Algorithm for Straight-Line Drawing of Planar Graphs 129

(iii) If N (v) = F(v)+ 1, then the neighbors ofv in Gk−1 form a single interval in the
list Lv.

PROOF. (i) F(v) contains the ready faces that havev as their sole vertex outsideGk−1.
Thus, the boundary list of such a face must contain an edge of the form(wi j , v), withwi j

in Gk−1. This implies that each of these ready faces is the left face of one of the edges
(wi j , v), so that the set of ready faces accounted for inF(v) is a subset of thep faces
f1, . . . , fp. Hence,N(v) = p ≥ F(v). To proveN(v) > F(v), we show thatf1 cannot
be a ready face.

Note thatb(f1) is the boundary list off1 onG, so thatb(f1) contains the edge(wi1, v).
If b(f1) has onlyv as a vertex not inGk−1, it is entirely contained inGk−1 ∪ v. By our
choice ofwi1, the left face of the edge(wi1, v) in the subgraphGk−1 ∪ v is the exterior
face of this subgraph. Now,Gk−1∪v contains the edge(v2, v1), which is on the boundary
of the exterior face of the entire graph. Thus,(v2, v1) is on the boundary of the exterior
face of the subgraphGk−1 ∪ v too, and it therefore belongs tob(f1). However, in the
entire graphG, the face whose boundary list contains the edge(v2, v1) is the exterior
face, which means thatf1 must be the exterior face ofG. Recall that the exterior face of
the entire graphG was excluded from the definition of a ready face. Hence,f1 cannot
be a ready face.

(ii) AssumeN(v) = F(v) + 1. The above counting shows that each of thep − 1
faces f2, . . . , fp must be ready. Conversely, since the set of faces accounted for inF(v)
consists of those faces from amongf2, . . . , fp that are ready, then if they areall ready
we must haveF(v) = p− 1, which isN(v) = F(v)+ 1.

(iii) Let N(v) = F(v) + 1, and assume thatLv contains a fragment of the form
wi j−1, . . . ,u, wi j for some 2≤ j ≤ p, meaning that there are vertices that separate a pair
of adjacent neighbors ofv in Gk−1. Recall thatwi1, . . . , wi p is the list of neighbors of
v in Gk−1, ordered counterclockwise aroundv. Thus,u cannot be inGk−1 (otherwise it
would be one ofwi j−1 orwi j). Now, sinceu followswi j in the clockwise circular ordering
aroundv, the boundary listb(f j)must contain the edges(wi j , v) and(v, u). This implies
that f j has two vertices outsideGk−1 (which arev andu), and therefore it cannot be
a ready face. This contradicts the assumptionN(v) = F(v) + 1, thus completing the
proof.

Now to the algorithm. Assume we have just chosenvk. Here is how the arrays are
updated:

(1) Updatevk’s neighbors:
For each neighborv of vk that is outsideGk, incrementN(v) by 1.

(2) Update faces:
There are two faces to update: The left face of the edge(wi1, vk), which is f1, and the
right face of(wi p, vk), which we call fp+1. For these, incrementA(f1) andA(fp+1)

by one. (Recall thatwi1, . . . , wi p is the ordered list of neighbors ofvk onCk−1. Also,
it might be the case thatf1 = fp+1.)

(3) Update ready faces:
If a face f becomes ready as a result of (2), find the only vertexv alongb(f) that
is outsideGk, and incrementF(v) by one.

130 D. Harel and M. Sardas

Here now is the algorithm for building the new biconnected canonical ordering:

initialization:
initialize all three arrays,A, N, andF , to 0;
take as(v1, v2) any edge on the boundary of the exterior face ofG;
initialize a list of vertices withv1 andv2, and update their neighbors as in

(1) above;
setA(f) to 1 for f , the left face of(v1, v2);
If f is a triangle with verticesv1, v2, v3, setF(v3) to 1, sincef is ready.

for k from 3 to n do
if there is a vertexv not on the list, withN(v) ≥ 2 andN(v) = F(v)+ 1

then add it to the list asvk;
elsefind a vertexv not on the list, with legal support andN(v) = 1,

and add it to the list asvk;
update the data structures as in (1)–(3) above forvk.

end-for

So much for computing the canonical ordering. The placement step of our algorithm is
very similar to the original one of [FPP], described in Section 2. The original placement
step relies on the fact that at each stage the vertexvk is in the exterior face ofGk−1 and
has neighbors onCk−1. These conditions are guaranteed in the biconnected canonical
ordering too. Our algorithm uses the sameleftsonandrightsonarrays, indexed by the
vertices.

One difference worth mentioning is the update for the case where the vertex has a
support. Assumevk has onlywi as a neighbor onGk−1, and it should be drawn using
a right support. In this case, we update the data structures as if there were a real edge
(vk, wi+1); this means that the contour as it appears in therightsonchain contains the
segmentwi , vk, wi+1. The case for a left support is analogous.

3.5. Remarks. (1) By Definition 3.2(c), the vertexvk is drawn only after at least one
of its neighbors has already been drawn inGk−1. This prevents the situation shown in
Figure 1. Figure 5 shows the same graph as drawn by our algorithm.

Fig. 5.The graph from Figure 1 as drawn by our algorithm.

An Algorithm for Straight-Line Drawing of Planar Graphs 131

(2) The drawing obtained in the original algorithm of [FPP] is of size bounded by
(2n − 4) × (n − 2). This follows from the fact that the algorithm starts the placement
step with the edge(v1, v2) drawn with length 2, and it increases this length by 2 at each
step, ending with length 2n− 4. The entire drawing can be enclosed in a triangle whose
base is the edge(v1, v2) , and whose sides emanate fromv1 andv2 with slopes+1 and
−1, respectively. Hence, the drawing’s maximal height isn− 2. All this is true for our
algorithm too, so that the same bounds apply.

(3) Our canonical ordering requires the graph to be biconnected. There are examples
of planar nonbiconnected graphs for which no biconnected canonical ordering exists, a
fact that is also reflected in the proof of correctness below. However, every graph can be
made biconnected by adding dummy edges, as follows: (i) given any two disconnected
components, add a dummy edge to connect arbitrarily chosen vertices, one in each of
them; (ii) given two components with a common cut-vertexv, add a dummy edge that
connects arbitrary neighbors ofv, one from each component. Deciding connectivity and
biconnectivity, and identifying biconnected components can all be done in linear time. In
our system we use an algorithm described in [HT] as a preliminary step for the drawing
algorithm; after completing the placement step we remove the dummy edges.

4. Analysis of the Algorithm

4.1. Correctness. The following theorem establishes correctness of the computation
of a biconnected canonical ordering, the only part of our algorithm that is sufficiently
new and subtle so as to require special analysis.

THEOREM4.1. For each2≤ k ≤ n, letv1, . . . , vk be the sequence of vertices generated
by the algorithm up to stage k. Then(i) conditions(a)–(c)of Definition3.2are satisfied,
and (ii) there exists a vertexv outside Gk, such that either N(v) ≥ 2 and N(v) =
F(v)+ 1, or N(v) = 1 andv has a legal support.

PROOF. We proceed by induction onk. For k = 2, G2 consists of the single edge
(v1, v2). Conditions (a) and (b) of Definition 3.2 hold immediately, while (c) is vacuous.
For k ≥ 2, we prove the existence claim (ii) first.

Assume we have built the sequencev1, . . . , vk−1 such that conditions (a)–(c) of Defi-
nition 3.2 hold. We prove that there exists a vertexv as in (ii). The graphG is connected,
so there are vertices outsideGk−1 with N(v) > 0. First, assume that all these vertices
haveN(v) = 1. Letv be such a vertex, and letwi be its sole neighbor onCk−1. If v itself
does not have a legal support, then the vertext1 that immediately followswi+1 on the
counterclockwise circular ordering of neighbors aroundwi satisfiesN(t1) = 1 and has
a right support, and the vertext2 that immediately precedeswi−1 satisfiesN(t2) = 1 and
has a left support. See Figure 6(a). In this case, one oft1 or t2 must have a legal support,
and it can therefore be chosen to bevk.

The more difficult case is when there are vertices withN(v) ≥ 2, and in discussing
it we need the notion of aspan.

Let v be a vertex outsideGk−1, which hasp neighbors inGk−1. As before, we let
Ck−1 = w1, w2, . . . , wm, wherew1 = v1 andwm = v2. By Proposition 3.3 we can

132 D. Harel and M. Sardas

Fig. 6. Illustrations for proof of Theorem 4.1.

denote thep neighbors ofv bywi1, wi2, . . . , wi p , as they constitute a subseries ofCk−1.
The fragment ofCk−1 betweenwi1 andwi p is called thespanof v on Ck−1. The length
of the span is defined to bei p − i1 (which is the number of vertices therein).

Now assume that there are vertices in the graph withN(v) ≥ 2, and assume, for
contradiction, that none of these vertices satisfyN(v) = F(v) + 1 as required in the
theorem. We choosev to be a vertex withN(v) ≥ 2 whose span onCk−1 is the shortest
among the vertices withN(v) ≥ 2. Letwi1, wi1+1, . . . , wi p be the span ofv onCk−1. If
there are two such vertices with equal span length, but with different spans, pick one of
them arbitrarily; if the two have the same span sequence, pick the one closer towi1+1

on the circular ordering aroundwi1, taken counterclockwise (i.e., the one closer to the
contourCk−1).

By our assumption,v satisfiesN(v) > F(v) + 1, implying that one or more of the
facesf2, . . . fp is not ready. Letf j+1, for some 1≤ j ≤ p−1, be one of these, and letH
be the subgraph ofG induced by the closed polygonal linewi j , wi j+1, . . . , wi j+1, v. As
mentioned earlier, this does not have to be a simple cycle, since somewi might appear
twice therein. Lete be the left face of the edge(wi j+1, v) in the subgraphH . If e was
a face in the original graphG too, it must have been ready, since it has only two edges
outsideGk−1. However, by our assumptions, this is impossible. Consequently, the region
e in G is not connected, and hence there is a pathP in G that dividese in two.

We now claim thatP cannot be a single edge. First, ifP were an edge connecting
v to some vertexw on Ck−1, thenw must be betweenwi j andwi j+1, contradicting the
order in the span ofv. Second, ifP were an edge connecting twowi ’s, thenP would
belong to the subgraphGk−1, and as such, it could not be inside the exterior face of
Gk−1. This is impossible, however, since, by part (b) of the induction hypothesis,v is
in the exterior face ofGk−1, so that the regione (which includesP) is in that exterior
face too.

An Algorithm for Straight-Line Drawing of Planar Graphs 133

Therefore,P must have at least one internal vertex, call itx. Since we assume thatG
is biconnected, there is a pathQ in G that connectsx andwi j without passing through
v (otherwisev is a cut-vertex ofG). Letwl be the first point onQ (when coming from
x) that is inGk−1, and lety be the point precedingwl on Q (see Figure 6(b)). Sincewl

is on the boundary ofe andx is in e, y must also be ine.
Now, if y satisfiesN(y) > 1, we have found iny a contradiction to the minimality

assumption onv. Here is why: First, we claim thaty’s span is part ofv’s. To see this,
note that every edge emanating fromy must reside entirely ine (by planarity), and it
therefore can only lead to points ineor on its boundary. The intersection of the boundary
of e with Ck−1 is the sequenceS = wi j , . . . , wi j+1, and hencey’s span can only be a
subsequence ofS, while S itself is part ofv’s span. This implies that the length ofy’s
span cannot exceed the length ofv’s; if it is strictly smaller, we have a contradiction to
the choice ofv. If v andy happen to have exactly the same span, the circular ordering
aroundwi1 (taken counterclockwise) must bewi1+1, . . . , y, . . . , v, which contradicts the
second part of the minimality assumption onv.

If N(y) = 1, so thaty has only one neighbor onCk−1, we find our contradiction a little
further down the line, so to speak. Again, we have two cases to consider. Ifwl 6= wi j , letz
be the neighbor ofwl immediately followingwl−1 along the clockwise circular ordering
of neighbors aroundwl . This z might bey itself, or a neighbor ofwl that is closer to
wl−1. Now, by planarity,z is also ine, and if N(z) > 1, we have inz a contradiction to
the minimality assumption onv, by the same arguments as above. IfN(z) = 1, z has a
legal left support onwl−1, and therefore it can be chosen asvk, which again contradicts
our assumptions.

If wl = wi j , we takez to be the neighbor ofwl immediately followingwl+1 along the
counterclockwise circular ordering of neighbors aroundwl . Thisz is ine, and contradicts
our assumptions similarly (using a right support for the caseN(z) = 1).

This completes the proof of existence. We now show that each of the three parts of
Definition 3.2 holds.

(a) Gk contains the edge(v2, v1). In the original graphG, this edge is on the boundary
of the exterior face. If inGk the edge(v2, v1) was on the boundary of an interior
face, it would have to remain interior inG too, since the added vertices when going
from Gk to G can only split faces, and a bounded face will split into bounded faces
only.

(b) Consider the region added to the interior ofGk−1 when the vertexvk is added. If
N(vk) = 1, a single edge was added toGk−1, going from the exterior boundary of
Gk−1 to a point in the exterior face. This added no region to the interior ofGk−1. By
the induction hypotheses, all vertices inG−Gk−1 were in the exterior face ofGk−1,
and therefore all vertices inG − Gk are in the exterior face ofGk. If N(vk) > 1,
we added to the interior ofGk−1 a region taken from its exterior face, and we must
show that this region does not contain vertices fromG − Gk. In going fromGk−1

to Gk we added the vertexvk and all the edges(vk, wi j) with wi j on Ck−1. The
region added to the interior ofGk−1 contains the facesf2, . . . , fp, which are the left
faces of the edges(wi2, vk), . . . , (wi p, vk) in Gk. However, by our choice ofvk with
N(vk) = F(vk)+1, we ensured that these are all actual faces ofG, and as such they
have no vertices ofG inside them.

134 D. Harel and M. Sardas

(c) Thatvk has at least one neighbor inGk−1 is straightforward, since thevk selected by
the algorithm satisfiesN(vk) ≥ 1. Also, the algorithm choosesvk with one neighbor
only if it has a legal support.

4.2. Implementation and Running Time. We would now like to show that if we are
given the circular orderings of neighbors around the vertices and the boundary lists of
the faces ofG, the algorithm described in Section 3 can be implemented to construct
a biconnected canonical ordering in linear time, using a linear amount of memory (to
include the representation of the inputs too).

Here is how the data structures for the inputs are set up. Every directed edge(u, v) has
pointers to the next and previous edges on the circular ordering aroundu, and pointers
to the next and previous edges on the boundary list of the left facef that contains the
edge. It also has a pointer to the opposite edge(v, u), and a pointer tof . Each vertex
has a pointer to the list representing the circular ordering around it, and each face has a
pointer to its boundary list.

A vertex that satisfies the conditions of Theorem 4.1(ii) is calledready. The existence
claim in the theorem showed that the set of ready vertices never becomes empty during
execution, and at each stage the algorithm chooses one of the ready vertices as the next
vk. To handle this set of vertices we use a doubly linked queue, termed theready queue,
which makes it possible to insert and remove a vertex in constant time.

At each stage of the algorithm, a vertex is removed from the ready queue and is taken
to bevk. After doing so, the following steps are carried out:

Updating N: For everyu that is a neighbor ofvk, the entryN(u) is updated by running
through the entire list of neighbors ofvk, and incrementingN(u) by one for eachu
not yet inGk. If u is in the ready queue, then after incrementingN(u) it is removed,
sinceN(u) = F(u)+ 1 no longer holds. Ifu satisfiesN(u) = 1, we check if it has a
legal support, as follows. We find the two faces incident with the dual edges(vk, u)
and(u, vk), inspect the two vertices on either side ofvk along these faces, and check
if either of them is already inGk. We also need to make sure the support is legal. Ifu
has a legal support we add it to the ready queue.

Updating A: Only the two endmost faces need to be updated—f1, the left face of the
edge(wi1, vk), and fp+1, the right face of the edge(wi p, vk). For these,A(f1) and
A(fp+1) are incremented by one. To find these edges, we use Proposition 3.4, to the
effect that inLvk (the list of neighbors aroundvk) the vertices that belong toGk−1, i.e.,
wi1, . . . , wi p , form a single interval, whose ends are thus easy to find. Now, if one of
these two faces reached a situation whereA(f) = b(f)− 2, it is declared ready, and
a traversal of its boundary list is carried out to find the vertexv not in Gk. We then
incrementF(v) by one, and if nowN(v) = F(v)+ 1, the vertexv is inserted into the
ready queue.

To analyze the running time, note that an entire list of neighbors is considered only
when a vertex is chosen as the nextvk. In total, this means that we traverse every edge
twice, once in each direction. We also traverse edges when we search for the vertexv in
a ready face. This is done once per face, when the face becomes ready. Since an edge
appears in at most two faces, each edge is traversed twice more, giving a total of four

An Algorithm for Straight-Line Drawing of Planar Graphs 135

traversals per edge. Now, by Euler’s formula, a planar graph withn vertices andeedges
satisfiese≤ 3n− 3, which implies that the total running time isO(n).

As for memory space requirements, we have arrays with entries for vertices, edges,
and faces. Since another consequence of Euler’s formula is that the number of faces is
also O(n), all these are linear inn too. The queue we use for ready vertices does not
hold a vertex twice, and hence its size is also linear inn.

As mentioned at the end of Section 3.1, the boundary lists can be derived from the
embedding using a right-hand walk. Thus, it suffices to require that the input contains
lists representing the embedding, and to include a preliminary step in the algorithm that
constructs the boundary lists. Given an edge(vi−1, vi), the beginning of therepeat–until
loop in the right-hand walk algorithm of Section 3.1 reads:

take asvi+1 the vertex immediately followingvi−1 in the counterclock-
wise circular ordering of neighbors aroundvi .

To implement this we have to establish a mapping, which, given an edge(u, v),
returns the dual edge(v, u). In [LEDA] this mapping is constructed in linear time and
space (using bucket-sort). With this in mind, the entire right-hand walk algorithm can
be implemented in linear time and space in a straightforward way, and can be integrated
as the first step of our algorithm without affecting the asymptotic complexity.

Acknowledgments. We wish to thank M. Chrobak and the two referees for their helpful
suggestions.

References

[CNAO] Chiba, N., T. Nishizeki, S. Abe, and T. Ozawa, A Linear Algorithm for Embedding Planar Graphs
Using P Q-Trees,J. Comput. System Sci. 30 (1985), 54–76.

[CP] Chrobak, M., and T.H. Payne, A Linear Time Algorithm for Drawing a Planar Graph on a Grid,
Inform. Process. Lett. 54 (1995), 241–246.

[DH] Davidson, R., and D. Harel, Drawing Graphs Nicely Using Simulated Annealing,ACM Trans.
Graphics, 15 (1996), 301–331. (Also, Technical Report, The Weizmann Institute of Science,
Rehovot, 1989; revised 1992, 1993.)

[FPP] Fraysseix, H. de, J. Pach, and R. Pollack, Small Sets Supporting F´ary Embeddings of Planar Graphs,
Proc. 20th ACM Symp. on Theory of Computing, pp. 426–433, 1988.

[HS] Harel, D., and M. Sardas, Randomized Graph Drawing with Heavy-Duty Preprocessing,J. Visual
Lang. Comput., 6 (1995), 233–253. (Also,Proc. Workshop on Advanced Visual Interfaces, ACM
Press, New York, 1994, pp. 19–33.)

[HT] Hopcroft, J.E., and R.E. Tarjan, Efficient Algorithms for Graph Manipulation,Comm. ACM 16
(1973), 372–378.

[Ka] Kant, G., Drawing Planar Graphs Using thelmc–Ordering,Proc. 33rd IEEE Symp. on Foundations
of Computer Science, 1992, pp. 101–110,

[Kn] Knuth, D.E.,The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, MA, 1968; 2nd
edn., 1973.

[LEDA] Library of Efficient Datatypes and Algorithms (LEDA), software package, Max-Plank Intit¨ut für
Informatik, Saarbr¨ucker, 1991.

[MM] Mehlhorn, K., and P. Mutzel, On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing
Algorithm, Algorithmica16 (1996), 233–242. (Also, Technical Report No. 117/94, Max-Planck-
Institut für Informatik, Saarbr¨ucken, 1994.)

