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Minkowski-Type Theorems and
Least-Squares Clustering1

F. Aurenhammer,2 F. Hoffmann,3 and B. Aronov4

Abstract. Dissecting Euclideand-space with the power diagram ofn weighted point sites partitions a
givenm-point set into clusters, one cluster for each region of the diagram. In this manner, an assignment of
points to sites is induced. We show the equivalence of such assignments to constrained Euclidean least-squares
assignments. As a corollary, there always exists a power diagram whose regions partition a givend-dimensional
m-point set into clusters of prescribed sizes, no matter where the sites are placed. Another consequence is
that constrained least-squares assignments can be computed by finding suitable weights for the sites. In the
plane, this takes roughlyO(n2m) time and optimal spaceO(m), which improves on previous methods. We
further show that a constrained least-squares assignment can be computed by solving a specially structured
linear program inn+1 dimensions. This leads to an algorithm for iteratively improving the weights, based on
the gradient-descent method. Besides having the obvious optimization property, least-squares assignments are
shown to be useful in solving a certain transportation problem, and in finding a least-squares fitting of two point
sets where translation and scaling are allowed. Finally, we extend the concept of a constrained least-squares
assignment to continuous distributions of points, thereby obtaining existence results for power diagrams
with prescribed region volumes. These results are related to Minkowski’s theorem for convex polytopes.
The aforementioned iterative method for approximating the desired power diagram applies to continuous
distributions as well.
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1. Introduction. The purpose of this paper is to discuss a relationship between power
diagrams and so-called constrained least-squares assignments.

A power diagramis a generalization of the classical Voronoi diagram of a setSof n
points in Euclideand-space. The points inS(calledsitesin what follows) have individual
weights expressing their capability to influence their neighborhood. The regions of a
power diagram define a convex polyhedral partition ofd-space. (See, e.g., the survey
paper [6] for properties of Voronoi-type diagrams in general and power diagrams in
particular.) If we fix, in addition to the sites, according to their containment in the regions.
This naturally defines an assignment of points inX to sites inS. This assignment depends
on the weighting ofS.
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A least-squares assignmentof a setX of points to a setSof sites ind-space is defined
to minimize the total square distance between the sites and their associated points. Our
interest is inconstrainedleast-squares assignments where the number of associated
points per site is prescribed by the so-calledcapacityif a site.

The main result of this paper shows that power diagrams and constrained least-squares
assignments are equivalent in the following sense. Any assignmentX → S induced by
a power diagram ofS is a least-squares assignment subject to the capacities resulting
from the power diagram. Conversely, a least-squares assignmentX→ S, for any choice
of capacities, can be realized by the power diagram ofS for appropriate weights.

This result contributes to the known list of optimal clusterings of a point setX induced
by Voronoi-type diagrams. For example, thek-centroid problemasks for a setS of k
sites such that the unconstrained least-squares assignmentX→ Shas minimum value.
(Each site then is the centroid of its cluster, hence the name.) Boros and Hammer [9]
observed that unconstrained least-squaresX → S are always induced by the Voronoi
diagram ofS, which by definition assigns each point ind space to the closest site in
S. Similarly, in thek-center problema setS of k sites is required such thatX can be
covered byk disks centered at the sites and having the minimum sum, or maximum, of
radii. The corresponding clusterings are realized by power diagrams ofS; see [10]. Both
thek-centroid and thek-center problem are known to be NP-hard. However, realizability
by Voronoi-type diagrams restricts the number of candidate clusterings to|X|O(dk) and
thus leads to polynomial-time algorithms for fixedk; see [10] and [15]. Computing
least-squares assignments for agiven set of sites, as is discussed in this paper, is a
computationally simpler problem as only the assignment needs to be optimized.

The equivalence of constrained least-squares assignments and power diagrams ex-
tends to the case where, instead of a finite setX, a continuous, nonvanishing probability
distribution in the unit cube is considered. Proofs for both the finite and continuous
version are given in Section 2.

The remainder of the paper is concerned with several consequences of these equiva-
lence results. Partition theorems for power diagrams are direct corollaries: there always
exists a power diagram whose regions partition a givend-dimensional finite point setX
into clusters of prescribed sizes, no matter where the sites there exists a power diagram
that partitions the unit hypercube inton convex polyhedral regions of prescribed vol-
umes. These results and their relation to Minkowski-type theorems for convex polyhedra
are discussed in Section 3.

Exploiting the machinery of power diagrams, we propose two algorithms for com-
puting constrained least-squares assignments in the plane. The first algorithm, described
in Section 4, applies to finite point setsX. It proceeds by inserting them pints of X,
one by one, at each step adjusting the weights of then sites such that the capacities
are not exceeded. Time complexity ofO(n2m logm+ nmlog2 m) and optimal space
complexityO(m) are achieved. Asm≥ n can be assumed, this is an improvement over
the O(nm2 +m2 logm)-time andO(nm)-space algorithm that results from transform-
ing the problem into a minimum-cost flow problem; see [13]. (For a discussion of the
general assignment problem, see also [20].) Alberts [4] recently reduced the running
time toO(n2m logm), by generalizing the Hungarian method. The space requirement is
still O(n,m), as is the case for the randomized algorithm of Tokuyama and Nakano [21]
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that achieves expected timeO(nm+ n3√nm). On the other hand, the cited algorithms
are more general than ours in that they find the optimum constrained assignment on a
general weighted bipartite graph. We are able to exploit the geometric interpretation of
least-squares assignments to reduce the space requirement toO(m).

The second algorithm, outlined in Section 5, is applicable to both the finite and the
continuous version of the problem. We show that finding a weight vector that yields
the desired least-squares assignment is equivalent to finding a maximum of a concave
n-variate function whose domain is the weight space. For the continuous case, we pro-
pose a gradient method for iteratively improving the weight vector. This method has
superlinear convergence and optimalO(n) space requirement. In the finite case, on the
other hand, then-variate function to be optimized is piecewise-linear. Finding a point
in the maximum is now a linear programming problem whose number of constraints is,
however, exponential inn. Our iterative algorithm can still be used. Experiments have
shown that it approximates the maximum quite fast. Again, the space requirement is
optimal,O(m).

Section 6 sketches some applications of our results. We show that a certain trans-
portation problem can be solved by computing a constrained least-squares assignment.
Another application exploits the fact that constrained least-squares assignments are in-
variant under translation and scaling of the setS of sites. We obtain an algorithm that
finds the best least-squares fitting of twon-point setsS and X, under translation and
scaling, inO(n3) time andO(n) space. The time complexity matches that of the match-
ing algorithm for general weighted bipartite graphs [16] which requiresO(n2) space.
Vaidya [23] described anO(n2√n logn)-time andO(n logn)-space bipartite match-
ing algorithm for a version of the problem in which weights are Euclidean distances.
His algorithm seems to generalize directly to least-squares matchings, with additively
weighted Voronoi diagrams replaced in his data structure by power diagrams. Recent
developments reduce the running time of Vaidya’s algorithm toO(n2+ε) [1]; its version
for power diagrams follows from [2]. To summarize, a least-squares fitting of twon-point
sets can be computed either inO(n2+ε) time andO(n1+ε) space or, with our algorithm,
in O(n3) time and optimalO(n) space.

2. Equivalence Theorems. This section establishes an equivalence between con-
strained least-squares assignments and power diagrams.

Consider a setSof n point sites in Euclideand-spaceEd. S induces a partition ofEd

into polyhedral regions in the following natural way. Theregionof a sites ∈ S, reg(s),
consists of all pointsx which are closer tos than to the remainingn − 1 sites. This
partition is known as theVoronoi diagramof S. If we fix, in addition to the sites, a setX
of m points inEd, then this set is partitioned by the Voronoi diagram ofS into subsets.
More precisely, the diagram defines anassignment function A: X→ S, given by

A(x) = s ⇔ x ∈ reg(s).

Equivalently,A−1(s) = X ∩ reg(s) for all s ∈ S. Note that points ofX that have more
than one closest site inSare not covered by this definition. By convention,Aassigns each
such point to an arbitrary but fixed closest site. The total number of points assigned to a
particular sites, |A−1(s)|, is called thecapacityof s. The capacities of all sites add up to
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m= |X|. The assignmentA has an obvious optimization property: it minimizes the sum
of the distances between sites and their assigned points, over all possible assignments of
X to S.

Given S and X, we would like to be able to change the assignment by varying the
distance function that underlies the Voronoi diagram ofS. To this end, we attach a set
W = {w(s) | s ∈ S} of real numbers, calledweights, to the sites and replace the
Euclidean distanceδ(x, s) between a pointx and a sites by thepower function

powW(x, s) = δ2(x, s)− w(s).
The resulting partition ofEd is known as thepower diagramof Swith weightsW. Each
region is still a convex polyhedron, and has the property of shrinking (resp. expanding)
when the weight of its defining site is decreased (resp. increased). As above, we obtain an
assignment functionAW: X→ Swhich now clearly depends on the choice of weights.
In particular, the site capacities depend onW.

Power diagrams also given rise, in the obvious way, to mappings of the entired-space
to the set of sites. LetAW: Ed → Sbe the assignment induced by the power diagram of
S with weightsW. That is,A−1

W (s) = regW(s), the region of sites in the diagram. The
capacity of a site can now be defined as the fraction of the unit hypercube contained in
its region. Formally, let% be a continuous and nonvanishing probability distribution on
[0, 1]d, and letµ(X) = ∫X %(x) dx denote the measure of a setX ⊂ Ed with respect to
%. Thenµ(A−1

W (s)) is the capacity ofs that results fromAW. The capacities of all sites
add up to 1.

We prove the following general result.

THEOREM1. Let S be a finite set of sites inEd. Any(finite or continuous) assignment
induced by a power diagram of S is a least-squares assignment, subject to the resulting
capacities. Conversely, a least-squares assignment for S, subject to any given capacities
(whose sum is the total number of assigned points in the finite case,and1 in the continuous
case) exists and can be realized by a power diagram of S.

Theorem 1 contains several assertions which are now stated separately (and more
precisely) and proved. We start by showing that assignments defined by power diagrams
are constrained least-squares assignments. We consider the finite case first.

LEMMA 1. Let S and X be finite sets of sites and points inEd, respectively, and fix a
set W of weights for S. The assignments AW minimizes∑

x∈X

δ2(x, A(x))

over all assignments A: X → S with capacity constraints|A−1(s)| = |A−1
W (s)| for all

s ∈ S.

PROOF. From the definition ofAW it is evident thatAW minimizes the expression∑
x∈X

powW(x, A(x)) =
∑
x∈X

δ2(x, A(x))−
∑
x∈X

w(A(x))
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over all possible assignmentsA: X→ S, regardless of the capacity constraints. The last
sum, being equal to

∑
s∈S |A−1(s)| ·w(s), is a fixed constant for all assignmentsA with

capacities|A−1(s)| = |A−1
W (s)|, and the lemma follows.

The following continuous version of Lemma 1 can be proved in a similar fashion.

LEMMA 2. Let S be a finite set of sites inEd with weights W, let % be some proba-
bility distribution on [0, 1]d, and letµ be the measure defined by%. The assignment
AW: [0, 1]d → S minimizes∫

[0,1]d
%(x) · δ2(x, A(x)) dx

over all assignments A: [0, 1]d → S with capacitiesµ(A−1(s)) for all s ∈ S.

We proceed to prove the existence and realizability of least-squares assignments with
prescribed capacities. For finite point setsX, the existence of a constrained least-squares
assignmentX← Sis trivial. Its realizability by power diagrams is proved in Section 4 by
giving an algorithm that constructs such a power diagram. So, in the rest of this section,
we concentrate on the continuous case only.

Fix a setS of sites inEd, a capacity functionc: S→ [0, 1] with
∑

s∈S c(s) = 1,
and a probability distribution% in [0, 1]d. We now require that% be continuous and
nonvanishing in [0, 1]d. We assume thatc(s) > 0, for any s ∈ S. Suppose that a
least-squares assignmentL: [0, 1]d → S subject toc exists. To simplify notation, let
R(s) = L−1(s). We first show thatL has to satisfy the following property. For any two
sitess, t ∈ S, there is a hyperplane separatingR(s) from R(t). More precisely, we have:

OBSERVATION 1. Let s, t ∈ S, s 6= t . There exists a hyperplane H orthogonal to t− s
such thatµ(Hts ∩ R(s)) = 0 andµ(Hst ∩ R(t)) = 0, where Hts is the half-space
bounded by H and containing H+ (t − s), and Hst is the complementary half-space.

PROOF. Suppose that there is no such hyperplane. Then there is a hyperplaneH or-
thogonal tot − s and such thatµ(Hts ∩ R(s)) > 0 andµ(Hst ∩ R(t)) > 0. Now we
use the fact that, if a pointx ∈ R(s) is in Hts and a pointy ∈ R(t) is in Hst, thenx can
be reassigned tot andy reassigned tos, thereby reducing the sum of squared distances.
Indeed, applying the Pythagorean theorem gives

δ2(x, t)+ δ2(y, s) < δ2(y, t)+ δ2(x, s).

Integration over two subsets ofR(s) and R(t) of equal positive measure that were as-
sumed to exist on the wrong sides ofH thus shows that these subsets could be reassigned,
obtaining an assignment better thanL but subject to the same capacities. This contra-
dicts the assumed minimality ofL and thus proves that there exists a hyperplaneH that
separatesR(s) from R(t).
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Observation 1 implies that, ifL exists, it can be realized by a family of convex
polyhedra{P(s)}, one for each sites. These polyhedra are given byP(s) = ⋂t 6=s Hst

and therefore have pairwise disjoint interiors. In fact, their intersections with [0, 1]d

induce a partition of [0, 1]d, because we assumed the distribution% to be nonvanishing.
Note that Observation 1 still holds for finite point setsX. We take% to be the indicator

function of X in [0, 1]d and replace integrals by sums. Degenerate positions ofX may
be handled by defining bothHst and Hts in the statement of Observation 1 as open
half-spaces. The resulting polyhedra, however, will not necessarily define a partition of
[0, 1]d in the finite case. One could try to enforce a partition by consideringX as the
limit of a series of continuous and nonvanishing distributions. Such an approach seems
feasible also for objects (of equal dimension) inEd more general than points. We do not
elaborate on this idea in this paper but rather deduce realizability by power diagrams in
the finite case from the algorithm in Section 4.

Based on the convex partition property, we now show the existence of a constrained
least-squares assignmentL in the continuous case, i.e., when% is a continuous and
nonvanishing probability distribution.

LEMMA 3. Consider the class of assignments[0, 1]d → S realized by the family of
convex polyhedra{P(s)}s∈S with the following properties: (1) {P(s)∩ [0, 1]d}s∈S defines
a partition of [0, 1]d, (2) µ(P(s)) = c(s) for all s ∈ S, and (3) each P(s) has fewer
than|S| facets. Then this class contains a least-squares assignment L subject to c.

PROOF. Let n = |S|, and letPi be a polyhedron with at most(n− 1) facets associated
with the i th site si . Pi is the intersection ofn − 1 half-spaces inEd, each of which
can be specified by the vector extending fromsi to its defining hyperplane and normal
to it. HenceP1, . . . , Pn are completely determined by ak-tuple of real numbers, for
k = n(n − 1)d. For simplicity, we do not distinguish betweenPi and its describing
((n− 1)d)-tuple in the remainder of the proof. Now consider the continuous function

ϕ : Rk → Rn, ϕ(P1, . . . , Pn) = (µ(P1), . . . , µ(Pn)).

Let
∏
ϕ = ϕ−1(c) ⊂ Rk.

∏
ϕ corresponds to the set of alln-tuples of(n − 1)-facet

polyhedra whose measures fulfill the capacity constraints.
∏
ϕ is a closed set, being the

inverse image of a closed set under a continuous function. Since% is zero outside [0, 1]d,
attention may be restricted to a bounded subset of

∏
ϕ : there is a numberb such that, for

all i , if all entries ofPi are between−b andb, thenµ(Pi ) = c(si ) can still be achieved
for all possible directions of half-space normals forPi . Hence we need only consider
tuples(P1, . . . , Pn) ∈

∏
ϕ ∩ [−b, b]k. Next, take the continuous function

ψ : Rk → R, ψ(P1, . . . , Pn) =
∑
i 6= j

V(Pi ∩ Pj ∩ [0, 1]d),

whereV denotes thed-dimensional volume. Let
∏
ψ = ψ−1(0) ⊂ Rk. Again,

∏
ψ is a

closed set. It corresponds to the set of alln-tuples of(n− 1)-facet polyhedra yielding a
packing in [0, 1]d.

We now consider the compact set
∏ = ∏

ϕ ∩
∏
ψ ∩ [−b, b]k. Each element

(P1, . . . , Pn) in
∏

fulfills both the capacity and the packing constraints. Recall that
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the sum of all capacities is 1, and that the probability distribution% was assumed to be
nowhere zero in [0, 1]d. We conclude that each(P1, . . . , Pn) ∈

∏
induces a partition

of [0, 1]d. We further know from Observation 1 that, if the constrained least-squares
assignmentL exists, it is realized by an element of

∏
. Note that

∏
is nonempty; for

example, taken parallel slices of [0, 1]d with measuresc(si ), i = 1, . . . ,n. Finally,
consider the functionQ:

∏→ R,

Q(P1, . . . , Pn) =
n∑

i=1

∫
Pi

%(x)δ2(x, si ) dx

=
∫

[0,1]d
%(x)δ2(x, A(x)) dx,

whereA: [0, 1]d → Sdenotes the assignment defined by(P1, . . . , Pn). Q expressed the
value of the assignmentA. Q is a continuous and nonnegative function whose domain
is compact, so it must attain its minimum, the value ofL. This proves the existence
of L.

We have recently learned that the existence and further the uniqueness ofL can
be deduced from properties of the so-called Monge–Kantorovich mass transference
problem considered by Cuesta-Albertos and Tuero-Diaz in [12]. Their proof is in terms
of probability theory and more general and involved than needed for the purposes of this
paper.

Finally we show that constrained least-squares assignments—for the continuous
case—can always be realized by power diagrams.

LEMMA 4. The polyhedral family{P(s)}s∈S that realizes L has the property that,within
[0, 1]d, for some choice W of weights for S, P(s) = regW(s) for all s ∈ S.

PROOF. From the proof of Lemma 3 we know that{P(s)}s∈Sdefines a partition{P′(s)}s∈S

of [0, 1]d. Observation 1 implies that, for each pair of sitess, t ∈ S, if P′(s) andP′(t)
share a facetF , thenF is orthogonal to the vectort − s. Moreover,F + (t − s) lies on
the same side of the hyperplane throughF asR′(t) does. It is known [5] that these two
conditions are necessary and sufficient for a convex partition of a given polytopeQ to
be the power diagram ofS for some suitable setW of weights, restricted toQ.

3. Partition Theorems. The existence of least-squares assignments, together with
their realizability by power diagrams, immediately implies several partitioning results
for power diagrams.

THEOREM2. Let S and X be a set of n sites and m points in Euclidean d-spaceEd,
respectively. For any choice of integer site capacities c(s) with

∑
s∈S c(s) = m, there

exists a set W of weights such that|A−1
W (s)| = c(s), for all sites s∈ S.
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In other words, there always exists a power diagram whose regions partition a given
d-dimensional finite point-setX into clusters of prescribed sizes, no matter where the
sites of the power diagram are chosen. Moreover, we have the following continuous
version of Theorem 2.

THEOREM3. Let S be a set of n sites inEd, let % be a continuous and nonvanishing
probability distribution on[0, 1]d, and letµ denote the measure with respect to%. For
any capacity function c: S→ [0, 1] with

∑
s∈S c(s) = 1, there is a set W of weights

such thatµ(regW(s)) = c(s), for all sites s∈ S.

By taking, for instance,% be the uniform distribution in [0, 1]d we get:

COROLLARY 1. For any set of n sites inEd there exists a power diagram that partitions
the unit hypercube into n polyhedral regions of prescribed volumes.

This seems surprising, as the placement of the sites determines the normals of the
facets separating the power regions.

Corollary 1 is related to Minkowski’s theorem for convex polytopes (see, e.g., [14])
which, for the purposes of this paper, can be stated as follows. LetV be any collection
of n nonzero nonparallel vectors that spanEd+1 and sum up to zero. Then there exists a
(d + 1)-polytope withn facets in one-to-one correspondence with vectors ofV so that
each facet is normal to its corresponding vector and hasd-dimensional volume equal to
the vector length.

It is well known that any power diagram forn sites inEd is a projection of an
unbounded(d+ 1)-polyhedron formed as the lower envelope ofn hyperplanes, one for
each site; see, for example, [6]. The orientation of the hyperplanes is determined by the
placement of the sites, while their position is given by the corresponding weights. As facet
orientations are fixed, giving theird-volume is equivalent to fixing the volume of their
projection onto the hyperplanesd+1 = 0. Thus Corollary 1 is equivalent to the statement
that an unbounded polyhedron whose facets have prescribed orientation andd-volume
(within the prism [0, 1]d × R) always exists. This statement differs from Minkowski’s
theorem because of the presence of unbounded faces and a restricting prism.

A related and more general theorem was proven by Pogorelov [19, p. 476]. It is stated
in three dimensions. A real-valued functionσ on convex polygons inE3 is monotoneif
(1) it is positive for polygons with positive area, (2) if polygonQ is properly contained
in polygon Q′, thenσ(Q′) > σ(Q), and (3) if Q′ is obtained fromQ by an upward
translation,σ(Q′) ≥ σ(Q). For example, area is a monotone function. Now letP be an
unbounded polyhedron formed as the lower envelope of planes inE3. DefineÄ(P) to be
the set of all polyhedra that coincide withP outside a sufficiently large ball and whose
bounded facetsf1, . . . , fn are parallel to the corresponding bounded facets ofP. Now
fix a positive numbersai for each fi . The conclusion of the theorem of Pogorolev is that,
provided that there is (1) a polyhedron inÄ(P)with σ( fi ) ≤ ai for all i , and (2) a plane
so that any polyhedron inÄ(P) lying fully above it satisfies

∑n
i=1 σ( fi ) ≥

∑n
i=1 ai ,

there exists a polyhedron inÄ(P) with σ( fi ) = ai .
The parallel between Pogorelov’s theorem and Theorem 3 is that power diagrams

correspond to unbounded polyhedra and capacities correspond to the condition that
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σ( fi ) = ai , for all i . Once again, placement of sites determines the orientation of
polyhedron facets. The most natural definition ofσ would be as the measure of the
projection of a facet onto thexy-plane, restricted to the unit square, so there is an exact
correspondence between conclusions of the theorems. However, with this definition,σ

does not satisfy some of the above technical conditions. Namely,σ need not be strictly
positive for nondegenerate facets and need not strictly increase if a facet is enlarged.
Finally, Pogorelov’s theorem only constrains bounded facets, whereas Theorem 3 covers
all facets. So, despite apparent similarity, neither of the two theorems immediately implies
the other.

4. Computing Least-Squares Assignments. In this section we describe an algorithm
that, for a setSof n sites and a setX of m points in the plane, computes a least-squares
assignmentL: X→ Ssubject to a given integer capacity vectorc with

∑
s∈S c(s) = m.

By Lemma 1, it is sufficient to compute a weight vectorW = (w(s)s∈S such that
|X ∩ regW(s)|c(s) for all s ∈ S. The algorithm below computes such a weight vector
in time O(n2m logm+ nmlog2 m) and optimal spaceO(m) and, as a by-product, also
determines the desired assignmentL = AW. Note that correctness of this algorithm
implies the realizability ofL: X→ Sby a power diagram, claimed in Theorem 1.

The algorithm starts with the weight vectorW = 0, for which the power diagram is
just the classical Voronoi diagram ofS. It proceeds inm phases. During each phase, one
point of X is inserted into the current diagram.W, and with it the power diagram, is then
recomputed such that the invariantb(s) ≤ c(s) for all s ∈ S is maintained, whereb(s)
denotes current number of points inregW(s). More specifically, the algorithm carries out
the following steps for each pointx to be inserted:

1. Determine the regionregW(s) of the current power diagram containingx. Add x to
the set of points contained inregW(s). If b(s) ≤ c(s) the phase ends—there is no
need to changeW. Otherwise, letD = {s}. Intuitively, D will contain the sites whose
regions are too large and must be shrunk.

2. Repeat the following two steps:
(a) Shrink allD-regions by simultaneously decreasing their weights. More formally,

find the smallest positive number1 so that decreasing the weights of allD-sites
simultaneously by more than1 causes one of the shrinking regions to lose a
point, sayp′. Notice that in the process a site inS\D cannot lose a point to a
D-site, and that no point can move between twoD-regions or between two
non-D-regions.

(b) Decrease the weights of allD-sites by1. Consider the regionreg(s′) wherep′

would end up, had we shrunk the weights by more than1. If b(s′) < c(s′), then
go to 3, as we found a region which is not full. Else adds′ to D and repeat (a).

3. We have found a regionreg(s′) that is not full and a pointp′ on its boundary. Assign
p′ to s′. This makes some regionreg(s′′) with s′′ ∈ D less than full. However,s′′

was added toD because of some pointp′′ that it shared with sites′′′ that had already
been inD. So assignp′′ to s′′ and follow the chain back, until the original sites is
encountered and relieved of one point. This restores the invariant that was violated in
the beginning of the current phase, and the phase ends.
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To implement and analyze this procedure, we must specify how to store points belonging
to a region, and how to detect the smallest weight change that makes a set of regions
lose a point. We store the points ofreg(s) as a dynamic convex hull structure that
allowsO(log2 m) time insertion and deletion. We use the data structure of Overmars and
van Leeuwen [18] that can return, in logarithmic time, the two hull points of tangency
for the two tangents to the hull with given slope. Each timeD changes we recompute the
power the diagram and determine the list of edges separatingD-regions from the non-
D-regions. Those are theO(n) edges that will move by translation as1 varies. For each
edge, the convex hull data structure is used to determine the first time (i.e., the value of
1) at which the line supporting the edge will strike a point contained in theD-region that
it bounds. This requiresO(n logm) time. The smallest such1 is the one we are looking
for. At this point, one region has shrunk so much as to lose a point. Check if the new
region of nonfull. If it is, we are done—reshufflingO(n) points clearly takes onlyO(n)
updates to the convex hulls (and thusO(n log2 m) time) and the phase is complete. If
not, the new region joinsD and we again recompute the power diagram, identify moving
edges, find the first time each edge hits a point in aD-region, etc. GrowingD by one
requiresO(n logn + n logm) time, hence one phase requiresO(n2 logm+ n log2 m)
time. As there arem phases, the running time claimed at the beginning of this section
follows. The space requirement is dominated by the convex hull structure and isO(m).

It is not necessary to recompute the power diagram anew after each shrinking step, as
it can be maintained dynamically. However, we did not succeed in proving a better than
O(n2) upper bound on the number of combinatorial changes the diagram undergoes
during one phase of the algorithm. In fact, we suspect that the number of changes is
Ä(n2) in the worst case.

We already mentioned in the Introduction the connection of least-squares assignments
to network flow problems. In the terminology of network flows, the chain-like process
of reassigning points to sites at the end of a phase corresponds exactly to an augmenting
path.

5. Iteratively Improving the Weight Vector. We now propose a method for iteratively
improving the weight vectorW. The method relies on the fact that, for a fixed set of sites,
the value of the assignment induced by the power diagram with weightsW is a concave
function of W. Finding a weight vector such that the resulting assignment fulfills the
capacity requirements is then equivalent to finding the maximum of a related function
whose domain is the weight space. The method can be used to compute finite as well as
continuous least-squares assignments. The continuous case is treated first.

Let % be a continuous and nonvanishing probability distribution in [0, 1]d. For an
arbitrary but fixed assignmentA: [0, 1]d → S, define the functionfA: Rn→ R by

fA(W) =
∫

[0,1]d
%(x) · powW(x, A(x)) dx.

Let B(A) = (µ(A−1(s)))s∈S be the vector of capacities resulting from the assignment
A, and put

Q(A) =
∫

[0,1]d
%(x) · δ2(x, A(x)) dx,
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the value ofA. With this notation,fA can be written as

fA(W) = −〈B(A),W〉 + Q(A),

where〈·, ·〉 denotes the inner product. HencefA is a linear function ofW. Now consider
the function f : W 7→ fAW(W); recall thatAW is the assignment induced by the power
diagram with weightsW. We claim that f is the pointwise minimum of the class of
functions fA. Indeed, for fixedW, the assignmentAW minimizes the valuefA(W) by
definition of the power diagram ofSwith weightsW. In other words, the graph off is
the lower envelope of a set of hyperplanes inRn+1. Hence f is a concave function. By
the choice of properties of%, B(AW) and Q(AW) depend continuously onW. Hence,
for eachW = W′, the graph off has at point(W′, f (W′)) a unique tangent hyperplane
xn+1 = −〈B(A′W),W〉+Q(A′W) that changes continuously withW. That is, f describes
a smooth surface. Note that the gradient∇ f (W) of f at W is given by−B(AW).

Recall that we aim to find a weight vectorW∗ such thatB(AW∗) = C, the given
capacity vector. Consider the function

g(W) = f (W)+ 〈C,W〉
= 〈C − B(AW),W〉 + Q(AW).

Its gradient∇g(W) is C − B(AW), hence our requirementB(AW∗) = C just means
∇g(W∗) = 0. This corresponds to a global maximum of the smooth concave function
g. So the problem we want to solve is: FindW∗ such thatg(W∗) is maximized.

Finding the maximum of a concave and smoothn-variate function is a well-studied
problem. In our case, we can exploit the fact that, for any given weight vectorW,
we can computeg(W) and∇g(W) from the power diagram with weightsW. So a
gradient method (see, e.g., [8]) for iteratively approximatingW∗ can be used. Starting,
for example, with the weight vectorW0 = 0 (corresponding to the Voronoi diagram of
S), we use the iteration scheme

Wk+1 = Wk + tk∇g(Wk).

If the step sizestk are chosen properly, thenWk converges to the solutionW∗ at a
superlinear rate. Intuitively, what happens is that weights of sites whose region measures
are too small (resp. large) are increased (resp. decreased) at each step.

If S is a set ofn sites in the plane, and% is the uniform distribution in the square, each
step can be carried out inO(n logn) time. For the current weight vectorWk, we need
O(n logn) time to construct the power diagram ofSandWk, and timeO(n) is needed in
addition to calculate the area and the integral of squared distances for each region within
the unit square. The space requirement is optimal,O(n).

The method just described was inspired by the algorithm for “inverting” Minkowski’s
theorem, i.e., computing a three-dimensional polytope given by normals and areas of all
its facets, proposed by Little [17].

In the case of a finite assignmentAW: X → S, the graphs of the aforementioned
functions f andg are lower envelopes of finitely many hyperplanes, and thus are concave
polyhedral surfaces inRn+1. The gradient ofg at W is orthogonal to the facet that lies
vertically aboveW. The gradient is given byC−B(AW), whereB(AW) = (|A−1

W (s)|)s∈S
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counts the numbers of points ofX in the regionsregW(s). By Lemma 1, the number of
hyperplanes definingg is equal to the number of different vectorsB(A) for all possible
assignmentsA: X → S, which is

(m+n−1
n−1

)
for |X| = m. Theorem 2 implies that the

surfaceg actually realizes as many facets. Except for degenerate setsX, the maximum
of g is attained by a facet; the set{W∗ | ∇g(W∗) = 0} has dimensionn.

Finding a maximum ofg can now be seen as a linear programming problem. Its
number of constraints is, however, at least exponential inn. On the other hand, this
linear program has a very special structure; in Section 4, we have described a strongly
polynomial algorithm for solving it.

Concerning the gradient method, the full-dimensionality of the maximum can be
exploited in the choice of step sizes. We proceed as follows. Initially, an overestimateḡ
of g is determined. LetQ(A) =∑x∈X δ

2(x, A(x)). Sinceg(W∗) = Q(AW∗), Lemma 1
implies thatḡ = Q(A) will do for any assignmentA with B(A) = C. We identify the
horizontal hyperplanēH : xn+1 = ḡ in Rn+1 with the weight space. LetBk = ∇g(Wk)

denote the gradient ofg at Wk. In geometric terms, the(k+ 1)st step now moves along
the ray,rk, from point(Wk, g(Wk)) in direction(Bk, 1) until H̄ is hit. This corresponds
to the step size

tk = ḡ− g(Wk)

〈Bk, Bk〉
in the preceding iteration scheme. This step is iterated until either the maximum is
reached, which meansBk+1 = C, or the maximum is missed, meaning thatg(Wk+1 +
εBk) < g(Wk+1) for all sufficiently smallε > 0, or, equivalently,〈Bk+1, Bk〉 > 0. If the
latter happens, the overestimateḡ is lowered. Geometrically speaking,̄H is translated
so as to pass through the pointrk∩Hk+1, whereHk+1 is the hyperplane through the facet
belowWk+1. That is,ḡ is taken such that

ḡ− g(Wk)

〈Bk, Bk〉 =
ḡ− g(Wk+1)

〈Bk+1, Bk+1〉 .

Starting once more atWk, but now with the lower estimate, the iteration is continued.
Note that—whether or not the estimate has to be lowered—the facet ofg belowWk+1 is
different from the facet belowWk.

For sites and points in the plane, the cost for each step isO(m logn). O(n logn)
time suffices for computing the power diagram and preprocessing it for point location,
and O(logn) time is needed for locating each of them ≥ n points in X. The space
requirement isO(m) which is optimal.

We have tested the method for the planar case.5 For sets of 100 sites and 1000
points uniformly distributed in a square, the procedure always stopped after less than 10
steps. Due to numerical errors, however, only an approximationBk of C was reached.
We observed

∑
s∈S |C(s) − Bk(s)| ≈ n, which indicates that a combination of this

method with the insertion algorithm in Section 4 might lead to a fast exact procedure
for computing the least-squares assignment. After identifying a good approximationWk

of W∗, a modified insertion algorithm should be started withW equal toWk rather than

5 Thanks to David Alberts for implementing the gradient algorithm and the insertion algorithm of Section 4,
and to Juan Cuesta-Albertos for independently implementing the latter algorithm.
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zero. Note that the insertion method of Section 4 cannot be used directly, as it assumes
that no power region is ever filled beyond its capacity.

6. Some Applications. The constrained least-squares assignment problem, as consid-
ered in this paper, is a quite natural concept and has several applications. It is a special
constrained optimum assignment problem for weighted bipartite graphs, which is a spe-
cial case of the Hitchcock transportation problem; see, e.g., [22]. We first mention two
interpretations of the problem. Throughout the section, letSandX be finite sets of sites
and points inEd, respectively.

ForY ⊂ X ands ∈ S, define thevarianceof the clusterY with respect to the sites as∑
x∈Y δ

2(x, s). Then a constrained least-squares assignmentL: X→ S is just a cluster-
ing for X such that the clusters have prescribed sizes and the sum of cluster variances is
minimized. Besides being optimum in the above sense, these clusters have the important
property that their convex hulls are pairwise disjoint: By Lemma 4, distinct clusters are
contained in different regions of a power diagram, and power regions are convex. Hull-
disjointness is a natural and desirable property of clusters which, for instance, eases the
classification of new points. Simple examples show that replacing variance by the sum
of distances destroys hull-disjointness.

If we define theprofit of clusterY with respect to sites as
∑

x∈Y〈x, s〉, thenL maxi-
mizes the sum of cluster profits for given cluster sizes:δ2(x, s) = 〈x, x〉+〈s, s〉−2〈x, s〉,
and the sum of the first two terms is independent of the assignment, provided capac-
ity constraints are satisfied. This definition is motivated by the following transportation
problem. interpret a pointx = (x1, . . . , xd) as a truck loaded withxi units of thei th
good, and a sites = (s1, . . . , sd) as a market that sells thei th good at pricesi per unit.
Choose the site capacities according to the attractiveness of the markets, andL will tell
you where each truck should go in order to achieve maximal profit for these capacities.

The next application makes use of the property that constrained least-squares assign-
ments are invariant under translation and scaling.

OBSERVATION 2. Let σ ∈ R+ and τ ∈ Ed, and consider a least-squares assignment
L: X→ S with capacities c. Thenσ L+ τ is a least-squares assignment of X toσS+ τ
subject to c.

PROOF. L maximizes
∑

x∈X〈x, A(x)〉 over all assignmentsA with capacitiesc. A least-
squares assignmentL ′: X→ σS+ τ maximizes∑

x∈X

〈x, σ A(x)+ τ 〉 = σ
∑
x∈X

〈x, A(x)〉 +
∑
x∈X

〈x, τ 〉.

Since the last sum does not depend onA and sinceσ > 0, L ′ must also maximize∑
x∈X〈x, A(x)〉.

Consider the special case thatSandX are of equal cardinalityn and letL: X→ Sbe
a least-squares assignment subject toc(s) = 1 for all s ∈ S. L is called aleast-squares
matchingin this case. Define a (one-to-one) least-squares fittingas the least-squares
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matchingL∗: X→ σS+ τ such that the value ofL∗ is minimal over all positive scaling
factorsσ and all translation vectorsτ . Observation 2 tells us thatL−1

∗ (σs+τ) = L−1(s)
for all s ∈ S. Thus, when computing the least-squares fittingL∗, we can first calculate
and fix the matchingL, as a least-squares matching ofX to S, and then determine the
optimizing values ofσ andτ for this matching.

Indeed, the latter task is easy whenL is fixed. LetS= {s1, . . . , sn} andL−1(si ) = xi .
We want to findσ andτ = (τ1, . . . , τd) such that

Q(σ, τ ) =
n∑

i=1

δ2(xi , σsi + τ)

is minimal. Setting the partial derivativesQσ and Qτj , 1 ≤ j ≤ d, to zero shows that
the minimum is achieved for

σ = an− 〈α, β〉
bn− 〈β, β〉 , τ = 1

n
(α − σβ),

where we have put

a =
∑
〈xi , si 〉, b =

∑
〈su, si 〉,

and

α =
∑

xi , β =
∑

si .

O(n) time suffices for calculatingσ andτ if d is considered a constant. In the special
casesσ = 1 (translation only) andτ = 0 (scaling only) the minimum is achieved for
τ = (1/n)(α − β) andσ = a/b, respectively.

The insertion algorithm in Section 4 can be modified to run in timeO(n3) and space
O(n) if all capacities are 1. In particular, no dynamic convex hull structure for the points
of X within the current power regions is needed as each region can contain at most one
point. This saves the logm factors in the runtime of the original algorithm, leading to
time O(n2 logn) per inserted point. The remaining logn factor stems from computing
the power diagram anew inO(n logn) time after each reduction of weights for the so-
calledD-regions. Alternatively, the diagram can be updated dynamically inO(n) time
as follows.

For each power regionR we store the partition ofR that results from shrinkingR
to zero area. This is just the part of the order-2 power diagram withinR and thus does
not harm theO(n)-space complexity; see [6]. The boundary of the shrunkD-regions, as
well as the extensions of the neighboring non-D-regions, can be found inO(n) time by
walking through the edges of the order-2 diagram. For reconstructing the order-2 diagram
for the new weights, we use theO(n)-time deterministic algorithm of Aggarwalet al.
[3], or the more practicalO(n)-time randomized algorithm of Chew [11]. It suffices to
apply the algorithm to those non-D-regions that expanded as the result of adjustment of
weights, as the other non-D-regions remain unchanged, and theD-regions will contain
the correct part of the order-2 diagram after having been shrunk.

For computing a least-squares fitting ofm points ton sites with given capacities, the
algorithm of Section 4 applies in its original form. The optimizing valuesσ andτ can be
calculated inO(m) time using respective generalizations of the formulas given above.
We summarize:
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LEMMA 5. A (one-to-one) least-squares fitting of size n can be computed in O(n3) time
and O(n) space. A least-squares fitting of m points to n sites subject to given capacities
can be computed in O(n2m logm+ nmlog2 m) time and O(m) space.

Observe also that the constrained assignment problem form points andn sites can
be reduced to matching in a trivial manner, by replicating each site according to its
capacity. According to the fastest-known least-squares matching algorithm (the variant
of Vaidya’s algorithm mentioned in the Introduction), this yields anO(m2+ε)-time and
O(m1+ε)-space algorithm for the least-squares assignment problem. Aside from being
less practical than ours, this algorithm is not space-optimal, and is beaten in running
time by our insertion method in Section 4 form> n2.

7. Concluding Remarks. In conclusion, we mention several open problems. Clearly,
the existence of a better combinatorial algorithm for least-squares assignments is one of
them. We would also like to be able to estimate the running time and increase numeri-
cal stability of the iterative procedure. Finally, the fastest least-squares fitting algorithm
mentioned above (based on Vaidya’s matching algorithm modified for power diagrams)
requires tools which are difficult to implement. Is there a simpler algorithm with com-
parable performance?
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