
Control of fermenters ±
a review

K. Yamuna Rani, V.S. Ramachandra Rao

Abstract Fermenter control has been an active area of
research and has attracted more attention in recent years.
This is due to the new developments in other related areas
which can be exploited to overcome the inherent dif®-
culties in fermenter control. Beginning with conventional
regulatory control of operating variables such as temper-
ature, pH and dissolved oxygen concentration, research in
fermenter control has undergone signi®cant changes in-
cluding the recent neural network based approaches. The
objective of the paper is to focus the attention of the re-
searchers to the developments in the control of batch, fed-
batch and continuous fermenters over the past few years.

1
Introduction
The biotechnology industry is evolving rapidly. Many
biotechnology-based products such as pharmaceutical and
health-care products, agricultural products, and chemicals
have already been commercialised. The ability to control a
fermentation process at its optimal states precisely and
automatically is now of considerable interest to many
fermentation industries. Proper control enables them to
reduce their production costs and increase the yield while
at the same time maintaining the quality of the desired
product. During the past few decades, control has been
used in the fermentation industry to maintain the oper-
ating temperature, pH and dissolved oxygen (DO) con-
centration at the desired level. However, the level of
sophistication in the de®nition of control objectives as well

as the design of control schemes has not yet reached that
found in the chemical industry.

Biochemical processes are dif®cult to control. This is
due to the need for precise control resulting from the
sensitivity of the micro-organisms and the inability to fully
in¯uence the cells' internal environment by manipulating
the external environment in which they live. The main
factors contributing to the dif®culty in control of fer-
menters are: (1) Their dynamic behaviour is inherently
nonlinear, (2) Accurate process models are rarely available
due to the complexity of the underlying biochemical
processes, (3) Model parameters vary in an unpredictable
manner and (4) Reliable biosensors to measure intercel-
lular activities are rarely available, making the process
states very dif®cult to characterise. Bogle et al. [1] dis-
cussed the techniques of metabolic pathway engineering
which help to identify how to modify the micro-organisms
for improved process performance through better design
leading to less sensitivity to load changes.

Three modes of operation are very common in the
operation of fermenters-batch, continuous and fed-batch.
During batch operation of a process, no substrate is added
to the initial charge nor is the product removed until the
end of the process. Some pharmaceutical preparations are
made in this way, but generally batch operation is not
commercially attractive. More economic is the continuous
operation where substrate is continually added and
product continually removed. Examples are the continu-
ous fermentation of milk in the production of margarine
and the biological puri®cation of waste water. In fed-batch
operation, the feed rate may be changed during the pro-
cess but no product is removed until the end. Baker's yeast
and antibiotics, such as penicillin are made in fed-batches
commercially, and there is an enormous economic in-
centive to optimize such processes [2].

Modak and Lim [3] investigated several modes of op-
eration of bioreactors for fermentation processes like
continuous, single-cycle batch, repeated batch, single-cycle
fed-batch and repeated fed-batch. They stated that for
maximizing bioreactor productivity, continuous operation
is a better choice over other options. They classi®ed fer-
mentation processes into four types A, B, C and D de-
pending on whether the instantaneous metabolite yield
(de®ned as the ratio of speci®c metabolite production rate
to speci®c consumption rate) increases, decreases, goes
through maxima, or remains constant, respectively, with
increase in substrate concentration. The optimal mode of
operation of each of these types is reported as single-cycle
batch for type A, continuous for type B, single-cycle fed-
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batch for type C, and any repeated batch operation for
type D processes. They further stated that the optimal
results may merely represent theoretical limits in cases
where they are not physically realisable.

The control objective in a fermentation process is to
maximize the production of a desired product. For batch
and fed-batch fermenters, this amounts to maximizing the
quantity of the desired product at the end of the batch.
This requirement leads to a dynamic optimization prob-
lem that is often dif®cult to solve. For continuous fer-
menters, the amount of desired product produced per unit
time, namely the productivity, can be maximized by op-
timizing the steady-state operating conditions of the fer-
menter, which requires solving a steady-state optimization
problem.

2
Continuous fermenters
In most of the continuous fermentation processes, one of
the output variables is chosen as the controlled variable
and its estimated optimal open-loop pro®le or a constant
setpoint is tracked. Menawat and Balachander [4] pro-
posed alternate control structures for maintaining a con-
stant biomass concentration (X) in a chemostat, and
claimed that the control scheme which employs feed
substrate concentration (Sf) is more effective than the one
which employs dilution rate (D) as the manipulated vari-
able. Zhao and Skogestad [5] compared various control
con®gurations for continuous bioreactors. Five control
con®gurations have been investigated, namely conven-
tional turbidostat (D ) X), conventional nutristat (Sf ) X),
concentration turbidostat (D ) substrate concentration S)
concentration nutristat (Sf ) S), and modi®ed turbidostat
(dilution rate of sterile water stream, Dw ) X) by using
simple proportional-integral (PI) controllers on the basis
of partial disturbance gain used for evaluating their con-
trollability with respect to disturbance rejection. At sub-
strate limited growth conditions, the concentration
turbidostat is reported to be the best control con®guration,
whereas conventional turbidostat should be avoided.
When the cell growth is not substrate limited, all the
control con®gurations are effective except concentration
nutristat which is unacceptable at all operating points
because Sf has no steady-state effect on S.

2.1
Adaptive control approaches
Adaptive control techniques were one of the earliest ad-
vancements implemented in continuous fermenter control.
Dochain and Bastin [6] proposed simple self-tuning type
nonlinear adaptive controllers for bacterial growth systems
in the form of two strategies, namely substrate concen-
tration control and production rate control. The special
feature of their application is that the identi®ed parame-
ters of growth rate and yield coef®cient have a clear
physical meaning and can give in real-time, useful infor-
mation on the state of biomass. Renard et al. [7] suc-
cessfully implemented a simple adaptive nonlinear model
based control to a biomethanation pilot reactor. Ef¯uent
substrate concentration in the anaerobic digester is con-
trolled with the help of dilution rate without using any

mathematical description of the speci®c growth rate.
Suarez-Cortez et al. [8] designed a sliding controller for
regulation of substrate concentration in a continuous
culture fermentation process. Recently, Dochain and
Perrier [9] showed how to incorporate the well-known
knowledge about the dynamics of biochemical processes in
monitoring and control algorithms. Such methods are
shown to be capable of dealing with process uncertainty by
introducing an adaptation scheme.

2.2
Optimizing control approaches
Optimizing control deals with the problem of changing the
operating conditions of a continuous biochemical process
to bring it to its optimum. In the earlier investigations
carried out in this area, the optimization was based on an
off-line identi®ed mathematical model or on adhoc ex-
perimental procedures. However, the reliability of such
models is questionable since process conditions vary
continuously due to culture ageing, spontaneous muta-
tions, wall growth and external disturbances. In order to
overcome the aforementioned dif®culties, another version
of optimizing control was proposed where a linear dy-
namic on-line identi®ed model is adaptively determined
and its steady-state version is used to calculate the opti-
mum. Rolf and Lim [10, 11] applied this method to opti-
mize the volumetric productivity of baker's yeast
fermentation in a chemostat through selection of optimal
dilution rate. Harmon and coworkers [12] also illustrated
these features by optimizing the production of biomass in
a continuous fermenter. Hamer and Richenberg [13] em-
ployed this algorithm for on-line optimizing control of a
packed bed immobilized cell bioreactor. Semones and Lim
[14] carried out simulation studies and also implemented
the algorithm to maximize steady-state cellular produc-
tivity of a continuous culture of baker's yeast by manip-
ulating both temperature and dilution rate. A different
approach of on-line optimizing control, in which nonlin-
ear model identi®cation and its dynamic optimization are
carried out by decomposing the problem into two phases,
was applied for optimizing biomass productivity in a
chemostat and penicillin productivity in an immobilized
cell ¯uidized bed reactor [15]. The ®rst phase of this ap-
proach consists of identifying the unknown parameters
and unmeasured disturbances entering the process by
using all available process measurements. In the second
phase, this identi®ed nonlinear model is used to determine
the optimal operating strategy. The two phases are peri-
odically repeated in tandem to follow continually changing
input disturbances and process parameters. In spite of the
good performance of the two-phase approach, it has not
found wide applicability since the two phases require so-
lution of nonlinear static and nonlinear dynamic optimi-
zation at the end of every few sampling intervals, which is
computationally intensive.

An alternative approach has been presented [16] for
optimizing the steady-state productivity of a class of
continuous fermentation processes described by an un-
structured model. A simple substrate feeding rate control
mechanism is developed for a pre®xed dilution rate
without the knowledge of certain process parameters,
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which was shown to be robust against measurement noise
and process parameter variations. The presence of an
extremum in the output and attendant change in the sign
of the steady state gain poses a dif®culty to a large number
of nonlinear control strategies. A nonlinear control strat-
egy that appears promising for handling such a singular
situation is a nonlinear model predictive control (NMPC)
strategy which uses a geometrically exact prediction model
in the neighbourhood of the optimum point [17]. An on-
line optimizing control scheme is proposed [18] for con-
trolling a continuous fermenter based on this NMPC
strategy. A nonlinear Laguerre model, whose parameters
are estimated on-line, is used for tracking of the operating
point, and the control at the operating point is achieved
using an adaptive nonlinear predictive control strategy
that uses the nonlinear Laguerre model for prediction.

A dual-mode adaptive control scheme is recently in-
troduced and applied to a biochemical reactor, where in
the ®rst mode, the controller is designed to achieve sta-
bility and performance in the neighbourhood of the nor-
mal operating point, whereas in the second mode, the
controller is designed to act as a safety jacket to bring the
system from outside the normal regime to within the
neighbourhood of the normal operating point [19]. Arnold
et al. [20] presented a dynamic mechanistic model for a
continuous extractive fermentation process, and also
demonstrated its application for dynamic optimization of
process start-up and changeover operation.

2.3
Linearization-based approaches
Nonlinear controllers based on exact linearization were
also designed for continuous fermenters [21]. This ap-
proach is based on direct productivity control unlike
earlier approaches where the productivity was indirectly
controlled through cell, product or substrate regulation at
speci®ed values. State-space linearization and input-out-
put linearizing control were explored using dilution rate or
feed substrate concentration as manipulated variables to
control the productivity at the optimum steady-state de-
termined off-line a priori. The problems associated with
each strategy are discussed and a modi®ed input-output
linearization approach, based on holding the substrate
concentration constant near the optimum, was proposed
and shown to result in satisfactory control. However, there
are certain inherent problems associated with this control
scheme. In the presence of unmeasured disturbances and
unknown process changes, the optimum steady-state
might change and can even become infeasible. Further-
more, in order to retain the feed substrate concentration
near the optimum, the optimum point should be exactly
identi®ed and incorporated into the control strategy,
which can cause problems in the face of process distur-
bances that in¯uence the optimum operating point.

Recently, Rangiah and Hu [22] presented a Robust In-
ternal Model Control (RIMC) strategy using linear and
nonlinear models for continuous fermenter control where
a complementary loop is found to improve the perfor-
mance and robustness properties. The performance of
nonlinear IMC was found to be comparable to that of
linear RIMC and the nonlinear RIMC was shown to per-

form better than both these controllers. Ramseier et al.
[23] presented a nonlinear adaptive control approach for
fermentation control. Generic Model Control (GMC) was
modi®ed to be applicable to baker's yeast fermentation
and a simple adaptive scheme was employed to update the
parameters of a nonlinear model. Improvement in per-
formance was achieved in course of simulations for multi-
input multi-output GMC (cell concentration and product
concentration using substrate feed concentration and di-
lution rate, respectively) and bench scale yeast fermenta-
tion experiments for single-input single-output GMC
(cell mass concentration using dilution rate).

An adaptive version of linearizing control was proposed
and applied to control hydrogen concentration in an
anaerobic digestion process using dilution rate as the
manipulated variable [24]. Dochain [25] proposed two
algorithms for adaptive linearizing control of nonmini-
mum phase bioprocesses, namely a dynamic feedback
controller which is a continuous-time extension of gen-
eralized minimum variance control to bioreactors, and
another design based on a minimum phase reduced order
dynamic model of the process. The latter algorithm was
shown to exhibit better performance in simulation studies
using simple microbial growth process and an anaerobic
digestion process. Developments in synthesis of SISO and
MIMO adaptive linearizing algorithms for bioreactors
were presented and illustrated through application to
baker's yeast fermentation process [26]. An adaptive al-
gorithm was proposed which enforces a desired and preset
second-order convergence dynamics and provides the user
with the choice of two simple and intuitive tuning
parameters.

2.4
Habituating control
In order to overcome the problems associated with control
of continuous fermenters using a single manipulated
variable near the optimum operating point, habituating
control strategy has been recently proposed [27]. This
approach is based on using more than one manipulated
inputs to control a single output variable. The motivation
for this approach is based on human system where the
baroreceptor re¯exes are responsible for short term reg-
ulation of arterial blood pressure. Parasympathetic and
sympathetic nervous systems act as the controllers to
maintain the blood pressure at the desired level using
cardiac output and the vascular resistance as the manip-
ulated variables, respectively. Since sustained variations in
cardiac output are physiologically more expensive as
compared to the long-term variations in vascular resis-
tance, the former mechanism is used preferentially during
transient conditions (secondary input), whereas the latter
is responsible for steady state control (primary input).
Analogously, in the fermenter control problem, the pri-
mary control law is derived based on input-output line-
arization, whereas the secondary control law is based on
minimizing the magnitude of deviation of both the input
variables from steady-state values. This approach was
employed to maintain the substrate concentration con-
stant using dilution rate and dilution rate times the sub-
strate feed concentration as manipulated variables and
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better performance is achieved compared to the use of a
single manipulated variable.

3
Batch fermenters
In batch fermentation, there are four phases of cell growth:
induction, growth, stationary, and death phases. In the
induction phase, the cells begin to adapt to their new en-
vironment and minimal reproduction occurs. Most of the
cell growth occurs in the growth phase, when cells are
dividing at the maximum rate. The cell growth is pro-
portional to the cell concentration in this phase. In the
stationary phase, the cell growth rate is virtually zero due
to depletion of nutrients (organic feed) or crowding of
cells. Finally, in the death phase, the cells begin to die and
the growth rate becomes negative as a result of lack of
nutrients or the presence of poisonous byproducts from
the reaction.

Dynamic models of batch as well as fed-batch opera-
tions of industrial yeast fermenters have recently been
reported [28]. You and Nikolaou [29] proposed the use of
recurrent neural networks for dynamic process modeling
and also employed a batch biochemical system modeling
to illustrate their approach. Baughman and Liu [30] de-
veloped a time-dependent network for predictive modeling
of batch fermentation using Saccharomyces cerevisae by
linking three different types of neural networks. An auto-
associative backpropagation network was used for data
compression and ®ltering of the continuous cell concen-
tration signal. A radial basis function classi®cation net-
work was then employed to identify the four phases of the
fermentation process. The future cell concentrations were
predicted using a recurrent time-dependent network at-
tached to the growth phase output signal from the classi-
®cation network. The overall network architecture is
presented in Fig. 1. The network was shown to perform
well in forecasting future cell concentrations over a wide
range of operating conditions including temperature (25 to
35 °C), pH (3.5 to 5.5), agitation rate (200 to 600 rpm),
aeration rate (0.0 to 5.0 Nm3/hr), and glucose concentra-
tion (0 to 100 g/litre).

Simple continuous and discrete-time estimators which
allow on-line estimation of the kinetics based on the
measurements of concentrations of components in the

bioreactors are proposed by Farza et al. [31, 32] and ap-
plied to a few simulations and a real-life batch experiment
of lactic acid production. Cardello and San [33] presented
a controller design approach for batch bioreactors where a
combination of gain-scheduling PID controller with feed-
forward-feedback control yielded best performance to
control dissolved oxygen using oxygen uptake rate as the
manipulated variable.

Shimizu [34] reviewed the current progress in biopro-
cess systems engineering, where it was suggested that for
batch and fed-batch type of cultivation, the problem to be
solved may be the on-line optimizing control problem. A
hierarchical control structure (Fig. 2) can be considered,
where the task of the upper layer is to recognise or learn
the dynamics of the whole stage of cultivations, and to ®nd
the optimal trajectory using tools such as arti®cial neural
networks. The task of the lower layer is to track the op-
timal trajectory. Predictive control strategy can be em-
ployed incorporating a modi®ed optimal trajectory based
on the current state information.

4
Fed-batch fermenters
The most popular mode of operation of bioreactors has
been the fed-batch mode where the substrate is slowly fed
to the reactor but no product is drawn until the end. A fed-
batch culture has the advantage of avoiding substrate
overfeeding which can inhibit the growth of micro-or-
ganisms. The fact that no substance is withdrawn from the
reactor, helps the process to work in good sterilized con-
ditions [35]. For these reasons, this mode of production is
often preferred to batch and continuous modes in many
processes. On the other hand, from the control engineer's
viewpoint, it is the fed-batch processes which present the
greatest challenge: the process variables are dif®cult to
measure, the ``quality'' of the product is dif®cult to de®ne
yet very important, the process model usually contains
strongly time-varying parameters, etc. But above all, the
challenge arises mainly because the optimization of the
feedrate is a dynamical problem [2]. Efforts were con-
centrated on both modeling and estimation as well as
control of fed-batch fermentation systems.

Fed-batch fermentation processes have been classi®ed
into three types based on the form of the speci®c growth

Fig. 1. Overall network architecture
for prediction of future cell con-
centrations
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and product formation rates [36]. General dynamic model
structure which encompasses batch, continuous as well as
recycle microbial growth processes used as an aggregated
model is modi®ed into an age distribution model using
average cell age [37]. Issues relating to model type and
number of parameters are also discussed. Sensitivity
function based parameter estimation techniques were
employed for automatic parameter estimation of Michalis-
Menton parameters. State estimation was carried out to
estimate growth rate and biomass concentration and ap-
plied to an activated sludge waste water treatment process,
a continuous fermentation process for single cell produc-
tion and a batch fermentation process.

Stephanopoulos and San [38] suggested the use of ad-
ditional state variables whose dynamics are expressed by
differential equations obtained from adaptive estimation
theories. Such an approach was used to obtain noise-free
estimates of the state variables and culture parameters, on-
line under both steady-state and dynamic conditions. San
and Stephanopoulos [39] tested the on-line identi®cation
methodology and also studied the sensitivity of the esti-
mation scheme with respect to respiratory quotient mea-
surement. Sensitivity problems in using the respiratory
quotient and heat evolution measurements have further
been explored by Grosz et al. [40] and they suggested ATP
balance to be an useful replacement to the sensitive mea-
surements. Further studies by San and Stephanopoulos
[41] indicated that pH measurements can be used for
product estimation in cases of batch, fed-batch and con-
tinuous fermentation processes and illustrated the same by
identi®cation of continuous yeast fermentation to glucose.

An adaptive state estimator consisting of a linear Kal-
man ®lter whose parameters are simultaneously identi®ed
by a recursive prediction error algorithm was proposed for
maintaining plasmid instability [42]. Two predictor
structures were tried, namely a state-space model and the
one using only output measurements, and their abilities
and limitations were discussed.

The control approaches for fed-batch fermentation
processes were classi®ed [2] as physiological model and
dynamic optimization approaches. While the former refers
to the selection of a particular variable as the setpoint to be
maintained constant on the basis of some theoretical

reasoning without the use of mathematical models, the
latter refers to maximizing/minimizing an objective func-
tion to ®nd the optimal trajectory for setpoints to be
tracked. Examples of physiological model control are
substrate concentration control, speci®c growth rate con-
trol, ethanol control, respiration quotient control and
quality control in a typical baker's yeast fermentation
process. The second approach uses dynamic optimization
involving iteration towards optimum by one of the four
techniques based on Green's theorem, Pontryagin's max-
imum principle, Variational calculus, or Dynamic pro-
gramming. Estimation of unmeasured states and
environmental control for pH, temperature, etc. are also
necessary to ef®ciently control a fed-batch fermentation
process. Babila and Robinson [43] provided an extensive
review on the optimal operation of a fed-batch process for
monoclonal antibody production. They stated that the
®eld of mammalian fed-batch culture control and opti-
mization is still at its infancy compared to microbial fer-
mentation control and optimization mainly because of
lack of accurate mathematical models and reliable on-line
biosensors.

4.1
Optimal open-loop trajectory tracking approaches
Tartakovsky and coworkers [44] studied various control
aspects of fed-batch auto-inductive fermentation process
for metabolite production. An unstructured model of the
process describing cell density, substrate and inducer
concentrations was ®rst derived and then used to deter-
mine the optimal open-loop control strategy composed of
three stages, namely growth, inducer synthesis and prod-
uct synthesis. Their results were validated by experimental
veri®cations. Banga and co-workers [45, 46] proposed the
use of two stochastic dynamic optimization algorithms for
batch and fed-batch processes. These algorithms are based
on a sequential control parametrization strategy: the
original dynamic optimization problem is transformed
into a constrained nonlinear programming (NLP) problem
using parametrization of the control function and the
constrained NLP is solved using stochastic algorithms
such as Integrated Controlled Random Search for Dynamic
Systems (ICRS/DS) and Adaptive Randomly Directed
Search for Dynamic Systems (ARDS/DS). Open-loop op-
timal control strategies have been developed for penicillin
production in a fed-batch reactor and dehydration of a
bioproduct [45], and for protein production in a fed-batch
bioreactor [46] which have resulted in better performance
over previously reported studies. However, Banga et al.
[45] have stressed the need for the development of track-
ing controllers for the implementation of the designed
open-loop pro®les as well as the need for on-line recal-
culation of the pro®les in case of large disturbance. Re-
cently, Wang and Shyu [47] developed an optimal feed
policy for fed-batch fermentation of ethanol production by
introducing additional inequality constraints in the opti-
mization problem to assure optimal solution in a reality
region. An updating rule of augmented Lagrange multi-
pliers was introduced to handle inequality constraints so
that Iterative Dynamic Programming could be used. The
method was validated through experimental studies.

Fig. 2. Block diagram for on-line optimizing control
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Nestaas and Wang [48] presented a structured model
for penicillin fermentation which was then used in an
open-loop control strategy to calculate the nutrient feed
rate which maintains the cell mass concentration and
growth rate at desired values, and in the event of changed
growth conditions, a feedback correction term is intro-
duced in the open-loop control law to adjust to the
changed conditions and better results were obtained. An-
other contribution in tracking the open-loop optimal tra-
jectory has been made by Gudi et al. [49] with the help of
an adaptive multirate estimation and control strategy for
the control of nutrient levels in a fed-batch fermentation
process using both on-line and off-line measurements. The
nutrient levels are estimated with the help of frequent on-
line measurements of carbon dioxide evolution rate and
off-line, infrequent and delayed measurements of biomass
and substrate concentrations. The estimation algorithm is
coupled with a nonlinear control law designed to track
pre-speci®ed optimal nutrient trajectories for simulation
of fed-batch fermentation involving Streptomyces specie.

During the last decade, numerous laboratory studies
have shown that improved production is obtained with
feeding pro®les that are calculated on-line in a feedback
loop [50], unlike previous studies which used precalcu-
lated pro®les. A novel feeding strategy, referred to as the
modi®ed linear feeding strategy (MLFS) is shown [51] to
overcome the disadvantages of the exponential feedback
strategy and the linear feeding strategy, resulting in a fast
response in substrate concentration over a large range of
initial conditions. The main feature of the MLFS is that it
effectively decomposes the closed-loop system into fast
and slow subsystems. The approach is illustrated as
adaptive and nonadaptive cases through simulation stud-
ies.

4.2
Singular control approaches
The most commonly encountered control policy in fed-
batch fermenters is the singular control approach. San and
Stephanopoulos [52] provided conditions along the sin-
gular arc and also for the ®nal arc as part of the optimal
feed-rate policy using maximum principle for fed-batch
fermenters which follow Monod-type kinetics. General
characteristics of optimal feed rate pro®les for fed-batch
fermentation processes were deduced by analysing singu-
lar controls and singular arcs [37]. Based on such char-
acteristics, ef®cient computation algorithms have been
developed and applied to simulations of penicillin fer-
mentation and bacterial cell mass production [53].

For fed-batch fermenters with substrate inhibited ki-
netics, Cazzador [54] presented an approach to generate
optimal feed rate policy using Green's theorem for maxi-
mization of biomass production and also accounting for
time. In the presence of substrate and product inhibition
kinetics, Hong [55] derived an optimal feeding policy
analytically in terms of substrate and product concentra-
tions and liquid volume by using Kelly's transformation to
determine the conjunction point between nonsingular and
singular arcs. Switching hypersurface and singular feed
rate were expressed in terms of the state variables for on-
line optimization in fed-batch fermenters and illustrated

through application to Lysine fermentation and alchohol
fermentation. Further, it was shown that accurate kinetic
constants are indispensable for an optimization study. For
the same fermentation system, Chen and Hwang [56]
proposed an optimal on-off control solution which was
derived for a general process described by differential al-
gebraic equations. A uni®ed algorithm was derived for
computing the gradients of the cost function and con-
straints, which facilitates the solution of parameter selec-
tion problem resulting from on-off control
parametrization by gradient-based optimization methods.
They claimed to have obtained better results than those
reported by Hong [55]. Renfro et al. [57] proposed si-
multaneous optimization and solution procedure for sys-
tems described by differential/algebraic systems using
piecewise constant functions for independent variables
that combines technologies of quasi-Newton optimization
algorithms and global spline collocation, and applied it to
batch reactor control problems. Cuthrell and Biegler [58]
proposed an alternative simultaneous optimization and
solution strategy based on SQP using orthogonal colloca-
tion on ®nite elements to discretize the differential equa-
tions, and Lagrange polynomials to construct
approximations to continuous pro®les and applied it to
the fed-batch fermentation problem. The results obtained
are reported to be better than the analytical solutions for
biosynthesis of penicillin.

Gee and Ramirez [59] applied optimal temperature
control by simulation as well as through experiments for
batch beer fermentation. The objective functional was
de®ned as maximizing the ®nal ethanol concentration
within minimum batch time and Pontryagin's maximum
principle was used to determine the optimal control tra-
jectory. An iterative algorithm was presented to compute
switching times between bang-bang control and operation
along a singular arc corresponding to maximum temper-
ature constraint. However, they suggested that a more
comprehensive model incorporating the effect of addition
of various nutrients or oxygen at certain times can provide
better control. Optimal state and parameter estimation
techniques for such a comprehensive model of batch beer
fermentation were presented by Ramirez [60] where cou-
pling of sequential parameter estimating with Kalman ®l-
ter state estimation was shown to be capable of estimating
the entire state of the process even when some of the
model parameters were uncertain. An optimal regulatory
control law based on a combination of feed forward con-
trol action to follow predetermined setpoint trajectories
augmented with estimates of provincial state variables
with PI regulation to minimize setpoint deviation was
proposed for regulation along singular arcs of glucose level
that de®ne the optimal policy in fed-batch reactors [61].
The optimal control policy for maximization of secreted
protein in a fed-batch reactor was found to consist of
multiple singular arcs and an iterative strategy was de-
veloped to ®nd the optimal transitions between such arcs
on the basis of minimum principle of Pontryagin [62]. Lee
and Ramirez [63] derived singular control solutions for
maximizing production of induced foreign protein by re-
combinant bacteria using nutrient and inducer feeding
rates as control variables and compared the performance
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with bang-bang control solution and concluded that for
the example considered, best bang-bang control is nearly
equivalent to the optimal singular control.

4.3
Other optimal control approaches
In view of the problems associated with implementing
singular control approaches, there have been certain at-
tempts to avoid singular control. Menawat et al. [64]
proposed a numerical technique embedding the singular
control problem of maximizing production of baker's
yeast in a fed-batch reactor in a sequence of nonsingular
problems that converge to singular one in a limit as the
ratio between the two time-scales (e) tends to in®nity. Yet
another approach was proposed by San and Step-
hanopoulos [65] where the feed concentration is employed
as a control variable in a solution that ®rst determines the
optimal reactor substrate concentration and subsequently
solves for the feed concentration pro®le that results in the
optimal substrate concentration pro®le. This approach was
shown to result in better productivity for fed-batch peni-
cillin production over other strategies. Further, Modak
and Lim [66] proposed an approach based on de®ning a
new set of variables and the use of culture volume as the
control variable and solving the optimization problem
numerically by steepest ascent or conjugate gradient
methods. Another approach [67] is based on de®ning
transformed control variables as substrate concentration
in the fermenter, feed substrate concentration and mass
¯ow rate of the substrate as against the use of substrate
feed rate as the control variable. The conditions of opti-
mality were demonstrated in each case and also conditions
for equivalence of the four strategies established.

Luus and Rosen [68] proposed an iterative dynamic
programming algorithm using penalty functions to handle
®nal-state constraints. This is based on employing acces-
sible grid points and region contraction. The proposed
algorithm was used to ®nd the optimal feed-rate policy for
maximization of secreted protein in a fed-batch bioreactor
reported by Park and Ramirez [62], and was shown to
result in a better pro®t function when the batch time was
increased by a small quantity. The same approach is ap-
plied for ethanol production [69] and 4% improvement
was reported over the results obtained by Chen and Hwang
[56]. Iterative dynamic programming (IDP) was used to-
gether with suitable penalty functions of absolute error
values and also with move suppression factors for control
action minimization for biosynthesis of penicillin in a fed-
batch reactor [70]. This formulation is based on control
parametrization proposed for solution of ®xed terminal
time optimal control problems subject to general con-
straints [71].

Chen et al. [35] stated three reasons for the use of ad-
vanced control strategies in fed-batch yeast production,
namely the con¯ict between yield and productivity, en-
hancement of inhibitory substances due to the ethanol
concentration, and reproducibility of cultivations. Five
control strategies normally employed to combat these
problems are respiratory quotient control, glucose con-
centration control at a low level, tracking an exponential
pro®le for the amount of biomass, overall speci®c growth

rate control, and ethanol concentration control or to track
its pro®le. Of these strategies, Chen et al. [35] reported that
ethanol concentration control is the better alternative
since it corresponds to a good trade-off between yield and
productivity. To improve the performance over PID con-
trollers, model reference adaptive control [72] and self-
tuning controllers were employed [73]. However, it is
more interesting to exploit the nonlinear structure of fed-
batch systems and therefore adaptive nonlinear regulation
was proposed. This control problem has been solved in
four steps [35]: design of biomass estimator independent
of the kinetics; model reduction based on qualitative in-
formation about the system; design of model-reference
feed-back linearizing control law based on the reduced
order model; and design of parameter adaptation law. The
proposed algorithm was tested on an industrial applica-
tion. In an earlier study, Staniskis and Levisauskas [74]
also proposed an adaptive control algorithm for a fed-
batch culture to maximize the output of the product. Dy-
namic model based on batch and semi-batch experiments
was derived, transformed into a form suitable for estima-
tion of states and model parameters, and employed in the
optimal control law which was divided into three parts.
The ®rst and last phases involved no feeding whereas in
the second phase, substrate was fed at the rate calculated
by the singular control law.

An input-output linearizing controller was developed
[75] to follow the open-loop optimal setpoint of substrate
concentration using feed rate as the manipulated variable
with the help of a nonlinear state observer for estimation
of unmeasured state variables. Their results illustrate the
improvement in performance over open-loop control im-
plementation.

5
Neural Network based approaches
There has been a considerable interest recently in the
possibilities offered by Neural Networks (NN) in process
modeling as well as control of chemical and biochemical
processes. The inherent capability of the NNs to handle
general nonlinear relationships has led to their extensive
use in different applications. Thibault et al. [76] intro-
duced the use of NN computational algorithms for dy-
namic modeling of bioprocesses. The performance of the
network is compared to that of an extended Kalman ®lter
(EKF) and was shown to exhibit comparable performance
in case of a continuous stirred tank fermenter. Massimo
et al. [77] also investigated the construction of NN-based
biomass and penicillin estimators for use in industrial
fermentations. Their results demonstrated how an arti®cial
neural network of modest scale could capture complex
bioprocess dynamics. Breusegem et al. [78] used neural
networks for on-line prediction of fermentation variables
when kinetic changes appear during the course of fer-
mentation. They proposed an adaptive algorithm in which
sliding window learning schemes are used.

Bhat and McAvoy [79] proposed the use of NNs for
dynamic modeling and later to be used as a neural model
together with optimization for control, or as identi®cation
of the inverse model which is used as a direct inverse
controller. Several NN based control strategies such as
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Nonlinear Internal Model Control-NIMC [80], Nonlinear
Model Predictive Control-NMPC [81, 82] were proposed
for chemical process control. A neural type of nonlinear
autoregressive with exogeneous input (NARX) model was
used [83] for neural based predictive control of simulated
microalgae fermentation process and a comparison with
predictive control based on adaptive polynomial NARX
model illustrated a satisfactory control behaviour. Another
form of neural predictive control has been presented [84]
using two different types of neural networks ± feedforward
and radial basis function nets where a new method is
proposed to train the parameters of the net. The approach
is tested on a bioreactor and its robustness compared with
other advanced control algorithms. A novel architecture of
controller based on af®ne radial basis function network
approximation has recently been presented [85] as an
adaptive control algorithm so that the inversion with re-
spect to control vector can be carried out by fast vector
computations. The approach has been applied to a
benchmark bioreactor problem with no apriori knowledge
of its dynamics.

Most of the above mentioned approaches are based on
Feedforward Neural Networks (FNN). However, from the
control point of view, a very important issue to be con-
sidered is the feedback issue. Attempts have been made to
incorporate this component by way of development of
Recurrent Neural Network (RNN)-based control ap-
proaches. You and Nikolaou [29] studied a method of
nonlinear static and dynamic process modeling via RNNs.
The two salient features that distinguish RNNs from FNNs
are their node characteristics and their topology. The node
characteristics in RNNs involve nonlinear dynamic func-
tions (ordinary differential equations) while FNNs have
only static nonlinear characteristics. The topology in
RNNs consists of both feedforward and feedback connec-
tions whereas in FNNs there are only the feedforward
paths. You and Nikolaou [29] further showed that the
modeling capabilities of RNNs and FNNs are comparable,
but the training of RNNs takes a longer time. They carried
out simulation studies using continuous and batch, SISO
and MIMO systems including a biochemical batch system.
Karim and Rivera [86] used FNNs and RNNs as unmea-
surable state estimators to predict biomass, ethanol and
glucose concentrations with temperature, redox potential,
percentage carbondioxide and optical density as inputs. In
general, it was found that both types of NNs offer com-
parable abilities to recall, whereas the recurrent networks
performed better in generalization studies. An exact line-
arization controller based on RNNs was devised and ap-
plied to a CSTR which shows the applicability of RNNs in
control [87]. Real-time recurrent learning algorithm based
neural network architecture was recently proposed where a
combined network cluster consisting of the control net-
work and the model network is constructed [88]. The
proposed algorithm was tested on a bioreactor model
which is to be used as benchmark problem for neural
controllers. Adaptive pH control was carried out in batch
fermentation [89] using a 4-4-1 recurrent backpropagation
neural network using pH setpoint as its input node. A
moving window of training data was used for effective on-
line learning in the ®rst phase of the two-phase model

operation, whereas in the second phase, the model was
used to predict the pump ¯ow rate at the next sampling
instant and good results were obtained.

6
Hybrid neural network based approaches
There are a few drawbacks associated with the use of NNs-
no general procedure of NN architecture selection, long
training time, large amount of training data, and poor
capacity for extrapolation. Further, Ponton and Klemes
[90] argued that a model incorporating any engineering or
scienti®c knowledge will perform much better than NN.
They suggested certain non-neural network models with
lesser number of parameters and showed with a few typical
examples that the performance is much better than with
NNs. They further emphasized that practically any model
with a physical basis, even if highly approximated, is likely
to be better than any arbitrary functions for representing a
physical system.

This observation leads one to an alternative approach
which is slightly different from the ``black box'' NN ap-
proach, namely the hybrid NN approach. Psichogios and
Ungar [91] developed a hybrid NN-®rst principles mod-
eling scheme and used it to model a fed-batch bioreactor.
In this approach, the ®rst principles partial model speci®es
process variable interactions from physical considerations
whereas the NN complements this model by estimating
unmeasured process parameters so as to satisfy the ®rst
principles constraints. This form of hybrid NN (structured
network) is useful for modeling processes where a partial
model can be derived from simple physical considerations
(mass and energy balances), but which also includes terms
that are dif®cult or infeasible to model from ®rst princi-
ples. In the case of fed-batch bioreactor, the speci®c
growth rate term, in which the kinetics is imbedded, is
modelled as the NN with the dynamic equations for cell
mass and substrate concentrations representing the ®rst
principles model. The advantages of this approach are: (1)
the hybrid model uses its internal structure to restrict the
interactions among process variables to be consistent with
physical models, (2) results in a more accurate general-
ization and extrapolation over standard networks and (3)
requires less data for training. For process parameters
which are rapidly time-varying and which are not easily
described by a parameterized model, it was shown that
hybrid NNs outperform other estimation methods such as
EKF and nonlinear programming methods. The applica-
bility of the hybrid model was further illustrated [92] by
introduction of ANN into detailed simulations of complex
biochemical processes. The mechanistic part of the model
was composed of 44 variables and 145 parameters, where
the NN was used to update 15 key parameters using re-
inforcement learning scheme. It was shown that the
combined approach yielded better predictions than using
either of the approaches independently.

Tholudur and Ramirez [93] classi®ed the NN modeling
into two categories, namely NN state modeling and NN
parameter function modeling. In the former approach, the
states of the process are estimated using information of
previous states and inputs. This approach can be consid-
ered identical to the modeling approach using NNs only,
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such as FNNs or RNNs or RBFNs, mentioned previously.
On the other hand, in the latter approach, which is the
same as the hybrid approach, the nonlinear (unknown)
functions which form a part of the balance equations are
predicted by training NNs using information on states and
state derivatives. This latter approach was used together
with Iterative Dynamic Programming (IDP) in ®nding the
optimal feed policy in two fed-batch fermenters. The
number of hidden layer neurons is considered as a design
parameter, and a simple method was suggested to select
this parameter. A similar approach which uses a combi-
nation of NNs with a linear model was proposed by Su and
McAvoy [94]. The concept is based on a Hammerstein
modeling approach where a static nonlinear operator acts
on the input, followed by a dynamic linear operator re-
sulting in the output. Neural Network is used as the static
nonlinear operator so that the nonlinearity which is as-
sociated to a large extent in the steady-state part is cap-
tured, and this is supplemented by a linear dynamic model
since the transient data might not cover nonlinearity in
most of the cases. Recently, the hybrid modelling approach
has been compared with the conventional approach by De
Azevedo et al. [95] by considering baker's yeast fermen-
tation at laboratory scale as a case study. Three modelling
approaches are described and compared-conventional
mechanistic model, formulations based on different ANN
topologies, and a hybrid mechanistic ANN structure. It
was shown that the ®rst two tests failed in the validation
test of experimental test data, whereas the third structure
was found to be a powerful tool for process modelling in
biochemical engineering, particularly when limited theo-
retical knowledge of the process is available.

A different type of hybrid approach [96] derived by
inversion of a multilayer feedforward network using
Newton Raphson method by combination with a conven-
tional feedback controller to suppress modelling errors is
proposed and applied to a bioreactor simulation system to
show its effectiveness. Back-propagation-through-time
(BPTT) is a temporal extension of back propagation which
allows a multilayer neural network to approximate an
optimal state feed back control law, provided some prior
knowledge of the process is available. A simpli®ed version
of this algorithm has been presented [97] which is less
time-consuming and allows discovery of better control
laws. The improvement is illustrated through a bioreactor
control study. Another recent study [98] illustrated that to
obtain an accurate model, one needs to use steady-state
data in addition to the transient data for training the
network, and it was also shown that a hybrid approach
exhibits signi®cantly better performance than the black
box model in a bioreactor control problem.

A more sophisticated type of hybrid model was for-
mulated for yeast production process [99] in which the
structured hybrid NN previously mentioned is combined
with a fuzzy expert system that serves to divide the whole
process into typical situations, or for supervisory control
where neither the mathematical process model nor the
NN was suf®ciently accurate. This approach was vali-
dated for state estimation and prediction with data from
a pilot-scale fermenter. Ishida [100] proposed a policy-
and-experience driven NN with a ®xed architecture for

control which can also be viewed as this type of hybrid
approach.

In the hybrid NN approaches discussed so far, the
network was restricted to the most common Back Propa-
gation feedforward Network (BPN). Since radial basis
function networks (RBFNs) are claimed to provide a better
generalization over BPNs, Thompson and Kramer [101]
proposed a hybrid model for predicting cell biomass and
secondary metabolite in a fed-batch penicillin fermenta-
tion using prior knowledge and RBFNs. They compared
the performance of the hybrid model to that of a pure BPN
and a pure RBFN model and claimed to have improved the
accuracy of prediction even in the presence of noisy
measurements. The approach was also shown to require
less data for parameter estimation, to enhance the gener-
alization capabilities over pure networks, and to provide
more reliable extrapolation.

A ®ve-layered neural-fuzzy network was developed for
controlling fed-batch cultivation of recombinant Escheri-
chia Coli [102, 103]. The architecture of the network has an
input layer consisting of deviations of pH and speci®c cell
growth rate from their respective setpoints as two inputs,
three hidden layers and an output layer. The three hidden
layers represent the membership functions, measures of
rule strength, and normalized measures of rule strength,
respectively. The glucose feed rate was adjusted based on
the compensation factor which is the output of the net-
work, and the performance was shown to improve from 20
dry cell weight/litre under conventional control to 84 dry
cell weight/litre under neural fuzzy control.

7
Conclusions
The present study is aimed at reviewing the recent litera-
ture in fermenter control (continuous as well as batch and
fed-batch) along with certain advancements in the related
areas of research, in order to pave way for a better un-
derstanding and utilization of the available information
towards reducing production costs, increasing the yield,
and maintaining the desired product quality. Several
neural network based control approaches with application
to fermenter control have also been reviewed in this study.

Control of fermentation processes has been attracting
more attention over the past few years due to their in-
herent dif®culties such as nonlinearity, lack of accurate
process models and reliable biosensors, and unpredictable
variations in process parameters. In this study, an attempt
is made to review the recent research developments in this
area. The control objective in continuous fermenters is to
maximize the amount of desired product produced per
unit time, whereas in batch and fed-batch fermenters, the
amount of desired product at the end of the batch is to be
maximized; this situation has led to problems of different
nature in the two cases.

In continuous fermentation processes, the earliest de-
velopment was off-line estimation of optimal setpoint
pro®les and setpoint tracking using several alternative
con®gurations. Later, simple nonlinear models were em-
ployed where the parameters with physical meaning were
updated and adaptive control was implemented. Further,
optimizing control approaches with linear dynamic model
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identi®cation and periodic computation of the steady-state
optimum based on the updated model were used. These
approaches were further improved by using two-phase
approach of nonlinear dynamic model identi®cation and
dynamic optimization over time periods covering a few
sampling intervals. Optimizing control using MPC strategy
based on on-line identi®ed nonlinear Laguerre model is
also proposed for bioreactors. Another type of dual-mode
controller was proposed for continuous fermenter control,
where in the ®rst mode, the controller was designed to
achieve stability and performance in the neighbourhood of
the normal operating point, whereas in the second mode,
the controller's task was to bring the process to the
neighbourhood of the normal operating point. State-space
and input-output linearization based approaches were also
presented with several modi®cations to suit the speci®c
fermenter control problem.

Batch fermenters have been controlled using gain-
scheduling PID controllers, and also by employing arti®-
cial neural networks to ®nd the setpoint trajectory which
was then implemented through predictive control. Work
on fed-batch fermenters has been widely reported in lit-
erature. The approaches employed have been the optimal
open-loop trajectory tracking with or without feedback
correction for adaptation to changed conditions. Singular
control approaches were used to obtain the optimal feed-
rate policy using Maximum principle, Green's theorem or
other optimization methods. Some approaches were also
presented as alternatives to singular control approach
where the problems were either split into parts which were
non-singular, or where new sets of variables were de®ned
to avoid singularity problems. Finally, input-output lin-
earizing controller was also proposed to implement opti-
mal feed-policy for fed-batch fermenter control with the
help of a nonlinear observer.

Different types of NNs including FNNs and RNNs have
been used in different applications, namely for nonlinear
state estimation, dynamic modeling and control. Several
studies using these networks illustrated the comparable
performance of FNNs and RNNs. This range clearly illus-
trates the usefulness of the newly emerging mathematical
tool.

Another approach which holds considerable promise is
the hybrid NN approach. These networks are used to
augment the existing information about the physical
model of the process. Therefore, this approach is especially
suitable to fermentation processes where the general
structure for the ®rst principles model is well-established,
but the kinetics involving microorganism is still dif®cult to
model. Hybrid NNs were shown to outperform conven-
tional estimation methods such as EKF and NLP. RBFNs as
well as BPN with sigmoidal activation functions were
employed in several case studies reported in literature for
fermenter control. A combination of fuzzy expert system
and neural networks was proposed and validated with the
help of pilot-plant fermenter studies.

In conclusion, this study has been an attempt to review
different methods of controlling batch, fed-batch and
continuous fermenters as reported in literature. Several
tools were explored to capture the inherent nonlinear and
time-varying characteristics of fermentation processes.

Although adaptive control has been successfully imple-
mented at the regulatory level, little research has been
carried out to develop a comprehensive approach where
the supervisory as well as regulatory levels operate adap-
tively to follow the time-varying characteristics of bio-
processes. Therefore, there is scope for further research in
the area of simultaneous optimum setpoint generation and
implementation in continuous fermenters, and in on-line
generation of optimal setpoint pro®les and their effective
implementation in fed-batch fermenters with the help of
powerful mathematical tools like neural networks.
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