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From Ukkonen to McCreight and Weiner: A Unifying
View of Linear-Time Suffix Tree Construction1

R. Giegerich2 and S. Kurtz2

Abstract. We review the linear-time suffix tree constructions by Weiner, McCreight, and Ukkonen. We
use the terminology of the most recent algorithm, Ukkonen’s on-line construction, to explain its historic
predecessors. This reveals relationships much closer than one would expect, since the three algorithms are
based on rather different intuitive ideas. Moreover, it completely explains the differences between these
algorithms in terms of simplicity, efficiency, and implementation complexity.
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1. Motivation and Overview. Suffix trees provide most efficient solutions to a “myr-
iad” [4] of string processing problems. The suffix tree for a stringt really turnst inside
out, immediately exposing properties like longest or most frequent subwords. The fun-
damental question whetherw occurs int can be answered inO(|w|) steps—independent
of the length oft—once the suffix tree fort is constructed. Thus it is of great importance
that the suffix tree fort can be constructed and represented in linear time and space.

In spite of their basic role for string processing, elementary books on algorithms
and data structures barely mention suffix trees, and never give efficient algorithms for
their construction [3], [21], [11], [1], [16], [7]. Recent exceptions are [22] and [13]. The
reason for this is historical: starting with the seminal paper by Weiner [26], suffix tree
construction has built up a reputation of being overly complicated. The purpose of this
paper is to correct this reputation—by working out what is essential about efficient suffix
tree construction, and what is unnecessary complexity.

More precisely, we review the linear-time algorithms of Weiner [26], McCreight [18],
and Ukkonen [25]. We call these algorithmswrf,3 mcc, andukk.

We use the terminology of the most recent algorithm, Ukkonen’s on-line construction,
to explain its predecessors. This reveals relationships much closer than one would expect,
since the three algorithms are based on rather different intuitive ideas. Moreover, it
completely explains the differences between these algorithms in terms of simplicity,
efficiency, and implementation complexity.

1 Work by the first author was supported by a grant from the International Computer Science Institute, Berkeley,
CA, USA.
2 Technische Fakult¨at, Universität Bielefeld, Postfach 100 131, D-33501 Bielefeld, Germany.{robert,
kurtz}@techfak.uni-bielefeld.de.
3 wrf stands for the historic name “Weiner’s repetition finder” used in [19].
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In Section 2 we take some time to establish carefully the terminology necessary for
suffix tree construction. New aspects of this section are a more generalized definition of
suffix links, and observations concerning their duality with reverse prefix trees.

Section 3 gives an exposition of Ukkonen’s and McCreight’s algorithm on a very
abstract level, showing that their different intuitive ideas lead to the same sequence of tree
constructing operations. The two following sections make this observation more precise.
A derivation of Ukkonen’s algorithm is given (Section 4), and then Ukkonen’s algorithm
is transformed into McCreight’s algorithm. Section 5 explains the transformation steps.

Section 6 revisits Weiner’s algorithm. In a sense that is made precise there,wrf is
shown as a version ofukkworking on the “wrong” tree. Section 7 concludes.

As you see from this overview, the purpose of this paper is purely academic—no new
algorithms, no improvements of old ones. Just a few explanations about how the known
ones relate. If you have ever been puzzled by the complexity of linear-time suffix tree
construction, we hope you will enjoy just reading through Sections 2, 3, and 6. The more
technical material in Sections 4 and 5 may be safely spared out for a later reading.

2. Suffix Trees and Their Duality Properties

2.1. A+-Trees and Suffix Trees. LetA be a finite set, thealphabet. The elements of
A arecharacters. ε denotes theempty string,A∗ denotes the set ofstrings overA, and
A+ = A∗\{ε}. We usea, c, d, e to denote characters, andb, p,q, s, t, u, v, w, x, y, z
to denote strings. Thereverseof t = t1 · · · tn is tn · · · t1, also denoted byt−1. If t = uvw
for some (possibly empty)u, v, w, thenu is aprefixof t , v is at-word, andw is asuffix
of t . A prefix or suffix of t is proper, if it is different from t . A suffix or prefix of t is
nested, if it occurs elsewhere int . Notice thats is a nested suffix oft , if and only if s−1

is a nested prefix oft−1. We call at-wordw right-branching(resp.left-branching) in
t , if there are different charactersa andc, such thatwa andwc (resp.aw andcw) are
t-words. Of course,w is right-branching int , if and only ifw−1 is left-branching int−1.

DEFINITION 2.1 (A+-Tree). AnA+-tree T is a rooted tree with edge labels fromA+.
For eacha ∈ A, every nodek in T has at most onea-edgek

aw−→ k′.

Suffix trees are introduced below as a special form ofA+-trees. However, most of the
terminology used with suffix tree construction applies toA+-trees as well, so we present
it first.

Let T be anA+-tree. Bypath(k) we denote the concatenation of the edge labels on
the path from theroot of T to the nodek. Due to the requirement of uniquea-edges at
each node ofT , path labels are also unique and we can denotek by w̄, if and only if
path(k) = w. Moreover, byTw̄ we denote thesubtree of Tat nodew̄.

DEFINITION 2.2 (Words Represented in anA+-Tree). A stringw occurs in T if and
only if T contains a nodewu, for someu. By words(T) we denote the set of strings
occurring inT . For alls ∈ words(T) we call(b̄, u) thereference pairof s with respect
to T , if b̄ is a node inT ands= bu. If b is the longest such prefix ofs, then(b̄, u) is the
canonical reference pairof s with respect toT . In such a case we writês= (b̄, u).
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A canonical reference pair of the form(b̄, ε) is called anexplicitnode, since it denotes
the nodeb̄ in T . A canonical reference pair(b̄,aw) is called animplicit node, since the
nodebaw does not exist inT , but can be seen “inside” the edgeb̄

awv−→ bawv.

DEFINITION 2.3 (Atomic and CompactA+-Trees). T is atomic, if every edge inT is
marked by a single character.T is compact, if every node inT is either theroot, a leaf,
or a branching node.

AtomicA+-trees are also known under the name “trie” [2]. Both atomic and compact
A+-trees are uniquely determined by the words occurring in them. In an atomicA+-tree
every node is explicit. In a compactA+-tree, nodes with a single outgoing edge are
implicit nodes.

DEFINITION 2.4 (Suffix Trees).

1. A suffix treefor t is anA+-treeT , s.t.words(T) = {w | w is a t-word}.
2. Theatomic suffix treefor t is denoted byast(t).
3. Thecompact suffix treefor t is denoted bycst(t).
4. ast(t−1) and cst(t−1) are called the atomic and compactreverse prefix treefor t ,

respectively.

Figure 1 shows different suffix trees for the stringaeceaceae.
The reverse prefix tree is, of course, nothing new, but just the suffix tree fort−1. It

plays an important role in explaining suffix tree constructions. We refine our notation by
writing

←
w instead ofw−1 for a node in a reverse prefix tree.

To decide whether a wordw occurs inT takesO(|w|) steps: check if there is a path in
T labeledw. This efficient access to all subwords oft is theraison d’etreof suffix trees.

Fig. 1.Different suffix trees for the stringaeceaceae.
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The following is known about the space requirements for representing atomic and
compact suffix trees (and holds for reverse prefix trees alike):

1. ast(t) hasO(n2) nodes (take, e.g.,t = ancn in Figure 4). However, isomorphic
subtrees4 can be shared [10]. Sharing brings the space requirements down toO(n)
[8], [12]. However, subtree sharing may be impossible, when leaves are to be annotated
with extra information.

2. cst(t) hasO(n) nodes, as all inner nodes are branching, and there are at mostn leaves.
The edge labels can be represented in constant space by a pair of indices intot . This
is necessary to achieve a theoretical worst-case bound ofO(n). In practice, this is
quite a delicate choice of representation in a virtual memory environment. Traversing
the tree and reading the edge labels will create random-like accesses intot , and can
lead to performance problems with the memory subsystem.

2.2. Open Edges. A particularly convenient representation of edges which lead to a
leaf node (leaf edges, for short) was introduced in [25]. The label of a leaf edge always
extends to the end of the actually scanned prefix oft . We may as well represent an index
pair (i, |t |) by (i,∞), with∞ denoting|t |, whatever its value is. This means that ift is
extended to the right, the label of the leaf edge grows implicitly, and the leaf continues to
represent a complete suffix of (the extended)t . This representation is called “open edge.”
It plays a crucial part in the following sections. With a little speculation, we might even
say: if Weiner had seen this idea in 1973, he would have designed Ukkonen’s algorithm
then (and it would be in all textbooks today). We return to this in Section 6.

2.3. Active Suffixes and Prefixes. The following notion plays a central part in all con-
structions:

DEFINITION 2.5 (Active Suffix and Prefix). Theactive suffixof t is its longest nested
suffix, denotedα(t). Theactive prefixof t is its longest nested prefix, denotedα−1(t).

With this notation, we haveα(t−1) = (α−1(t))−1.
The node(ū, v) representing the active suffix oft in cst(t) is the neuralgic point of

the suffix tree. Ift is to be extended to the right by another character, changes in the
tree structure (if any) will start at this point. Correspondingly, the active prefix node will
respond to extensions oft on the left. This behavior is proved and spelled out in detail
in later sections.

McCreight uses functionsheadandtail that split a suffixs of t into an initial part that
already occurs to the left, and the remainder. We can define them in the following way.

DEFINITION 2.6 (headandtail). Let t = us for some stringsu ands. head(s) is the
longest prefixx of s, such thatx is a nested suffix ofux. tail(s) is defined bys =
head(s)tail(s).

4 Two A+-treesT andT ′ are isomorphic, if there is a bijectionϕ between the node sets ofT andT ′, s.t.

w̄
u→ wu is an edge inT , if and only ifϕ(w̄)

u−→ϕ(wu) is an edge inT ′.



From Ukkonen to McCreight and Weiner 335

Fig. 2.The compact suffix trees forddacdaandddacda$.

2.4. The Role of the Sentinel Character. If s is a nested suffix oft , then a suffix tree
for t does not contain a leafs̄. It is often convenient to add tot asentinel character, say
$, that does not occur int . Thent$ has no nested suffix, except for the empty string,
i.e., each nonempty suffix oft$ uniquely corresponds to a leaf in a suffix treeT for t$.
Considering at-wordw and the nodēw in T , the number of leaves ofTw̄ is equal to the
number of positions int wherew occurs:

DEFINITION 2.7 (Suffix-Rests). For a nodēw in a suffix treeT for t , letsuffixRestsT (w̄)
= {s | ws is a suffix oft}.

Clearly, suffixRestsT (w̄) uniquely determines the shape ofTw̄. However, can
suffixRestsT (w̄) be determined from the edge labels ofTw̄? The answer is Yes, if there is
the sentinel, since then there is the leafws for everys ∈ suffixRestsT (w̄). The answer is
No without the sentinel, as can be seen forTd̄ in T = cst(ddacda) as shown in Figure 2.

It often simplifies proofs and constructions considerably to assume the presence of
the sentinel character. Only in contexts wheret may be expanded to the right (e.g.,
during on-line construction), does the requirement for a unique final character not make
sense.

In the subsequent sections, the sentinel character is not assumed unless we explicitly
say so.

2.5. Suffix Links. For construction and many applications ofA+-trees it is convenient
to augmentA+-trees with auxiliary edges that connect nodes quite unrelated in the tree
structure:

DEFINITION 2.8 (Suffix Links). Consider anA+-treeT . Letaw be a node inT , and let
v be the longest suffix ofw, such that̄v is also a node inT . An unlabeled edgeaw−→ v̄

is asuffix linkin T . A suffix link aw−→ w̄ is calledatomic.

Notice that nodēv is well defined, sincēε is a node andε is a suffix ofw.
When theA+-tree is a trie, suffix links are identical to the failure transitions of [2].

The name suffix link is due to McCreight [18]. Some authors also define a link for the
root: ε̄−→ ε̄. We found that this obscures the algorithms as well as the observations in
Section 2.6.
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PROPOSITION2.9.

1. In the atomic suffix tree for t, all suffix links are atomic.
2. In the compact suffix tree for t$, all suffix links are atomic.

PROOF. 1. This follows from the definitions, since all nodes inast(t) are explicit.
2. We must show that for each nodeaw, w̄ is also a node incst(t$). aw is either

a branching node, or a leaf. Henceaw is right-branching or a nonnested suffix oft$.
However, then the same holds forw, and sow̄ is a node incst(t).

What if we drop the sentinel in the case of assertion 2? The suffix links for all inner
nodes incst(t) are atomic. For a leafaw, w may be nested (due to the lack of $) and
not right-branching, so there is no (explicit) nodew̄. In this case, we have a nonatomic
suffix link aw−→ v̄ for some proper suffixv ofw. Note that this link is the only possible
exception, with all other suffix links incst(t) being atomic.

Suffix links are the key to efficient sequential suffix tree construction, but there is
more to them than this.

The atomic suffix tree oft , augmented by suffix links, can be seen as a two-head
automaton. Denoting the two heads by [ and ], we can represent a configuration as
u[v]w, where

• uv is the scanned part,
• v is the memorized part, and
• w is the unread part of the input string.

Now if v = ay andw = cx, there are two possible transitions:

u[ay]cx ; u[ayc]x by following the edgeay
c−→ayc,

u[ay]cx ; ua[y]cx by following the suffix linkay−→ ȳ.

This view is taken from [19]. It nicely summarizes the additional power of suffix links
that makes them useful in many contexts. For example, such an automaton can be used
to compute the matching statistics in [9], theq-gram distance [24], or the shift-table for
the Boyer–Moore algorithm [17].

2.6. Dualities Between Suffix Trees and Suffix Links. We now study the deeper relation
between suffix trees and their suffix links. First we note that the suffix links form a tree
themselves.

DEFINITION 2.10. The suffix link treeT−1 of anA+-treeT has a node
←
w for each node

w̄ of T , and an edge
←
w

v−1−→ ←
vw whenvw−→ w̄ is a suffix link inT .

It is easy to confirm thatT−1 is in fact a tree, since each node inT has exactly one
suffix link, which designates its parent inT−1. The notationT−1 will be justified by our
subsequent results.

For an arbitraryA+-treeT , T−1 is generally not anA+-tree, as can be seen in Figure 3:

node
←
e has twod-edges. However, this changes whenT is a suffix tree:
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Fig. 3.AnA+-tree and its suffix link tree.

PROPOSITION2.11 (Duality for Atomic Suffix Trees). (ast(t))−1 = ast(t−1). In words:
the suffix link tree of an atomic suffix tree is the reverse prefix tree.

PROOF. There is an edge
←
w

a−→ ←
aw in (ast(t))−1, iff there is a suffix linkaw−→ w̄ in

ast(t), iff there are nodes̄w andaw in ast(t), iff there are nodes
←
w and

←
aw in ast(t−1),

iff there is an edge
←
w

a−→ ←
aw in ast(t−1).

Figure 4 showsast(aaaccc) andast(aaaccc−1). Solid edges representast(aaaccc),
while dotted edges (without their labels) represent the suffix links. Vice versa for
ast(aaaccc−1).

The reason why this duality is not widely known is that when considering the compact
suffix tree (our main object of interest), it is obscured by the fact that the explicit nodes
of a compact suffix tree and the corresponding reverse prefix tree do not coincide. But a
weaker form of duality still holds:

PROPOSITION2.12 (Weak Duality for Compact Suffix Trees).

1. (cst(t))−1 is anA+-tree.
2. (cst(t))−1 represents a subset of the words represented by cst(t−1).
3. ((cst(t))−1)

−1 = cst(t).

Fig. 4.The atomic suffix tree foraaacccandaaaccc−1.
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PROOF. 1. Assume there is a nodēw in the suffix link tree that has twoa-edges. This
means that incst(t) we have suffix linksuaw−→ w̄ andvaw−→ w̄ with u 6= ε and
v 6= ε. aw is not a node, since otherwise, the links would point toaw.

• Supposeuaw or vaw is an inner node. Thenuaw or vaw is right-branching int , and
so must beaw. Soaw must be a node, which is a contradiction.
• Supposeuaw andvaw are leaves. Without restriction to generalityvaw is a suffix of

uaw, and it is longer thanw. Hence there can be no suffix linkuaw−→ w̄.

2. The suffix link chain fromw̄ to ε̄ in cst(t) yields a path labeledw−1 in the suffix
link tree. Of course,w−1 is at−1-word.

3. Because of Statement 1,(cst(t))−1 is anA+-tree, so((cst(t))−1)
−1

is defined. The
node set is unchanged under the()−1 operation, except for reversal of node names. There

is a suffix link
←
vw−→←

v in (cst(t))−1, iff there is no suffixr−1 of (vw)−1, s.t.
←
r is a

node and|(vw)−1| > |r−1| > |v−1|, iff there is no prefixr of vw, s.t. r̄ is a node and
|vw| > |r | > |v|, iff cst(t) has an edgēw

v−→wv.

Statement 1 of Proposition 2.12 can be slightly generalized: ifT is (any sort of) suffix
tree of some stringt , thenT−1 is anA+-tree. The reverse of this statement does not hold.
For example, letT be anA+-tree representing the wordsaa andbb. ThenT−1 = T .
ThusT−1 is anA+-tree, butT is not a suffix tree.

A t−1-wordw−1 is not represented in the suffix link tree, ifw is neither right-branching
in t nor a suffix oft . (Adding the sentinel does not change this situation.) This is also why
(cst(t))−1 isnot a subtreeof cst(t−1): some nodes of(cst(t))−1 are not nodes incst(t−1).
However in the precise sense of Proposition 2.12, the suffix link tree approximates the
reverse prefix tree. By duality,cst(t) itself approximates the prefix links ofcst(t−1).

At this point, it seems natural to ask whether suffix/prefix trees can be subsumed
by a more general data structure inO(n) space, which has the duality as an inherent
property. In fact, the affix trees recently introduced by Stoye [23] are such a self-dual
data structure. However, this is beyond the scope of the present paper.

We now turn to suffix tree constructions.

3. An Abstract Comparison ofukk and mcc. ukkreadst from left to right, character
by character, and incrementally constructs suffix trees for the prefixes oft seen so far.
With ukk, labels of open edges grow implicitly ast is read, while some edges are split
and new open edges are inserted explicitly. The intermediate trees when constructing
cst(adadc) usingukkare shown in the left column of Figure 5.

mcc inserts the suffixes oft into an initially empty tree. Starting with the longest
suffix, the method is not on-line, and the intermediate trees are not suffix trees. For a
suffix s of t let T(s) denote theA+-tree representing the suffixes oft that are longer
than or equal tos. The right column of Figure 5 shows the intermediate trees when
constructingT(c) = cst(adadc) usingmcc.

We introduce two abstract tree construction operations:

• split(ū, v) replaces an edgēu
vw−→ uvw by two edges̄u

v−→ uv
w−→ uvw.

• add(ū, a · · ·) adds a new edge from nodeū to a leaf, labeleda · · ·.
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Fig. 5.Sequence of trees constructed byukkandmcc.

Note that theadd-operation abstracts from whether the edge label is entered fully
or left open to grow later. The central observation of this section is the following: the
intermediate trees ofukkandmccare both constructed by the same sequence of abstract
operations! However, these operations are applied to the intermediate trees in a different
way. Both are shown in Table 1.

Analogies on an abstract level often break down when a more concrete level of
presentation is used. In our case we have abstracted from a number of aspects which are
essential in making bothukk andmcc linear-time algorithms. However, when we take
these into account, our analogy still persists. We summarize what is shown in full in
Sections 4 and 5:

1. ukk can be transformed intomccby a modification of its control structure, leaving
the sequence of tree constructing operations invariant.

2. This modification is a slight optimization. Under a fair implementation of the related
data structures, it will givemcc a minor efficiency advantage overukk, on every
possible input.

Table 1.Operations to compute intermediate trees.

Operation Applied byukk to Applied bymccto

add(root, a · · ·) cst(ε) cst(ε)
add(root, d · · ·) cst(a) T(adadc)
split(root, ad) cst(adad) T(dadc)
add(ad, c · · ·) cst(adad) T(dadc)
split(root, d) cst(adad) T(adc)
add(d̄, c · · ·) cst(adad) T(adc)
add(root, c · · ·) cst(adad) T(dc)
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3. This transformation sacrifices the on-line property.mccwill always read ahead ofukk
in t . This lookahead is quantified in Proposition 5.5.

Assertion 2 is confirmed by the measurements in [15]. In fact, this invariance of
the relative efficiency ofukkandmccmade us first wonder about a deeper relationship
between these two algorithms. We were incited further by a note in [25], where Ukkonen
remarks that, on the technical level, the main difference betweenukkandmcclies in the
way in which character reads and suffix link traversals are arranged over the loops of the
program. Our study confirms, concretizes, and explains this observation.

4. Development ofukk and mcc

4.1. A Short Derivation of ukk. Space does not allow a complete derivation ofukk
here. We only give a short explanation together with the concrete algorithm, and refer
the reader to the development in [25] or [15].

On-line construction means generating a series of suffix trees for longer and longer
prefixes oft . While cst(ε) is trivial (just theroot with no edges), we study the step from
cst(p) to cst(pa), wherep is a prefix oft anda is the next character int to be read. To
constructcst(pa) we have to insert some suffixes ofpa into cst(p). Let sa be a suffix
of pa. ukk is based on the following observations about suffixes:

• If |sa| > |α(p)a|, thens is not a nested suffix ofp and thuss corresponds to a leaf in
cst(p). In such a casesa will correspond to the same leaf incst(pa) by the implicit
growing of the corresponding open edge.
• If |α(p)a| ≥ |sa| > |α(pa)|, thensa is a relevant suffix ofpa, and a new leafs̄a

must be introduced.
• If |α(pa)| ≥ |sa|, then no action is required, sincesaalready occurs incst(p).

In ukka suffixs is represented by its canonical reference pair. To make reference pairs
canonical we use a functioncanonize. When the relevant suffixes ofpa are processed
in their natural order, i.e., by decreasing length fromα(p)a to (excluding)α(pa), the
corresponding canonical reference pairs can be accessed via the suffix links.

With the prefixp of t globally given,ukk takes four arguments with each call:

• T = cst(p).
• The setL of suffix links in T .
• The canonical reference pair(b̄, u) of α(p).
• The positioni , such thatp = t1 · · · ti−1 andti is the next input character to be read.

For convenience we denotēb′ by L(b̄), whenever̄b−→ b̄′ ∈ L.
The access from one canonical reference pair to the next is accomplished by a function

link, which is defined as follows:

link(T, L, (b̄, ε)) =
{
(b̄, ε), if b̄ = root,
(L(b̄), ε, otherwise.

link(T, L, (b̄, cw)) =
{

canonize(T, (b̄,w)), if b̄ = root,
canonize(T, (L(b̄), cw)), otherwise.
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Let n = |t |. ukk is simply an iteration of a functionupdatethat inserts the relevant
suffixes.

ukk(T, L , (b̄, u), i ) =
{

T, if i = n+ 1,
ukk(T ′, L ′, (b̄′, u′), i + 1), otherwise,

where(T ′, L ′, (b̄′, u′)) = update(T, L, (b̄, u), i).
To constructcst(t), the initial call ofukk is ukk(∅, ∅, (root, ε),1). Now we define the

functionupdate. For each relevant suffix,updatecreates (if necessary) a new branching
node by edge splitting, and sets its suffix link. It adds a new open edge for the new suffix,
and advances(b̄, u) via the suffix link to the next suffix, until the canonical reference pair
of α(pti ) is reached. The functioncanonizeis applied whenever the right component of
a reference pair is extended by a new character. As indicated in Section 2, edge labels are
now implemented as index pairs. The pair(l , r ) denotes the labeltl · · · tr , while (i,∞)
denotes the suffixti · · ·.

update(T, L, (b̄, ε), i) =


(T, L , canonize(T, (b̄, ti))), if b̄ has ati -edge,
(T t ((b̄, ε), i ), L , (b̄, ε)), else ifb̄ = root,
update(T t ((b̄, ε), i),

L , (L(b̄), ε), i ), otherwise,

update(T, L, (b̄, cw), i) =

(T, L, canonize(T, (b̄, cwti))), if tl+|cw| = ti ,
update(T t ((b̄, cw), i),

L ′, (b̄′, u′), i ), otherwise,

whereb̄
(l ,r )−→ v̄ is ac-edge,(b̄′, u′) = link(T, L , (b̄, cw)), andL ′ = L ∪ {(bcw,b′u′)}.

The expressionT t ((b̄, u), i ) denotes theA+-tree that results from inserting the
suffix buti · · · into T . It is formally defined as follows:

T t ((b̄, ε), i ) = T ∪ {b̄ (i,∞)−→ bti },
T t ((b̄, cw), i ) = (T\{b̄ (l ,r )−→ v̄}) ∪ {b̄ (l ,k)−→ bcw

(k+1,r )−→ v̄, bcw
(i,∞)−→ bti },

whereb̄
(l ,r )−→ v̄ is ac-edge andk = l + |w|.

The first equation fort implements the abstractadd-operation of Section 3. The
second equation corresponds to asplit/add-combination.

4.2. A Short Description of mcc. Before we embark on the derivation ofmccfromukk,
we give a short intuitive description of our target. The complete algorithm is given in
Section 5, at the end of our transformation series.

mccconstructscst(t) by successively inserting the suffixes oft into an initially empty
tree, from longest to shortest. It produces a sequence

cst(ε), T(t1 · · · tn), T(t2 · · · tn), . . . , T(tn−1tn), T(tn) = cst(t)

of compactA+-trees, of which only the first and the last one is a suffix tree. The initial step
of mccis trivial: T(t) = T(t1 · · · tn) is obtained fromcst(ε) by inserting the longest suffix

t . Thus,T(t) is the compactA+-tree with only one edgeroot
t−→ t̄ . Let as be a suffix
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of t , and supposex = head(as). For the step fromT(as) to T(s), mccfirst determines
tail(s) and the canonical reference pairŷ of y = head(s) in constant time from̂x and
tail(as). This is accomplished by following suffix links and scanning downward in the
actual tree using a functionscan(see Section 5.1). Then it constructsT(s) from T(as)
by splitting for the nodēy (if necessary) and adding a leaf edge labeledtail(s).

5. Transforming ukk into mcc

5.1. A Series of Program Transformations from ukk to mcc. mccassumes thatt ends
with a sentinel. We assume the same in the rest of this section.

In Figure 5 we saw thatukkproduces a sequence

cst(ε), cst(t1), cst(t1t2), . . . , cst(t),

which might contain a subsequence of suffix trees, in which only the leafs grow im-
plicitly with the length of the input string. In the sequence of trees produced bymcc
there are no such “nonessential” subsequences, i.e., every step produces a tree of a
different structure. In the following we show that it is in fact the additional “nonessen-
tial” steps inukk that make the difference between both algorithms. Technically, we
transformukk stepwise into equivalent functionsukk1, ukk2, andukk3, such thatukk3

does only “essential” derivation steps. Equivalence means that fork = 1, 2, 3 we have
ukk(∅, ∅, (root, ε),1) = ukkk(∅, ∅, (root, ε),1), and that linear-time complexity is pre-
served. Fromukk3 we synthesize a definition ofmcc.

DEFINITION 5.1 (Essential Steps). A derivation stepukkk(T, L , (b̄, w), i ) ⇒ ukkk

(T ′, L ′, (h̄,q), j ), k = 1, 2, 3, is essential, if the set of edges inT ′ is different from
the set of edges inT .

The first transformation step does not affect the essential steps. It simply eliminates
the functionupdatein ukk, yielding an equivalent functionukk1:

ukk1(T, L , (b̄, ε), i )

=


T, if i = n+ 1, (1)
ukk1(T, L , canonize(T, (b̄, ti)), i + 1), else ifb̄ has ati -edge, (2)
ukk1(T t ((b̄, ε), i ), L , (b̄, ε), i + 1), else ifb̄ = root, (3)
ukk1(T t ((b̄, ε), i ), L , (L(b̄), ε), i ), otherwise, (4)

ukk1(T, L , (b̄, cw), i )

=


T, if i = n+ 1, (5)
ukk1(T, L , canonize(T, (b̄, cwti)), i + 1), else iftl+|cw| = ti , (6)
ukk1(T t ((b̄, cw), i ), L ′, (b̄′, u′), i ), otherwise, (7)

whereb̄
(l ,r )−→ v̄∈T is ac-edge,(b̄′, u′)= link(T, L , (b̄, cw)), andL ′ = L ∪{(bcw,b′u′)}.

To developukk2 we need the following lemmas.

LEMMA 5.2. Let csa be a relevant suffix of pa, such that s is not a right-branching
p-word. Then sa is a relevant suffix of pa.
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PROOF. By assumption,cs is a nested suffix ofp. This implies thats is a nested suffix
of p, i.e., p = vcsdw, for some stringsv,w and some characterd. Sincecsa is not a
p-word, we haved 6= a. Supposep = v′sd′w′ for some characterd′ and some strings
v′ andw′. Thend = d′, since otherwises would be right-branching inp. Henced′ 6= a,
i.e.,sa is not ap-word. Thussa is a relevant suffix ofpa.

LEMMA 5.3. Consider a derivation

e0 = ukk1(∅, ∅, (root, ε),1)⇒ e1 · · · ⇒ eN = cst(t).(∗)

1. eN = cst(t) is derived from eN−1 by an application of(1).
2. Assume that ek+1 is derived from ek by an application of(6). Then we have0< k <

N − 1 and ek is derived from ek−1 by an application of(2) or (6).

PROOF. 1. LeteN−1 = ukk1(T, L , (h̄,q), i + 1), such thati = n. Let p = t1 · · · ti−1

and assume thatq 6= ε. TheneN−1 is derived fromeN−2 = (T, L , (b̄, w), i ) by an
application of (2) or (6). Hencebwti occurs inT , i.e., bwti is a p-word and thus the
characterti occurs inp. This is a contradiction, sinceti is the sentinel int . Henceq = ε,
i.e.,eN is derived fromeN−1 by an application of (1).

2. We havek > 0, since (6) cannot be applied toe0. k < n − 1 follows from
Statement 1.ek could not be derived fromek−1 by an application of (1), (3), (4), or (5),
since this would lead to an expression, to which (6) is not applicable. We show that this
is also true for (7). Assume thatek is derived fromek−1 by an application of (7). Hence
ek−1 = ukk1(T, L , (b̄, cw), i ) and ek = ukk1(T t ((b̄, cw), i ), L ′, (b̄′, u′), i ), where
(b̄′, u′) = link(T, L , (b̄, cw)) andL ′ = L ∪ {(bcw,b′u′)}. By assumption,u′ 6= ε. Let
p = t1 · · · ti−1 anda = ti . Now observe thatbcwa is a relevant suffix ofpa and thatb′u′

is not right-branching inp. By Lemma 5.2,b′u′a is a relevant suffix ofpa, i.e.,b′u′a is
not ap-word. Henceb′u′a does not occur incst(p) and therefore not inT t ((b̄, cw), i ).
Thus tl+|cs| 6= ti and (6) is not applicable toek, which is a contradiction. Henceek is
derived fromek−1 by (2) or (6).

Consider a maximal subderivationek ⇒ · · · ⇒ ek+m+1 of derivation(∗), in which
only (2) or (6) is applied. By Statement 2 of Lemma 5.3 we can conclude thatek+1

is derived fromek by an application of (2). Ifek = (T, L , (b̄, ε), i ), thenek+m+1 =
(T, L , (h̄,q), j ) and((h̄,q), j ) is the information we need to insert the suffixbti ti+1 · · ·
into T . We havehqtj tj+1 · · · = bti ti+1 · · ·, such that(h̄,q) is the canonical reference
pair of the longest prefix ofbti ti+1 · · · that occurs inT . Thus to computeek+m+1 from ek

we can start at nodēb, scan a prefixti · · · tj−1 of ti ti+1 · · · until we “fall out of the tree”5

and canonize the reference pair(b̄, ti · · · tj−1) to obtain(h̄,q). Instead of computing
((h̄,q), j ) by some nonessential steps using (2) or (6) we use a functionscan:

scan(T, b̄, i) =
((b̄, ε), i ), if b̄ has no ti -edge,
((b̄, p), i + |p|), else if|p| < r − l + 1,
scan(T, v̄, i + |p|), otherwise,

whereb̄
(l ,r )−→ v̄ is ati -edge, andp is the longest common prefix oftl · · · tr andti ti+1 · · ·.

5 The sentinel ensures that this must happen beforeti ti+1 · · · is exhausted, since it cannot be a nested suffix.
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If we usescanto computeek+m+1 from ek we do not need (2) and (6). Furthermore,
from Statement 1 of Lemma 5.3 we learn that (5) is not necessary. Hence we can transform
ukk1 into the following equivalent functionukk2:

ukk2(T, L , (b̄, ε), i )

=


T, if i = n+ 1, (8)
ukk2(T, L , (h̄,q), j ), else if j > i , (9)
ukk2(T t ((h̄,q), j ), L , (h̄,q), j + 1), else if(h̄,q) = (root, ε), (10)
ukk2(T t ((h̄,q), j ), L , (L(h̄), ε), j ), otherwise, (11)

where((h̄, q), j) = scan(T, b̄, i)

ukk2(T, L , (b̄, cw), i ) = ukk2(T t ((b̄, cw), i ), L ′, (b̄′, u′), i ), (12)

where(b̄′, u′) = link(T, L , (b̄, cw)) andL ′ = L ∪ {(bcw,b′u′)}.
Notice that (10) and (11) result from substituting(b̄, ε) by (h̄,q) and i by j in (3)

and (4). This is correct, since(h̄,q) = (b̄, ε), wheneveri = j . Obviously, the program
transformation fromukk1 to ukk2 does not affect the linear-time complexity, since a
sequence ofm nonessentialukk1-derivation steps with a single character comparison is
transformed into a single nonessentialukk2-derivation step withm character compar-
isons, that are done in the same order. However, by the use ofscan, the indexi starts
to advance through the string without extra calls toukk1. This is where we give up the
on-line property. At the same time, this is where we gain the slight speed advantage of
mccoverukk [15] by eliminating successive calls toukk1 andcanonize.

The next step is to eliminate the single nonessential steps in the derivation of the form
e0 = ukk2(∅, ∅, (root, ε),1)⇒ e1 · · · ⇒ eN = cst(t). Let 0< k < N and assume that
ek = ukk2(T, L , (h̄,q), j ) is derived from the expressionek−1 = ukk2(T, L , (b̄, ε), i )
by an application of (9), where((h̄,q), j ) = scan(T, b̄, i). Sincet has a sentinel,j ≤ n.
Let q = ε. Then we can deriveek+1 from ek, using (10) or (11). Since((h̄,q), j ) =
scan(T, h̄, j )we find thatek+1 equals the right-hand side of (10) or (11). Letq 6= ε. Then
only (12) can be applied toek derivingek+1 = ukk2(Tt((h̄,q), j ), L ′, (b̄′, u′), j ), where
(b̄′, u′) = link(T, L , (h̄,q)) andL ′ = L∪{(hq,b′u′)}. Hence forq 6= ε the nonessential
step fromek−1 to ek can be merged with the step fromek to ek+1, if we substitute (9),
yielding the following equivalent functionukk3:

ukk3(T, L , (b̄, ε), i )

=


T, if i = n+ 1, (13)
ukk3(T t ((h̄,q), j ), L , (h̄,q), j + 1), else if(h̄,q) = (root, ε), (14)
ukk3(T t ((h̄,q), j ), L , (L(h̄), ε), j ), else ifq = ε, (15)
ukk3(T t ((h̄,q), j ), L ′, (b̄′, u′), j ), otherwise, (16)

where((h̄,q), j ) = scan(T, b̄, i), (b̄′, u′) = link(T, L, (h̄, q)), andL ′ = L∪{(hq,b′u′)}.

ukk3(T, L , (b̄, cw), i ) = ukk3(T t ((b̄, cw), i ), L ′, (b̄′, u′), i ), (17)

where(b̄′, u′)= link(T, L, (b̄, cw)) andL ′ = L ∪ {(bcw,b′u′)}.
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Obviously,ukk3-derivation steps are always essential. Furthermore, the transforma-
tion from ukk2 to ukk3 does not affect the linear-time complexity. As the next step we
synthesize the definition of a functionmccwith the following properties:

mcc(T, L , (b̄, u), i ) =


ukk3(T, L , (b̄, u), i + 1), if (b̄, u) = (root, ε),
ukk3(T, L , (L(b̄), u), i ), if b̄ 6= root andu = ε,
ukk3(T, L ′, (b̄′, u′), i ) if u 6= ε,

where(b̄′, u′) = link(T, L, (b̄, u)) andL ′ = L ∪ {(bu,b′u′)}.
Consider the following cases:

Case1: (b̄, u) = (root, ε). Thenmcc(T, L , (b̄, u), i ) = ukk3(T, L , (b̄, u), i + 1). If
i = n, thenukk3(T, L , (b̄, u), i + 1) reduces toT by an application of (13). Ifi < n,
then let((h,q), j ) = scan(T, b̄, i + 1). Now ukk3(T, L , (b̄, u), i + 1) reduces to

ukk3(T t ((h̄,q), j ), L , (h̄,q), j + 1), if (h̄,q) = (root, ε),
ukk3(T t ((h̄,q), j ), L , (L(h̄), ε), j ), if h̄ 6= root andq = ε,
ukk3(T t ((h̄,q), j ), L ′, (b̄′, u′), j ), if q 6= ε,

where(b̄′, u′) = link(T, L , (h̄,q)) andL ′ = L ∪ {(hq, ¯b′u′)}. By definition, the three
expressions are equal tomcc(T t ((h̄,q), j ), L , (h̄,q), j ).

Case2: b̄ 6= root and u= ε. Thenmcc(T, L , (b̄, u), i ) = ukk3(T, L , (L(b̄), ε), i ). If
we let((h,q), j ) = scan(T, L(b̄), i ), thenukk3(T, L , (L(b̄), ε), i ) reduces to

ukk3(T t ((h̄,q), j ), L , (h̄,q), j + 1), if (h̄,q) = (root, ε)
ukk3(T t ((h̄,q), j ), L , (L(h̄), ε), j ), if h̄ 6= root andq = ε,
ukk3(T t ((h̄,q), j ), L ′, (b̄′, u′), j ), if q 6= ε,

where(b̄′, u′) = link(T, L , (h̄,q)) andL ′ = L ∪ {(hq,b′u′)}. By definition, the three
expressions are equal tomcc(T t ((h̄,q), j ), L , (h̄,q), j ).

Case3: u 6= ε. Thenmcc(T, L , (b̄, u), i ) = ukk3(T, L ′, (b̄′, u′), i ) where(b̄′, u′) =
link(T, L , (b̄, u)) andL ′ = L ∪ {(bu,b′u′)}. Consider the following subcases:

• u′ = ε. Let ((h̄,q), j ) = scan(T, b̄′, i ). Thenukk3(T, L ′, (b̄′, u′), i ) reduces to

ukk3(T t ((h̄,q), j ), L ′, (h̄,q), j + 1), if (h̄,q) = (root, ε),
ukk3(T t ((h̄,q), j ), L ′, (L(h̄), ε), j ), if h̄ 6= root andq = ε,
ukk3(T t ((h̄,q), j ), L ′′, (b̄′′, u′′), j ), if q 6= ε,

where(b̄′′, u′′) = link(T, L ′, (h̄,q)) andL ′′ = L ′ ∪ {(hq,b′′u′′)}. By definition, the
three expressions are equal tomcc(T t ((h̄,q), j ), L ′, (h̄,q), j ).
• u′ 6= ε. Let (b̄′′, u′′) = link(T, L ′, (b̄′, u′)) and L ′′ = L ′ ∪ {(b′u′,b′′u′′)}. Then

ukk3(T, L ′, (b̄′, u′), i ) reduces toukk3(T t ((b̄′, u′), i ), L ′′, (b̄′′, u′′), i ), which equals
mcc(T t ((b̄′, u′), i ), L ′, (b̄′, u′), i ).
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Putting it all together we get the following definition ofmcc:

mcc(T, L , (b̄, u), i )

=


T, if i = n and(b̄, u) = (root, ε),
mcc(T t ((h̄,q), j ), L , (h̄,q), j ), else ifu = ε,
mcc(T t ((h̄,q), j ), L ′, (h̄,q), j ), else ifu′ = ε,
mcc(T t ((b̄′, u′), i ), L ′, (b̄′, u′), i ), otherwise,

where(b̄′, u′) = link(T, L , (b̄, u)), L ′ = L ∪ {(bu,b′u′)}, and

((h̄,q), j ) =


scan(T, b̄, i + 1), if (b̄, u) = (root, ε),
scan(T, L(b̄), i ), else ifu = ε,
scan(T, b̄′, i ), else ifu′ = ε.

This definition ofmccis equivalent to the one we have developed directly in [15]. From
the specification ofmccit is easy to see that the only difference betweenukk3 andmcc
is that the computation of some information is delayed one step inmcc. There is no
difference in the order or number of computation steps.

PROPOSITION5.4. For n = |t |, mcc({root
(1,n)−→ t̄}, ∅, (root, ε),1) returns cst(t) inO(n)

time.

PROOF. By construction ofmcc, we have

mcc({root
(1,n)−→ t̄}, ∅, (root, ε),1) = ukk3({root

(1,n)−→ t̄}, ∅, (root, ε),2)

= ukk3(∅, ∅, (root, ε),1)

= ukk(∅, ∅, (root, ε),1)

= cst(t).

Since mcc is derived fromukk by eliminating nonessential derivation steps, with-
out affecting the number or order of essential steps,mcc inherits the linear-time
property.

5.2. Synchronization Points Between ukk and mcc. We call “point i” the situation after

• ukkhas constructed the suffix treecst(t1 · · · ti ),
• mcc has constructed theA+-tree T(ti · · · tn), i.e., the suffixti · · · tn has just been

inserted.

At this point,ukkhas read no character oft beyondti . If ti does not occur to the left
in t , it behaves as a sentinel fort1 · · · ti , and bothukk andmccwill have constructed
cst(t1 · · · ti ), and no character beyondti has been read. However, generally,mcc has
scanned further int . We call the additional characters read bymcc its lookahead at
point i.
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PROPOSITION5.5. Let cw = tail(ti . . . tn) for some character c and some stringw. The
lookahead of mcc at point i is

(i) ε, if head(ti · · · tn) = ε,
(ii) uc, if head(ti · · · tn) = ti u.

PROOF. Intuitively, it is clear thatt need not be scanned beyonduc, in order to insert
the new open edgeti u

c···−→ . Formally, this can be verified against the implementation of
mccgiven in Section 5.1.

What does this mean with respect to practical matters? On-line construction is at-
tractive when the suffix tree is intended to be used to search forfirst occurrences of
words int . If a word occurs int , only the suffix tree for the prefix oft ending with the
first occurrence must be constructed. Further queries may further expand the tree. Thus,
suffix tree construction time is amortized over a series of queries. This is the practical
advantage ofukkbeing an on-line algorithm.

With the complete input string available—say as a character file—it does not really
matter whether the partial tree construction stops exactly after the first occurrence of the
search key, or some characters beyond it.mccmay as well be interleaved with queries for
first occurrences, and, in this sense, it shares the advantages of a truly on-line construction.
On the other hand, whent is incrementally calculated by some other computation—say
as a character stream—then the difference matters:ukk is more lazy thanmcc, and the
extra characters called for bymccmay induce an overhead of arbitrary dimension.

6. An Explanation of Weiner’s Algorithm. In this section we go back to the roots
and take a look at the “Algorithm of the Year 1973” (D. E. Knuth according to [19]).

Our explanation ofwrf is quite different from the treatment by Chen and Seiferas [10].
They restate Weiner’s algorithm in a less technical, even prosaic, form. Our approach is
to relatewrf to ukk. We explainwrf using today’s terminology,6 thus revealing its close
relation to the algorithms discussed in the previous sections.

6.1. An Abstract Explanation. Before we enter the detailed analysis, we first take a look
at Weiner’s algorithm in terms of our abstract tree construction operations of Section 3.
wrf reads the input stringt from right to left, and successively inserts suffixes, shortest
first. Figure 6 shows how the suffix tree arises from a series ofadd/split-operations. As
with ukkandmcc, the crux lies in the efficient way of moving from one insertion point
to the next, e.g., from nodēd to nodead. Having read through all the previous sections,
you might say: well—just follow the suffix linkad−→ d̄ in reverse direction! This idea
is not totally wrong, but the general case is not as simple, and, besides, reverse links are
more expensive, and they usually exist onlyafter we needed them. . . .

6.2. Traversing a Tree That We Do Not Construct. Assume it is 1973 and little is
known about suffix trees. The first natural thing to think of is on-line construction,

6 Weiner [26] calls the suffix tree prefix tree, and vice versa, and the overall treatment is very technical.
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Fig. 6.Sequence of trees produced bywrf for t = adadc.

successively building the tree for longer and longer prefixes oft . However, a problem
arises immediately: existing leaf edges will have to be extended for each new character,
leading to anO(n2)-algorithm. Since this problem will only be solved by Ukkonen’s
open edges in 1992, we instead processt from right to left. This way, leaves will always
represent a suffix and need to be changed less frequently. This decision is quite logical—
but it will bring us into tremendous difficulties shortly. Anyway, we will be building the
tree successively for longer and longer suffixes oft , so we have an on-line property in
the reverse direction. We call this the anti-on-line property.

Supposeasis a suffix oft . To obtaincst(as) fromcst(s), a naive anti-on-line algorithm
determines the longest prefixu of as that is ans-word. This is accomplished by walking
down the path foras in cst(s) as far as possible. Letuv = as. One of the following cases
will arise:

1. If ū is a leaf incst(s), then the leaf edgēy
x−→ ū is replaced by the leaf edgeȳ

xv−→ uv.
2. If ū is not a leaf incst(s), then the algorithm splits for̄u if necessary, and adds an

edgeū
v−→ uv.

Later authors will suggest similar naive versions of other algorithms [18], [14], and
it will be shown that their efficiency isO(n logn) in the expected case [6]. The factor
logn comes from walking the tree from the root to the point of insertion. For anO(n)-
algorithm we must access this point inO(1). As the stringu above equalsα−1(as), our
problem is solved, if for each iteration we can hop directly from one active prefix node
to the next, and of course, we know exactly where it is:
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PROPOSITION6.1. There is an edgēu
vw−→ s̄ in cst(s), s.t. α−1(s) = uv and w is

nonempty.

PROOF. Let u be the longest prefix ofs that is right-branching ins. Thenu is a nested
prefix of s. Thus we can concludeα−1(s) = uv for some stringv. Moreover, there is a
nonempty stringw, s.t.α−1(s)w = s. Hence there is an edgeū

vw−→ s̄ in cst(s).

So the “old” active prefix is always at hand, just above the leaf inserted in the previous
step, but how do we hop to the “new” one inO(1)?

Glancing ahead into the future, we see Ukkonen’s on-line algorithm swinging easily
from active suffix to active suffix, using the suffix links. We are doing an anti-on-line
construction, and are interested in active prefixes. If only we hadcst(s−1) available!
Sinceα−1(as) is a prefix ofaα−1(s) we could then determineα−1(as) by following
the (reverse) prefix links, shorteningα−1(s) from the right, until we find a prefixp,
such thatap−1 occurs incst(s−1). If such ap exists, thenα−1(as) = ap−1. Otherwise
α−1(as) = ε.

EXAMPLE 6.2. Let s = bcdeabcbcd f bcde. Figure 7 shows the relevant parts in

cst(s−1) (plus the new outgoinga-edge from node
←

bcd) and the way fromα(s−1) = edcb
toα((as)−1) = cba. For the sake of comparison with Figure 8, reference pairs are written
from right to left.

Of course, we cannot simply construct the reverse prefix tree, since this is the dual of
the problem we started to solve. However, with some additional effort, we can use the
suffix tree to simulate the above walk through the reverse prefix tree! This is the essential
idea of Weiner’s algorithm, and at the same time the reason for its extra complexity.

We consult Proposition 2.12. From Statements 1 and 2 of Proposition 2.12 we know
that (and how)(cst(s))−1 approximates the reverse prefix tree. From Statement 3 we learn
that the reversed edges ofcst(s) are the suffix links of(cst(s))−1, i.e., they approximate
the prefix links! Thus if we make the edges ofcst(s) bidirectional, this will be sufficient
to approachα−1(as) from α−1(s).

Fig. 7.The way fromα(s−1) = edcbto α((as)−1) = cba.
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Fig. 8.Relevant parts ofcst(s).

A final problem remains, and its solution is less elegant and much more expensive.
After all relevant suffixes are inserted, Ukkonen’s algorithm follows an edge in the suffix
tree downward. By analogy, we need to walk along a prefix edge once beforeα−1(as) is
reached. This means we must make an additional effort to record prefix edges between
the nodes ofcst(s). Summing up, we need the following extra information:

(1) The edges ofcst(s) must be bidirectional, such that we can traverse them upward.
(2) For each node incst(s) and eacha ∈ A we must indicate whether this node would

have ana-edge incst(s−1). We call this a pending prefix edge.
(3) If the target node of this edge also happens to be a node incst(s), then we record

this as a proper prefix edge.

This is how we now simulate the traversal of prefix links incst(s−1) by usingcst(s) and
this auxiliary information: the traversal starts at the leaf below the active prefix, i.e., at
s̄, and moves upward until ana-prefix edge is indicated. If the edge is pending, we must
take a detour higher up in the tree, recording its length (in characters), until we hit a node
which has a propera-prefix edge. We follow this edge, and then proceed downward in
cst(s) according to the recorded length of the detour.

EXAMPLE 6.3. Let s = bcdeabcbcd f bcdeas in Example 6.2. Figure 8 shows the
relevant parts incst(s) and the way fromα−1(s) = bcdeto α−1(as) = abc. Nodebc
is the one with the pending prefix edge, where the detour(up, over, down) starts. The
extra parentheses aroundbc indicate the characters which account for the length of the
detour. It is not typical that this traversal passes theroot, but an even more sophisticated
example would be necessary to demonstrate this.

During this traversal, we must also create and update the extra information, and make
sure that we can do all this inO(1) on the average (see Section 6.3).

Summing up, we may say that Weiner’s algorithm has a touch of tragedy and heroism:
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faced with the problem of growing leaf-edges, it turns to anti-on-line construction. This
means having to traverse the reverse prefix tree while only the suffix tree is to be con-
structed. This adds an almost unsurmountable amount of difficulty—butwrf succeeds
in handling it within the linear-time constraint.

6.3. Extra Costs of wrf. Here we detail the extra costs in time and space that result
from wrf ’s simulated traversal of the reverse prefix tree. Recall the extra information
required bywrf (see items (1)–(3) preceding Example 6.3).

The extra pointer needed for (1) is equivalent to the effort of storing suffix links inukk
andmcc. It is the extra data structures for pending and proper prefix edges which make
wrf more space consuming, and their maintainance makes it slower than the others.

Still, this extra information can be maintained with a fixed effort per node visited.
Whenū

vw−→ uvw is split for uv, this node inherits its proper and pending prefix edges
from the leafuvw. The new leaf, representing the longest suffix, naturally has no prefix
edges when created. Finally, prefix edges of a node on the path fromα−1(s) upward
must be updated. They all have a pendinga-prefix edge now, and if there is an explicit
nodeuv, we record the proper prefix edgeuv

a−→auv.
At this point, we are left with one final question: while a traversal along prefix links

can be easily shown to add up toO(n) node visits overall, it is not obvious that the same
is true when we traverse the suffix tree instead. Our “detour” may take us up all the way
to the root, and back down. This is also exemplified in Figure 8. In fact, if this happened
at each iteration, we would essentially be back at the naive anti-on-line algorithm. How
can we prove that this form of traversal does not visit more thanO(n) nodes in total?

LEMMA 6.4. As above, let ū be the node encountered which has a proper a-prefix edge,
and let auv = α−1(s). Then there is no node betweenau andauv.

PROOF. The only possibility for a node betweenau andauv is whenv = xy, x 6= ε,
y 6= ε, andaux is an explicit node. It is an inner node, and the remark after Proposition 2.9
applies. So its suffix link points to the nodeux, which then has a propera-prefix edge.
This contradicts the definition of̄u being the first such node on the traversal.

So from the “summit”ū of the detour we descend at most one node. We now consider
the depth of the nodes (from the root) visited: it is first decreased by the detour, and
then increased by at most 1. The tree hasO(n) nodes. Since the sum of all increases is
bounded byn, the decreases cannot add up to more than 2n. Hence the number of nodes
visited over all detours isO(n).

7. Conclusion. We have reached the end of our investigation, and the conclusion
is clear: the three suffix tree constructions considered—wrf, mcc, andukk—are more
closely related than is commonly assumed. While all three areO(n)-algorithms, their
relative virtues are different:

• ukkis on-line, the most elegant construction, and the clue to understanding the others.
• mccis the most efficient construction, by a small margin overukk.
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• wrf has no practical virtue (it uses significantly more time and space), but remains a
true historic monument in the area of string processing.

The notion of active suffixes, suffix links, and the duality between suffix link trees and
prefix trees are the cardinal points of linear-time suffix tree construction. Although there
is no truly formal way to express this, we conjecture that any sequential suffix tree
construction not based on these concepts will fail to meet theO(n)-criterion. This does
not pertain to parallel constructions like [20].
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