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Parallel Searching in Generalized Monge Arrays
A. Aggarwall D. Kravets? J. K. Park® and S. Seh

Abstract.  This paper investigates the parallel time and processor complexities of several searching problems
involving Monge staircase-MongeandMonge-compositarrays. We present array-searching algorithms for
concurrent-read-exclusive-write (CREW) PRAMSs, hypercubes, and several hypercubic networks. All these
algorithms run in near-optimal time, and their processor-time products are all withi(lgm) factor of

the worst-case sequential bounds. Several applications of these algorithms are also given. Two applications
improve previous results substantially, and the others provide novel parallel algorithms for problems not
previously considered.
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1. Introduction

1.1. Background An m x n array A = {a[i, j]} containing real numbers is called
Mongeif,forl <i <k <mandl1l<j <I| <n,

(1.1) afi, j] +afk.1] < a[i, 1] + alk, j].

We refer to (1.1) as th®longe conditionMonge arrays have many applications. In the
late eighteenth century, Monge [34] observed that if unit quantities (cannonballs, for
example) need to be transported from locatidhandY (supply depots) in the plane

to locationsZ and W (artillery batteries), not necessarily respectively, in such a way
as to minimize the total distance traveled, then the paths followed in transporting these
guantities must not properly intersect. In 1961, Hoffman [24] elaborated upon this idea
and showed that a greedy algorithm correctly solves the transportation problem for
sources and sinks if and only if the corresponding x n cost array is a Monge array.
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More recently, Monge arrays have found applications in a many other areas. Yao [37]
used these arrays to explain Knuth’s [28] efficient sequential algorithm for computing
optimal binary trees. Aggarwat al. [4] showed that the all-farthest-neighbors problem
for the vertices of a conver-gon can be solved in linear time using Monge arrays.
Aggarwal and Park [6] gave efficient sequential algorithms based on the Monge-array
abstraction for several problems in computational geometry and VLSI river routing.
Furthermore, many researchers [6], [31], [21], [22] have used Monge arrays to obtain
efficient dynamic programming algorithms for problems related to molecular biology.
More recently, Aggarwal and Park [9] have used Monge arrays to obtain efficient algo-
rithms for the economic-lot size model.

In many applications, the underlying array satisfies conditions that are similar but not
the same as in (1.1). Am x n array A is calledinverse-Mongéf, for1 <i <k <m
and 1< j <I| <n,

(1.2) afi, j1+alk, 1] > a[i, 1] + a[k, j1.°
Anm x narrayS = {g[i, j]} is calledstaircase-Mongé

(i) every entry is either a real number sy,
(iiy g[i, j] = oo impliesq[i, £] = oo for £ > j ands[k, j] = cofork > i, and
(i) forl <i <k <mand1l<j < ¢ <n,(1.1) holds if all four entries[i, j], s[i, £],
sk, j], ands[k, £] are finite.

The definition of astaircase-inverse-Mongaray is similar:

(i) every entry is either a real number s,
(i) d[i, j] = oo impliess]i, £] = oo for £ < j andsk, j] = oo fork > i, and
(i) forl <i <k <mand1l< j < ¢ <n, (1.2) holdsif all four entries[i, j], g[i, £],
s[k, j], ands[k, £] are finite.

Observe thata Monge array is a special case of a staircase-Monge array. Fmaliyxa
arrayC = {c]i, j, k]} is calledMonge-composité c[i, j, k] = d[i, j] + €[], k] for all
i, ], andk, whereD = {d[i, j]} isap x q Monge array and = {e[j,k]} isaq x r
Monge array.
Like Monge arrays, staircase-Monge arrays have also found applications in many
areas. Aggarwal and Park [6], Larmore and Schieber [31], and Eppsteih [21],
[22] use staircase-Monge arrays to obtain algorithms for problems related to molecular
biology. Aggarwal and Suri [10] used these arrays to obtain fast sequential algorithms
for computing the following largest-area empty rectangle problem: given a rectangle
containingn points, find the largest-area rectangle that lies inside the given rectangle, that
does not contain any pointsinits interior, and whose sides are parallel to those of the given
rectangle. Furthermore, Aggarwal and Klawe [3] and Klawe and Kleitman [27] have
demonstrated other applications of staircase-Monge arrays in computational geometry.
Finally, both Monge and Monge-composite arrays have found applications in parallel
computation. In particular, Aggarwal and Park [5] exploit Monge arrays to obtain efficient
CRCW- and CREW-PRAM algorithms for certain geometric problems, and they exploit
Monge-composite arrays to obtain efficient CRCW- and CREW-PRAM algorithms for

5 We refer to (1.2) as thieverse-Monge condition
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string editing and other related problems. (See also [12].) Similarly, Ataliah [15]

have used Monge-composite arrays to construct Huffman and other such codes on CRCW
and CREW PRAMs. Larmore and Przytycka in [30] used Monge arrays to solve the
Concave Least Weight Subsequef@iEWS problem(defined in Section 4.2).

Unlike Monge and Monge-composite arrays, staircase-Monge arrays have not been
studied in a parallel setting (in spite of their immense utility). Furthermore, even for
Monge and Monge-composite arrays, the study of parallel array-search algorithms has
so far been restricted to CRCW and CREW PRAMs. In this paper we fill in these gaps
by providing efficient parallel algorithms for searching in Monge, staircase-Monge,
and Monge-composite arrays. We develop algorithms for the CREW-PRAM models
of parallel computation, as well as for several interconnection networks including the
hypercube, the cube-connected cycles, the butterfly, and the shuffle-exchange network.
Before we can describe our results, we need a few definitions which we give in the next
section.

1.2. Definitions In this section we explain the specific searching problems we solve
and give the previously known results for these problems. The row-minima problem
for a two-dimensional array is that of finding the minima entry in each row of the
array. (If a row has several minima, then we take the leftmost one.) In dealing with
Monge arrays we assume that for any giveand j, a processor can compute the
(i, Hth entry of this array ifD(1) time. For parallel machines without global memory
we need to use a more restrictive model. The details of this model are given in later
sections. Aggarwadt al. [4] showed that the row-minima problem for anx n Monge
array can be solved i@ (m + n) time, which is optimal. Also, Aggarwal and Park [5]
have shown that the row-minima problem for such an array can be soh@dgmn)
time on an(m + n)-processor CRCW PRAM, and i®(Ilgmnlglgmn) time on an
((m 4 n)/lglg mn)-processor CREW PRAM. Atallah and Kosaraju in [14] improved
this to O(Ig mn) usingm + n processors on a (weaker) EREW PRAM. Note that all the
algorithms dealing with finding row-minima in Monge and inverse-Monge arrays can
also be used to solve the analogously defined row-maxima problem for the same arrays.
In particular, if A = {a]i, j]} is anm x n Monge (resp. inverse-Monge) array, then
A ={ai, j]: ali, j] = —ai,n— j + 1]} isam x n Monge (resp. inverse-Monge)
array. Thus, solving the row-minima problem faf gives us row-maxima foA.
Unfortunately, the row-minima and row-maxima problems are not interchangeable
when dealing with staircase-Monge and staircase-inverse-Monge arrays. Aggarwal and
Klawe [3] showed that the row-minima problem forianx n staircase-Monge array can
be solved irO((m+n) Ig lg(m+n)) sequential time, and Klawe and Kleitman [27] have
improved the time bound t®(m + na(m)), wherewa(-) is the inverse of Ackermann’s
function. However, if we wanted to solve the row-maxima problem (instead of the row-
minima problem) for amn x n staircase-Monge array, then we could, in fact, employ the
sequential algorithm given in [4] and solve the row-maxima proble@{m + n) time.
No parallel algorithms were known for solving the row-minima problem for staircase-
Monge arrays.
Given ap x g x r Monge-composite array, forz i < pand 1<k <r, the(i, k)th
tube consists of all those entries of the array whose first coordinatid whose third
coordinate isk. The tube-minima problem for @ x g x r Monge-composite array
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is that of finding the minimum entry in each tube of the array. (If a tube has several
minima, then we take the one with the minimum second coordinate.) For sequential
computation, the result of [4] can be trivially used to solve the tube-minima problem in
O((p+r)Qq) time. Aggarwal and Park [5] and Apostoliepal. [12] have independently
shown that the tube-minima problem for anx n x n Monge-composite array can

be solved inO(lg n) time usingn?/Ign processors on a CREW PRAM, and, recently,
Atallah [13] has shown that this tube-minima problem can be solvédi(ig Ig n) time
usingn?/Ig g n processors on a CRCW PRAM. Both results are optimal with respect
to time and processor-time product. In view of the applications, we assume that the two
n x n Monge arraysD = {d[i, j]} andE = {€]]j, K]}, that together form the Monge-
composite array, are stored in the global memory of the PRAM. Again, for parallel
machines without a global memory, we need to use a more restrictive model; the details
of this model are given later. No efficient algorithms (other than the one that simulates
the CRCW-PRAM algorithm) were known for solving the tube-minima problem for a
hypercube or a shuffle-exchange network.

1.3. OurMain Results Thetime and processor complexities of algorithms for comput-
ing row minima in two-dimensional Monge, row minima in two-dimensional staircase-
Monge arrays, and tube minima in three-dimensional Monge-composite arrays are listed
in Tables 1.1, 1.2, and 1.3, respectively. We assumaraalmodel of hypercube com-
putation, in which each processor uses only one of its edges in a single time step, only
one dimension of edges is used at any given time step, and the dimension used at time
stept + 1 is within 1 moduled of the dimension used at time stepwhered is the
dimension of the hypercube (see Section 3.1.3 of [32]). It is known that such algorithms
for the hypercube can be implemented on other hypercubic bounded-degree networks
like Butterfly and shuffle-exchange without asymptotic slow-down. Observe that our
results for staircase-Monge arrays match the corresponding bounds for Monge arrays.
Following are some applications of these new array-searching algorithms.

1. All Pairs Shortest PatlfAPSH Problem Consider the following problem: given a
weighted directed grap& = (V, E), |V| = n, |E| = m, we want to find the shortest

path between every pair of verticesVh In the sequential case, Johnson [26] gave an
O(n?1g n 4+ mn)-time algorithm for APSP. In the parallel case, APSP can be solved by
repeated squaring i@ (Ig n) time usingn®/Ig n processors on a CREW PRAM. Atallah

et al. [15] show how to solve APSP i@ (lg? n) time usingn®/Ig n processors on a CREW
PRAM (this solution follows from theiO(Ig? n)-time (n?/Ig n)-processor solution to

the single source shortest paths problem on such a graph). In Section 4.1 we give the
algorithm of Aggarwakt al. [2] which runs inO(Ig? n) time usingn? CREW-PRAM

Table 1.1.Row-minima results for an x n Monge array.

Model Time Processors Reference

CREW PRAM O(lgn) n [14]
Hypercube O(gnlglgn) n Theorem 3.2
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Table 1.2.Row-minima results for an x n staircase-Monge array.

Model Time Processors Reference
CREW PRAM O(gn) n Theorem 2.3
Hypercube O(gnlglgn) n Theorem 3.4

processors for the special case of the APSP problem when the graph is acyclic and the
edge weights satisfy the quadrangle inequélity.

2. Huffman Coding Problem Consider the following problem: given an alphaSet

of n characters and the functiofy indicating the frequency of charactgr € C in a

file, construct a prefix code which minimizes the number of bits needed to encode the
file, i.e., construct a binary tree such that each leaf corresponds to a character in the
alphabet and the weight of the tré&)(T), is minimized, where

(1.3) W(T) =" fid,
i=1

andd; is the depth ifll of the leaf corresponding to charactgr The weight of the tree
W(T) is exactly the minimum number of bits needed to encode the file (see [18]). The
construction of such an optimal code (which is called a Huffman code) is a classical
problem in data compression. In the sequential domain, Huffman in [25] showed how to
construct Huffman codes greedily @(n) time (once the character frequencies are in
sorted order). In[15], Atallagt al. reduced Huffman coding 10 (Ig n) tube minimization
problems on Monge-composite arrays, thereby obtaining parallel algorithms for Huffman
coding that run inO(lg?n) time usingn?/Ign processors on a CREW PRAM and in
O(lgn(lg Ig n)?) time usingn?/(lg Ig n)? processors on a CRCW PRAM. Larmore and
Przytycka in [30] reduce Huffman coding to ti@oncave Least Weight Subsequence
(CLWS problem(defined in Section 4.2) and then show how to solve CLWS, and thereby
Huffman coding, irD(,/n g n) time usingn processors on a CREW PRAM. Theirsis the
first known parallel algorithm for Huffman coding requiriogn?) work. In Section 4.2

we present the result of Czumaj [20] for finding the Huffman cod®itg’ ™ n) time

and a total ofO(n? Igz‘r n) work on a CREW PRAM, for any > 1. This is the first

NC algorithm that achieves(n?) work.

Table 1.3.Tube-minima results for an x n x n Monge-composite array.

Model Time Processors Reference
CREW PRAM Odgn) n?/lgn [5], [12]
Hypercube O(lgn) n? Theorem 3.5

6 Given an ordering of the vertices of a grafine quadrangle inequalitgtates that any four distinct vertices
appearing in increasing order in that orderingi», j1, andj,, must satisfyd(iy, j1) +d(iz2, j2) > d(i1, j2) +
d(i2, j1). In other words, in the quadrangle formedihi, j; j2, the sum of the diagonals is greater than the
sum of the sides. Notice that this condition is the same as (1.2) and they both appear in the literature.
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3. The String Editing Problem and Other Related Problem&onsider the following
problem: given two input stringgs = XXz« - - Xm andy = y1¥o---y,, m = |X| and

n = |y|, find a sequence @&dit operationgransformingx to y, such that the sum of the
individual edit operations’ costs is minimized. Three different types of edit operations are
allowed: we can delete the symbelat costD (x;), insert the symboy; at costl (y;), or
substitute the symbo4 for the symboly; at costS(x;, y;). In [36], Wagner and Fischer
gave anO(mn)-time sequential algorithm for this problem. PRAM algorithms for this
problem were provided in [5] and [12]; these algorithms reduce the string editing problem
to a shortest-path problem in a special kind of directed graph catied-dAG and use
array-searching to solve this shortest-path problem. Using our tube-minima algorithms
for hypercubes and related networks, in Section 4.3 we solve the string editing problem in
O(lg mlg n) time on anmn-processor hypercube. Our result significantly improves the
results of Ranka and Sahni [35], who give two SIMD hypercube algorithms fon then
special case of the string editing problem: one algorithm ruiy{(n31g n)/ p+1g? n)

time usingp processorsp? < p < n?; the other algorithm runs i®(/(n3lgn)/p)

time usingp processorsplgn < p < n°.

4. The Largest-AreéNot Necessarily EmpyyRectangldLAR) Problem Consider the
following problem: given a set af planar points, compute the largest-area rectangle that

is formed by taking any two of thepoints as the rectangle’s opposite corners and whose
sides are parallel to the- and y-axes. For this problem, we obtain (in Section 4.4) a
CREW-PRAM algorithm that take®(Ig n) time and uses processors. This geometric
problem is motivated by the following problem in electronic circuit simulation and
has been recently studied by Melville [33]. Imagine an integrated circuit contaming
nodes. Because of the nature of integrated circuit fabrication, there will be leakage paths
between all pairs of nodes. For which pair of nodes is a leakage path (between those
nodes) most detrimental to circuit performance? In [33], Melville argues that this pair
of nodes correspond to the pair forming the largest-area rectangle.

5. The Nearest-Visible-Nearest-Invisible- Farthest-Visible- and Farthest-Invisible-
Neighbors Problems for Convex PolygonsConsider the following problem which

we call the nearest-visible-neighbor (nearest-invisible-neighbor) problem: given two
nonintersecting convex polygoisand Q, determine for each vertexof P, the ver-

tex of Q nearest tox that is visible (resp. not visible) ta. If P and Q containm

andn vertices, respectively, then the nearest-visible-neighbor problem can be solved
optimally in O(g(m + n)) time using((m + n)/lg(m + n)) processors on a CREW
PRAM. Furthermore, we can use the row-minima algorithm developed for staircase-
Monge arrays to show in Section 4.5 that the nearest-invisible-neighbor problem can be
solved inO(Ig(m + n)) time on a CREW PRAM withm + n processors. The farthest-
visible-neighbor (resp. farthest-invisible-neighbor) problemA@andQ can be defined
similarly, and it can be solved in the same time and processor bounds as the nearest-
visible-neighbor (resp. nearest-invisible-neighbor) problem.

The remainder of this paper is organized as follows. In Section 2 we give the PRAM
algorithms for finding row minima in staircase-Monge arrays. In Section 3 we give the
hypercube algorithms for finding row minima in Monge and staircase-Monge arrays



Parallel Searching in Generalized Monge Arrays 297

and tube minima in Monge-composite arrays. Details of the applications are given in
Section 4.

2. CREW-PRAM Algorithms to Compute Row Minima in Staircase-Monge
Arrays. In this section we give CREW-PRAM algorithms for computing row min-
ima in staircase-Monge arrays. We use the CREW-PRAM algorithms for computing
row minima in Monge arrays summarized in Table 1.1. In [3], Aggarwal and Klawe gave
an O((m + n)Iglg(m + n))-time sequential algorithm for finding the row minima of
anm x n staircase-Monge array. This was subsequently improved(ta + na(m))

time by Klawe and Kleitman [27]. In the discussion below we parallelize Aggarwal and
Klawe's sequential algorithm [3] using the techniques developed in [5].

Let A= {a[i, j]} be anm x n staircase-Monge array) > n. The basic idea is first to
compute the minimum entry in (approximately) evéry n)th row of A. Then we use the
location of the minima just computed, together with the structure of a staircase-Monge
array, to limit those entries that need to be considered for the minima in the remaining
rows. For 1< i < m, let f[i] be the smallest index such thaii, f[i]] = cc. Let R
denote theis)th row of the array, where = |m/n], and letR! denote the row obtained
by changing thgth column entry oR, to anco for eachj with f[(i +1)s] < j < f[is].
Furthermore, letA' denote then x n array consisting of the rowB!. Clearly, A' is a
staircase-Monge array. To simplify the proofs, we augnfeand A' with row 0 where
alo0, j] = j forl < j <n.Let f[0] = n+ 1. Note that this addition is consistent with
Mongeness ofA and A'. We prove the following lemma.

LEMMA 2.1. Given the row minima of ‘Awe can compute the row minima of A in
O(gm + Ig n) time using nilg m + n/Ig n processors on a CREW PRAM

PrOOF  Look at the positions of the row minima éf carefully. Lety; be the minimum

in row R!. Figure 2.1 shows arrag with row R, replaced byR!, for 1 <i < n. Note

that the array as shown is not Monge. Nevertheless, we will be able to use the minima
of Al within the Monge areas of this array to narrow down our search space for row
minima. From [3], the minima oA! induce a partitioning ofA such that certain regions

can be omitted from further searching for row minima because of the Monge condition.
The feasible regions (for row minima) can be categorized into two classes: Monge arrays
(the F’s) and staircase-Monge arrays (tRgs). Then the minimum in a row oA is

either the row minimum in &, region, or the row minimum in aR; region, or is among

the elements oR \R!.

We first deal with the feasible staircase-Monge arrays. Because we substituted row
for row R;, row minima of A tells us nothing about the regions in the Figure 2.1 which
are labeled a®,’s. Formally, P, consists of a subarray & given by rows(i — 1)s+ 1
throughis — 1 and columnsf[is] through f[(i — 1)s — 1], for 1 < i < n. The total
number of elementsin allth@’'s is (n+1)|m/n] = O(m). We use a brute-force search
of these elements to find the row minima.

The only regions left for us to consider are the feasible Monge arrays.

PROPOSITION2.2. There are at mos2n + 1 feasible Monge arrays
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Fig. 2.1. Array A with row R replaced byR.t. Each minimumy; in row R eliminates certain regions of
A from consideration for row minima. An infeasible region is covered by the pattern of;tlieat made it
infeasible. Many of the regions are eliminated by more thanugria this case, we show arbitrarily one such
pattern.

PrOOF  If the minimum of R', , lies to the left of the minimum o, then there is

at most one feasible Monge regioFRg(in Figure 2.1) where the minima of the rows in

A betweenR! and R, can lie. However, if the minimum oR! lies to the left of the
minimum of R', ;, then there can be more than one feasible Monge region where the
minima can lie (e.g.F4 and Fs). We claim that the number of extra feasible Monge
regions is equal to the number of minima which are “bracketed” by the minimum of
R!. We define “bracketed” as follows. Minimum s said to bracket another minimum

@ if u is the closest northwest neighbor 6f i.e., u lies above and to the left g,

and among all the minima which have this property with respegt, tihe row ofu is

the maximum. Intuitively, a minimurp of R! leaves the region below and to the right
of it, which we callL, as potentially feasible for row minima. If there is a minimum
[ in row Ri‘Jrk bracketed by, thenj eliminates the region to the right (up to column
f[s(i + k 4+ 1)]) and above from being considered for row minima. Thus, in effect,
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i splits L into two regions, one to the right ¢f and one to the left of [s(i + k + 1)].

In Figure 2.1,» is bracketed by., adding the regiorrs. Recall thatA! is augmented

with row 0 in which the minimumug is in column 1 (not shown). Thus, both andus

are bracketed by, adding regiong-; andF,, respectively. Note thats adds only the
regionF, (as opposed to the entire region left and abb{&s]) since other minima have
carved the larger region into smaller feasjtifdeasible blocks. Since each minimum

can be bracketed at most once, the total number of minima that are bracketed is at most
n. Thus, the total number of feasible Monge regionsrist21. O

Note that all theR's have nonoverlapping columns (except possibly for the columns
in which the minima ofA' occur) and haves rows. Therefore, the total number of
elements in all the feasible Monge arrayssn/n] +m = O(m). Since all the feasible
Monge regions contai®(m) elements, we again use a brute-force search to find the
row minima, provided that we can find all tig’s efficiently.

We determine th&;’s as follows. From Proposition 2.2, we know that there is exactly
one feasible Monge region in the rows betwd@randR' , if wi1 is to the left ofy;.

We find all such regions. Next, we find all the bracketed minima. To do this we form
alistL = (£g, £, ..., £s) such that; is the column of the minimum d’R}. Minimum

ui brackets minimumy; if i < j and¢; < ¢;. In [16], Berkmanet al. definethe All
Nearest Smallest ValU&NSY problemas follows: given a lisW = (wy, wo, ..., wn)

of elements from a totally ordered domain, determine for each < i < n, the nearest
element to its left in the list and the nearest element to its right in the list that are less
thanw; (if they exist). They show how to solve ANSV i®(Ign) time usingn/Ign
processors on a CREW PRAM. Thus, an application of their ANSV algorithm gives us
all the bracketed minima. Suppose minimum brackets minimumui,, wis, - - ., KLi,

i < iz < -+ < ix. Then these minima createregions in rowsi;s + 1 through

(i1 + 1)s — 1. The first region is columnsolumr(y;,) throughcolumr(w;,), the last
region is columnsf [s(i2 + 1)] through f [si, — 1], and thejth region, 1< j < k, is
columnsf[s(ik- 42 + D] throughcolumn(u, ;,,)). This gives us all thé's.

Finally, because we have changed certain entries oRtfseto co, we need to re-
consider the minima we have for these rows. Since there were no more #ranes
of A that were changed teo in producingA!, we can find the minima in these rows
by brute-force search. Combining these row minima with the row minima we get from
the F’s and theP,’s, we can easily determine the row minimaAfFor the complexity
analysis, notice that we used the algorithm of Berkratal. [16] and the brute-force
search for a minimum amongandm elements. Both of these procedures can be done
in O(lg mn) time usingm/lg m + n/lg n processors on a CREW PRAM. O

Given this lemma,we can prove the following result.

THEOREM2.3. The row minima of an rx n staircase-Monge array can be computed
in O(lg n) time using n processors on a CREW PRAM

PrROOF We use an approach very similar to Aggarwal and Park’s [5]. Given then
staircase-Monge arrd, definef[i], R’s, Rs, andB! as before, exceptthat= [/n].
Letu = [n//n]. Bt is au x n staircase-Monge array with at mast‘steps.” Thus,
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t 3
B' B,
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Fig. 2.2.Decomposition oB' into B}, ... ., BL.

B! can be decomposed into at masMonge arraysB}, ..., B, such that eacB is a

uj x v array, foru; < u and someay; > 0 (see Figure 2.2). Atallah and Kosaraju [14]
show how to find the row minima for an x n Monge array ifO (Ig mn) time usingm+n
processors. Thus, using their result, the row minima for alBHe can be computed in
O(lgn) time using

u ui u ﬁ >
— 4 ) < vi ) <2n
% (e ) =4 (Gur ) -
processors.

The minima ofB! induces a partition of the arra®, similar to that of Figure 2.1. We
first determine the minima in all the feasible Monge arrays. From the proof of Lemma 2.1,
we know that there are at moat 2- 1 feasible Monge arrays and that these arrays have
nonoverlapping columns, except for the columns in which the mininii otcur. Using
the algorithm of Berkmaret al. [16] we can find these arrays (g n) time usingn
processors. Note that, unlike in the proof of Lemma 2.1, we cannot use brute force to
find the row minima in the feasible Monge arrays since the total number of elements in
all the feasible Monge arraysis+ n = O(n./n). Instead, we use [14] to find the row
minima in all the feasible Monge arrays. This can be dor@(ly n) time using at most

2u+1 s
i=1
For the feasible staircase-Monge regions, we call the algorithm recursively by sub-
dividing the arrays intg x s pieces. For the arrays which have less thaolumns we use
the scheme of Aggarwal and Park [5] and Lemma 2.1 to bound the number of processors
to O(n) processors. To find the minimum of every row, we choose the minimum of the
minimum elements of the Monge arrays and the staircase-Monge array.
The complexity of all the nonrecursive procedures in this proof is dominated by the
use of [14] to compute thB!'s. Thus, the complexities are as claimed:

Time= T(n) = T(v/n) + O(lgn) = O(lg n),
Processors= P(n) = max{n, +/nP(vnN)} = n,

whereT (1) = 1andP(1) = 1. O
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COROLLARY 2.4. The row minima of an it n staircase-Monge array can be computed
in O(lg mn) time using milg m 4+ n processors on a CREW PRAM

PrROOF  The proof follows on the lines of [14]. L& be anm x n staircase-Monge array.

The case corresponding o < n is easy. Partition the array infm/m] arrays of size

m x m. Compute the row minima i@ (Ilg m) time usingn processors. Then compute the
minimum in each row from thén/m] elements ifD(Ig n) time usingn/Ig n processors.

For the casen > n, we compute the minima of anx n array B! in O(Ig n) time using

n processors (Theorem 2.3) and then use a scheme similar to Lemma 2.1 to compute
the row minima ofB in O(Ilg mn) time usingm/Ig m + n/Ig n processors on a CREW
PRAM. O

3. Algorithms for Hypercubes and Related Networks. In this section we give three
hypercube algorithms for searching in Monge arrays. The first algorithm computes the
row minima of two-dimensional Monge arrays, the second computes the row minima
of two-dimensional staircase-Monge arrays, and the third computes the tube minima of
three-dimensional Monge arrays. These algorithms can be adapted for several hypercubic
networks.

3.1. Preliminaries Our hypercube algorithms are based on the corresponding CREW-
PRAM algorithms of Aggarwal and Park [5], Apostolied al. [12], and Atallah and
Kosaraju [14]. However, there are three important issues that need to be addressed in
converting from CREW-PRAM algorithms to hypercube algorithms:

(i) We can no longer use Brent's theorem [17] which conveRs@rocessor algorithm
that runs in timeT and performs a total oV operations on a CREW PRAM into
a (W/T)-processor algorithm that runs in tin@(T) on a CREW PRAM. (This
theorem is used in [5] to get the results given in Table 1.1.)
(i) We must deal more carefully with the issue of processor allocation, especially in
recursing on problems of uneven sizes.
(iii) We need to consider the data movement through the hypercube.

This last issue requires a bit more explanation. Since the hypercube lacks a global
memory, our assumption that any entry of the Monge, staircase-Monge, or Monge-
composite array in question can be computed in constant time by any processor is no
longer valid, at least in the context of our applications. We instead use the following
model. In the case of two-dimensional Monge and staircase-Monge &ray&][i, j]},

we assume there are two vectgf$], . .., gfm]andh[1], ..., h[n] such that a processor
needs to know both[i] andh[j] to computea]i, j] in constant time. Similarly, in the

case of Monge-composite arra@s= {c[i, j, k]}, wherec]i, j, k] = d[i, j] + €], K],

andD = {d]i, j]} andE = {€[], k]} are Monge arrays, we assume that a processor
needs to know both[i, j] and €[], k] to computec|i, j, k]. The manner in which the

olil, h[j]1, d[i, j], and€[ ], k] are distributed through the hypercube is then an important
consideration. We assume that initially the entrieggadind h (or of D and E) are
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uniformly distributed in the obvious way among the local memories of the hypercube’s
processors.

We use thenormal model of hypercube computation (defined in the Introduction).
Moreover, all the processors use the edges corresponding to eacl@gfalgeN ) dimen-
sions in a cyclic order in consecutive time steps. This is in contrast to the the multiport
model of the hypercube in which all the edges of the hypercube may be used during a
single step of the algorithm, i.e., each processor dilaorocessor hypercube can send
and receive IdN messages in a single time step. The advantage of the weaker model is in
the greater adaptability of its algorithms in other bounded-degree models like Butterfly
networks and Shuffle-exchange networks (without asymptotic slowdown with the same
number of processors). However, for some of our algorithms the multiport model can
achieve the same timebound by using@og N) factor less processors. In this section
hypercube refers to theormalmodel unless mentioned otherwise.

Each processor of aN-processor hypercube has a unique index 1, N. In our
proofs, we use algorithms for the following problems:

(i) parallel prefix,

(i) merging two sorted lists,
(iif) monotone routing, and
(iv) routing a fixed permutation.

We specify when we use segmented parallel prefix, a standard variation of the parallel
prefix. When unclear from the context, we give the associative operation performed by
the parallel prefix. Amonotone routingproblem is that of routing packets such that
the relative order of the packets is unchanged. Formally, if we want to route packets
Ui, Uz, ..., Uj (j < N), the packety; originates at the processor indexedg(i),
orig(1) < orig(2) < --- < orig(j), and is destined for the processor indexies{i),

then the routing is monotone if and onlydest{l) < dest?2) < --- < destj). If the

input consists ofN elements, then all four of the above problems can be solved in a
pipelined fashion on ai-processor butterfly i©(Ig N) time. The reader ais referred

to Leighton’s book [32] for detailed descriptions of the hypercubic networks and these
algorithms.

Finally, we need an algorithm for a special case of a one-to-many routing problem.
Suppose we have a1x t array on an(N = 2925t)-processor hypercube such that
processor indexel, k < st, is responsible for the entries in royk/t]7 and column
k modt. Processors 1 throughcontain valuesi; throughu,. A row-copy problemis
that of copying the values contained in the first-row processors down the columns so that
all the processors responsible for colurnget the valueay;. Specifically, processd,

k < t, needs to distributey to processork +t, k+ 2t, ..., k+ (s — 1t. Notice that

this operation is not monotone routing: procedsér1 needs to distribute valug; to
processork +1+t,k+1+2t,...,k+1+(s—Dtand,clearlyk+2t £ k+1+t

in the general case. To solve the row-copy problem efficiently we exploit the fact that
a hypercube of size (hnumber of processotsi@ntains 2 node-disjoint hypercubes of
size 2~ each. Letz = 219!/, First, we pack the; values into the firsz processors.

In other words, we route (monotone) valueto processofi/2] if i < 2(t — z) and to
processor — (t — 2) if i > 2(t — z). Each processdt < z now has at most two values.
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Next, we “break up” theN-processor hypercube intosubhypercubes of sizd/z so
that each process@r< zis in a different subcube. This can be accomplished if all the
nodes with the same lastlg digits are assigned to the saiti¢/z)-processor subcube.
Now, each process@r< zcopies itau values to all the processors in its subcube using a
parallel prefix operation. To finish up the row-copy, we need to unpaakvh&ies using
monotone routing. If processér< N has twou values, it sends its lower-subscripted
u value to processork/z]t + 2(k modz) — 1 and its higher-subscripted value to
processotk/z|t + 2(k modz). Otherwise, if processdrhas only onel value, it sends

its u value to processaik/z|t + (t — z) + k modz. Since the only operations used by
the row-copy algorithm are monotone routing and parallel prefix, this algorithm takes
O(lg N) time on an(N)-processor hypercube.

3.2. A Technical Lemma We begin with a technical lemma that gives the flavor of our
approach to the three issues mentioned above.

LEmMmMA 3.1. Given an mx n Monge array A= {a[i, j]}, m > n, suppose we know the
minimum in every| m/n|)throw of A Then we can compute the remaining row minima
of A in O(lg m) time using anim)-processor hypercube

PrOOFE For the sake of simplicity, we only prove this lemmaifioandn being powers
of 2. In this proofj is alwaysintherange £ i < n.Let j; denote the index of the column
containing the minimum entry of row(m/n). Also, letjo = 1. Assume that processors
1,...,(n+ 1) containj, ..., jn. Note thatj;_; < ji because of the Monge condition.
Consider a subarrayy of A containing rows(i — 1)(m/n) + 1 throughi(m/n) — 1
and columnsgj_; throughj;. Let | A;| denote the number of elementsAq. SinceA is
Monge, the minima in rowé — 1)(m/n) + 1 throughi (m/n) — 1 must lie inA;. Thus,
the total number of elements under consideration for the remaining row miniasof
n 0/m o m o m

DAL= (5 = 1) i=heatd = (7 = 1) (oot = () 2n < 2m

Since there aren processors and at mostn2candidates for row minima, the row
minima can be determined by a segmented parallel prefix operation, provided that the
data is distributed so that the processors dealing with the entries in the same fow of
are “neighbors” in the parallel prefix, i.e., have consecutive indices. The procedure to
satisfy these conditions is broken up into three steps:

(i) Subdivide them processors inta groups of size$Ay|, |Azl, ..., |Anl.
(i) Assign the processors in the group associated Wijtto the different entries o .
(i) Distribute the appropriate values from the distance veaj@sdh to each processor
so that it can compute its assigned entrieéin

To simplify this proof, we first show how to satisfy these conditionsmmp2ocessors.
The first step is accomplished as follows. Processends valug; _; to processor — 1.
This is simply monotone routing. Process@momputes

Al= (2= 1) G =i+ D.
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Processors 1 throughperform a parallel prefix on thigAi|'s, so that processércom-
putes the value; = >, _, |Ax|. Merge list 12, ..., 2m of processor indices with list
us, Uy, ..., Uy, Where eaclhy; value carries with it a record containirig j;, ji_1). Note
that since there are onlyn2processors, any dual occurrences of a value (one occur-
rence from list 12, ..., 2m and the other from listi, up, ..., uy) are stored in the
same processor. In the resulting sorted list, there are exagtlyprocessors between
processors containing_; andu;. Any processor containingua value determines a seg-
ment boundary (or barrier). Using a segmented parallel prefix distribute the the record
{i, i, ji—1) associated withy; to all the processors between segment boundaries
anduy;. As a result, the & processors are subdivided as desired and each processor in
the group associated withy knows the values, i, ji, andjj_;.

For the second step, each processor first computes its rank within its segment using
segmented parallel prefix operation. More formally,

rank(k) = k — rknakx{processor kcontairs a v valug.
/<

A processok containing the value; and the recordi, j;, ji_1) computes the row and
the column of its entry inA;:
row (O 1)T + Hrank.(k) * 1—‘
n ji—Jica+1
column ji—1 + rank(k) mod(j; — ji_1 + 1)

For the third step, assume that the distance vegfais. . . , g[m] are stored in proces-
sors 1. - -m, and vectori[1], ..., h[n] in processors 1. - n. Route value#[ji_1], ...,
h[ji] to the appropriate processors responsible for the first ro& oSimilarly, route
valuesg[(i — 1)(m/n) + 1], ..., g[min{i (m/n) — 1, m}] to the appropriate processors
responsible for the first column &%. Notice that in both cases the routing is monotone.
Now, each processor in the first row Af distributes itsh value down its column o
(i.e., to other processors responsible for that columdy paind each processor in the first
column of A; distributes itgy value down its row ofA; . All the processors responsible
for a row of A; have consecutive indices; thus, thealues can be distributed using a
segmented parallel prefix operation. We use the row-copy algorithm described in Sec-
tion 3.1 to distribute thé values. Having spread all the data so that the aforementioned
conditions are satisfied, run a segmented parallel prefix with each réwfofming a
segment. This finds all the row minima &f

All the procedures we have done in this proof t&®dg m) time on a(2m)-processor
hypercube and hence can be done in the same asymptotic time-bouna-ipranessor
hypercube. O

3.3. An Algorithm to Compute Row Minima in Two-Dimensional Monge Arrays

THEOREM3.2. Therow minimaofanrn Monge array A= {a[i, j]} can be computed
in O(lgnlglg n) time on an(n)-processor hypercube

PrOOF We use divide-and-conquer techniques similar to those used by Aggarwal and
Park [5]. For the sake of simplicity, we only prove this theorem for the case-op?,



Parallel Searching in Generalized Monge Arrays 305

wherec is some positive integer. Assume that procegsaontains entrieg[ p] and
h[p].

In this proof,i is always in the range X i < ./n, and, in this paragrapH, is in
the range 1< ¢ < ./n. Consider the/n x n array R formed by taking every/nth
row of A. PartitionR into ./n subarrays where théh subarrayR, contains columns
(¢ — 1)/n + 1 through¢/n of R. We assign processo(s — 1),/n + 1 throughi \/n
to R, and recursively compute the row minima Bf. Notice that, for the recursion,
the processors already have the approptiatalues. So, only thg values need to be
distributed. First, processak/n routes (monotone) itg value to processar. Using
fixed permutation routing, processahen distributes itg value to processoist £./n,

1 < ¢ < /n. After the recursion, processof — 1)./n + i contains the minimum of
rowi in R,. Assign processoré — 1),/n + 1 throughi ,/n to rowi of R and route (a
fixed permutation) the values of the minima so that processorsl)./n + 1 through
i »/n get the minimum entries in roiof all the R,’s. The row minima ofR is simply the
minimum over the row minima of all thB,’s. Route the row minima oR to processors
(i —1)4/n + 1throughi/n.

Let j; denote the index of the column containing the minimum entry inirg( of
A (equivalently, rowi of R), and letjo = 1. SinceA is Monge, the minimum entries in
rows(i — 1)./n + 1 throughi ./n — 1 of A must lie in columng; _; throughj;. Let

[

For 1< ¢ < v, let S, be the subarray of that contains rowsi — 1)./n + 1 through
i/n and columnsjj_; + (£ — 1)/n + 1 through midji, ji_1 + £4/n}. The minimum
entries in rowsi — 1),/n+ 1 through /n are eitherinone d& 1,..., S, orincolumn
ji—1. ArraysSa, ..., Sy -1 are ally/n x /n. Letw; = (ji — ji—1) mod.y/n and letT;
be aw; x w; subarray ofg ,, formed by taking every./n/w; |th row of § ,,. Note that
Ti may be empty.

For 1< ¢ < v — 1, assigny/n processors t& ; andw; processors td;. The total
number of processors assigned is

v/ VN
YW —DVntw =) ji—jia<n
i=1 i=1

The processor assignment uses a similar technique to that of Lemma 3.1. Processor
copiesjj_1 from processor — 1 and then computeg andw;. Using parallel prefix,
processor computes

Uj ZZI — 1(vg —1)\/ﬁ+Wg.
(=1

Now processarroutes (monotone) recotd vi, wi, ji)toprocessay;. Using segmented
parallel prefix with processorg forming the segment boundaries, compute the rank of
each processor within its segment. Also, cdpyvi, wi, U;, ji) to all the processors
betweeru; andu; 1. Within the segment bounded by andu; 1, processors with ranks
€ —-1D/n+1,...,¢/nare assigned t§ ;, for 1 < £ < v — 1, and processors with
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ranks(vi — 1) /n+1,..., (v — 1)s/n + w; are assigned td;. Recursively find the
row minima in these subarrays. Before the recursion, distribute the data so th the
processor of j, getsg[i + p] andh[j — 1+ (p — 1)/n+ p] and thepth processor of
Ti getsg[i + plv/n/wi]]andh[ji — 1+ (vi — 1)/n + p]. This can be accomplished
in the manner of Lemma 3.1.

Next, assign/n processors to eadh and using Lemma 3.1 and the row minimalof
compute the row minima d§ ., . Finally, the minimum entry inrow, (i — 1)/n+1 <
£ < i4/n, is the minimum ofa[ p, ji_1] and thev; values obtained for row in solving
the row-minima problems fog i, ..., S ,,. This computation is done using segmented
parallel prefix.

The time complexity of this algorithm has two components: @@) nonrecursive
hypercube operations takir@(lg n) time onn processors, and the two recursive calls.
For the recursions, the processor complexity is dominated by the first recursive call.
Thus, the complexities are

T(n) < 2T(v/N) 4 O(gn) = kign + 2T (%%,
P() < maxn, v/NnP(v/n)} = maxn, n*-¥2 pn¥y

IA

A

afterk levels. Usingk = log logn gives us the claimed bounds. O

3.4. An Algorithm to Compute Row Minima in Two-Dimensional
Staircase-Monge Arrays

LEMMA 3.3. Given an mx n staircase-Monge array A= {a]i, j]}, m > n, suppose
we know the minimum in evetym/n])th row of A Then we can compute the remaining
row minima of A in @Qlg n) time using an(n)-processor hypercube

PrOOF This proof is very similar to the proof of Lemma 3.1. Instead of &, A

get partitioned into thé’s and theP,’s discussed in detail in the proof of Lemma 2.1.
All the steps given in the proof of Lemma 2.1 for finding thés and theP,’s are easily
adaptable for the hypercube, except for the algorithm of [16] for the ANSV problem.
On the hypercube, the ANSV problem can be solve@®(ig n) time usingn processors
[29]. O

THEOREM3.4. The row minima of an rx n staircase-Monge array A- {a[i, j]} can
be computed in Qg nlglg n) time on an(n)-processor hypercube

PrOOFE This proof follows closely the proof of Theorem 3.2. Whenever we used some
algorithm for Monge arrays, we now use the corresponding algorithm for staircase-
Monge arrays. Upon finding the row minima in evepth row of A, instead ofS ;'s
andT;’s we get a partition into thé&;’s and theP,’s discussed in detail in the proof of
Lemma 2.1. Finding thé&;’s and theP,’s and distributing the processors appropriately

is discussed in the proof of Lemma 3.3. O
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3.5. An Algorithm to Compute Tube Minima in Three-Dimensional
Monge-Composite Arrays

THEOREM 3.5. Thetube-minima of anxinxn Monge-composite array & {(c{i, j, K]}
can be computed in @y n) time on an(n?)-processor hypercube

PrROOF We use divide-and-conquer technigues similar to those used by Aggarwal and
Park [5]. Assume that entdfi, j] of arrayD is stored in process@r— 1)n+ j and entry
e[ j, k] of array E in processork — 1)n + j. When convenient, we refer to processor
p = ( — 1)n+ j by the index of itsD value, i.e., by, j]. In this proof,i andk are
always in the range k¥ i, k < 4/n, andj is always intherange ¥ j <n.

Let Rdenote the/nxnx./nsubarray o€ given by entriegc[i ,/n, j, ky/n]}. Assign
processors [11], ..., [1, n] to the n entries of tube\/n, /n), processors [2A], ...,
[2, n] for tube (2,/n, i/N), and so forth. This assignment can be accomplished using
segmented parallel prefix. Note that we can devote one processor per each element of
R becausgR| = n?. Next, distribute the data so that a processor can compute the
entry of R to which it is assigned. Processdk/n, j] sends itsD value to processors
[ —Dy/n+1,j],...,[is/n=1,j] This can be done by routing (monotone) from
processori[y/n, j] to processor( — 1)./n + 1, j], and copying (parallel prefix) from
processor(i —1)./n+1, j]toprocessors] —1)/n+2, j]1, ..., [ix/n—1, j]. Similarly,
processor], ky/n]sends itsE value to processorg [ (k— 1) /n+1], ..., [j, ky/n—1].
With this processor and data assignment we can compute the tube minivzydifrute
force using parallel prefix.

SinceC is Monge-composite, tube minima Bflimits the search space for the minima
in the remaining tubes @. Let j; x denote the second coordinate of the minimum entry
in tube (i /N, ky/N). Also, let jox = 1, jio = 1. The Monge condition gives us the
following inequalities:

Jictk-1 = Jik-1 =< Jiks
Ji—tk—1 < Ji—ik < Jike

Let Cix denote the subarray & containing{c[X, vy, z]} for

(i—-Dvn+1 < x<ivn,
fi—ik-1 < Y < ik
k—Dv/n+1 < z<kyn.

Becaus€ is Monge-composite, all the remaining tube minim&aire contained within
the Cik's. To find the tube minima of th€;,’s we break theCik’s into smaller pieces,
recurse on those pieces, and finally combine the tube minima of the pieces to get the
tube minima ofC. We now give the details of these steps.

Let

Pi,k — jicik-1+1
Vik =

NG —‘ and wik = (jix — ji—1k—1) mod/n.
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We break upCix into vjk subarray§1k throughSy*. For 1 < ¢ < vy, let subarrays,
contains elementg][x, v, z]} for

(i—-Dvn+1 < x<ivn,
jiciker+ € —DV/n+1 <y <minfjik, ji—1k-1+ £/N},
k—Dv/n+1 < z<kyn.

Let Tik be thewik x wik x wix subarray of§,* formed by taking every./n/wix]th tube
of Si*. In other words,

e et 2] 2])

wj Wik
for
1 < X < wi,
jictke1+ ik —DVN+1 <y <jik
1 < 7 < wi.

Note thatTjx may be empty.

We assigm processors to eacyin x /n x /n array S, andw? processors to the
wik X wik X wikx array Tix. The total number of processors assignecCipis (vik —
Hn+ wizk < (jik — ji—1k_1)4/N+ N. SinceC is Monge-composite, the total number of
processors assigned to compute tube minima i€al$ is (see [5] for details)

NONG NONG
Z Z [(Gik = ji—tk-DV/N+N] < n?+ x/ﬁz Z Jik = Ji—tk—1
=1 k=1 =1 k=1

IA

n? + v/n(2ny/n) < 3n?.

Assigning the correct number of processors to éagland distributing the data that is
needed by these processors is accomplished by a procedure analogous to that used in
Theorem 3.2 to assign the processors toShés and theT;’s. Now we recurse on the
Si’s and theTik.

Once we know the tube minima @fy, using Lemma 3.1 we can get the remaining
tube minima ofS*. We accomplish this by running the algorithm given in Lemma 3.1
in parallel on the/n ij-planes ofS,*, each of which is a/n x wix Monge array.

To find the minima in an individualj -plane of S} takesO(lgn) time on an({/n)-
processor hypercube. The total effort for all s is O(Ig n) time on a2n?)-processor
hypercube.

Finally, to get the tube minima @;x we take the minimum of the tube minima of all
the Si.’s. In other words, by decomposii@j into S, 's, we broke each tube @ into
vik pieces. We then recursively found the min for each piece of each tubg.iithus,
to get a minima for some tube @, we take the min of all the minima of the pieces
into which that tube was broken. We accomplish this by a parallel prefix operation. As
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already mentioned, the tube minima of t8g’s gives us the tube minima & and,
therefore, we are done with the algorithm.

The complexity of this algorithm has three components:@i&) nonrecursive hy-
percube operations (including the brute-force computation of tube minirRatiaking
O(lg n) time onn? processors; the recursive call to compute the tube mining s
(for 1 < ¢ < vix — 1) andTi’s; and the call to Lemma 3.1 to compute t§§’s. Thus,

T(n) < T(W/n)+ Odgn) = O(gn),
P(n) < maxn? nP(/n)} =n? O

Note that for the tube-minima problem, we do not achieve the same processor bound
obtained by Aggarwal and Park [5] for CREW PRAMs. Aggarwal and Park give an
O(lg n)-time, (n?)-processor CREW-PRAM algorithm and then reduce the processor
bound ton?/Ig n without affecting the asymptotics of the time bound. Unfortunately,
the trick they use in reducing the number of processors is not readily applied to our
hypercube algorithm, because of problems with the movement of data.

3.6. Remarks on the Network AlgorithmsA normal hypercube algorithm achieves

the same processtiime bounds on any of the bounded-degree variants of the hy-
percube [32], which we call theormal hypercubic networkge.g., the butterfly, the
cube-connected cycle, the shuffle-exchange, and the de Bruijn graph). Then we have the
following results.

THEOREM3.6. The row minima of an rx n Monge or staircase-Monge array can be
computed in @Ignlglg n) time using anyn)-processor normal hypercubic network

THEOREM3.7. The tube minima of an R n x n Monge-composite array can be com-
puted in Qg n) time using any f-processor normal hypercubic network

The availability of several techniques for emulation of PRAM algorithms on hy-
percube and related hypercubic networks imply alternate network algorithms for the
previous problems directly from the PRAM algorithms. The most general purpose de-
terministic emulation of PRAM require®(log? N) per step [11]. However, owing to
the special nature of data-movement in our PRAM algorithms, we can obtain a faster
emulation by using sorting. This tak&3(log N loglogN) steps on theN-processor
hypercube [19].

Comparing the time bounds obtained from emulation with our direct implementation
shows that we are better off by at least a facto®gfog N) in the time bound for all the
problems in the present section. For example, the time bound for row minima obtained
from emulation of our PRAM algorithm would yield a(log? N log log N) algorithm
instead of the preser@(log N log logN) algorithm. It may be also worth mentioning
that theO(log N log logN) hypercube sorting algorithm is considered too complex for
implemetation. Even by using a faster randomized emulation scheme thabtd&egsN )
expected time per step, our direct algorithms are more efficient.
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4. Applications

4.1. The All Pairs Shortest Path ProblemIn this section we present the result of
Aggarwalet al. [2] that apply algorithms for searching in Monge arrays to the special
case of the APSP problem when the graph is acyclic and the edge weights satisfy the
Monge condition.

Define theAll Pairs Shortest Pat{APSP problemas follows: given a weighted
directed graptG = (V, E), [V| = n, we want to find the shortest path between every
pair of vertices inv. The following theorem is due to Aggarwet al. [2].

THEOREM4.1 [2]. Given a directed acyclic graph whose edge weights satisfy the
Monge condition(or the inverse-Monge conditignthe APSP problem can be solved
in O(Ig? n) time using R processors on a CREW PRAM

PrOOF LetG = (V, E) be agraph onvertices whose edge weights satisfy the Monge
condition. We assume that the vertice€ofv1, vy, . . ., vn, are givenin topological order
so that if(vi, v;) € E, theni < j. Let D = {d[i, j]} be then x n cost array folG, i.e.,

cost of edge;, vj) if (ui,v)eE and i#],
dfi,j]=30 if i=],
00 otherwise.

Notice that the entries dd above the diagonal obey the Monge condition. Were it not for
the 0 entries along the diagon&l ,would be a Monge array. Thus, we cBiladiagonal-
Mongearray. To solve the APSP problem, it suffices to compbfeover the closed
semiring{min, +} (in the notation of [18], this i$ U {oo}, min, +, co, 0)). Henceforth
in this proof, all operations are performed oygrin, +}.

Letn x narrayA = {a[i, j]} be defined as follows:

o di,jl i i#],

ai, j1 = {oo otherwise
Furthermore, let be the identity array fojmin, +}, i.e., the array with O’s on its diagonal
andoo’s everywhere else. Note thatis a Monge array andl is the identity array for
{min, +} We can writeD asD = min{A, 1} = A4+ |. ThenD? = (A+ 1)? =
A2+ Al + 1. IngeneralD' = Al + A=Y ... + A2+ A+ |. Thus, we can write
D? = A'D' + D'. This decomposition oD reduces the computation Bf" to Ign array
multiplications and additions. We can easily do the array additid(ih) time usingn®
processors. The following lemma makes this decomposition useful by showing that the
array multiplications can be computed efficiently.

LEMMA 4.2. We can compute a product of ankm Monge array with any rx n array
in O(Ign) time using R processors on a CREW PRAM

PrROOF Let Abe am x n Monge array and leX be anyn x n array. Thejth column of
the productA X is simply the row minima of an x n Monge arrayA; = {g;[i, k]}, where
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a[i, K] = a[i, k] + x[k, j]. Since the row minima of a Monge array can be computed
in O(lg n) time usingn processors on an EREW PRAM (see [14]), we can compute the
productAX in O(lg n) time usingn? processors on an CREW PRAM. We cannot do
this on an EREW PRAM since processors need to read the same valué of one
time step. O

Lemma 4.2 can be used to find the product of the fé¥r®' in O(lgn) time using
n? processors. Performing tgiterations of array multiplications and additions gives
usD". O

4.2. Huffman Coding Inthis section we presentthe first NC algorithm for the Huffman
coding problem that does(n?) work. This algorithm is due to Czumaj [20]. Larmore
and Przytycka in [30] reduced the Huffman coding problem tdXbecave Least Weight
Subsequend€LWS problem Define CLWS as follows: given aweight functiari, j),

1 <i < j < n, which satisfies the Monge condition (concavity in [30] corresponds to
the Monge condition), find a sequence=1s; < s, < - -+ < § = n such that

n

Y w(s,s)

i=1

is minimized. We can formulate the CLWS problem as a graph problen® let(V, E)

be a weighted directed acyclic graph such thatyfoo; € V, (vi, vj) € Eiff i < j.The
Monge weight functionu (i, j) is then the weight of edge;, vj). The shortest path from
vertexv; to vertexv, corresponds to a solution to the CLWS problem. The following
theorem is due to Czumaj [20] and closely follows the ideas of Galil and Park [23].

THEOREM4.3 [20]. Given a directed acyclic graph whose edge weights satisfy the
Monge condition(or the inverse-Monge conditipnwe can find the shortest paths
from a source vertex to all the other vertices in V in(I@nlg" n) time and a total

of O((n?1g?n)/Ig" n) work on a CREW PRAM > 1.

ProOOF DefineG and then x n array D as in the proof of Theorem 4.1. Assume that
vertex 1 is the source vertex. In this prokfis always in the range £ k < x for some
X to be specified later andis always in the range £ ¢ < [n/x]. Let D, = {d[i, j]}
be thex x x subarray ofD whered,[i, j] = d[i, j]for é&x +1 <i,j < (£ + Dx.
We compute all theD}’s using Theorem 4.1 ir0(Ig? x) time usingx?|n/x] = nx
processors.

Defines[i] to be the length of the shortest path from 1itdfo prove the theorem,
we must determin& = {g[i]}. Note thatSis equal to row 1 oD". Let S = {s[¢x +
1], s[¢x+ 2], ..., s[(¢+ 1)x]}. We find Siteratively: during iteratiorf we computes,.
Notice that we have already comput8dsinces[k] = d;[1, k]. We need the following
formulation of Sto do the iteration:

s[¢x + k] = 1mlg {s[i] +d[i, j]+d¢[], €x + K]}.

é'><<7j <tx+k
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In other words, the shortest path from 1¢to+ k can be divided into a part containing
a path of vertices numbered no higher tana path of vertices numbered higher than
£x, and an edge joining these two subpaths. Computatisftgft k] is broken into two
parts:

E[j]
s[ex + K]

min (s[i] + di. ]}

min  {E[j] + de[], £x + K]}
X< j<ex+k

We use [14] and the decompositionBfgiven in the proof of Theorem 4.1 to compute
E in O(lg(¢x)) time usingéx processors. Using brute-force search, we can confpute
from E and D, in O(lg x) time usingx?/Ig x processors. Thus, the total complexity is

Time= O(lg?x) + L—TJO(Ig(ﬁx)) + L—TJO(Ig X) = O(Igzx+ )_r: lgn+ )—rzlg x),

) n n| x?
Work = O(nxlg“x) + O(L;Jﬁxlg(ﬂx)) + O ({;Jlg—x lg x)

2
=0 (nxlgzx+ " Ign) )
If we takex = n/Ig" n, we get
Time= O(lg?n+Ig" nign),

2142
Work:O(n l? n>. O
Ig'n

Using Theorem 4.3 and the reduction of Larmore and Przytycka [30], Huffman codes
can be computed i®(Ig" nlg n) time and a total 0 ((n?1g?n)/Ig" n) work ona CREW
PRAM.

4.3. String Editing In this section we give a®(lg mlg n)-time mn-processor hyper-
cube algorithm for the string editing problem. Recall that the string editing problem is
to find a sequence @& dit operationgransforming a given string = Xixz- - - Xy to @
given stringy = y1¥2- - - Yn, M = |X| andn = |y|, such that the sum of the individual
edit operations’ costs is minimized. We consider three different types of edit operations
that are allowed: we can delete the symkicht costD (x;), insert the symboy; at cost

I (y;), or substitute the symba] for the symboly; at costS(x;, y;). PRAM algorithms

for this problem (see [5] and [12]) reduce it to a shortest-path problem in a special kind
of directed graph called grid-DAG and use array-searching to solve this shortest-path
problem. We give a brief overview of this reduction. Details of this reduction and other
problems related to grid-DAGs are given in [5]. Amx n grid DAG G = (V, A) is
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defined as followsVY = {v; j : 0 <i <mand 0< j <n}and

A={,j,vij+):0<i<mO0=<j=<n}
U {(vij,viqrj):0<i <mO0<j<n}
U {(vij, virj+0 :0<i <m,0<j <n}

The first set of edges is referred to as timgizontaledges, the second set as tieetical
edges, andthe last set asdliegonaledges. The reduction from the string editing problem

on strings of sizenandnis as follows. We create anx n grid-DAG G with the following
weight functions: the weight of a horizontal ed@e;, vi j+1) is | (yj+1), the weight of a
vertical edgguv; j, vi+1,j) is D(Xi+1), and the weight of a diagonal edgg ;. vit1,j+1)

iS S(Xi+1, ¥j+1)- There is a one-to-one correspondence between paths from vgptex
vertexvm n and sequences of edit operations transforrriimgo y. Moreover, the shortest

V0,0 ~ Um.n Path corresponds to the minimum-cost sequence of edit operations. The par-
allel approach to finding the shortest path in this graph is divide-and-conquer. Since in the
recursive steps, the subproblems actually require a many-to-many shortest-paths solution,
we generalize the problem as follows. lsgt. .., Snini1 denote the sources given by

the VertiCGSJm,o, Um-1,05 - - - » V1,0, V0,0, V0,1, - - - » VO,n—1, VO,n and lettg, ..., tmene1 de-

note the sinks given by the vertices o, Um1, - - - s Um.n—1, Um.ns Um—1.ns - - - » U1.ns V0.0

The problem is to find all source-to-sink shortest paths. This new problem is equiv-
alent to computing all the entries of the distance amd$Ts, whereDISTg]i, j] =
{length of shortest path from ® t}. The divide-and-conquer approach is to Guhor-
izontally and vertically in the middle of each dimension, producing four grid-DAGS

B, C, andD corresponding to the four quadrants created by the cuts. Fhosntains
vertices{vj : 0 <i <m/2and0< j < n/2}, B contains verticegv; j : 0 <i <

m/2 andn/2 < j < n}, C contains verticegv; ; : m/2 <i <mand0< j < n/2},

and D contains verticegv; j : m/2 < i < mandn/2 < j < n}. After recursively
computing all the source-to-sink shortest pathajiB, C, andD, we computdISTa s

from DIST, and DISTg, DISTcp from DISTe and DISTp, and, finally,DISTg from
DISTaus andDISTeyp. It has been shown that in any grid-DAG, DISTg satisfies the
Monge condition. Then the computation BfSTy g involves finding the tube minima

of a Monge-composite arra@ISTy + DISTg. Using our tube-minima algorithms for
hypercubes, we can compUSTs from DISTa, DISTg, DISTe, andDISTy in solving

the string editing problem i® (Ig mlg n) time on anmn-processor hypercube.

4.4. The Largest-Area Rectangle Problemn this section we show how to solve the
Largest-Area Rectangle (LAR) problem. We reduce the LAR problem to finding row
maxima in a Monge array. Recall the LAR problem definition: given &set n planar
points, compute the largest-area rectangle that is formed by taking any twaqidives
as the rectangle’s opposite corners and whose sides are parallektcathey-axes.

Call a rectangleositive-slopedresp.negative-slopexif the two points that form
the rectangle are at the top-right and the bottom-left corners (resp. at the top-left and
bottom-right). The solution to the LAR problem must be either a positive-sloped rectangle
or a negative-sloped rectangle. We show how to find the largest-area positive-sloped
rectangle. The other possibility is handled analogouslyx[pt denote thec-coordinate
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of point p and letx[ p] denote they-coordinate ofp. Call a pointp € P maximalif,
forall g € P, eitherx[p] > x[q] or y[p] = y[q]; and call p minimalif, for all g € P,

eitherx[p] < x[q] or y[p] < y[q].

OBSERVATION4.4. The largest-area positive-sloped rectangle is formed by one maxi-
mal point and one minimal point

Aggarwal et al. [1] showed how to find the set of maximal points in a semnof
points inO(lg n) time usingn processors on a CREW PRAM. Minimal points can be
found analogously. LeQ = {qi, O, ..., gs} be the set of minimal points such that
X[a1] < X[0] < .-+ < X[gs] and letR = {rq1,ro, ..., ri} be the set of maximal points
such tha[r;] < Xx[r2] < --- < X[rs]. We form ans x t arrayB = {bJ[i, ]} as follows:

bli. j] = X[ri] = x[aDylrj] = ylaD  if x[r;] > x[ag] and y[r;] > y[ai].
= otherwise

OBSERVATION4.5. B is inverse-Monge

We use our CREW algorithm for row minima in a Monge array to find row maxima in
B and thus obtain an optimal CREW-PRAM algorithm for the LAR problem that takes
O(lg n) time usingn processors.

4.5. Proximity Problems for Convex Polygansin this section we apply our algorithms
for searching in staircase-Monge arrays to the following proximity problem: given two
nonintersecting convex polygoRsandQ with mandn vertices, respectively, determine,
for each vertex of P,

1. the vertex ofQ nearest t that is not visible tox,

2. the vertex ofQ farthest fromx that is not visible tox,
3. the vertex ofQ nearest ta that is visible tox, and
4. the vertex ofQ farthest fromx that is visible tox.

We reduce the first two problems to row-maxima (or row-minima) problems for
a constant number of staircase-Monge arrays. The other two problems can be solved
directly in O(Ig(m+ n)) time using(m + n)/lg(m + n) processors on a CREW PRAM.
In the discussion that follows, we give a sim@a&lg(m+n))-time reduction usingn+n
CREW-PRAM processors. The reduction is based heavily on the paper by Aggarwal and
Klawe [3], and the reader is referred to this work for details of the proofs. We present the
relevant algorithmic details for the parallelization. We note that while their reduction was
linear time, the processor-time product of our metho®{® Ig n). However, since the
array-searching algorithms have similar resource bounds, the reduction is not a bottleneck
for the overall running time.

We begin with three previous sequential results involving convex polygons:

LEMMA 4.6. The intersection of an infinite line with a convex p-gon can be computed
in O(lg p) sequential time
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LEMMA 4.7. The two supporting lines from an external point to a convex polygon with
p vertices can be computed in(Ig p) sequential time

LEMMA 4.8. The distance between two disjoint convex polygons with m and n vertices
respectively can be computed inImn) sequential timeMoreoverwe can also find
two points on the respective boundaries of these polygons achieving this minimum

This last result can be used to find a separating line between two disjoint convex
polygons. Given the separating line, we can orient the coordinate axes S tiegt
strictly to the left ofQ. Let the leftmost and rightmost vertices of each polygon be denoted
bylp,lq,rp, andrq. We consider only the problem of finding the farthest-invisible vertex
of Q for each vertex of P lying on P’s upper chain; the farthest-invisible vertex @f
for each vertex orP’s lower chain and the nearest-invisible vertex®for each vertex
on P’s lower and upper chains can be found analogously.

The following algorithm is used for the reduction. Given a convex upper dhaiith
vertices labeledy, ..., pm in clockwise order and a convex polyg@ with vertices
di, ..., On in clockwise order, we compute the two staircase-Monge arfayend A;:

1. For each vertey; in P, compute the two supporting verticesandb; of Q such that
Pt andp;b; are tangents t®. The portion ofQ betweerb; andt; that is closer to
pi is referred to a®)’s nearsidewith respect tgp; and the remaining portion &3's
farsidewith respect top;.

2. DefineL; to be the line containing verticgs andp;_, 1. Definec; to be the intersection
of L; and the farside o) with respect top;, if it exists. Otherwise, sat, to be the
vertext;. Note thatc; is not necessarily a vertex @J.

3. LetA; andA; be two(m — 1) x n arrays defined as following. THg, j)th entry of
A is the distance fronp,_; to g if t,_;, gj, andc,_; are in clockwise order ansb
otherwise. Thei, j)th entry in A, is the distance betweegm andg; if ¢, g;, andb;
are in clockwise order ansb otherwise.

From Lemmas 4.6 and 4.7, it easily follows that the first two steps given above can
be implemented i© (Ig(m + n)) time using a linear number of processors. Computing
the row maxima ofA; and A; yields the farthest farside vertex pf. To compute the
farthest nearside vertex @f, we define a point; analogous ta;. It can be shown that
the contenders for the farthest invisible nearside vertgy @ b; or the neighbor ofy;
(which is invisible). The problem of finding nearest invisible vertices can be reduced in
an analogous fashion.
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