Algorithmica (1997) 19: 331-353

Algorithmica

© 1997 Springer-Verlag New York Inc.

From Ukkonen to McCreight and Weiner: A Unifying
View of Linear-Time Suffix Tree Construction?

R. GiegericR and S. Kurt?

Abstract. We review the linear-time suffix tree constructions by Weiner, McCreight, and Ukkonen. We
use the terminology of the most recent algorithm, Ukkonen’s on-line construction, to explain its historic
predecessors. This reveals relationships much closer than one would expect, since the three algorithms are
based on rather different intuitive ideas. Moreover, it completely explains the differences between these
algorithms in terms of simplicity, efficiency, and implementation complexity.

Key Words. Text processing, On-line string matching, Suffix trees, Linear-time algorithm, Program trans-
formation.

1. Motivation and Overview. Sulffix trees provide most efficient solutions to a “myr-
iad” [4] of string processing problems. The suffix tree for a sttimgally turnst inside

out, immediately exposing properties like longest or most frequent subwords. The fun-
damental question whetheroccurs irt can be answered i(|w|) steps—independent

of the length ot—once the suffix tree fdris constructed. Thus it is of great importance
that the suffix tree fot can be constructed and represented in linear time and space.

In spite of their basic role for string processing, elementary books on algorithms
and data structures barely mention suffix trees, and never give efficient algorithms for
their construction [3], [21], [11], [1], [16], [7]. Recent exceptions are [22] and [13]. The
reason for this is historical: starting with the seminal paper by Weiner [26], suffix tree
construction has built up a reputation of being overly complicated. The purpose of this
paper is to correct this reputation—by working out what is essential about efficient suffix
tree construction, and what is unnecessary complexity.

More precisely, we review the linear-time algorithms of Weiner [26], McCreight [18],
and Ukkonen [25]. We call these algorithmsf,® mcg andukk

We use the terminology of the most recent algorithm, Ukkonen’s on-line construction,
to explain its predecessors. This reveals relationships much closer than one would expect,
since the three algorithms are based on rather different intuitive ideas. Moreover, it
completely explains the differences between these algorithms in terms of simplicity,
efficiency, and implementation complexity.

1 Work by the first author was supported by a grant from the International Computer Science Institute, Berkeley,
CA, USA.

2 Technische Fakudt; Universitit Bielefeld, Postfach 100 131, D-33501 Bielefeld, Germangbert,

kurtz} @techfak.uni-bielefeld.de.

3 wrf stands for the historic name “Weiner’s repetition finder” used in [19].

Received February 12, 1995; revised January 28, 1996. Communicated by K. Mehlhorn.

332 R. Giegerich and S. Kurtz

In Section 2 we take some time to establish carefully the terminology necessary for
suffix tree construction. New aspects of this section are a more generalized definition of
suffix links, and observations concerning their duality with reverse prefix trees.

Section 3 gives an exposition of Ukkonen's and McCreight’s algorithm on a very
abstract level, showing that their different intuitive ideas lead to the same sequence of tree
constructing operations. The two following sections make this observation more precise.
A derivation of Ukkonen’s algorithm is given (Section 4), and then Ukkonen’s algorithm
is transformed into McCreight’s algorithm. Section 5 explains the transformation steps.

Section 6 revisits Weiner’s algorithm. In a sense that is made precise tréris
shown as a version afkkworking on the “wrong” tree. Section 7 concludes.

As you see from this overview, the purpose of this paper is purely academic—no new
algorithms, no improvements of old ones. Just a few explanations about how the known
ones relate. If you have ever been puzzled by the complexity of linear-time suffix tree
construction, we hope you will enjoy just reading through Sections 2, 3, and 6. The more
technical material in Sections 4 and 5 may be safely spared out for a later reading.

2. Suffix Trees and Their Duality Properties

2.1. A*-Trees and Suffix Trees Let A be a finite set, thalphabet The elements of
A arecharacters ¢ denotes thempty string.A* denotes the set aftrings overA, and
AT = A*\{¢}. We usea, c, d, e to denote characters, abdp, g, s, t,u, v, w, X, Y, Z
to denote strings. Theverseoft =t; - - -ty ist, - - - t;, also denoted by L. If t = uvw
for some (possibly empty), v, w, thenu is aprefixof t, v is at-word, andw is asuffix
of t. A prefix or suffix oft is proper, if it is different fromt. A suffix or prefix oft is
nestedif it occurs elsewhere ih. Notice thats is a nested suffix df, if and only ifs—*
is a nested prefix af~*. We call at-word w right-branching(resp.left-branching in
t, if there are different characteasandc, such thatva andwc (resp.aw andcw) are
t-words. Of coursey is right-branching irt, if and only if w1 is left-branching irt ~*.

DEFINITION 2.1 (A*-Tree). AnA*-tree Tis a rooted tree with edge labels fraft.
For eacha € A, every nod&k in T has at most ona-edgek K.

Suffix trees are introduced below as a special formd bftrees. However, most of the
terminology used with suffix tree construction appliestto-trees as well, so we present
it first.

Let T be anAt-tree. Bypath(k) we denote the concatenation of the edge labels on
the path from theoot of T to the nodek. Due to the requirement of uniqaeedges at
each node off, path labels are also unique and we can dehkdtg w, if and only if
path(k) = w. Moreover, byT; we denote theubtree of Tat nodew.

DEFINITION 2.2 (Words Represented in ati"-Tree). A stringw occursin T if and
only if T contains a nod&u, for someu. By word9T) we denote the set of strings
occurring inT. For alls € wordgT) we call (b, u) thereference paitof s with respect
to T, if bis a node il ands = bu. If bis the longest such prefix sf then(b, u) is the
canonical reference paiof s with respect tdT . In such a case we wrie= (b, u).

From Ukkonen to McCreight and Weiner 333

A canonical reference pair of the forth, ¢) is called arexplicitnode, since it denotes
the nodeb in T. A canonical reference paib, aw) is called arimplicit node, since the

awv T

nodebaw does not exist ifT, but can be seen “inside” the edge— bawv.

DEFINITION 2.3 (Atomic and Compacti*-Trees). T is atomig if every edge inT is
marked by a single charactdr.is compactif every node inT is either theroot, a leaf,
or a branching node.

Atomic A*-trees are also known under the name “trie” [2]. Both atomic and compact
AT-trees are uniquely determined by the words occurring in them. In an atémicee
every node is explicit. In a compagt™-tree, nodes with a single outgoing edge are
implicit nodes.

DEFINITION 2.4 (Suffix Trees).

1. Asuffix treefor t is anA™-treeT, s.t.wordgT) = {w | wis a t-word.

2. Theatomic suffix tredor t is denoted byast(t).

3. Thecompact suffix treéor t is denoted bystt).

4. astt1) andcstit~1) are called the atomic and compaewerse prefix tredor t,
respectively.

Figure 1 shows different suffix trees for the stringceaceae

The reverse prefix tree is, of course, nothing new, but just the suffix trete ot
plays an important role in explaining suffix tree constructions. We refine our notation by
writing w instead ofw—1 for a node in a reverse prefix tree.

To decide whether a wond occurs inT takesO(Jw|) steps: check if there is a path in
T labeledw. This efficient access to all subwordsta$ theraison d’etreof suffix trees.

Fig. 1. Different suffix trees for the stringeceaceae

334 R. Giegerich and S. Kurtz

The following is known about the space requirements for representing atomic and
compact suffix trees (and holds for reverse prefix trees alike):

1. asi(t) hasO(n?) nodes (take, e.gt, = a"c" in Figure 4). However, isomorphic
subtree$ can be shared [10]. Sharing brings the space requirements dof¥mjo
[8],[12]. However, subtree sharing may be impossible, when leaves are to be annotated
with extra information.

2. cst(t) hasO(n) nodes, as all inner nodes are branching, and there are ahieases.

The edge labels can be represented in constant space by a pair of indice3 o

is necessary to achieve a theoretical worst-case boud¥of. In practice, this is
quite a delicate choice of representation in a virtual memory environment. Traversing
the tree and reading the edge labels will create random-like accessésantbcan

lead to performance problems with the memory subsystem.

2.2. Open Edges A particularly convenient representation of edges which lead to a
leaf node (leaf edges, for short) was introduced in [25]. The label of a leaf edge always
extends to the end of the actually scanned prefix @fe may as well represent an index
pair (i, |t]) by (i, 00), with co denoting|t|, whatever its value is. This means that i§
extended to the right, the label of the leaf edge grows implicitly, and the leaf continues to
represent a complete suffix of (the extendedhis representation is called “open edge.”

It plays a crucial part in the following sections. With a little speculation, we might even
say: if Weiner had seen this idea in 1973, he would have designed Ukkonen’s algorithm
then (and it would be in all textbooks today). We return to this in Section 6.

2.3. Active Suffixes and PrefixesThe following notion plays a central part in all con-
structions:

DEFINITION 2.5 (Active Suffix and Prefix). Thactive suffixof t is its longest nested
suffix, denotedx(t). Theactive prefixof t is its longest nested prefix, denoted! (t).

With this notation, we have(t—1) = (@~ 1(t))~L.

The node(l, v) representing the active suffix bfin cst(t) is the neuralgic point of
the suffix tree. Ift is to be extended to the right by another character, changes in the
tree structure (if any) will start at this point. Correspondingly, the active prefix node will
respond to extensions bfon the left. This behavior is proved and spelled out in detail
in later sections.

McCreight uses functionseadandtail that split a suffixs of t into an initial part that
already occurs to the left, and the remainder. We can define them in the following way.

DEFINITION 2.6 (headandtail). Lett = usfor some stringas ands. heads) is the
longest prefixx of s, such thatx is a nested suffix ofix. tail(s) is defined bys =
heads)tail(s).

4 Two A*-treesT and T’ areisomorphig if there is a bijectiony between the node sets dfand T/, s.t.
w S wuisan edge irT, if and only if (w) A @(wu) is an edge i’

From Ukkonen to McCreight and Weiner 335

acd, cda /1 a
acd acda cda q, acda$
cda.

Fig. 2. The compact suffix trees fatkdacdaandddacd&.

2.4. The Role of the Sentinel Characteif s is a nested suffix of, then a suffix tree
for t does not contain a leaf It is often convenient to add toa sentinel charactersay

$, that does not occur in Thent$ has no nested suffix, except for the empty string,
i.e., each nonempty suffix % uniquely corresponds to a leaf in a suffix tfedor t$.
Considering d-word w and the nodev in T, the number of leaves df; is equal to the
number of positions ih wherew occurs:

DEFINITION 2.7 (Suffix-Rests). For a nodein a suffix tre€T for t, letsuffixRests(w)
= {s | wsis a suffix oft}.

Clearly, suffixRests(w) uniquely determines the shape @f,. However, can
suffixRests(w) be determined from the edge labelsTgf? The answer is Yes, if there is
the sentinel, since then there is the [e&for everys e suffixRests(w). The answer is
No without the sentinel, as can be seenfipin T = cst(ddacda as shown in Figure 2.

It often simplifies proofs and constructions considerably to assume the presence of
the sentinel character. Only in contexts whéemmay be expanded to the right (e.g.,
during on-line construction), does the requirement for a unique final character not make
sense.

In the subsequent sections, the sentinel character is not assumed unless we explicitly
say so.

2.5. Suffix Links For construction and many applications4f -trees it is convenient
to augmentA*-trees with auxiliary edges that connect nodes quite unrelated in the tree
structure:

DEFINITION 2.8 (Suffix Links). Consider ad*-treeT. Letaw be a node ifT, and let
v be the longest suffix ab, such thab is also a node iff . An unlabeled edgaw —> v
is asuffix linkin T. A suffix link aw — w is calledatomic

Notice that node is well defined, sincé is a node and is a suffix ofw.

When theA*-tree is a trie, suffix links are identical to the failure transitions of [2].
The name suffix link is due to McCreight [18]. Some authors also define a link for the
root: ¢ —> £. We found that this obscures the algorithms as well as the observations in
Section 2.6.

336 R. Giegerich and S. Kurtz

PROPOSITIONZ2.9.

1. In the atomic suffix tree for, &ll suffix links are atomic
2. In the compact suffix tree fosf all suffix links are atomic

ProOF 1. This follows from the definitions, since all nodesasi(t) are explicit.

2. We must show that for each node, w is also a node irtst(t$). aw is either
a branching node, or a leaf. Henae is right-branching or a nonnested suffix t&.
However, then the same holds for and sow is a node ircst(t). |

What if we drop the sentinel in the case of assertion 2? The suffix links for all inner
nodes incst(t) are atomic. For a leadw, w may be nested (due to the lack of $) and
not right-branching, so there is no (explicit) nod@eln this case, we have a nonatomic
suffix link aw — v for some proper suffix of w. Note that this link is the only possible
exception, with all other suffix links inst(t) being atomic.

Suffix links are the key to efficient sequential suffix tree construction, but there is
more to them than this.

The atomic suffix tree of, augmented by suffix links, can be seen as a two-head
automaton. Denoting the two heads by [and], we can represent a configuration as
u[v]w, where

e Uv is the scanned part,
e v is the memorized part, and
e w is the unread part of the input string.

Now if v = ay andw = cX, there are two possible transitions:

ulaylcx~ ufaydx by following the edg&y — ayc
u[aylex ~ ualylex by following the suffix linkay —> V.

This view is taken from [19]. It nicely summarizes the additional power of suffix links
that makes them useful in many contexts. For example, such an automaton can be used
to compute the matching statistics in [9], tipgram distance [24], or the shift-table for

the Boyer—Moore algorithm [17].

2.6. Dualities Between Suffix Trees and Suffix Linké/e now study the deeper relation
between suffix trees and their suffix links. First we note that the suffix links form a tree
themselves.

DEFINITION 2.10. The suffix link tred ~ of an.A*-treeT has a node for each node
<~ vl < X - .
w of T, and an edges — vw whenvw — w is a suffix link inT.

It is easy to confirm thal ~ is in fact a tree, since each nodeTirhas exactly one
suffix link, which designates its parentTiT . The notatiorT ~* will be justified by our
subsequent results.

For an arbitraryd*-treeT, Tt is generally notam*-tree, as can be seenin Figure 3:

nodee has twod-edges. However, this changes whers a suffix tree:

From Ukkonen to McCreight and Weiner 337

da de

Fig. 3. An A*-tree and its suffix link tree.

ProPOSITION2.11 (Duality for Atomic Suffix Trees). (astt)) ™! = astit™1). Inwords
the suffix link tree of an atomic suffix tree is the reverse prefix tree

ProoFr There is an edg‘é 2 awin (ast(t)) "}, iff there is a suffix linkaw —> w in
ast(t), iff there are nodes) andaw in ast(t), iff there are nodes andaw in astt™1),
iff there is an edgev — aw in astit~2). O

Figure 4 showsistaaacco andastaaaccc?). Solid edges represeastaaacco,
while dotted edges (without their labels) represent the suffix links. Vice versa for
astiaaaccc?).

The reason why this duality is not widely known is that when considering the compact
suffix tree (our main object of interest), it is obscured by the fact that the explicit nodes
of a compact suffix tree and the corresponding reverse prefix tree do not coincide. But a
weaker form of duality still holds:

PropPosITION2.12 (Weak Duality for Compact Suffix Trees).

1. (cstt)) tis anAt-tree
2. (cst(t)) ! represents a subset of the words represented tgy ést

3. ((cstt)) ™Y = cstt).

Fig. 4. The atomic suffix tree foaaacccandaaaccc ™.

338 R. Giegerich and S. Kurtz

PrOOF 1. Assume there is a nodein the suffix link tree that has twa-edges. This
means that ircst(t) we have suffix linksiaw — w andvaw — w with u # ¢ and
v # . aw is not a node, since otherwise, the links would poird@n

e Supposéiaw or vaw is an inner node. Themaw or vaw is right-branching irt, and
so must bew. Soaw must be a node, which is a contradiction.

e Supposa@iaw andvaw are leaves. Without restriction to generalityw is a suffix of
uaw, and it is longer thamw. Hence there can be no suffix litkaw —> w.

2. The suffix link chain fromb to z in cst(t) yields a path labeled ! in the suffix
link tree. Of coursew 1 is at~1-word.

3. Because of Statement(Estit)) ! is an.A*-tree, so((cstt))"2) " is defined. The
node set is unchanged under the' operation, except for reversal of node names. There
is a suffix link vw —> v in (cstt))™L, iff there is no suffixr =1 of (vw) %, s.t. risa
node and(vw) Y| > |r~1 > |[v7Y|, iff there is no prefix of vw, s.t.F is a node and
lvw| > |r| > |v], iff cst(t) has an edg® — wv. O

Statement 1 of Proposition 2.12 can be slightly generaliz&disf(any sort of) suffix
tree of some strinty thenT ~* is anA*-tree. The reverse of this statement does not hold.
For example, lef be anA*-tree representing the words andbb. ThenT~1 = T.
ThusT~1is anA*-tree, butT is not a suffix tree.

At~t-wordwtis notrepresented in the suffix link treeyifis neither right-branching
int nor a suffix oft. (Adding the sentinel does not change this situation.) This is also why
(cst(t))"tisnota subtre®f cst(t ~1): some nodes akstt)) ~* are not nodes inst(t).
However in the precise sense of Proposition 2.12, the suffix link tree approximates the
reverse prefix tree. By dualitgst(t) itself approximates the prefix links obtit—1).

At this point, it seems natural to ask whether suffisefix trees can be subsumed
by a more general data structure@in) space, which has the duality as an inherent
property. In fact, the affix trees recently introduced by Stoye [23] are such a self-dual
data structure. However, this is beyond the scope of the present paper.

We now turn to suffix tree constructions.

3. An Abstract Comparison ofukk andmcc ukkreadd from left to right, character
by character, and incrementally constructs suffix trees for the prefixesesh so far.
With ukk labels of open edges grow implicitly &ss read, while some edges are split
and new open edges are inserted explicitly. The intermediate trees when constructing
cstiadado usingukkare shown in the left column of Figure 5.

mccinserts the suffixes dof into an initially empty tree. Starting with the longest
suffix, the method is not on-line, and the intermediate trees are not suffix trees. For a
suffix s of t let T (s) denote thed™-tree representing the suffixes bthat are longer
than or equal tes. The right column of Figure 5 shows the intermediate trees when
constructingTl (c) = csttadadg usingmcc

We introduce two abstract tree construction operations:

e split(U, v) replaces an edge— Tvw by two edgesi —> Uv —> Uow.
e add(u, a---) adds a new edge from nodeo a leaf, labeled - - -.

From Ukkonen to McCreight and Weiner 339

cst(e) est(e)

cst(a) / T(adadc) t:la/(/
cst(ad) /\ T(dade) M

cst(ada) ad g T(adc)

ad ¢
cst(adad) ada ad T(de)

ad ¢

L
d
o
a adc
a
ad ¢
cst(adadc) e c

Fig. 5. Sequence of trees constructeduigkandmcc

Note that theadd-operation abstracts from whether the edge label is entered fully
or left open to grow later. The central observation of this section is the following: the
intermediate trees afkkandmccare both constructed by the same sequence of abstract
operations! However, these operations are applied to the intermediate trees in a different
way. Both are shown in Table 1.

Analogies on an abstract level often break down when a more concrete level of
presentation is used. In our case we have abstracted from a number of aspects which are
essential in making bothkk andmcclinear-time algorithms. However, when we take
these into account, our analogy still persists. We summarize what is shown in full in
Sections 4 and 5:

1. ukkcan be transformed intmccby a modification of its control structure, leaving
the sequence of tree constructing operations invariant.

2. This modification is a slight optimization. Under a fair implementation of the related
data structures, it will givencca minor efficiency advantage ovekk on every
possible input.

Table 1. Operations to compute intermediate trees.

Operation Applied byikkto Applied bymccto
add(root, a- - -) cst(e) cst(e)

add(root, d- -) cst(a) T(adado
split(root, ad) cst(adad) T(dado

addad, ¢ - -) cstadad) T(dado
split(root, d) cst(adad) T(ado

addd, c---) cst(adad) T(ado

add(root, c- - -) cstadad) T(do

340 R. Giegerich and S. Kurtz

3. This transformation sacrifices the on-line propergcwill always read ahead afkk
in t. This lookahead is quantified in Proposition 5.5.

Assertion 2 is confirmed by the measurements in [15]. In fact, this invariance of
the relative efficiency ofikkandmccmade us first wonder about a deeper relationship
between these two algorithms. We were incited further by a note in [25], where Ukkonen
remarks that, on the technical level, the main difference betwklkandmcclies in the
way in which character reads and suffix link traversals are arranged over the loops of the
program. Our study confirms, concretizes, and explains this observation.

4. Development ofukk and mcc

4.1. A Short Derivation of ukk Space does not allow a complete derivatiorukk
here. We only give a short explanation together with the concrete algorithm, and refer
the reader to the development in [25] or [15].

On-line construction means generating a series of suffix trees for longer and longer
prefixes oft. While cst(e) is trivial (just theroot with no edges), we study the step from
cst(p) to cst(pa), wherep is a prefix oft anda is the next character into be read. To
constructcst(pa) we have to insert some suffixes pé into cst(p). Let sabe a suffix
of pa. ukkis based on the following observations about suffixes:

e If |sa > |a(p)al, thensis not a nested suffix gb and thuss corresponds to a leaf in
cst(p). In such a cassawill correspond to the same leaf ast(pa) by the implicit
growing of the corresponding open edge.

o If lx(p)al > |sa > |a(pa)|, thensais a relevant suffix ofpa, and a new leafa
must be introduced.

e If |@(pa)| > |sa, then no action is required, sinsa already occurs icst(p).

In ukka suffixs is represented by its canonical reference pair. To make reference pairs
canonical we use a functiaranonize When the relevant suffixes gfa are processed
in their natural order, i.e., by decreasing length frep)a to (excluding)x(pa), the
corresponding canonical reference pairs can be accessed via the suffix links.

With the prefixp of t globally given,ukktakes four arguments with each call:

T = cst(p).

The setlL of suffix linksinT.

The canonical reference pal, u) of a(p).

The positioni, such thatp = t; - - - tj_; andt; is the next input character to be read.

For convenience we dendbeby L (b), wheneveb — b’ € L.
The access from one canonical reference pair to the nextis accomplished by a function
link, which is defined as follows:
. — e, if b = root,
link(T, L. (b, &) = {(L(B), 8, otherwise

canoniz€T, (b, w)), if b = root,

link (T, L, (b, cw)) = {canonizeT, (L(b),cw)), otherwise

From Ukkonen to McCreight and Weiner 341

Let n = |t|. ukkis simply an iteration of a functionpdatethat inserts the relevant
suffixes.

- . T, ifi =n+1,
ukk(T. L, (b,). 1) = {ukk(T’, L', (B, u),i + 1), otherwise
where(T’, L', (b/, u')) = updateT, L, (b, u), i).

To constructst(t), the initial call ofukkis ukk(@, @, (root,), 1). Now we define the
functionupdate For each relevant suffixipdatecreates (if necessary) a new branching
node by edge splitting, and sets its suffix link. It adds a new open edge for the new suffix,
and advanced, u) via the suffix link to the next suffix, until the canonical reference pair
of a(pt) is reached. The functiocenonizds applied whenever the right component of
areference pair is extended by a new character. As indicated in Section 2, edge labels are
now implemented as index pairs. The péir) denotes the labdj - - - t., while (i, c0)
denotes the suffik - - -

(T, L, canonizeT, (b, 1)), if b has at;-edge

= J(Tudb,e),i) L, (b e), else ifb = root,
updateT. L. (0. &)1 =1 pdateT L (b, e). i.
L, (L(b), &), 1), otherwise

- (T, L, canonizeT, (b, cwt))), if iy =t
updateT, L, (b, cw), i) = update{:l’ L ((b, cw), i),
L', (b, u), 1), otherwise

whereb 3 7 is ac-edge,(b’,) = link(T, L, (b, cw)), andL’ = L U {(bcw, b'w)}.
The expressio u ((b, u), i) denotes thed"-tree that results from inserting the
suffix bug - - - into T. It is formally defined as follows:

(l 00) T—

Tu(b,e),i) = TU{b— b},
a,ry _ (k+1,r) —— (,00) —

Tub, cw), i) = T3 5h U b bew “Y 5, bew 3 by},

whereb 13 7 is ac-edge ank = | + |w|.
The first equation fors implements the abstraetdd-operation of Section 3. The
second equation corresponds tspdit/add-combination.

4.2. A Short Description of mcc Before we embark on the derivationratcfrom ukk
we give a short intuitive description of our target. The complete algorithm is given in
Section 5, at the end of our transformation series.

mccconstructEst(t) by successively inserting the suffixegdfito an initially empty
tree, from longest to shortest. It produces a sequence

cst(e), T(ty---tn), T(t2-- - tn), ..., T(tn1tn), T(tn) = CSK1)

of compactA*-trees, of which only the first and the last one is a suffix tree. The initial step
of mccistrivial: T(t) = T (11 - - - t,) is obtained frontst(e) by inserting the longest suffix

t. Thus,T(t) is the compacid*-tree with only one edgmot—t> t. Letas be a suffix

342 R. Giegerich and S. Kurtz

of t, and supposg = headas). For the step fronT (as) to T (s), mccfirst determines
tail(s) and the canonical reference p#iof y = head(s) in constant time fronk and
tail(ag). This is accomplished by following suffix links and scanning downward in the
actual tree using a functicstan(see Section 5.1). Then it construdigs) from T (as)

by splitting for the nod¢y (if necessary) and adding a leaf edge labétglds).

5. Transforming ukk into mcc

5.1. A Series of Program Transformations from ukk to mcmccassumes thatends
with a sentinel. We assume the same in the rest of this section.
In Figure 5 we saw thatkk produces a sequence

cstie), cstty), cst(tity), ..., cst(t),

which might contain a subsequence of suffix trees, in which only the leafs grow im-
plicitly with the length of the input string. In the sequence of trees producethdyy

there are no such “nonessential” subsequences, i.e., every step produces a tree of a
different structure. In the following we show that it is in fact the additional “nonessen-
tial” steps inukk that make the difference between both algorithms. Technically, we
transformukk stepwise into equivalent functionskk;, ukly, andukks, such thatukks

does only “essential” derivation steps. Equivalence means thatfod, 2, 3 we have

ukk(@, @, (root, ¢), 1) = ukk (9, @, (root, ¢), 1), and that linear-time complexity is pre-
served. Fromukk; we synthesize a definition oficc

DEFINITION 5.1 (Essential Steps). A derivation stek (T, L, (b, w),i) = ukk
(T, L, (h,q), j), k = 1,2, 3, isessential if the set of edges i’ is different from
the set of edges iiii.

The first transformation step does not affect the essential steps. It simply eliminates
the functionupdatein ukk yielding an equivalent functionkk;:

ukky (T, L, (b, &), 1)

T, _ ifi =n+1, D
] ukky(T, L, canoniz€T, (b, t))),i + 1), else ifb has at;-edge (2)
~ ukk (T L ((b, &),i), L, (b, e),i +1), else ifb = root, 3
ukky (T L ((b, €),1), L, (L(D), &), i), otherwise 4)
ukky (T, L, (b, cw), i)
T, _ ifi =n+1, (5)
= { ukk(T, L, canoniz€&T, (b, cwt)), i+ 1), else iftyjcu; = ti, (6)
ukke (T U ((b, cw), i), L', (b, u), i), otherwise @

whereb 2 5eT s ac-edge b/, u) =link(T, L, (b, cw)), andL’= L U {(bcw, b'u’)}.
To developukk, we need the following lemmas.

LEMMA 5.2, Let csa be a relevant suffix of pauch that s is not a right-branching
p-word Then sa is a relevant suffix of pa

From Ukkonen to McCreight and Weiner 343

PROOE By assumptiongsis a nested suffix op. This implies that is a nested suffix
of p, i.e., p = vcsdw, for some string®, w and some charactek Sincecsais not a
p-word, we haved # a. Supposep = v'sdw’ for some characted’ and some strings
v andw’. Thend = d’, since otherwiss would be right-branching ip. Henced’ # a,
i.e.,sais not ap-word. Thussais a relevant suffix opa. O

LEMMA 5.3. Consider a derivation

(%) e = ukk (¥, @, (root, ¢),1) = e;--- = ey = Csf(t).

1. ey = cstit) is derived from g_; by an application of1).
2. Assume thatyg; is derived from gby an application of6). Then we hav@ < k <
N — 1 and g is derived from g_; by an application of2) or (6).

PROOFE 1. Letey_; = ukky(T, L, (h,q),i +1),suchthai =n.Letp=1t;---t_3
and assume that # . Theney_; is derived fromey_, = (T, L, (b, w),i) by an
application of (2) or (6). Hencbwt; occurs inT, i.e., bwt; is a p-word and thus the
charactet; occurs inp. This is a contradiction, sindgis the sentinel in. Henceq = &,
i.e.,ey is derived fromey_1 by an application of (1).

2. We havek > 0, since (6) cannot be applied #&3. k < n — 1 follows from
Statement 1e, could not be derived frore,_1 by an application of (1), (3), (4), or (5),
since this would lead to an expression, to which (6) is not applicable. We show that this
is also true for (7). Assume that is derived frome,_1 by an application of (7). Hence
a1 = ukky(T, L, (b,cw),i) ande, = ukky(T U ((b, cw),i), L', (B, u),i), where
(o', u) = link(T, L, (b, cw)) andL’ = L U {(bcw, b'w’)}. By assumptiony’ # ¢. Let
p=t;---ti_; anda = t;. Now observe thaicwa is a relevant suffix opa and thab’'u’
is not right-branching irp. By Lemma 5.2p'u’a is a relevant suffix opa, i.e.,b'u’ais
not ap-word. Henceb'u’a does not occur isst(p) and therefore not it L ((b, cw), i).
Thust1cq # t and (6) is not applicable te,, which is a contradiction. Henaos is
derived frome,_; by (2) or (6). O

Consider a maximal subderivati@@ = --- = &«my1 Of derivation(x), in which
only (2) or (6) is applied. By Statement 2 of Lemma 5.3 we can concludesthat
is derived frome, by an application of (2). lex = (T, L, (b, ¢),i), theneuymi1 =
(T, L, (h,q), j) and((h, g), j) is the information we need to insert the sufiit; 1 - - -
into T. We havehqttj,,--- = btiti;1---, such that(h, q) is the canonical reference
pair of the longest prefix dititj 1 - - - that occurs inT. Thus to computey . m.1 from e
we can start at node scan a prefi; - - - tj_1 of titj+1 - - - until we “fall out of the tree®
and canonize the reference péi t; ---tj_;) to obtain(h, q). Instead of computing
((h, g), j) by some nonessential steps using (2) or (6) we use a funstiam

_ ((b, £),1), if b has not-edge
scan(T, b,i) = { ((b, p),i + [pD), elseifip| <r —1+1,
scanT, Vv, i+ |pl), otherwise
whereb 4 v is atj-edge, ando is the longest common prefix gf- - - t. andtjtj ;- - -.

5 The sentinel ensures that this must happen béftreg - - - is exhausted, since it cannot be a nested suffix.

344 R. Giegerich and S. Kurtz

If we usescanto computes,m1 from e we do not need (2) and (6). Furthermore,
from Statement 1 of Lemma 5.3 we learn that (5) is not necessary. Hence we can transform
ukk; into the following equivalent functionkk:

ukle(T, L, (b, &), 1)

T, ifi=n+1, (8

ukle(T, L, (h, @),), elseifj > i, 9)

ukle(T U ((h, @),), L, (h,q), j+ 1), elseif(h,) = (root, &), (10)

ukke(T U ((h, @), j), L, (L(h),), j), otherwise (11
where((ﬁ,), j) = scan(T, 5,)]

ukke(T, L, (b, cw), i) = ukke(T u ((b, cw), i), L', (0, u), i), (12)

where(b/, u’) = link(T, L, (b, cw)) andL’ = L U {(bcw, b'u’)}.

Notice that (10) and (11) result from substitutidy) by (h, g) andi by j in (3)
and (4). This is correct, sinag®, q) = (b, €), whenevei = j. Obviously, the program
transformation fromukly to ukk, does not affect the linear-time complexity, since a
sequence ofn nonessentialikk -derivation steps with a single character comparison is
transformed into a single nonessenti#lk,-derivation step withm character compar-
isons, that are done in the same order. However, by the useaofthe indexi starts
to advance through the string without extra callsikdg. This is where we give up the
on-line property. At the same time, this is where we gain the slight speed advantage of
mccoverukk[15] by eliminating successive calls tidk; andcanonize

The next step is to eliminate the single nonessential steps in the derivation of the form
e = ukk (@, @, (root, ¢),1) = e, --- = ey = csf(t). Let 0 < k < N and assume that
& = Ukk(T, L, (h,q), j) is derived from the expressiaq_; = ukk(T, L, (b, ¢), i)
by an application of (9), whergh, q), j) = scan(T, b, i). Sincet has a sentinelj, < n.
Let q = . Then we can derive, 1 from e, using (10) or (11). Sinc&h, q), j) =
scan(T, h, j) we find thatg., 1 equals the right-hand side of (10) or (11). e ¢. Then
only (12) can be applied & derivinge.,1 = ukk(Tu((h, q), j), L, (0, u), j), where
(', u) = link(T, L, (h, q)) andL’ = LU{(hq, b'u)}. Hence foiq # ¢ the nonessential
step fromec_1 to & can be merged with the step from to e 4, if we substitute (9),
yielding the following equivalent functionkks:

ukks(T, L, (b, &), 1)

T, ifi =n+1, (13
_Jukke(Tu((h,q),), L, (h,q),]+, elseif(h,) = (root, &), (14
~ Jukks(T L ((h,), j), L, (L), &),), else ifq = ¢, (15)

ukks(T U ((h, @),), L', (o, u),), otherwise (16)

where((h,), j) = scan(T, b, i), (0, ') = link(T, L, (h, @), andL’ = LU{(hg, b'u)}.

ukks(T, L, (b, cw), i) = ukks(T L ((b, cw), i), L', (b, U), i), (17)

where(0/, u’) =link(T, L, (b, cw)) andL’ = L U {(bcw, b'u’)}.

From Ukkonen to McCreight and Weiner 345

Obviously,uklks-derivation steps are always essential. Furthermore, the transforma-
tion from ukk, to ukks does not affect the linear-time complexity. As the next step we
synthesize the definition of a functionccwith the following properties:

_ Ukk(T, L, (b,u),i +1), if (b,u) = (root, &),
mcaT, L, (b, u),i) = { ukks(T, L, (L(b), u), i), if b # rootandu = ¢,
ukke(T, L', (', u), i) if U e,

where(/, u') = link(T, L, (b, u)) andL’ = L U {(bu, b'w’)}.
Consider the following cases:

Casel: (b,u) = (root, &). ThenmcqT, L, (b,u),i) = ukks(T, L, (b,u),i +1). If
i = n, thenukks(T, L, (b,u),i + 1) reduces tal' by an application of (13). If < n,
then let((h, q), j) = scanT, b,i + 1). Now ukks(T, L, (b, u), i + 1) reduces to

ukke(T U ((h,), j), L, (h,a), j+1), if (h,q) = (root, &),
ukke(T L ((h, g), |), L, (L(h),),), if h # rootandq = ¢,
ukke(T L ((h, @),), L', (0, u), j), if q#e,

where(0', u') = link(T, L, (h,g)) andL’ = L U {(hq, b'w)}. By definition, the three
expressions are equaltocaT u ((h, q), j), L, (h,q), j).

Case2: b # root and u=&. ThenmcaT, L, (b, u),i) = ukie(T, L, (L(b), &),). If
we let((h, g), j) = scanT, L(b), i), thenukks(T, L, (L(b), &), i) reduces to

ukke(T U ((h,a), j), L. (h,), j+1), if (h,q) = (root,)
ukke(T L ((h, q), j), L, (L(h),),), if h # rootandq = &,
uklks(T L ((h,),), L', (b, u),), ifq#e,

where(D/, u') = link(T, L, (h,)) andL’ = L U {(hqg, b'u’)}. By definition, the three
expressions are equalmeca T u ((h,), j), L, (h,q),).

Case3:u # e. ThenmcdT, L, (b,u),i) = ukk(T, L', (b/,), i) where(t/, u') =
link(T, L, (b, u)) andL’ = L U {(bu, b'u’)}. Consider the following subcases:

e U =c¢.Let((h,Q),j)=scanT,b,i). Thenukks(T, L’, (b, u), i) reduces to

ukle(T U ((h,a). j). L', (h,q), j +1), if (h,q) = (root, &),
ukla(T L ((h, @),), L', (L(h), &),), if h # rootandq = e,
ukle(T U (h, @),), L”, (0", u"),), ifq+#e,

where(b”, u”) = link(T, L', (h, q)) andL” = L’ U {(hqg, b’u”)}. By definition, the
three expressions are equahted T U ((h, @), j), L', (h,q), j).

o U # e Let(b’,u”) = link(T, L', (b,u)) andL” = L' U {(’v, b’u”)}. Then
ukls(T, L', (b, u), i) reduces taikks (T L (b,), i), L”, (b7, u”), i), which equals
mea T u (b, u), i), L', (0, u),).

346 R. Giegerich and S. Kurtz
Putting it all together we get the following definition wfcc

meaT, L, (b, u), i)

T, if i =nand(b, u) = (root, ¢),
_ JmecaT uh, @),). L, (h,q),), elseifu =e¢,
I meaT u(th,q), . L', (h,a), j), elseifu’ =&,

meaT u (b, u), i), L, (0, u), i), otherwise
where(b/, u’) = link(T, L, (b, u)), L’ = L U {(bu, b'u’)}, and

i scan(T, b, i +1), if (b, u) = (root, ¢),
((h,q), j) = {scanT, L(b), i), else ifu = ¢,
scan(T, b, i), else ifu’ = .

This definition ofmccis equivalent to the one we have developed directly in [15]. From
the specification ofccit is easy to see that the only difference betwakk; andmcc

is that the computation of some information is delayed one stepca There is no
difference in the order or number of computation steps.

PrROPOSITIONS.4. Forn = |t], mcq{root(l—’nﬁ t}, @, (root, &), 1) returns cstt) in O(n)
time

PROOF By construction ofncg we have

ukkg({root(l—’nﬁ t}, 4, (root, ¢), 2)
ukks (@, @, (root, €), 1)

ukk(@, @, (root,), 1)

= csft(t).

mcc{{root(l—’nﬁ t}, 9, (root, &), 1)

Since mcc is derived fromukk by eliminating nonessential derivation steps, with-
out affecting the number or order of essential stapsgc inherits the linear-time
property. O

5.2. Synchronization Points Between ukk and mcé/e call “point i” the situation after

e ukkhas constructed the suffix trestt; - - - tj),
e mcc has constructed thglt-tree T(t; - - - tn), i.e., the suffixt; - - -t, has just been
inserted.

At this point,ukkhas read no character bbeyondt;. If t; does not occur to the left
in t, it behaves as a sentinel for- - - tj, and bothukk and mccwill have constructed
cst(t; - - - t;), and no character beyoridhas been read. However, generattycc has
scanned further in. We call the additional characters read togc its lookahead at
pointi.

From Ukkonen to McCreight and Weiner 347

PROPOSITIONS.5. Letcw = tail(t; ... t,) for some character ¢ and some stringThe
lookahead of mcc at pointi is

(i) e, ifheadt---ty) =&,
(iiy uc, if headt; ---t;) = tju.

PROOFE Intuitively, it is clear that need not be scanned beyond in order to insert

the new open eddgu N Formally, this can be verified against the implementation of
mccgiven in Section 5.1. O

What does this mean with respect to practical matters? On-line construction is at-
tractive when the suffix tree is intended to be used to searcfirébroccurrences of
words int. If a word occurs irt, only the suffix tree for the prefix dfending with the
first occurrence must be constructed. Further queries may further expand the tree. Thus,
suffix tree construction time is amortized over a series of queries. This is the practical
advantage ofikkbeing an on-line algorithm.

With the complete input string available—say as a character file—it does not really
matter whether the partial tree construction stops exactly after the first occurrence of the
search key, or some characters beyondcmay as well be interleaved with queries for
firstoccurrences, and, inthis sense, it shares the advantages of a truly on-line construction.
On the other hand, whdris incrementally calculated by some other computation—say
as a character stream—then the difference mattdéisis more lazy thammcg and the
extra characters called for Imgccmay induce an overhead of arbitrary dimension.

6. An Explanation of Weiner's Algorithm. In this section we go back to the roots
and take a look at the “Algorithm of the Year 1973 (D. E. Knuth according to [19]).

Our explanation ofvrf is quite different from the treatment by Chen and Seiferas [10].
They restate Weiner’s algorithm in a less technical, even prosaic, form. Our approach is
to relatewrf to ukk We explainwrf using today’s terminolog¥thus revealing its close
relation to the algorithms discussed in the previous sections.

6.1. An Abstract Explanation Before we enterthe detailed analysis, we first take alook

at Weiner’s algorithm in terms of our abstract tree construction operations of Section 3.
wrf reads the input stringfrom right to left, and successively inserts suffixes, shortest
first. Figure 6 shows how the suffix tree arises from a seriegldfsplit-operations. As

with ukkandmcg the crux lies in the efficient way of moving from one insertion point

to the next, e.g., from nodto nodead. Having read through all the previous sections,

you might say: well—just follow the suffix linkd — d in reverse direction! This idea

is not totally wrong, but the general case is not as simple, and, besides, reverse links are
more expensive, and they usually exist oafter we needed them . .

6.2. Traversing a Tree That We Do Not ConstrucAssume it is 1973 and little is
known about suffix trees. The first natural thing to think of is on-line construction,

6 Weiner [26] calls the suffix tree prefix tree, and vice versa, and the overall treatment is very technical.

348 R. Giegerich and S. Kurtz

add(root)

add(root,dc)

add(root,adc)

split(root, d)
add(d, adc)

split(_root, ad)
add(ad, adc)

Fig. 6. Sequence of trees producedusf fort = adadc

successively building the tree for longer and longer prefixes Biowever, a problem
arises immediately: existing leaf edges will have to be extended for each new character,
leading to an®(n?)-algorithm. Since this problem will only be solved by Ukkonen’s
open edges in 1992, we instead prodefssm right to left. This way, leaves will always
represent a suffix and need to be changed less frequently. This decision is quite logical—
but it will bring us into tremendous difficulties shortly. Anyway, we will be building the
tree successively for longer and longer suffixe$,a&fo we have an on-line property in

the reverse direction. We call this the anti-on-line property.

Supposasis a suffix oft. To obtaincst(as) from csft(s), a naive anti-on-line algorithm
determines the longest prefbof asthat is ars-word. This is accomplished by walking
down the path foasin csi(s) as far as possible. Lety = as. One of the following cases
will arise:

1. If Gis aleafincsts), then the leaf edge —— G is replaced by the leaf edge—— Tv.
2. If G is not a leaf incst(s), then the algorithm splits faun if necessary, and adds an

edged —> TUv.

Later authors will suggest similar naive versions of other algorithms [18], [14], and
it will be shown that their efficiency i©(nlogn) in the expected case [6]. The factor
logn comes from walking the tree from the root to the point of insertion. Fapé&m)-
algorithm we must access this pointdh(1). As the stringu above equale—'(as), our
problem is solved, if for each iteration we can hop directly from one active prefix node
to the next, and of course, we know exactly where it is:

From Ukkonen to McCreight and Weiner 349

PROPOSITION6.1. There is an edgel — 5 in csts), st. @ X(s) = uv and w is
nonempty

PROOF Letu be the longest prefix of that is right-branching is. Thenu is a nested
prefix of s. Thus we can conclude 1(s) = uv for some string. Moreover, there is a

nonempty stringw, s.t.a~1(s)yw = s. Hence there is an edge-——> 5 in cst(s). O

So the “old” active prefix is always at hand, just above the leaf inserted in the previous
step, but how do we hop to the “new” onedn1)?

Glancing ahead into the future, we see Ukkonen’s on-line algorithm swinging easily
from active suffix to active suffix, using the suffix links. We are doing an anti-on-line
construction, and are interested in active prefixes. If only wedsid=!) available!
Sincea~1(as) is a prefix ofac~(s) we could then determine—*(as) by following
the (reverse) prefix links, shortenirg(s) from the right, until we find a prefixp,
such thatap~! occurs incst(s™). If such ap exists, therw—'(as) = ap~!. Otherwise
a l@s) =«.

EXAMPLE 6.2. Lets = bcdeabcbcdfbcdeFigure 7 shows the relevant parts in

cst(s™1) (plus the new outgoing-edge from nodbzd) and the way frona(s™1) = edcb
toa((as)~1) = cba For the sake of comparison with Figure 8, reference pairs are written
from right to left.

Of course, we cannot simply construct the reverse prefix tree, since this is the dual of
the problem we started to solve. However, with some additional effort, we can use the
suffix tree to simulate the above walk through the reverse prefix tree! This is the essential
idea of Weiner’s algorithm, and at the same time the reason for its extra complexity.

We consult Proposition 2.12. From Statements 1 and 2 of Proposition 2.12 we know
that (and howjcst(s)) ! approximates the reverse prefix tree. From Statement 3 we learn
that the reversed edgesast(s) are the suffix links ofcst(s)) 4, i.e., they approximate
the prefix links! Thus if we make the edgesast(s) bidirectional, this will be sufficient
to approachy—(as) from a=1(s).

m..(bcde,?)

(bede F) Tink (bed,E)

canonize'(e‘b':d) Tink (e:b¢) down (a,bc)

enter relevant
prefiz (...a,bed)

Fig. 7. The way froma(s—1) = edcbto a((as)~1) = cbha

350 R. Giegerich and S. Kurtz

(bed.e)
(bcde...,6) o> (bed,e) 5> (bedye) - (bee) (Z,abc)

up Wdown

over
(€i(be)) — (F,a(be))

Fig. 8. Relevant parts ofst(s).

A final problem remains, and its solution is less elegant and much more expensive.
After all relevant suffixes are inserted, Ukkonen'’s algorithm follows an edge in the suffix
tree downward. By analogy, we need to walk along a prefix edge once hefb@s) is
reached. This means we must make an additional effort to record prefix edges between
the nodes o€st(s). Summing up, we need the following extra information:

(1) The edges ofst(s) must be bidirectional, such that we can traverse them upward.

(2) For each node inst(s) and eacla € .4 we must indicate whether this node would
have ara-edge incst(s™1). We call this a pending prefix edge.

(3) If the target node of this edge also happens to be a nodsi(s), then we record
this as a proper prefix edge.

This is how we now simulate the traversal of prefix linksats™%) by usingcst(s) and

this auxiliary information: the traversal starts at the leaf below the active prefix, i.e., at
5, and moves upward until amprefix edge is indicated. If the edge is pending, we must
take a detour higher up in the tree, recording its length (in characters), until we hit a node
which has a propea-prefix edge. We follow this edge, and then proceed downward in
cst(s) according to the recorded length of the detour.

EXAMPLE 6.3. Lets = bcdeabcbcdfbcdas in Example 6.2. Figure 8 shows the
relevant parts ircst(s) and the way fromx—1(s) = bcdeto e 1(as) = abc. Nodebc

is the one with the pending prefix edge, where the detopyover, down) starts. The
extra parentheses arouhdindicate the characters which account for the length of the
detour. It is not typical that this traversal passestiod, but an even more sophisticated
example would be necessary to demonstrate this.

During this traversal, we must also create and update the extra information, and make
sure that we can do all this if?(1) on the average (see Section 6.3).
Summing up, we may say that Weiner’s algorithm has a touch of tragedy and heroism:

From Ukkonen to McCreight and Weiner 351

faced with the problem of growing leaf-edges, it turns to anti-on-line construction. This
means having to traverse the reverse prefix tree while only the suffix tree is to be con-
structed. This adds an almost unsurmountable amount of difficulty-wusucceeds

in handling it within the linear-time constraint.

6.3. Extra Costs of wrf Here we detail the extra costs in time and space that result
from wrf’s simulated traversal of the reverse prefix tree. Recall the extra information
required bywrf (see items (1)—(3) preceding Example 6.3).

The extra pointer needed for (1) is equivalent to the effort of storing suffix linkkkn
andmcc It is the extra data structures for pending and proper prefix edges which make
wrf more space consuming, and their maintainance makes it slower than the others.

Still, this extra information can be maintained with a fixed effort per node visited.
Wheni - Tow is split for Uy, this node inherits its proper and pending prefix edges
from the leafuvw. The new leaf, representing the longest suffix, naturally has no prefix
edges when created. Finally, prefix edges of a node on the pathofréts) upward
must be updated. They all have a pendigrefix edge now, and if there is an explicit
nodeliv, we record the proper prefix edge — atv.

At this point, we are left with one final question: while a traversal along prefix links
can be easily shown to add up@n) node visits overall, it is not obvious that the same
is true when we traverse the suffix tree instead. Our “detour” may take us up all the way
to the root, and back down. This is also exemplified in Figure 8. In fact, if this happened
at each iteration, we would essentially be back at the naive anti-on-line algorithm. How
can we prove that this form of traversal does not visit more théam nodes in total?

LEMMA 6.4. As abovelet U be the node encountered which has a proper a-prefix,edge
and let aw = «~1(s). Then there is no node betweaua andatv.

PrROOF The only possibility for a node betweani andauv is whenv = xy, x # ¢,

y # g, andauxis an explicitnode. Itis aninner node, and the remark after Proposition 2.9
applies. So its suffix link points to the nod&, which then has a properprefix edge.
This contradicts the definition af being the first such node on the traversal. O

So from the “summith of the detour we descend at most one node. We now consider
the depth of the nodes (from the root) visited: it is first decreased by the detour, and
then increased by at most 1. The tree BH8) nodes. Since the sum of all increases is
bounded by, the decreases cannot add up to more thmat2nce the number of nodes
visited over all detours i®(n).

7. Conclusion. We have reached the end of our investigation, and the conclusion
is clear: the three suffix tree constructions consideredf—mcg andukk—are more
closely related than is commonly assumed. While all three’qr®-algorithms, their
relative virtues are different:

o ukkis on-line, the most elegant construction, and the clue to understanding the others.
e mccis the most efficient construction, by a small margin aviek

352 R. Giegerich and S. Kurtz

o wrf has no practical virtue (it uses significantly more time and space), but remains a
true historic monument in the area of string processing.

The notion of active suffixes, suffix links, and the duality between suffix link trees and
prefix trees are the cardinal points of linear-time suffix tree construction. Although there
is no truly formal way to express this, we conjecture that any sequential suffix tree
construction not based on these concepts will fail to mee@x®-criterion. This does

not pertain to parallel constructions like [20].

Acknowledgments. Gene Lawler encouraged us to exploit our duality observation
for explaining suffix tree construction. Dan Gusfield and Richard Karp directed our
attention to the manuscript by Pratt [19]. Dan Gusfield also provided a carefully written
exposition of Weiner's algorithm. Many discussions with Esko Ukkonen improved our
understanding of suffix trees. The careful comments of the referees gave valuable hints
to improve the exposition. All their contributions are truly appreciated.

References

[1] A. Aho. Algorithms for Finding Patterns in Strings. In van Leeuwen, J., editandbook of Theoretical
Computer Scien¢&blume A, pages 257-300. Elsevier, Amsterdam, 1990.

[2] A. Aho and M. Corasick. Efficient String Matching: An Aid to Bibliographic Seat€bmmunications
of the ACM 18:333-340, 1975.

[3] A.V.Aho, J.E. Hopcroft, and J.D. Ullmamata Structures and AlgorithmAddision-Wesley, Reading,
MA, 1982.

[4] A. Apostolico. The Myriad Virtues of Subword Trees. In [5], pages 85-96, 1985.

[5] A. Apostolico and Z. GalilCombinatorial Algorithms on Word$Springer-Verlag, New York, 1985.

[6] A. Apostolico and W. Szpankowski. Self-Alignments in Words and Their Applicatidoarnal of
Algorithms 13:446-467, 1992.

[7] R.A.Baeza-Yates. String Searching Algorithms. In W. Frakes and R.A. Baeza-Yates, ddftoraa-
tion Retrieval Algorithms and Data Structurepages 219-240. Prentice-Hall, Englewood Cliffs, NJ,
1992.

[8] A.Blumer,J.Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas. The Smallest Automaton
Recognizing the Subwords of a TeXtieoretical Computer Scienc#0:31-55, 1985.

[9] W.I. Chang and E.L. Lawler. Sublinear Approximate String Matching and Biological Applications.
Algorithmica 12(4/5):327-344, 1994.

[10] M.T. Chen and J.I. Seiferas. Efficient and Elegant Subword Tree Construction. In [5], pages 97-107,
1985.

[11] T.H.Cormen, C.E. Leiserson, and R.L. Rivéstroduction to AlgorithmsMIT Press, Cambridge, MA,
1990.

[12] M. Crochemore. String Matching with ConstraintsPimceedings of th&€988International Symposium
on Mathematical Foundations of Computer Sciemames 44-58. Lecture Notes in Computer Science,
Volume 324. Springer-Verlag, Berlin, 1988.

[13] M. Crochemore and W. Ryttefext AlgorithmsOxford University Press, Oxford, 1994.

[14] R. Giegerich and S. Kurtz. Suffix Trees in the Functional Programming ParadigPmoteedings of
the European Symposium on Programm{BE$SOP 94), pages 225-240. Lecture Notes in Computer
Science, Volume 788. Springer-Verlag, Berlin, 1994.

[15] R.GiegerichandS. Kurtz. AComparison of Imperative and Purely Functional Suffix Tree Constructions.
Science of Computer ProgrammirH(2-3):187—-218, 1995.

[16] G.H. Gonnet and R.A. Baeza-Yatés$andbook of Algorithms and Data Structures in Pascal and C
Addison-Wesley, Reading, MA, 1991.

From Ukkonen to McCreight and Weiner 353

[17]
(18]
[29]
[20]
[21]
[22]
(23]
[24]
[25]

[26]

S. Kurtz. Fundamental Algorithms for a Declarative Pattern Matching System. Dissertation, Technische
Fakul&t, Universitt Bielefeld, available as Report 95-03, July 1995.

E.M. McCreight. A Space-Economical Suffix Tree Construction Algoritdournal of the ACM
23(2):262-272, 1976.

V.R. Pratt. Improvements and Applications of the Weiner Repetition Finder. Unpublished manuscript,
Cambridge, MA, 1973.

S.C. Sahinalp and U. Vishkin. Symmetry Breaking for Suffix Tree ConstructidAtdoeedings of the

26th Annual ACM Symposium on Theory of Compuytpages 300-309, 1994.

R. SedgewickAlgorithms Addision-Wesley, Reading, MA, 1988.

G.A. StephenString Searching Algorithm&\Vorld Scientific, Singapore, 1994.

J. Stoye. Affixt@iume. Master’s Thesis (in German), Technische Fakultiiversitit Bielefeld, 1995.

E. Ukkonen. Constructing Suffix Trees On-line in Linear TirAgorithms Software Architecture In

van Leeuven, J., editomformation Processing2, Volume |, pages 484-492, Elsevier, Amsterdam,
1992.

E. Ukkonen. On-line Construction of Suffix-Trees (revised version of [248orithmicg 14:249-260,

1995.

P. Weiner. Linear Pattern Matching Algorithms.Pnoceedings of th&4th Annual IEEE Symposium

on Switching and Automata Theopages 1-11, 1973.

