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Minkowski-Type Theorems and
Least-Squares Clustering

F. Aurenhammet,F. Hoffmann® and B. Arono¢

Abstract.  Dissecting Euclideanl-space with the power diagram afweighted point sites partitions a
givenm-point set into clusters, one cluster for each region of the diagram. In this manner, an assignment of
points to sites is induced. We show the equivalence of such assignments to constrained Euclidean least-squares
assignments. As a corollary, there always exists a power diagram whose regions partitioradiimensional

m-point set into clusters of prescribed sizes, no matter where the sites are placed. Another consequence is
that constrained least-squares assignments can be computed by finding suitable weights for the sites. In the
plane, this takes roughl(nm) time and optimal spac®(m), which improves on previous methods. We

further show that a constrained least-squares assignment can be computed by solving a specially structured
linear program im + 1 dimensions. This leads to an algorithm for iteratively improving the weights, based on

the gradient-descent method. Besides having the obvious optimization property, least-squares assignments are
shown to be useful in solving a certain transportation problem, and in finding a least-squares fitting of two point
sets where translation and scaling are allowed. Finally, we extend the concept of a constrained least-squares
assignment to continuous distributions of points, thereby obtaining existence results for power diagrams
with prescribed region volumes. These results are related to Minkowski’s theorem for convex polytopes.
The aforementioned iterative method for approximating the desired power diagram applies to continuous
distributions as well.

Key Words. Power diagrams, Least-squares clustering, Point partitioning.

1. Introduction. The purpose of this paper is to discuss a relationship between power
diagrams and so-called constrained least-squares assignments.

A power diagrams a generalization of the classical Voronoi diagram of aSseftn
points in Euclidean-space. The points i8 (calledsitesin what follows) have individual
weights expressing their capability to influence their neighborhood. The regions of a
power diagram define a convex polyhedral partitiordegpace. (See, e.g., the survey
paper [6] for properties of Voronoi-type diagrams in general and power diagrams in
particular.) If we fix, in addition to the sites, according to their containment in the regions.
This naturally defines an assignment of pointXito sites inS. This assignment depends
on the weighting ofS.
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A least-squares assignmaesfta setX of points to a se§ of sites ind-space is defined
to minimize the total square distance between the sites and their associated points. Our
interest is inconstrainedleast-squares assignments where the number of associated
points per site is prescribed by the so-calbaghacityif a site.

The main result of this paper shows that power diagrams and constrained least-squares
assignments are equivalent in the following sense. Any assignestS induced by
a power diagram of is a least-squares assignment subject to the capacities resulting
from the power diagram. Conversely, a least-squares assigntments, for any choice
of capacities, can be realized by the power diagrar8 fofr appropriate weights.

This result contributes to the known list of optimal clusterings of a poinksetiuced
by Voronoi-type diagrams. For example, tkeentroid problemasks for a sef of k
sites such that the unconstrained least-squares assigiment has minimum value.

(Each site then is the centroid of its cluster, hence the name.) Boros and Hammer [9]
observed that unconstrained least-squa¢es> S are always induced by the Voronoi
diagram ofS, which by definition assigns each pointdnspace to the closest site in

S. Similarly, in thek-center problema setS of k sites is required such that can be
covered byk disks centered at the sites and having the minimum sum, or maximum, of
radii. The corresponding clusterings are realized by power diagra@set [10]. Both
thek-centroid and th&-center problem are known to be NP-hard. However, realizability
by Voronoi-type diagrams restricts the number of candidate clusteringg %' and

thus leads to polynomial-time algorithms for fixé&d see [10] and [15]. Computing
least-squares assignments fogigen set of sites, as is discussed in this paper, is a
computationally simpler problem as only the assignment needs to be optimized.

The equivalence of constrained least-squares assignments and power diagrams ex-
tends to the case where, instead of a finiteXset continuous, nonvanishing probability
distribution in the unit cube is considered. Proofs for both the finite and continuous
version are given in Section 2.

The remainder of the paper is concerned with several consequences of these equiva-
lence results. Partition theorems for power diagrams are direct corollaries: there always
exists a power diagram whose regions partition a gikelimensional finite point sex
into clusters of prescribed sizes, no matter where the sites there exists a power diagram
that partitions the unit hypercube intoconvex polyhedral regions of prescribed vol-
umes. These results and their relation to Minkowski-type theorems for convex polyhedra
are discussed in Section 3.

Exploiting the machinery of power diagrams, we propose two algorithms for com-
puting constrained least-squares assignments in the plane. The first algorithm, described
in Section 4, applies to finite point seXs It proceeds by inserting th@ pints of X,
one by one, at each step adjusting the weights ofntlsées such that the capacities
are not exceeded. Time complexity ©f(n?mlogm + nmlog? m) and optimal space
complexityO(m) are achieved. Am > n can be assumed, this is an improvement over
the O(nn? + m? log m)-time andO (nm)-space algorithm that results from transform-
ing the problem into a minimum-cost flow problem; see [13]. (For a discussion of the
general assignment problem, see also [20].) Alberts [4] recently reduced the running
time toO(n’mlogm), by generalizing the Hungarian method. The space requirement is
still O(n, m), as is the case for the randomized algorithm of Tokuyama and Nakano [21]



Minkowski-Type Theorems and Least-Squares Clustering 63

that achieves expected tin@nm + n3,/nm). On the other hand, the cited algorithms

are more general than ours in that they find the optimum constrained assignment on a
general weighted bipartite graph. We are able to exploit the geometric interpretation of
least-squares assignments to reduce the space requireni@mjo

The second algorithm, outlined in Section 5, is applicable to both the finite and the
continuous version of the problem. We show that finding a weight vector that yields
the desired least-squares assignment is equivalent to finding a maximum of a concave
n-variate function whose domain is the weight space. For the continuous case, we pro-
pose a gradient method for iteratively improving the weight vector. This method has
superlinear convergence and optin@in) space requirement. In the finite case, on the
other hand, the-variate function to be optimized is piecewise-linear. Finding a point
in the maximum is now a linear programming problem whose number of constraints is,
however, exponential in. Our iterative algorithm can still be used. Experiments have
shown that it approximates the maximum quite fast. Again, the space requirement is
optimal, O(m).

Section 6 sketches some applications of our results. We show that a certain trans-
portation problem can be solved by computing a constrained least-squares assignment.
Another application exploits the fact that constrained least-squares assignments are in-
variant under translation and scaling of the Sedf sites. We obtain an algorithm that
finds the best least-squares fitting of twegoint setsS and X, under translation and
scaling, inO(n%) time andO(n) space. The time complexity matches that of the match-
ing algorithm for general weighted bipartite graphs [16] which requd¢s?) space.
Vaidya [23] described a®(n?,/nlogn)-time andO(nlogn)-space bipartite match-
ing algorithm for a version of the problem in which weights are Euclidean distances.
His algorithm seems to generalize directly to least-squares matchings, with additively
weighted Voronoi diagrams replaced in his data structure by power diagrams. Recent
developments reduce the running time of Vaidya’s algorithi® ¢n?*€) [1]; its version
for power diagrams follows from [2]. To summarize, aleast-squares fitting afi{paint
sets can be computed either@(n?*€) time andO(n**<) space or, with our algorithm,
in O(n®) time and optimalD(n) space.

2. Equivalence Theorems. This section establishes an equivalence between con-
strained least-squares assignments and power diagrams.

Consider a se$ of n point sites in Euclidead-spaceR?. Sinduces a partition di¢
into polyhedral regions in the following natural way. Tiegionof a sites € S, reg(s),
consists of all pointx which are closer t® than to the remaining — 1 sites. This
partition is known as th®oronoi diagramof S. If we fix, in addition to the sites, a s&t
of m points inEY, then this set is partitioned by the Voronoi diagranfahto subsets.
More precisely, the diagram definesassignment function :X — S, given by

AX)=s <& Xereqs).

Equivalently, A=%(s) = X Nreg(s) for all s € S. Note that points o that have more

than one closest site Bare not covered by this definition. By conventidrassigns each

such point to an arbitrary but fixed closest site. The total number of points assigned to a
particular sites, | A=1(s)|, is called thecapacityof s. The capacities of all sites add up to
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m = | X|. The assignmen has an obvious optimization property: it minimizes the sum
of the distances between sites and their assigned points, over all possible assignments of
XtoS.

Given S and X, we would like to be able to change the assignment by varying the
distance function that underlies the Voronoi diagranSoTo this end, we attach a set
W = {w(s) | s € S} of real numbers, calledveights to the sites and replace the
Euclidean distancé(x, s) between a point and a sites by thepower function

POW (X, S) = 82(X, S) — w(S).

The resulting partition of® is known as thg@ower diagranof Swith weightsw. Each
region is still a convex polyhedron, and has the property of shrinking (resp. expanding)
when the weight of its defining site is decreased (resp. increased). As above, we obtain an
assignment functiod\y: X — Swhich now clearly depends on the choice of weights.
In particular, the site capacities dependwn

Power diagrams also given rise, in the obvious way, to mappings of the é+rspace
to the set of sites. LeAy: EY — Sbe the assignment induced by the power diagram of
Swith weightsW. That is,A;vl(s) = regy(9), the region of sites in the diagram. The
capacity of a site can now be defined as the fraction of the unit hypercube contained in
its region. Formally, lep be a continuous and nonvanishing probability distribution on
[0, 1]%, and letu(X) = [ o(x) dx denote the measure of a sétc E? with respect to
0. Thenu(A;\,l(s)) is the capacity of that results fromAy. The capacities of all sites
add up to 1.

We prove the following general result.

THEOREM1. Let S be a finite set of sites Bf'. Any (finite or continuousassignment
induced by a power diagram of S is a least-squares assignsdnject to the resulting
capacitiesConverselya least-squares assignment farsBibject to any given capacities
(whose sumisthe total number of assigned points in the finiteaad®in the continuous
cas@ exists and can be realized by a power diagram of S

Theorem 1 contains several assertions which are now stated separately (and more
precisely) and proved. We start by showing that assignments defined by power diagrams
are constrained least-squares assignments. We consider the finite case first.

LEMMA 1. Let S and X be finite sets of sites and point&fnrespectivelyand fix a
set W of weights for S'he assignmentsyAminimizes

> 8%, AX))

XeX
over all assignments :AX — S with capacity constraintsA=%(s)| = |A\;,1(s)| for all
seS

PrOOF From the definition ofAy it is evident thatAy, minimizes the expression

D powy (X, AX)) =D 82X, AX)) — Y w(AX))

XeX xXeX xeX
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over all possible assignmems X — S, regardless of the capacity constraints. The last
sum, being equal td ", | A~1(s)| - w(s), is a fixed constant for all assignmemtsvith
capacitiegA-1(s)| = |A,}(s)], and the lemma follows. O

The following continuous version of Lemma 1 can be proved in a similar fashion.

LEMMA 2. Let S be a finite set of sites Bf with weights W let o be some proba-
bility distribution on[0, 1]¢, and letx be the measure defined by The assignment
Aw: [0, 1]9 — S minimizes

/ 0(X) - 82(x, A(X)) dx
[0.1¢

over all assignments :AO, 1] — S with capacitieg.(A~%(s)) forall s € S.

We proceed to prove the existence and realizability of least-squares assignments with
prescribed capacities. For finite point sEtghe existence of a constrained least-squares
assignmenK <« Sistrivial. Its realizability by power diagrams is proved in Section 4 by
giving an algorithm that constructs such a power diagram. So, in the rest of this section,
we concentrate on the continuous case only.

Fix a setS of sites inEY, a capacity functiort: S — [0, 1] with Y sesC(S) =1,
and a probability distributior in [0, 1]9. We now require thab be continuous and
nonvanishing in [01]9. We assume that(s) > O, for anys € S. Suppose that a
least-squares assignmdnt [0, 1] — S subject toc exists. To simplify notation, let
R(s) = L~(s). We first show that. has to satisfy the following property. For any two
sitess, t € S, there is a hyperplane separatiR¢s) from R(t). More precisely, we have:

OBSERVATION 1. Letst € S, s #t. There exists a hyperplane H orthogonal te-ts
such thatu(His N R(s)) = 0 and u(Hst N R(t)) = 0, where Hs is the half-space
bounded by H and containing H (t — s), and H is the complementary half-space

PROOFE Suppose that there is no such hyperplane. Then there is a hypekplane
thogonal tot — s and such thati(His N R(S)) > 0 andu(Hst N R(t)) > 0. Now we
use the fact that, if a point € R(S) is in His and a pointy € R(t) is in Hs;, thenx can

be reassigned tbandy reassigned ts, thereby reducing the sum of squared distances.
Indeed, applying the Pythagorean theorem gives

82(x, t) + 82(y, ) < 82(y, t) + 82(x, 9).

Integration over two subsets &(s) and R(t) of equal positive measure that were as-
sumed to exist on the wrong sidesttthus shows that these subsets could be reassigned,
obtaining an assignment better thiarbut subject to the same capacities. This contra-
dicts the assumed minimality &f and thus proves that there exists a hyperpldrtbat
separateR(s) from R(t). O



66 F. Aurenhammer, F. Hoffmann, and B. Aronov

Observation 1 implies that, iE exists, it can be realized by a family of convex
polyhedra{P(s)}, one for each sits. These polyhedra are given B(s) = ;s Hst
and therefore have pairwise disjoint interiors. In fact, their intersections wijth]0
induce a partition of [01]¢, because we assumed the distributcio be nonvanishing.

Note that Observation 1 still holds for finite point s&tsWe takep to be the indicator
function of X in [0, 1]¢ and replace integrals by sums. Degenerate positiois oy
be handled by defining bothls; and H;s in the statement of Observation 1 as open
half-spaces. The resulting polyhedra, however, will not necessarily define a partition of
[0, 1]¢ in the finite case. One could try to enforce a partition by consideXras the
limit of a series of continuous and nonvanishing distributions. Such an approach seems
feasible also for objects (of equal dimensionFfhmore general than points. We do not
elaborate on this idea in this paper but rather deduce realizability by power diagrams in
the finite case from the algorithm in Section 4.

Based on the convex partition property, we now show the existence of a constrained
least-squares assignmentin the continuous case, i.e., whenis a continuous and
nonvanishing probability distribution.

LEMMA 3. Consider the class of assignmefis1]° — S realized by the family of
convex polyhedréP (s)}scs with the following propertie1) { P(s) N[0, 1]%}scs defines
a partition of [0, 1]%, (2) u(P(s)) = c(s) for all s € S, and(3) each Rs) has fewer
than|S| facets Then this class contains a least-squares assignment L subjectto c

PrROOF Letn =S|, and letP, be a polyhedron with at mogh — 1) facets associated
with theith sites. P is the intersection oh — 1 half-spaces i, each of which
can be specified by the vector extending franto its defining hyperplane and normal
to it. HencePy, ..., P, are completely determined bylatuple of real numbers, for
k = n(n — 1)d. For simplicity, we do not distinguish betweéh and its describing
((n — Dyd)-tuple in the remainder of the proof. Now consider the continuous function

9:RES R, (P, ..., Py = (P, ..., u(Py)).

Let [, = ¢ 1) c R~ [], corresponds to the set of alttuples of (n — 1)-facet
polyhedra whose measures fulfill the capacity constra]?j;;,is a closed set, being the
inverse image of a closed set under a continuous function. iisceero outside [01]¢,
attention may be restricted to a bounded subsg{ gfthere is a numbds such that, for
all i, if all entries of P, are between-b andb, thenu(F) = c(s) can still be achieved
for all possible directions of half-space normals fr Hence we need only consider
tuples(Py, ..., Py) € 1"[(0 N[—b, b]¥. Next, take the continuous function

YiRC SR, y(PL.... Py =) V(RNPN[01,
i#]
whereV denotes thel-dimensional volume. Leff[,, = ¥ ~1(0) c R¥. Again,[], isa
closed set. It corresponds to the set ofatlples of(n — 1)-facet polyhedra yielding a
packing in [Q 1]¢.
We now consider the compact sef = [[ N[, N[-b, b]X. Each element
(P1, ..., Py in [] fulfills both the capacity and the packing constraints. Recall that
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the sum of all capacities is 1, and that the probability distribugiovas assumed to be
nowhere zero in [01]¢. We conclude that eactPs, ..., Py) € [] induces a partition

of [0, 1]9. We further know from Observation 1 that, if the constrained least-squares
assignment. exists, it is realized by an element pf. Note that[ | is nonempty; for
example, taken parallel slices of [01]® with measure(s), i = 1,...,n. Finally,
consider the functio®: [[ — R,

QP ..., Py = Z[ 0(x)8%(x, 5) dx
i=17PR
= / 0(X)8%(x, A(X)) dx,
[0,1]¢

whereA: [0, 1] — Sdenotes the assignment definedBy, ... ., P,). Q expressed the
value of the assignmem. Q is a continuous and nonnegative function whose domain
is compact, so it must attain its minimum, the valueLofThis proves the existence
of L. O

We have recently learned that the existence and further the uniquenéssaof
be deduced from properties of the so-called Monge—Kantorovich mass transference
problem considered by Cuesta-Albertos and Tuero-Diaz in [12]. Their proof is in terms
of probability theory and more general and involved than needed for the purposes of this
paper.

Finally we show that constrained least-squares assignments—for the continuous
case—can always be realized by power diagrams.

LEMMA 4. The polyhedral familyP(s)}scsthat realizes L has the property thatithin
[0, 1]¢, for some choice W of weights for B(s) = reg,,(s) forall s € S.

ProoOFE Fromthe proof of Lemma 3 we know tHa (s) }sc s defines a partitiofiP’ (S) }scs
of [0, 1]%. Observation 1 implies that, for each pair of siges € S, if P’(s) and P/(t)
share a facef, thenF is orthogonal to the vectdr— s. Moreover,F + (t — s) lies on
the same side of the hyperplane throdglasR/(t) does. It is known [5] that these two
conditions are necessary and sufficient for a convex patrtition of a given pol@dpe
be the power diagram & for some suitable s&V of weights, restricted tQ. O

3. Partition Theorems. The existence of least-squares assignments, together with
their realizability by power diagrams, immediately implies several partitioning results
for power diagrams.

THEOREM2. Let S and X be a set of n sites and m points in Euclidean d-spAce
respectivelyFor any choice of integer site capacitiessg with ) "._sc(s) = m, there
exists a set W of weights such tmag,l(s)| = c(s), for all sites se S.
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In other words, there always exists a power diagram whose regions partition a given
d-dimensional finite point-seX into clusters of prescribed sizes, no matter where the
sites of the power diagram are chosen. Moreover, we have the following continuous
version of Theorem 2.

THEOREM3. Let S be a set of n sites Ef, let o be a continuous and nonvanishing
probability distribution on[0, 1]¢, and letx. denote the measure with respeciptdFor
any capacity function:cS — [0, 1] with }"._gc(s) = 1, there is a set W of weights
such thatu(regy, (S)) = c(s), for all sites se S.

By taking, for instanceg be the uniform distribution in [01]9 we get:

COROLLARY 1. For any set of n sites ii® there exists a power diagram that partitions
the unit hypercube into n polyhedral regions of prescribed volumes

This seems surprising, as the placement of the sites determines the normals of the
facets separating the power regions.

Corollary 1 is related to Minkowski’s theorem for convex polytopes (see, e.g., [14])
which, for the purposes of this paper, can be stated as follows/ lbet any collection
of n nonzero nonparallel vectors that sgéfht* and sum up to zero. Then there exists a
(d + 1)-polytope withn facets in one-to-one correspondence with vectorg sb that
each facet is normal to its corresponding vector anddhdisnensional volume equal to
the vector length.

It is well known that any power diagram far sites inEY is a projection of an
unboundedd + 1)-polyhedron formed as the lower envelopendiyperplanes, one for
each site; see, for example, [6]. The orientation of the hyperplanes is determined by the
placement of the sites, while their position is given by the corresponding weights. As facet
orientations are fixed, giving theil-volume is equivalent to fixing the volume of their
projection onto the hyperplarsg,; = 0. Thus Corollary 1 is equivalent to the statement
that an unbounded polyhedron whose facets have prescribed orientatidrvahane
(within the prism [0 1] x R) always exists. This statement differs from Minkowski's
theorem because of the presence of unbounded faces and a restricting prism.

Arelated and more general theorem was proven by Pogorelov [19, p. 476]. Itis stated
in three dimensions. A real-valued functieron convex polygons ift® is monotonef
(1) itis positive for polygons with positive area, (2) if polyg@nis properly contained
in polygon Q’, theno (Q’) > ¢(Q), and (3) if Q' is obtained fromQ by an upward
translationg (Q') > o (Q). For example, area is a monotone function. NowHdde an
unbounded polyhedron formed as the lower envelope of plarigs Define2 (P) to be
the set of all polyhedra that coincide wikhoutside a sufficiently large ball and whose
bounded facetd,, ..., f, are parallel to the corresponding bounded facet®.dlow
fix a positive numberg; for eachf;. The conclusion of the theorem of Pogorolev is that,
provided that there is (1) a polyhedron(P) with o (f;) < g foralli, and (2) a plane
so that any polyhedron iR (P) lying fully above it satisfies | o(fi) > Y, &,
there exists a polyhedron @ (P) with o (fj) = g;.

The parallel between Pogorelov’s theorem and Theorem 3 is that power diagrams
correspond to unbounded polyhedra and capacities correspond to the condition that
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o(fi) = @&, for all i. Once again, placement of sites determines the orientation of
polyhedron facets. The most natural definitionsofvould be as the measure of the
projection of a facet onto they-plane, restricted to the unit square, so there is an exact
correspondence between conclusions of the theorems. However, with this definition,
does not satisfy some of the above technical conditions. Nameiged not be strictly
positive for nondegenerate facets and need not strictly increase if a facet is enlarged.
Finally, Pogorelov’s theorem only constrains bounded facets, whereas Theorem 3 covers
allfacets. So, despite apparent similarity, neither of the two theoremsimmediately implies
the other.

4. Computing Least-Squares Assignments. In this section we describe an algorithm
that, for a seS of n sites and a set of m points in the plane, computes a least-squares
assignmenk.: X — Ssubject to a given integer capacity veotawith )" _sc(s) = m.

By Lemma 1, it is sufficient to compute a weight veci = (w(S)scs such that

|X Nregy(s)|c(s) for all s € S. The algorithm below computes such a weight vector
in time O(n?mlogm + nmlog? m) and optimal spac®(m) and, as a by-product, also
determines the desired assignmént= Ay. Note that correctness of this algorithm
implies the realizability oL: X — Shy a power diagram, claimed in Theorem 1.

The algorithm starts with the weight vectdft = 0, for which the power diagram is
just the classical Voronoi diagram 8f It proceeds inm phases. During each phase, one
point of X is inserted into the current diagrak, and with it the power diagram, is then
recomputed such that the invaridis) < c(s) for all s € Sis maintained, wherb(s)
denotes current number of pointgéu,, (s). More specifically, the algorithm carries out
the following steps for each pointto be inserted:

1. Determine the regioreg,,(s) of the current power diagram containirgAdd x to

the set of points contained meg,(S). If b(s) < c(s) the phase ends—there is no

need to chang®/. Otherwise, leD = {s}. Intuitively, D will contain the sites whose

regions are too large and must be shrunk.
2. Repeat the following two steps:

(a) Shrink allD-regions by simultaneously decreasing their weights. More formally,
find the smallest positive number so that decreasing the weights of Blisites
simultaneously by more than causes one of the shrinking regions to lose a
point, sayp’. Notice that in the process a site 81 D cannot lose a point to a
D-site, and that no point can move between tleregions or between two
non-D-regions.

(b) Decrease the weights of dll-sites byA. Consider the regioreg(s’) wherep’
would end up, had we shrunk the weights by more thaif b(s') < c(s'), then
go to 3, as we found a region which is not full. Else a&titb D and repeat (a).

3. We have found a regiaeg(s’) that is not full and a poinp’ on its boundary. Assign

p’ to §'. This makes some regiaeg(s’) with s’ € D less than full. Howevers’

was added t® because of some poipt’ that it shared with sitg” that had already

been inD. So assignp” to s” and follow the chain back, until the original sisds
encountered and relieved of one point. This restores the invariant that was violated in
the beginning of the current phase, and the phase ends.
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To implement and analyze this procedure, we must specify how to store points belonging
to a region, and how to detect the smallest weight change that makes a set of regions
lose a point. We store the points dg(s) as a dynamic convex hull structure that
allows O(log? m) time insertion and deletion. We use the data structure of Overmars and
van Leeuwen [18] that can return, in logarithmic time, the two hull points of tangency
for the two tangents to the hull with given slope. Each tinehanges we recompute the
power the diagram and determine the list of edges separBtirggions from the non-
D-regions. Those are th@(n) edges that will move by translation asvaries. For each
edge, the convex hull data structure is used to determine the first time (i.e., the value of
A) at which the line supporting the edge will strike a point contained ithregion that

it bounds. This require® (nlog m) time. The smallest such is the one we are looking

for. At this point, one region has shrunk so much as to lose a point. Check if the new
region of nonfull. If it is, we are done—reshufflif@(n) points clearly takes onl®(n)
updates to the convex hulls (and thDgn log® m) time) and the phase is complete. If
not, the new region join® and we again recompute the power diagram, identify moving
edges, find the first time each edge hits a point iD-gegion, etc. GrowindD by one
requiresO(nlogn + nlogm) time, hence one phase requi®sn?logm + nlog? m)

time. As there aren phases, the running time claimed at the beginning of this section
follows. The space requirement is dominated by the convex hull structure &nans

Itis not necessary to recompute the power diagram anew after each shrinking step, as
it can be maintained dynamically. However, we did not succeed in proving a better than
O(n?) upper bound on the number of combinatorial changes the diagram undergoes
during one phase of the algorithm. In fact, we suspect that the number of changes is
Q(n?) in the worst case.

We already mentioned in the Introduction the connection of least-squares assignments
to network flow problems. In the terminology of network flows, the chain-like process
of reassigning points to sites at the end of a phase corresponds exactly to an augmenting
path.

5. Iteratively Improving the Weight Vector. We now propose a method for iteratively
improving the weight vectoW. The method relies on the fact that, for a fixed set of sites,
the value of the assignment induced by the power diagram with weiglissa concave
function of W. Finding a weight vector such that the resulting assignment fulfills the
capacity requirements is then equivalent to finding the maximum of a related function
whose domain is the weight space. The method can be used to compute finite as well as
continuous least-squares assignments. The continuous case is treated first.

Let o be a continuous and nonvanishing probability distribution inl]®. For an
arbitrary but fixed assignmenrt [0, 1]° — S, define the functiorfa: R" — R by

fa(W) = /[o " o0(X) - powy (X, A(X)) dX.

Let B(A) = (u(A1(s)))scs be the vector of capacities resulting from the assignment
A, and put

Q(A) = f o(X) - 82(x, A(x)) dx,
[0.1¢
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the value ofA. With this notation,f, can be written as
fA(W) = —(B(A), W) + Q(A),

where(-, -) denotes the inner product. Hentgis a linear function ofV. Now consider
the functionf: W — f,, (W); recall thatAy is the assignment induced by the power
diagram with weightdN. We claim thatf is the pointwise minimum of the class of
functions fa. Indeed, for fixedW, the assignmenfy, minimizes the valuefo(W) by
definition of the power diagram @& with weightsW. In other words, the graph df is
the lower envelope of a set of hyperplane®Ritt®. Hencef is a concave function. By
the choice of properties af, B(Aw) and Q(Ay) depend continuously ow. Hence,
for eachW = W/, the graph off has at pointW’, f (W’)) a unique tangent hyperplane
Xn+1 = —(B(Ay), W)+ Q(A,) that changes continuously withi. Thatis, f describes
a smooth surface. Note that the gradight(W) of f atW is given by—B(Aw).

Recall that we aim to find a weight vect@v* such thatB(Aw-) = C, the given
capacity vector. Consider the function

gW) = f(W)+(C,W)
= (C = B(Aw), W) + Q(Aw).

Its gradientvg(W) is C — B(Aw), hence our requiremem(Ay-) = C just means
Vg(W*) = 0. This corresponds to a global maximum of the smooth concave function
g. So the problem we want to solve is: Fikld* such thag(W*) is maximized.

Finding the maximum of a concave and smopthariate function is a well-studied
problem. In our case, we can exploit the fact that, for any given weight vattor
we can computg(W) and Vg(W) from the power diagram with weightd/. So a
gradient method (see, e.g., [8]) for iteratively approximatiifjcan be used. Starting,
for example, with the weight vectdtl, = O (corresponding to the Voronoi diagram of
S), we use the iteration scheme

Wir1 = Wi + e Vg (Wy).

If the step sizesx are chosen properly, theW converges to the solutiow* at a
superlinear rate. Intuitively, what happens is that weights of sites whose region measures
are too small (resp. large) are increased (resp. decreased) at each step.

If Sis a set oh sites in the plane, andis the uniform distribution in the square, each
step can be carried out @(nlogn) time. For the current weight vectt, we need
O(nlogn) time to construct the power diagram®andW, and timeO(n) is needed in
addition to calculate the area and the integral of squared distances for each region within
the unit square. The space requirement is optiah).

The method just described was inspired by the algorithm for “inverting” Minkowski’s
theorem, i.e., computing a three-dimensional polytope given by normals and areas of all
its facets, proposed by Little [17].

In the case of a finite assignmeAty: X — S, the graphs of the aforementioned
functionsf andg are lower envelopes of finitely many hyperplanes, and thus are concave
polyhedral surfaces iR™**. The gradient ofy at W is orthogonal to the facet that lies
vertically aboveW. The gradientis given b§ — B(Aw), whereB(Aw) = (| A\g,l(s)|)ses
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counts the numbers of points #fin the regiongeg,,(s). By Lemma 1, the number of
hyperplanes defining is equal to the number of different vectddgA) for all possible
assignmentsA: X — S, which is (™", %) for | X| = m. Theorem 2 implies that the
surfaceg actually realizes as many facets. Except for degenerateXséit® maximum

of g is attained by a facet; the spv* | Vg(W*) = 0} has dimensiom.

Finding a maximum ofy can now be seen as a linear programming problem. Its
number of constraints is, however, at least exponential. i®n the other hand, this
linear program has a very special structure; in Section 4, we have described a strongly
polynomial algorithm for solving it.

Concerning the gradient method, the full-dimensionality of the maximum can be
exploited in the choice of step sizes. We proceed as follows. Initially, an overesfimate
of gis determined. LeQ(A) = )", « 82(x, A(X)). Sinceg(W*) = Q(Aw-), Lemma 1
implies thatg = Q(A) will do for any assignmen# with B(A) = C. We identify the
horizontal hyperplanéi: x,,.1 = § in R™* with the weight space. LeB, = Vg(Wk)
denote the gradient @f at W. In geometric terms, thék + 1)st step now moves along
the ray,ry, from point(Wg, g(Wk)) in direction(By, 1) until H is hit. This corresponds
to the step size

f — g — g(Wi)
(Bx, Bk)
in the preceding iteration scheme. This step is iterated until either the maximum is
reached, which mear8,.; = C, or the maximum is missed, meaning tiggW., +
eBy) < g(Wk,1) for all sufficiently smalls > 0, or, equivalently(By. 1, Bx) > 0. If the
latter happens, the overestimatés lowered. Geometrically speakind, is translated
S0 as to pass through the paipt) Hy 1, whereHy, 1 is the hyperplane through the facet
belowW,;. Thatis,g is taken such that

g—9gWd) 9 —9g(Wita)

(B, Bx) (Bx4+1, Brt1)

Starting once more ab, but now with the lower estimate, the iteration is continued.
Note that—whether or not the estimate has to be lowered—the fagdielbw W, 1 is
different from the facet belowy.

For sites and points in the plane, the cost for each st&p(imlogn). O(nlogn)
time suffices for computing the power diagram and preprocessing it for point location,
and O(logn) time is needed for locating each of the > n points in X. The space
requirement iSO (m) which is optimal.

We have tested the method for the planar ¢aker sets of 100 sites and 1000
points uniformly distributed in a square, the procedure always stopped after less than 10
steps. Due to numerical errors, however, only an approximaijoof C was reached.

We observed) ,_s|C(s) — Bk(s)| ~ n, which indicates that a combination of this
method with the insertion algorithm in Section 4 might lead to a fast exact procedure
for computing the least-squares assignment. After identifying a good approxirifgtion

of W*, a modified insertion algorithm should be started Withequal tow rather than

5 Thanks to David Alberts for implementing the gradient algorithm and the insertion algorithm of Section 4,
and to Juan Cuesta-Albertos for independently implementing the latter algorithm.
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zero. Note that the insertion method of Section 4 cannot be used directly, as it assumes
that no power region is ever filled beyond its capacity.

6. Some Applications. The constrained least-squares assignment problem, as consid-
ered in this paper, is a quite natural concept and has several applications. It is a special
constrained optimum assignment problem for weighted bipartite graphs, which is a spe-
cial case of the Hitchcock transportation problem; see, e.g., [22]. We first mention two
interpretations of the problem. Throughout the sectionSlkand X be finite sets of sites
and points irfkY, respectively.
ForY c X ands € S, define thevarianceof the clustely with respect to the siteas
Y ey 82(X, S). Then a constrained least-squares assigninent — Sis just a cluster-
ing for X such that the clusters have prescribed sizes and the sum of cluster variances is
minimized. Besides being optimum in the above sense, these clusters have the important
property that their convex hulls are pairwise disjoint: By Lemma 4, distinct clusters are
contained in different regions of a power diagram, and power regions are convex. Hull-
disjointness is a natural and desirable property of clusters which, for instance, eases the
classification of new points. Simple examples show that replacing variance by the sum
of distances destroys hull-disjointness.
If we define theprofit of clusterY with respect to sits as) ", ., (X, s), thenL maxi-
mizes the sum of cluster profits for given cluster sizé&x, s) = (x, X)+(s, 8)—2(X, S),
and the sum of the first two terms is independent of the assignment, provided capac-
ity constraints are satisfied. This definition is motivated by the following transportation
problem. interpret a poimt = (Xq, ..., Xq) as a truck loaded witly; units of theith
good, and a site = (s, ..., &) as a market that sells thth good at prices per unit.
Choose the site capacities according to the attractiveness of the markettsyahtgll
you where each truck should go in order to achieve maximal profit for these capacities.
The next application makes use of the property that constrained least-squares assign-
ments are invariant under translation and scaling.

OBSERVATION2. Leto € Rt andt € EY, and consider a least-squares assignment
L: X — S with capacities cTheno L + 7 is a least-squares assignment of Xot8+ ¢
subjectto c

PrROOF L maximizes) , (X, A(X)) over all assignment& with capacitie€. A least-
squares assignmeht: X — oS+  maximizes

DK oAX) +T) =0 ) (X, AX)) + D (X, T).

xeX xeX xeX

Since the last sum does not dependAdm@and sinces > 0, L’ must also maximize
Y vex (X, AX)). O

Consider the special case tl&and X are of equal cardinality and letL: X — She
a least-squares assignment subjeci(8) = 1 for all s € S. L is called aleast-squares
matchingin this case. Define aofe-to-ong least-squares fittings the least-squares
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matchingL,: X — o S+ t such that the value df, is minimal over all positive scaling
factorso and all translation vectors Observation 2 tells us that ! (os+17) = L7(s)
for all s € S. Thus, when computing the least-squares fitlingwe can first calculate
and fix the matchind., as a least-squares matching>oto S, and then determine the
optimizing values ob andrt for this matching.

Indeed, the latter task is easy whiets fixed. LetS = {s, ..., s,} andL71(s) = x;.
We want to findo andt = (14, ..., 7q) such that

Qo.7) =) 8%(X.08 +1)
i=1

is minimal. Setting the partial derivativé3, andQ,, 1 < j < d, to zero shows that
the minimum is achieved for

_an— («f)
~ bn— (8. )’

a:Z(xi,s), b=Z(SJ,S),
a:ZXi, ,3=ZS-

O(n) time suffices for calculating andz if d is considered a constant. In the special
casesr = 1 (translation only) anad = 0 (scaling only) the minimum is achieved for
7 = (1/n)(a — B) ando = a/b, respectively.

The insertion algorithm in Section 4 can be modified to run in t@@®) and space
O(n) if all capacities are 1. In particular, no dynamic convex hull structure for the points
of X within the current power regions is needed as each region can contain at most one
point. This saves the lag factors in the runtime of the original algorithm, leading to
time O(n?logn) per inserted point. The remaining lodactor stems from computing
the power diagram anew i@(nlogn) time after each reduction of weights for the so-
called D-regions. Alternatively, the diagram can be updated dynamical®(im time
as follows.

For each power regioR we store the partition oR that results from shrinkindR
to zero area. This is just the part of the order-2 power diagram wiRhaimd thus does
not harm theD (n)-space complexity; see [6]. The boundary of the shrbDrategions, as
well as the extensions of the neighboring ndrregions, can be found i®(n) time by
walking through the edges of the order-2 diagram. For reconstructing the order-2 diagram
for the new weights, we use th@(n)-time deterministic algorithm of Aggarwai al.

[3], or the more practicaD (n)-time randomized algorithm of Chew [11]. It suffices to
apply the algorithm to those ndD-regions that expanded as the result of adjustment of
weights, as the other noR-regions remain unchanged, and beaegions will contain

the correct part of the order-2 diagram after having been shrunk.

For computing a least-squares fittingrofpoints ton sites with given capacities, the
algorithm of Section 4 applies in its original form. The optimizing valoesdr can be
calculated inO(m) time using respective generalizations of the formulas given above.
We summarize:

I
o T—na aB),

where we have put

and
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LEMMA 5. A (one-to-ongleast-squares fitting of size n can be computed {nPtime
and O(n) spaceA least-squares fitting of m points to n sites subject to given capacities
can be computed in @2mlogm + nmlog? m) time and Qm) space

Observe also that the constrained assignment problemn fovints andn sites can
be reduced to matching in a trivial manner, by replicating each site according to its
capacity. According to the fastest-known least-squares matching algorithm (the variant
of Vaidya’s algorithm mentioned in the Introduction), this yields@m?*€)-time and
O(m**€)-space algorithm for the least-squares assignment problem. Aside from being
less practical than ours, this algorithm is not space-optimal, and is beaten in running
time by our insertion method in Section 4 for> n.

7. Concluding Remarks. In conclusion, we mention several open problems. Clearly,
the existence of a better combinatorial algorithm for least-squares assignments is one of
them. We would also like to be able to estimate the running time and increase numeri-
cal stability of the iterative procedure. Finally, the fastest least-squares fitting algorithm
mentioned above (based on Vaidya’'s matching algorithm modified for power diagrams)
requires tools which are difficult to implement. Is there a simpler algorithm with com-
parable performance?
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