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Summary. We present a new fault-tolerant intersection func-
tionF , which satisfies the Lipschitz condition for the uniform
metric and is optimal amongall functionswith this property.F
thus settles Lamport’s question about such a function raised in
[5]. Our comprehensive analysis reveals thatF has exactly the
same worst-case performance as the optimal Marzullo func-
tion M, which does not satisfy a Lipschitz condition. The
utilized modelling approach in conjunction with a powerful
hybrid fault model ensures compatibility of our results with
any known application framework, including replicated sen-
sors and clock synchronization.
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1 Motivation

Consider somequantity like a point in real-time (for clock syn-
chronization) or a temperature value (for replicated sensors)
that is not known exactly but only within some range. Such a
quantityt can be represented by a real intervalI = [x, y] con-
taining t, which makes the uncertainty explicit by its length
|I| = y−x. Now suppose that we are somehow providedwith
n ≥ 1 different intervalsI = {I1, . . . , In} all representing
the samet, and that we want to extract a single interval of
minimum length that containst. If all input intervals are ac-
curate (i.e. non-faulty), in the sense thatt ∈ Ii, 1 ≤ i ≤ n, it
is obvious thatJ =

⋂n
i=1 Ii containst and henceJ �= ∅. In

fact,J is the best (deterministic) information aboutt that can
be deduced fromI.

However, thequestionariseswhat todo if someof the input
intervals are not accurate (i.e. faulty), that is,t �∈ Ij for some
(unknown)j’s. Some sort offault-tolerant intersectionhas to
be employed here to compute an interval that is guaranteed to
containt.
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Fig. 1.Example of the Marzullo functionMwith n = 4 andf = 1.
The edges of the result lie inn − f = 3 input intervals. Changing
intervalI2 to I ′

2 has a big impact on the result

It is well-known that, if at mostf of then input intervals
may be faulty, the minimum length result containingt is pro-
vided by the Marzullo functionMf

n(I) introduced in [7]: It
is the largest interval whose edges lie in the intersection of at
leastn − f different Ij ’s. Therefore, to compute for exam-
ple the left edge ofMf

n(I), one has to “sweep” over the set
of intervals from left to right and stop whenn − f intervals
intersect for the first time. ThusMf

n(I) can be computed in
O(n log n) time by sorting the intervals’ edges, cf. [8]. Fig-
ure 1 shows an example withn = 4 andf = 1. Note that
the unknownt cannot lie in the region between the right edge
of I3 and the left edge ofI2 in this example. However, since
there is no way to decide whethert lies in the area left or right
of this region, both must be covered to secure inclusion oft.

It is easily seen, though, thatM exhibits a somewhat ir-
regular behavior: If the left edge ofI2 is slightly moved right,
as given byI ′

2, then the right edge of the result suddenly jumps
to the right edge ofI3. Thus, movingI2 by a small amount
ε, just large enough to prohibit intersection withI1, causes a
variation by much more thanε. In [5], this behavior was for-
malized as violation of aLipschitz conditionw.r.t. a suitable
metric defined on intervals. This is an undesirable property,
since it implies thatM applied to two slightly different input
sets may deliver quite different results.

For example, in the clock synchronization context, two
nodesp andq usually obtain (slightly) different input setsIp
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andIq even if all senders are non-faulty, since intervals are
time-dependent here. For that reason, Lamport did not use the
Marzullo function for hisSynchronizing Time Servers[5], but
rather an averaging functionAf based on the Fault-Tolerant
Average algorithm of [6]. However, Lamport wrote:“While
the averaging functionAf gives reasonable worst-case behav-
ior, it does not make the best use of the available information
because it ignores the widths of intervals. Very wide intervals
are given the same weight as narrow ones, even though they
provide less information. One can construct examples in which
the functionAf does not provide the best possible approxima-
tion to UT. However, I know of no simple functionF satisfying
the Lipschitz condition that does better.”

The simple Fault-Tolerant Interval (FTI) intersection
functionF proposed and analyzed in this paper satisfies a
Lipschitz condition and takes into account the widths of inter-
vals. SinceF is in fact optimal among all such functions, we
can reasonably claim to have settled Lamport’s question.

The remainder of our paper is organized as follows: FTI’s
definition andbasic properties canbe found inSection 2, along
with the proof that it satisfies the Lipschitz condition and that
it is optimal. Section 3 is devoted to the worst case analysis
for local and distributed application ofF in presence of faults.
Some conclusions in Section 4 eventually round off the paper.

2 FTI definition and relations

Weconsider real intervalsI = [x, y],x ≤ y,where|I| = y−x
denotes the interval’slength, x = left(I) its left edge, and
y = right(I) its right edge. The intersectionof two intervals
is the set-theoretic one, theunionis defined as[x, y]∪ [u, v] =
[min{x, u},max{y, v}], hence covers the closure of disjoint
intervals as well. Thenon-commutative union(nc-union) is
defined as[x, y] � [u, v] = [x, v] if x ≤ v or ∅ otherwise. In
what follows, we assume a single (unknown) valuet, and a set
of real intervalsI = {I1, . . . , In}, n ≥ 1, that all represent
t; we will call such intervalscompatible. An intervalI that is
meant to representt isaccurate(also termedcorrect) if t ∈ I,
otherwise it isnon-accurate(also termedfaulty).

The interval-based paradigm and the Marzullo function
M was introduced in Marzullo’s thesis [7], and several pub-
lications [5,4,10,3,11,9,2,16,13,15,14] etc. reveal that it is
widely applied in practice. The properties ofM have been
studied thoroughly both in the context of replicated sensors
[8] and clock synchronization [12]. Recall that the latter ap-
plication differs fundamentally from the former due to the fact
that twonodesusuallyperceiveslightlydifferent intervalseven
from a non-faulty sender.

Our novel Fault-Tolerant Interval intersection functionF
is similar to the Marzullo function and defined as follows:

Definition 2.1 (FunctionF ). Let a setI = {I1, . . . , In} of
n ≥ 1 non-empty compatible intervalsIi = [xi, yi] with at
mostf < n of those being faulty be given. TheFault-Tolerant
Interval (FTI) intersection functionFf

n(I) is defined as the
interval

[(f + 1)-max{x1, . . . , xn}, (f + 1)-min{y1, . . . , yn}],

whereh- max{z1, . . . , zn} resp.h- min{z1, . . . , zn} gives the
h-st largest resp.h-st smallest element of the set{z1, . . . ,
zn}.
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Fig. 2.Example of the Fault-Tolerant Interval functionF withn = 4
andf = 1. Changing intervalI2 to I ′

2 has no impact on the result.

Like Mf
n(I), our function is translation invariant in the

sense thatFf
n(I1 +∆, . . . , In +∆) = Ff

n(I1, . . . , In)+∆
for any real∆, and can be computed inO(n log n) time by
sorting the intervals’edges: In order to compute the left edgeof
Ff

n(I), one has to sweep over the set of intervals (by looking
at their left edges) from right to left, discarding left edges until
the(f+1)-st largest is encountered. Similarly, to find the right
edge ofFf

n(I), one has to sweep over the set of intervals from
left to right and stop when the(f +1)-st smallest right edge is
encountered. Figure 2 shows howF behaves in the scenario
taken from Fig.1.

Note carefully that the resulting interval is the same as
computed byM whenI2 is used as input interval. Neverthe-
less, it is apparent here that the right edge ofF ’s result does
not jump when the slightly moved intervalI ′

2 is used instead.
In Lemma 2.5 below, we will show thatF indeed satisfies
the desired Lipschitz condition of [5]; its optimality will be
proved in Lemma 2.6.

Definition 2.1 reveals some similarity betweenF and the
Fault-Tolerant Midpoint (FTM) algorithm of [6]: Given a set
of point valuesC = {c1, . . . , cn} with at mostf of those
being faulty, FTMf

n(C) is defined as the midpoint (center) of
the interval

[(f + 1)-min{c1, . . . , cn}, (f + 1)-max{c1, . . . , cn}].

F can hence be viewed as a generalization of FTM to the
interval domain. In fact,F even emulates FTM when ap-
plied to intervals with identical length: If allIj = [xj , yj ],
1 ≤ j ≤ n, satisfy |Ij | = l, we may writeIj = [cj −
l/2, cj + l/2] with midpointcj = center(Ij) = (xj + yj)/2.
FromF ’s definition and the fact thath-max{x1, . . . , xn} =
h-max{c1, . . . , cn} − l/2 = h-max{y1, . . . , yn} − l for any
hhere, it is immediately apparent that FTMf

n({c1, . . . , cn}) =
center(Ff

n(I)).
We start the detailed analysis ofF ’s properties with the

following technical Lemma 2.2, which is needful for proving
Lemma 2.3 and Lemma 2.6.

Lemma 2.2 (Edges ofM in presence of disjoint inter-
vals). Let a setI = {I1, . . . , In} of n ≥ 1 non-empty
compatible intervalsIi = [xi, yi] be given, which yields
M = Mf

n(I) �= ∅. If there are exactlyf ′
l + f ′

r ≤ f in-
tervalsIx ∈ I with Ix ∩ M = ∅, wheref ′

l ≥ 0 resp.f ′
r ≥ 0

of those lie strictly left resp. right ofM , then
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left(M) = (f + 1 − f ′
l )-max{x1, . . . , xn}

right(M) = (f + 1 − f ′
r)-min{y1, . . . , yn}.

Proof. By the definition ofM, there must ben − f inter-
vals containing left(M), and by assumption there are exactly
f ′

l other intervals strictly left ofM , which implies that the
remainingf − f ′

l intervals have a left edge equal or right
to left(M). Hence, the edge(f − f ′

l + 1)-max{x1, . . . , xn}
must determine left(M). The proof for right(M) is analo-
gous. ��

The following Lemma 2.3 establishes some relations be-
tweenF andM.

Lemma 2.3 (Relations betweenF and M). Given a set
I = {I1, . . . , In} of n ≥ 1 non-empty compatible intervals
and anyf such that bothMf

n(I) �= ∅ andFf
n(I) �= ∅, the

following relations hold true:

Ff
n(I) ⊇ Mf

n(I) (1)

Ff
n(I) = Mf

n(I) (2)

if � ∃I ∈ I with I ∩ Mf
n(I) = ∅

Fn−1
n (I) ≡ Mn−1

n (I) = ∪n
i=1Ii (3)

F0
n(I) ≡ M0

n(I) = ∩n
i=1Ii (4)

Proof. To show relation (1), letF = Ff
n(I) andM =

Mf
n(I). Suppose that left(M) < left(F ), then left(M) has

to be selected from the atmostn−(f+1) remaining left edges
that are smaller than left(F ). However, left(M) requires at
leastn−f intersections, which is not possible here.A similar
contradiction can be derived for right(F ) < right(M).

The equality relation (2) follows directly from Lemma 2.2
by settingf ′

l = f ′
r = 0 and recalling the definition ofF .

Finally, the equivalences (3) and (4) are a direct consequence
of the functions’ definitions. ��
Remarks

1. SinceM computes an accurate result, inclusion (1) guar-
antees thatF is accurate as well.

2. The behavior of both functions “changes” from intersec-
tion to union asf increases, and is identical for the extreme
settings.

Next we establish a few useful monotonicity relations of
functionF with respect to both parameters and input argu-
ments.

Lemma 2.4 (Monotonicity).Let a setI = {I1, . . . , In} of
n > f ≥ 0 non-empty compatible intervals withf ′, 0 ≤ f ′ ≤
f , faulty ones among those be given. Then,Ff

n(I) satisfies
the following monotonicity relations:

(1) Ff
n(I) ⊆ Ff+k

n (I) for any integerkwith0 ≤ k < n−f ,
(2) Ff

n(I) ⊆ Ff
n(J ) for anyJ = {J1, . . . ,Jn} with I l ⊆

J l for 1 ≤ l ≤ n,
(3) Forf ≥ f ′ ≥ 1, if L = I\{Ij} is obtained by discarding

some faulty intervalIj fromI, Ff−1
n−1(L) is accurate and

satisfies

Ff−1
n−1(L) ⊆ Ff

n (I). (5)

Proof. Item (1) of the lemma is trivial, since discardingf + k
edges of input intervals inF ’s Definition 2.1 provides a larger
interval.

For proving item (2), it is sufficient to establish the follow-
ing monotonicity properties of theh-smallest andh-largest
element of a set:

h-min{r1, . . . , rn} ≤ h-min{r1 + ε1, . . . , rn + εn}
h-max{l1, . . . , ln} ≥ h-max{l1 − ε1, . . . , ln − εn}
for anyεi ≥ 0, 1 ≤ i ≤ n, and any integer1 ≤ h ≤ n. Let us
thus assume that, say, the property for the “h-min-part” was
not true. However, this would imply that there areh different
indicesj with rj ≤ rj +εj ≤ h-min{r1+ε1, . . . , rn+εn} <
h-min{r1, . . . , rn}, which provides the required contradic-
tion.

Turning our attention to item (3),n > f ≥ 1 implies
thatn − 1 > f − 1 ≥ 0, henceF f−1

n−1(L) is accurate. If the
discarded intervalIj contributed a left resp. right edge to the
f ones skipped byFf

n(I), the same left resp. right edge is
computed byFf−1

n−1(L) as well. IfIj did not contribute, the
same argument as used in the proof of item (1) applies and
establishes relation (5). This eventually completes the proof
of Lemma 2.4. ��
Remarks

1. Item (3) of Lemma 2.4 implies that one should always try
to detect and discard faulty intervals beforeF is applied,
since this can only improve the result. Note that this does
not affect validity/applicability of the results of this paper.

2. Comparison1 with [12, Lem. 3] reveals thatF satisfies
the same monotonicity properties as established for the
Marzullo functionM.

As a prerequisite for defining the Lipschitz condition of
an interval-valued function, a suitable metric (“distance func-
tion”) on intervals needs to be chosen. The following ones
were used in [5]:

• Theuniform metricµ(U ,V ) that equals the maximum of
|left(U) − left(V )| and|right(U) − right(V )|.

• Themidpoint pseudo-metricµ(U ,V ) that equals the dis-
tance of the midpoints|center(U) − center(V )| ofU and
V , where center(I) = (left(I) + right(I))/2. Note that
µ is not a metric, becauseµ(U ,V ) = 0 does not imply
U = V .

Note carefully thatµ(U ,V ) < δ impliesµ(U ,V ) < δ, since
writing left(V ) = left(U) + l and right(V ) = right(U) + r
delivers |l| < δ and |r| < δ, which leads toµ(U ,V ) =
|l + r|/2 < δ. The converse, however, is not true in general.

We will now show thatF satisfies the Lipschitz condition
for the uniform metric.2

Lemma 2.5 (Lipschitz condition for µ). The FTI intersec-
tion functionF satisfies the Lipschitz condition for the uniform
metricµ, which means that for anyδ > 0 and any two sets
1 Note carefully that we used the alternative notationMn−f

n in
[12], which is equal toMf

n in this paper.
2 Sincewewill primarily consider the uniformmetric in our paper,

the phrase “the Lipschitz condition” usually assumes this kind of
metric.
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I = {I1, . . . , In}, I ′ = {I ′
1, . . . , I

′
n} of non-empty com-

patible intervals with at mostf < n of those being faulty,

µ
(
Ff

n(I),Ff
n(I ′)

)
< δ (6)

provided thatµ(Ii, I
′
i) < δ, 1 ≤ i ≤ n.

Proof. LetF = Ff
n(I) andF ′ = Ff

n(I ′). Since

left(F ) = h-max{left(I1), . . . , left(In)}
right(F ) = h-min{right(I1), . . . , right(In)}
for h = f + 1, we can look separately at the involved left and
right edges in our proof. Abbreviatingxi = left(Ii), x′

i =
left(I ′

i) andyi = right(Ii), y′
i = right(I ′

i), it boils down to
show that

|h-max{x1, . . . , xn} − h-max{x′
1, . . . , x

′
n}| < δ,

|h-min{y1, . . . , yn} − h-min{y′
1, . . . , y

′
n}| < δ,

for any integer1 ≤ h ≤ n, wherex′
i = xi + li andy′

i =
yi + ri. Remember that we assumed−δ < li, ri < δ, 1 ≤
i ≤ n. To show the “h-max part”, consider the following
independent cases forxj = h-max{x1, . . . , xn} andx′

j′ =
h-max{x′

1, . . . , x
′
n}:

1. Regardingxj eitherx′
j = xj + lj ≤ x′

j′ or ≥ x′
j′ . The

first case immediately providesxj − δ < xj + lj ≤ x′
j′ .

Otherwise theremust be anotherxk ≥ xj with x′
k = xk +

lk ≤ x′
j′ , which again yieldsxj − δ < x′

j′ . The existence
of xk is warranted, since|{x′

i : x′
i ≥ x′

j′} \ {xj + lj}| =
h − 1 ≥ 0 but |{xi : xi ≥ xj}| = h.

2. Regardingx′
j′ eitherxj′ = x′

j′ − lj′ ≤ xj or ≥ xj The
first case immediately providesx′

j′ ≤ xj + lj′ < xj + δ.
Otherwise theremust be anotherxk ≤ xj with x′

k = xk +
lk ≥ x′

j′ , which again yieldsx′
j′ < xj + δ. The existence

of xk is warranted, since|{xi : xi ≥ xj} \ {x′
j′ − lj′}| =

h − 1 ≥ 0 but |{x′
i : x′

i ≥ x′
j′}| = h.

Combining both cases, we arrive atxj − δ < x′
j′ < xj + δ

as required. In order to show the “h-min part” we just note
that theh-smallest element of a set with cardinalityn is the
(n + 1 − h)-largest one. ��

The following Lemma 2.6 finally shows thatF is optimal
in the sense that its result is a lower bound for any proper
intersection functionX that satisfies the Lipschitz condition.

Lemma 2.6 (Optimality). Let a setI = {I1, . . . , In} of
n > f ≥ 0 non-empty compatible intervals with at mostf
faulty ones among those be given. Any proper fault-tolerant
intersection functionX f

n(I) that satisfies the Lipschitz con-
dition for the uniform metric fulfilsX f

n(I) ⊇ Ff
n(I).

Proof. AbbreviatingX = X f
n(I) andF = Ff

n(I), let us
assume that the statement of our lemma was not true, i.e.,
that w.l.o.g. left(X) > left(F ). Then, there must bef ′

l > 0
intervalsIx ∈ I with Ix ∩ M = ∅ lying strictly left of
M = Mf

n(I), since otherwise left(F ) = left(M) accord-
ing to Lemma 2.2 and Definition 2.1. This, however, would
contradict our hypothesis due toM’s optimality.

Letδ = maxx{left(M)−right(Ix)}, which is guaranteed
to be non-negative by the above claim, and defineI ′ to be

> 2δ

M = M1
4({I1, I2, I3, I4})

M ′ = M1
4({I1, I2, I3, I′

4})
= A1

I1

I2

I3

I′
4

I4 = I′
4 ± δ

Fig. 3.Scenariowhere theapproximationoftprovidedbyany “good”
fault-tolerant intersection functionX 1

4({I1, I2, I3, I
′
4}) that satis-

fies the Lipschitz condition is worse than the one provided byA1.

the set of intervals obtained by extending any left and right
edge of the intervals inI by δ/2. Then, by the definition of
F , left(F ) − left(F ′) = δ/2 for F ′ = Ff

n(I ′). Moreover,
sinceµ(Ij , I

′
j) = δ/2, theLipschitzpropertyofX guarantees

µ(X,X ′) ≤ δ/2 for X ′ = X f
n(I ′). However, combining

this with our hypothesis implies left(X ′) > left(F ′) as well.
Now, since obviously left(M) − left(M ′) ≥ δ/2 for

M ′ = Mf
n(I ′), we must haveM ′ ∩I ′ �= ∅ for anyI ′ ∈ I ′,

which in turn impliesF ′ = M ′ according to Eq. (2). Because
X ′must certainly includeM ′,wehaveeventually constructed
the requiredcontradiction.Ananalogousargument canbeused
to disprove right(X) < right(F ). ��

Whereas this optimality result shows that no intersection
function satisfying the Lipschitz property can do better, this
does notmean that themidpoint ofF always provides the best
approximation of the unknownt, recall Section 1. In our deter-
ministic worst-case setting, the optimal choice is themidpoint
of the interval provided by the Marzullo function, as it guar-
antees the smallest maximum distance tot in the worst case.
However, the midpoint of an interval that properly contains
M is usually a sub-optimal approximation.

Even worse, it may well be the case that a definitely sub-
optimal function like Lamport’sAf , which is just the Fault-
Tolerant Average algorithm [6] (i.e., the average of the input
values after discarding thef largest andf smallest ones) ap-
plied to the midpoints of the input intervals, provides a better
approximation oft thanF in some cases. We will show that
this is true for any “good” intersection functionX 1

4 that satis-
fies the Lipschitz condition.An intersection function is “good”
if it does not compute a sub-optimal result in the case where
no input interval can be cast out as obviously faulty, i.e., when
item (2) of Lemma 2.3 applies. Figure 3 shows the scenario
used in our argument, which is easily generalized to arbitrary
n andf .

The input intervals have been chosen appropriately such
thatX = X 1

4(I) = M due toX ’s “goodness”. Replacing
I4 by I ′

4 with µ(I4, I
′
4) ≤ δ inX ′ = X 1

4(I ′), the Lipschitz
property ofX revealsµ(X,X ′) ≤ δ and henceµ(X,X ′) ≤
δ aswell, recall our remark on the introduction of themidpoint
pseudo-metric. On the other hand, the left edge ofM’s result
jumps by> 2δ upon the transition fromM to M ′, which
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leads toµ(M ,M ′) > δ. Combining this with the midpoint
pseudo-metric’s triangle inequality

µ(M ,M ′) ≤ µ(M ,X ′) + µ(X ′,M ′)
≤ µ(X,X ′) + µ(X ′,M ′)

eventually yields0 < µ(X ′,M ′). Consequently, the mid-
point ofX ′ cannot be equal to the one ofM ′. The midpoint
provided byAf , however, is equal to center(M ′) by construc-
tion, and the claimed sub-optimality ofX follows.

We hence conclude that, although we can expect the ap-
proximation oft provided by center(F) to surpassAf in most
cases, we cannot demand that it —like any other “good” inter-
section function satisfying the Lipschitz condition— always
outperformsAf .

3 Worst-case analysis in presence of faults

In this section, we analyze the worst-case performance ofF
according to the framework introduced in [12]. Subsection 3.1
is devoted to the simple case of “local application”, whereF
is applied to a single input set, say, at a particular nodep. In
the following Subsection 3.2, we consider the more advanced
“distributed application” scenario, where two instances ofF
are applied to similar input sets at two different nodesp andq.

3.1 Local application

In order to reason about the behavior ofF in presence of
faults, a fault model is required. Any interval may be faulty
due to the following reasons:

Definition 3.1 (Single Faults).An intervalI representingt
can suffer from the following faults:

• Omission: I = ∅.
• Non-accurate interval: t �∈ I
• Unbounded accuracy: t ∈ I but |I| too large according

to some condition (that need not be known explicitly).

Note that it is of course easy to recognize and discard an omis-
sive faulty interval, but usually impossible to decide reliably
whether an intervalI is accurate or not. Masking or detecting
—and thus ruling themout completely—unbounded accuracy
faults is also difficult in most circumstances.

The following Lemma 3.2 reveals howF behaves in pres-
ence of faults according to Definition 3.1. It answers the ques-
tion of how many non-faulty intervals are required for tol-
erating at mostfn non-accurate intervals andfu unbounded
accuracy faults. The most important property shown is that
F ’s result lies within the intersection ofn − 2fn − 3fu ≥ 1
non-faulty input intervals.

Lemma 3.2 (Local Application). Let J = {J1, . . . ,Jn}
be a set ofn ≥ 1 non-empty compatible accuracy intervals
representingt, and definewh to be the length of the largest
intersection ofh ≥ 1 non-faulty intervals among those. If
f ′

u ≥ 0 of theJ j suffer from unbounded accuracy faults and
f ′

n ≥ 0 are non-accurate, wheref ′
u ≤ fu andf ′

n ≤ fn with
f ′

u+f ′
n = f ′ ≤ fu+fn = f < n (so thatn−f ′ ≥ n−f > 0

of then intervals are non-faulty), then:

(1) F = Ff
n(J ) is accurate and contains any intersection

W of n − f ≥ 1 different non-faulty input intervals
Jm1 , . . . ,Jmn−f

, i.e.,

W =
n−f⋂
j=1

Jmj
⊆ F , (7)

so that|F | ≥ wn−f (minimal intersection property).
(2) There are at leastn − 2f − f ′

u ≥ n − 2f − fu different
non-faulty input intervalsJb1 , . . . ,Jbn−2f−f′

u
∈ J such

that

F ⊆
n−2f−f ′

u⋂
j=1

Jbj
⊆

n−2f−fu⋂
j=1

Jb′
j
, (8)

where the set of indices{b′
j}1≤j≤n−2f−fu

is obtained from
{bj}1≤j≤n−2f−f ′

u
by discardingfu − f ′

u arbitrary ele-

ments. Hence,|F | ≤ wn−2f−f ′
u ≤ wn−2f−fu .

(3) There are at leastf − f ′ + 1 ≥ 1 non-faulty intervals
J �k

resp.Jrk
, 1 ≤ k ≤ f − f ′ + 1, in J satisfying

left(F ) ≤ left(J �k
) resp. right(F ) ≥ right(Jrk

).

Proof. We first show thatF = Ff
n(J ) contains any inter-

section of at leastn − f input intervals: ByF ’s definition,
we have at mostn − (f + 1) intervals with left edge strictly
smaller than left(F ). Therefore, assuming an intersection of
n − f intervals strictly left of left(F ) immediately leads to a
contradiction. An analogous argument can be applied to the
right edges. Finally, since inclusion of any intersection of at
leastn−f intervals implies inclusion of any such intersection
made up of non-faulty intervals only, it follows thatt ∈ F and
|F | ≥ wn−f as asserted in item (1) of the lemma.

Turning our attention to item (2), it is apparent that at least

g′
l + g′

r ≥ 2n − 2f − 2f ′
u − f ′

n (9)

non-faulty input intervals3must havea left edge left or equal to
left(F ) as well as a right edge right or equal to right(F ). This
is due to the fact that, apart from the2f intervals contributing
thef largest left edges and thef smallest right edges (which
cannot have this property by Definition 2.1), there may be
still up to f ′

u intervals with unbounded accuracy faults that
could have edges both left of left(F ) and right of right(F ).
Theymusthencebesubtracted twice inEq. (9).Similarly, there
may also be up tof ′

n non-accurate intervals, which must be
subtracted only once since any such intervalJ j could satisfy
either left(J j) < left(F ) or else right(J j) > right(F ) but
not both, due to tot /∈ J j but t ∈ F .

However, since there are onlyg′ = n − f ′ different non-
faulty intervals in the input setJ = {J1, . . . ,Jn}, the pi-
geonhole principle reveals that

g′
l + g′

r − g′ ≥ 2n − 2f − 2f ′
u − f ′

n − n + f ′

≥ n − 2f − f ′
u

of the intervals counted in Eq. (9), sayJb1 , . . . ,Jbn−2f−f′
u
,

must be the same. Therefore,F must lie in the intersection of
those intervals and|F | ≤ wn−2f−f ′

u as asserted. The upper
bound in Eq. (8) follows immediately fromf ′

u ≤ fu.
3 Note that we do not count different intervals here, but rather

intervals according to the total number of edges.
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Finally, item (3) of our lemma follows directly fromF ’s
Definition 2.1 in conjunctionwith the fact that at leastf−f ′ of
the discarded left edges (and analogously for the right edges)
must belong to non-faulty intervals. This eventually completes
the proof of Lemma 3.2. ��

Remarks

1. We excluded omission faults in our lemma, sinceF as
defined in Definition 2.1 cannot deal with empty intervals.
However, intervals with omission faults can of course be
discardedbeforeF is applied.Therefore, iff ′

o ofpresumed
n intervals suffer from an omission fault, we just have to
setn := n − f ′

o andf := f − f ′
o in Lemma 3.2 to obtain

the results for this case as well. Note that it is feasible to
let f depend onf ′

o, see Lemma 3.4.
2. Interpreting item (2) of Lemma 3.2 and the previous re-
mark in terms of the usual fault-tolerance degree notion,
it follows thatn ≥ f ′

o + 2f + f ′
u + 1 nodes are required

to guarantee thatF remains bounded by the length of at
least one non-faulty input interval. Hence, as many as

f ′
o + 1 for f ′

o omission faults,
2fn + 1 for f ′

n ≤ fn non-accurate faults,
2fu + f ′

u + 1 for f ′
u ≤ fu unbounded accuracy faults

nodes are required for tolerating faults of the given type.
It is thus apparent thatF can tolerate�(n − 1)/2� non-
accurate intervals but only�(n−1)/3� intervals that suffer
from unbounded accuracy faults. Note carefully that the
numbers above do not solely depend on theactualnumber
of faults (e.g.,f ′

u), but also on their maximum number
(e.g.,fu); this is due to the fact that the latter is compiled
into the superscript argument ofF .

3. The lower bound on|F | in item (1) expresses the rather
obvious fact thatF cannot improve the accuracy beyond
the one “hidden” in the input intervals; the termminimal
intersection propertywas coined in [7]. Note thatF con-
tains any intersection ofn − f intervals, hence includes
intersections involving unbounded accuracy faults aswell.

4. Item (3) just says thatF contains the left and right edge of
at least one (not necessarily the same) non-faulty interval.

5. Comparison1 of Lemma 3.2 and [12, Lem. 2] reveals that
F has literally the same worst-case performance as the
optimal Marzullo functionM. Thismeans that both func-
tions produce the same result for worst-case scenarios. Of
course, for “average” input sets,F will usually provide a
slightly larger interval.

3.2 Distributed application

In this section, we will consider the case whereF is applied
to (similar) input setsIp, Iq at two different nodes. Those
sets could be produced by a remote clock reading algorithm
or replicated sensors, for example. It will turn out that the re-
spective outcomesF p = Ff

n(Ip) andF q = Ff
n(Iq) cannot

deviate too much from each other, even if faults lead to quite
different input sets. Note carefully, however, that Lemma 2.5
does not help here, since exploiting the Lipschitz condition
would requireµ(Ii

p, I
i
q) < δ for any1 ≤ i ≤ n. This require-

ment cannot be guaranteed when faults cause the input sets to
differ at nodep andq.

Of course, one might consider to employ a consensus pro-
tocol prior toF ’s application for alleviating such inconsis-
tencies. This is expensive, though, since only complete agree-
ment upon the set of faulty/non-faulty senders would render
Lemma 2.5 applicable. Lemma 2.3 reveals that using a binary
decision valuevj , meaning “I

s
j ∩M(Ij) empty/non-empty”,

as an input to thes-th instance,1 ≤ s ≤ n, of a consensus
protocol would lead to consistent input setsI ′

j that even guar-
anteeF(I ′

j) = M(I ′
j) for all non-faulty nodesj. Less costly

(approximate) agreement protocols, however, are difficult to
apply in our context for the reasons explained below.

In fact, any distributed application ofF is considerably
complicated by the fact that we cannot always assume that
the information disseminated by a single senders leads to
the same interval at two receiversp andq, even if there is no
fault at all. More specifically, in typical clock synchronization
applications, it is not a constant-valued interval that is dis-
seminated bys to p andq, but rather a time-dependent one.
Any time-dependent quantity, however, is affected by trans-
mission delays, clock granularities and related effects. As a
consequence,p andq may not only receive slightly different
information from non-faulty senders, but also perceive faults
differently: An interval from senders may be correct atp but
faulty at q, both due to faults occurring at the sending and
the receiving side. This implies that approximate agreement
protocols are of limited use for alleviating inconsistencies (al-
though part of our current research indicates some potential
for improvement).

In order to be able to reason about faults in distributed
applications, the single-interval faults of Definition 3.1 are
complemented by faults ofpairs of intervalsIs

p ∈ Ip resp.
Is

q ∈ Iq obtained at nodesp resp.q. This will lead to a
perception-based fault modelas introduced in [12], where the
usual omniscient (= global) perception of faults is replaced
by the local perceptions of any two non-faulty nodes in the
system. This way, both node and link faults can be accurately
modeled.

We therefore assume that the intervals in both input sets
can be uniquely grouped asn pairs {Is

p ∈ Ip, I
s
q ∈ Iq}

originating in the same source of informations, 1 ≤ s ≤ n.
Wewill use the termordered setsforIp andIq to indicate this
property. The corresponding intervals in two ordered sets need
not be the same, although they should be reasonably similar.
Definition 3.3 exhaustively specifies all possible faults of pairs
of intervals:

Definition 3.3 (Pairwise Faults).A pair of compatible accu-
racy intervals{Is

p, Is
q} representingt suffers from

• a crash faultiff Is
p = Is

q = ∅,
• a symmetric faultiff either

(1) bothIs
p andIs

q are not accurate in the sense oft <
left(Is

p) and t < left(Is
q), or elset > right(Is

p) and
t > right(Is

q),
(2) without loss of generality,Is

p = ∅ and Is
q �= ∅ does

not suffer from an unbounded accuracy fault.
• anasymmetric faultiff either

(1) bothIs
p andIs

q are not accurate in the sense oft >
right(Is

p) and t < left(Is
q) or elset > right(Is

q) and
t < left(Is

p) (true Byzantine fault),
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(2) without loss of generality,Is
p �= ∅ is faulty andIs

q is
arbitrary (and none of the other faults applies).

Remarks

1. The “classical” asymmetric fault [17] is caused by dissem-
inating information that is perceived differently atp andq.
In our special context, it is characterized by the fact that
nodep arrives at the conclusion that the intervalIs

p from
senders is, say, strictly left of the sought valuet, whereas
q thinks thatIs

p is strictly right of t (or correct). This sit-
uation usually also occurs in presence of an unbounded
accuracy fault.

2. The “classical” symmetric fault [17] is caused by dissemi-
nating information that is perceived identically atp andq.
In our special context, bothp andqmust arrive at the same
conclusion onwhether the intervals from senders are both
left or right oft. Alternatively, one of the intervals may be
missing due to a receive omission.

3. A crash fault causes an omission both at nodep andq. Note
carefully, though, that it is impossible for either node to
decide locally (without further information) whether its
omission is due to a crash fault or a more severe receive
omission.

4. Note that Definition 3.3 does not cover the case where
a more severe fault comes out as a less severe one. For
example, it is reasonable to assume that an asymmetric
fault could just be a symmetric or evena crash fault only. In
this paper, we will typically use phrases like “asymmetric
(or weaker) fault” to indicate such extensions.

Introducing different classes of faults as in Definition 3.3
is known as ahybrid fault modelin literature, cf. [1,17]. It
allows us to exploit the fact that maskingf symmetric faults
requires onlyn ≥ 2f + 1 nodes, whereasn ≥ 3f + 1 are
needed if all faults are asymmetric ones. Since a large number
of asymmetric faults is very unlikely in practice, cf. [11], this
effectively leads to a smallern for tolerating a given number
of faults.

Weshouldexplicitlymention, though, thatourdefinitionof
symmetric and asymmetric faults extends and, in some cases,
apparently contradicts the “classical” meaning of those terms.
Still, we think that their usage is legitimate due to the fact
that our extension preserves the essentials of their meaning:
The meaning of symmetric / asymmetric fault is basically re-
ceived identically / not identically at different nodes. In our
context, however, we have to relax the meaning of “received
identically” since we cannot assume identical information at
different nodes even in the faultless case, as explained earlier.
Wealsohave toaccept the fact that the interval-basedparadigm
introduces unbounded accuracy faults, which are not known in
traditional settings but can create an asymmetric perception.

The following Lemma 3.4 gives the number of non-faulty
pairs of intervals required byF for tolerating a certain number
of

• crash faults (f ′
c ≤ fc),

• symmetric faults (f ′
s ≤ fs),

• asymmetric faults (f ′
a ≤ fa).

The most important result is an upper bound on the nc-union
F p�F q, whichmust liewithin at leastn−min{f ′

c+f ′
s, 2fc−

f ′
c} − 2fs − 3fa ≥ 1 nc-unionsIs

p � Is
q of non-faulty input

intervals. Note that using (nc-)unions in our lemma takes into
account that two different nodesp andq may have slightly
different input sets, even if there is no fault.

Lemma 3.4 (Distributed Application). Let Ip = {I1
p, . . . ,

In
p} and Iq = {I1

q, . . . , I
n
q } be two ordered sets ofn >

fc + fs + fa, fc, fs, fa ≥ 0, compatible (or empty) accuracy
intervals representingt, wheref ′

a ≤ fa, f ′
s ≤ fs, andf ′

c ≤
fc of then pairs of intervals{Ii

p, I
i
q} exhibit asymmetric,

symmetric, and crash faults, respectively, and the remaining
ones are non-faulty. Defineuh resp.vh to be the length of the
largest intersection ofh ≥ 1 nc-unions resp. intersections of
pairs of non-faulty intervals, formallyuh = max{|U | : U ∈
Uh

pq} andvh = max{|V | : V ∈ Vh
pq} for

Uh
pq =

{
U : U =

h⋂
i=1

Iui
p � Iui

q with ui �= uj , i �= j,

andIui
p ∈ Ip, Iui

q ∈ Iq being non-faulty

}

Vh
pq =

{
V : V =

h⋂
i=1

Ivi
p ∩ Ivi

q with vi �= vj , i �= j,

andIvi
p ∈ Ip, Ivi

q ∈ Iq being non-faulty

}
.

Let d′
p, 0 ≤ d′

p ≤ f ′
s, resp.e′

p, 0 ≤ e′
p ≤ f ′

a, denote the
(unknown) number of empty intervals caused by symmetric
resp. asymmetric faults at nodep, andJ p = {J1, . . . ,Jnp

}
be the set ofnp = n−op non-empty intervals obtained fromIp

by discarding any of the (known)op = f ′
c+d′

p+e′
p ≤ fc+fs+

fa empty intervals caused by crash and symmetric/asymmetric
faults. Using the upper boundfp = fs+fa−max{0, op−fc}
on the number of intervals inJp that (still) may be faulty in
presence ofop omissions, define

F p = Ffp
np

(J p)

F q = Ffq
nq

(J q).

Then,

(1) bothF p andF q are accurate and

F p ∩ F q ⊇
n−f ′

c−fs−fa⋂
j=1

Ivj
p ∩ Ivj

q = V (10)

for any subsetV ∈ Vn−f ′
c−fs−fa

pq , so that|F p ∩ F q| ≥
vn−f ′

c−fs−fa (distributed minimal intersection property),
(2) there are at leastn − min{f ′

c + f ′
s, 2fc − f ′

c} − 2fs −
2fa − f ′

a pairs of non-faulty intervals{Iuk
p , Iuk

q } with
Iuk

p ∈ J p andIuk
q ∈ J q such thatF p �F q is contained

(⊆) in

n−min{f ′
c+f ′

s,2fc−f ′
c}−2fs−2fa−f ′

a⋂
k=1

Iuk
p � Iuk

q (11)

and hence

|F p � F q| ≤ un−min{f ′
c+f ′

s,2fc−f ′
c}−2fs−2fa−f ′

a .
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Proof. First of all, we note thatfp gives indeed an upper
bound on the number of intervals inJ p that still may be
faulty in presence ofop = f ′

c + d′
p + e′

p ≤ f ′
c + f ′

s + f ′
a ≤

fc + fs + fa omissions, sincefp = fs + fa if op ≤ fc, and
fp = fs+fa−(op−fc)otherwise (accounting forop−fc > 0
symmetric/asymmetric faults thatmust have causedomissions
at nodep), hence

fp ≤ fs + fa. (12)

Evidently, at leastnp − fp of the intervals inJ p must be
non-faulty. Rewriting the definition

np − fp = n − op − fs − fa + max{0, op − fc}
= n − fs − fa + max{−op,−fc} (13)

and applyingmax{0, x} ≥ x for anyx, and the simple fact
thatmax{−op,−fc} ≤ −f ′

c since obviouslyop ≥ f ′
c and

f ′
c ≤ fc, it follows easily that

n − fc − fs − fa ≤ np − fp ≤ n − f ′
c − fs − fa

≤ n − fs − fa.

Of course, analogous bounds hold fornq − fq.
Lemma 3.2 is applicable, and it follows thatF p andF q

are both accurate and satisfy the (local) minimal intersec-
tion property. That is,F p contains any intersection ofnp −
fp ≤ n − f ′

c − fs − fa non-faulty intervals present inJ p. If
{vj}1≤j≤n−f ′

c−fs−fa denotes any set of different indices of
non-faulty pairs of intervals{Ivj

p ∈ Ip, I
vj
q ∈ Iq} (of course

also present inJ p,J q), we thus have

W p =
n−f ′

c−fs−fa⋂
j=1

Ivj
p ⊆

np−fp⋂
j=1

Ivj
p ⊆ F p

and, for the same set{vj},W q =
⋂n−f ′

c−fs−fa

j=1 Ivj
q ⊆ F q.

By elementary set algebra, it thus follows thatV = W p ∩
W q ∈ Vn−f ′

c−fs−fa satisfies Eq. (10). Finally,|F p ∩ F q| ≥
vn−f ′

c−fs−fa is a simple consequence of the definition ofvh

as themaximum length ofV ∈ Vh
pq. This completes the proof

of item (1).
For item (2), suppose thatgp,l intervals belonging to a non-

faulty pair of input intervals have a left edge smaller or equal
than left(F p), whereasgq,r intervals belonging to a non-faulty
pair of input intervals have a right edge larger or equal than
right(F q). We must have

gp,l ≥ np − fp − (f ′
a − e′

p) − (s′
left − d′

p,left)

≥ n − fs − fa + max{−op,−fc}
−f ′

a − s′
left + d′

p,left + e′
p

gq,r ≥ nq − fq − (f ′
a − e′

q) − (s′
right − d′

q,right)

≥ n − fs − fa + max{−oq,−fc}
−f ′

a − s′
right + d′

q,right + e′
q,

wheres′
left+s′

right = f ′
s ≤ fs are the number of symmetrically

faulty pairs of intervals lying left resp. right oft, andd′
p,left +

d′
p,right = d′

p, d
′
q,left + d′

q,right = d′
q denote the number of

omissions among those at nodep resp.q; the lower bounds
follow immediately from (13).

However, we only haveg = n − f ′
c − f ′

s − f ′
a different

non-faulty pairs of intervals. Thus, the pigeonhole principle
reveals that at leastY = gp,l + gq,r − g given by

Y ≥ 2n + max{−op,−fc} + max{−oq,−fc}
−2fs − 2fa − 2f ′

a − f ′
s

+d′
p,left + d′

q,right + e′
p + e′

q

−n + f ′
c + f ′

s + f ′
a

≥ n + max{−f ′
c − d′

p,right,−fc + d′
p,left + e′

p}
+ max{−f ′

c − d′
q,left,−fc + d′

q,right + e′
q}

+f ′
c − 2fs − 2fa − f ′

a

≥ n + max{−2f ′
c − f ′

s,−2fc}
+f ′

c − 2fs − 2fa − f ′
a

≥ n − min{f ′
c + f ′

s, 2fc − f ′
c} − 2fs − 2fa − f ′

a

of those must be the same. Abbreviatingµ = min{f ′
c +

f ′
s, 2fc − f ′

c}, we can conclude that there are at leastn −
µ − 2fs − 2fa − f ′

a pairs of accurate intervals, say,Ib1
p �

Ib1
q , . . . , I

bn−µ−2fs−2fa−f′
a

p �I
bn−µ−2fs−2fa−f′

a
q withIbi

p ∈ J p

andIbi
q ∈ J q such thatF p � F q is contained (⊆) in

n−µ−2fs−2fa−f ′
a⋂

j=1

Ibj
p � Ibj

q ∈ Un−µ−2fs−2fa−f ′
a

pq , (14)

which proves Eq. (11). To complete the proof of Lemma 3.4,
it only remains to justify|F p � F q| ≤ un−µ−2fs−2fa−f ′

a ,
which is a simple consequence of the definition ofuh as the
maximum length ofU ∈ Uh

pq. ��
Remarks

1. Note carefully that Lemma 3.2 could also be used to de-
duce a “distributed application”-related result: SinceF p

andF q are both accurate and hence containt, it follows
from item (2) that|F p ∪ F q| ≤ 2wn−2f−fu . However,
comparison with item (2) of Lemma 3.4 reveals that this
result is essentially twice as large.

2. Our crash faults are more severe than the (system-wide
consistently perceived)benign faultsof [17], since it can-
not be decided locally whether an omissive interval be-
longs to a crash fault or to an (inconsistent) receive omis-
sion. However, it is of course possible to “merge” crash
and symmetric faults, in the sense that the former are
counted inf ′

s (resp.fs) and f ′
c = fc = 0 (note that

np−fp = n−fs−fa in this case).After all, wealready ac-
counted for symmetric/asymmetric faults involving empty
intervals in the proof of Lemma 3.4.

3. Interpreting the accomplishments of Lemma 3.4 and the
previous remark in terms of the usual fault-tolerance de-
gree notion, it turns out thatn ≥ min{f ′

c+f ′
s, 2fc−f ′

c}+
2fs + 2fa + f ′

a + 1 nodes are required to guarantee that
F p � F q remains bounded by the length of the nc-union
of at least one pair of non-faulty input intervals. Hence, as
much as
min{f ′

c + f ′
s, 2fc − f ′

c} + 1 for f ′
c crash faults,

2fs + 1 for f ′
s ≤ fs symmetric faults,

2fa + f ′
a + 1 for f ′

a ≤ fa asymmetric faults

nodes are required for tolerating faults of the given type.
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4. It should be clear from the proof of Lemma 3.4 that the
property that really pins down symmetric faults is the fol-
lowing one: If a symmetrically faulty intervalIs

q satis-
fies right(Is

q) ≥ right(F q) (correctly accounted for in
sright), then its correspondingI

s
p must not have left(I

s
p) ≤

left(F p) (since it is not accounted for insleft). This is the
reason whyIs

p �= 0 being faulty andIs
q �= 0 being non-

faulty must be counted as an asymmetric fault in item (2)
of Definition 3.3.

5. Comparison1 of Lemma 3.4 with [12, Lem. 4] again re-
veals thatF has exactly the same worst-case performance
as the optimal Marzullo functionM.

6. The proof of Lemma 3.4 reveals the ultimate reason for
using nc-unions� instead of∪ in the statement of item (2):
It may be the case that, say,F q ⊆ F p, such thatF p

would determine both left and right edge ofF p ∪ F q. By
applying Lemma 3.2 withn := np, f := fp, andf ′

u ≤ f ′
a

(as well asfu ≤ fa), we could show that there are at
leastnp − 2fp − f ′

u ≥ n−µ− 2fs − 2fa − f ′
a non-faulty

intervalsIbj
p inJ p the intersectionofwhichmajorizesF p.

This does not imply, however, that all of those intervals
appear inJ q as well — just think of symmetric faults
appearing non-faulty atp but omissive atq. Hence, we
cannot claim that all the unionsIbj

p ∪Ibj
q —the intersection

ofwhichwouldof coursemajorizeF q∪F p—involvenon-
fauly intervals only. Clearly, focussing uponF p � F q ⊆
F p ∪ F q entirely avoids this difficulty.

The following lemmashows that Lemma3.4 remains valid
if a more severe fault comes out as a less severe one, and
shows what happens if certain fault assumptions are violated.
Note that crash faults are counted as symmetric ones here for
simplicity.

Lemma 3.5 (Graceful Degradation).Let Ip = {I1
p, . . . ,

In
p} and Iq = {I1

q, . . . , I
n
q } be two ordered sets ofn >

fs + fa, fs, fa ≥ 0, compatible (or empty) accuracy inter-
vals representingt, wheref ′

s ≤ fs of then pairs of intervals
{Ii

p, I
i
q} exhibit symmetric (or weaker) faults,f ′

a ≤ fa ex-
hibit asymmetric (or weaker) faults, and the remaining ones
are non-faulty. As in Lemma 3.4, defineuh resp.vh to be the
length of the largest intersection ofh ≥ 1 nc-unions (∈ Uh

pq)

resp. intersections (∈ Vh
pq) of pairs of non-faulty intervals.

LetJ p = {J1, . . . ,Jnp} be the set ofnp = n − op non-
empty intervals obtained fromIp by discarding any of theop

empty intervals caused by omissions. Using the upper bound
fp = fs +fa −op on the number of intervals inJp that (still)
may be faulty in presence ofop omissions, define

F p = Ffp
np

(J p)

F q = Ffq
nq

(J q).

Then:

(1) BothF p andF q are accurate and

F p ∩ F q ⊇
n−fs−fa⋂

j=1

Ivj
p ∩ Ivj

q = V (15)

for any possible subsetV ∈ Vn−fs−fa
pq , so that|F p ∩

F q| ≥ vn−fs−fa (distributed minimal intersection prop-
erty).

(2) There are at leastn − 2fs − 2fa − f ′
a ≥ n − 2fs − 3fa

pairs of non-faulty intervals{Iuk
p , Iuk

q } with Iuk
p ∈ J p

andIuk
q ∈ J q such that

F p � F q ⊆
n−2fs−2fa−f ′

a⋂
k=1

Iuk
p � Iuk

q

⊆
n−2fs−3fa⋂

k=1

Iu′
k

p � Iu′
k

q , (16)

where the sequence{u′
k}1≤k≤n−2fs−3fa is obtained from

{uk}1≤k≤n−2fs−2fa−f ′
a

by discardingfa − f ′
a arbitrary

elements. Therefore,|F p � F q| ≤ un−2fs−2fa−f ′
a ≤

un−2fs−3fa .
(3) Assume that the fault model is violated in the sense that

f ′ = f ′
s + f ′

a > fs + fa but still n ≥ 2f ′ + f ′
u + 1,

wheref ′
u ≤ f ′

a denotes the number of pairs of intervals
that involve unbounded accuracy faults. If the violation of
the fault model is not obvious, in the sense thatF p and
F q can be computed and are not empty due toL > R
in Definition 2.1, then there aren − 2f ′ − f ′

u non-faulty

intervalsIp1
p , . . . , I

pn−2f′−f′
u

p in J p and n − 2f ′ − f ′
u

non-faulty intervalsIq1
q , . . . , I

qn−2f′−f′
u

q in J q such that
F p ∪ F q (and henceF p � F q) is contained (⊆) in
n−2f ′−f ′

u⋂
j=1

Ipj
p


 ∪


n−2f ′−f ′

u⋂
j=1

Iqj
q


 . (17)

Hence,|F p ∪F q| ≤ w
n−2f ′−f ′

u
p +w

n−2f ′−f ′
u

q , wherewh
p

resp.wh
q denote the length of the largest intersection ofh

accurate intervals inIp resp.Iq.
Nevertheless,F p andF q are not necessarily accurate and
possibly not even intersecting; accurateness is guaran-
teed, however, iff ′ ≤ fs + fa but all f ′ faults are asym-
metric ones.

Proof. Since crash faults are now considered as symmetric
ones and hence accounted for inf ′

s andfs, see Remark 2 on
Lemma 3.4, items (1) and (2) follow directly from adopting
the results of Lemma 3.4 tof ′

c = fc = 0. Note thatnp −fp =
n − fs − fa here. To confirm the assertions for asymmetric
faults appearing as weaker ones, just consider the expressions
supplied by Lemma3.4when temporarily settingfa := fa−1
andfs := fs + 1.

Toshow item(3),wefirst note thatweonlyhave toconsider
the case wherefs + fa − op ≥ 0, since otherwise there would
have been too many omissions to computeF p. Moreover,
recalling that we assumedF p �= ∅, we find
F p = Ffs+fa−op

np
(J p) ⊆ Ff ′

np
(J p) (18)

by item (1) of Lemma 2.4. Lemma 3.2 is now applicable to the
right-hand side of Eq. (18) and it follows by its item (2) that

F p ⊆
n−2f ′−f ′

u⋂
j=1

Jpj
p .

An analogous result holds forF q. Of course, the majorizing
intersections forF p andF q involve non-faulty intervals only,
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hence are both accurate and thus intersecting. This justifies
Eq. (17) and the condition on|F p ∪ F q| given in the lemma.
Note carefully, however, that this does not imply thatF p and
F q itself are accurate or even just intersecting! On the other
hand, iff ′ ≤ fs + fa, it follows from item (1) of Lemma 3.2
applied to the left-hand side of Eq. (18) thatF p (and analo-
gouslyF q) is accurate. ��
Remarks

1. It follows from item (3) of the above lemma that there are
two possibilities in case of a violation of the fault assump-
tions: Either a node recognizes this fact because the result
ofF is empty, or the computed interval is not “toowrong”.
Obviously, this is some form ofgraceful degradationof
F ’s performance.

2. Evidently, the worst situation with respect to the number
of faults where one can hope to get a meaningful result
is n ≥ 2f ′ + 1. Item (3) of Lemma 3.5 can be used to
deduce a result for this case as well: Settingf ′

u = 0 and
declaring any interval with an unbounded accuracy fault
as being “non-faulty”, we get from Eq. (17) thatF p ∪ F q

lies in the union of the intersection ofn−2f ′ “non-faulty”
intervals inJ p resp.J q.

3. Comparison1 of Lemma 3.5 with [12, Lem. 5] shows that
F again provides the same results as theMarzullo function
M. This finally justifies our claim thatF andM have
the same worst-case performance.

4 Conclusions

We presented and analyzed a novel Fault-Tolerant Interval
(FTI) intersection functionF , which is optimal like the well-
known Marzullo functionM but satisfies a Lipschitz con-
dition as well. The Lipschitz condition ensures that minor
changes of the input intervals cause only minor changes of
the result.

Our thorough analysis revealed thatF has exactly the
same worst-case performance asM, although it may provide
slightly sub-optimal results for non-worst-case input scenar-
ios. For the local application case, we showed that the interval
F provided byF on a single node lies withinn− 2fn − 3fu

non-faulty input intervals, wherefn resp.fu is the maxi-
mum number of non-accurate resp. excessively long intervals
among the totallyn input intervals. For the distributed appli-
cation case, we showed that the non-commutative union of
the resultsF p � F q provided byF at two different nodesp
andq lies within the intersection ofn − 2fs − 3fa nc-unions
of corresponding non-faulty input intervals atp andq, where
fs resp.fa gives the number of symmetric resp. asymmetric
faults.

Therefore,F is a promising candidate for replacing the
widespread usage ofM in distributed applications. Some of
our future work will be devoted to the investigation of its use-
fulness inour interval-basedclock synchronization framework
[16], whereF ’s Lipschitz condition might prove particularly
beneficial. This research also includes the usage of agreement
protocols, which allow to reduce the inconsistency ofF ’s in-
put sets at different nodes.

Acknowledgements.Wearegrateful to Leslie Lamport andananony-
mous referee for their stimulating comments on an earlier version of
our manuscript. We would not have unveiledF ’s optimality without
this feedback.

References

1. M.H. Azadmanesh, Roger M. Kieckhafer: New hybrid fault
models for asynchronous approximate agreement.IEEE Trans
Comput, 45(4): 439–449 (1996)

2. R.R. Brooks, S.S. Iyengar: Robust distributed computing and
sensing algorithms.IEEE Computer, pages 53–60, June 1996

3. S.S. Iyengar, D.N. Jayashimha, D. Nadig: A versatile architec-
ture for the distributed sensor integration problem.IEEE Trans
Comput, 43(2): 175–185, (1994)

4. D.N. Jayashimha, S.S. Iyengar, R.L. Kashyap: Information in-
tegration and synchronization in distributed sensor networks.
IEEE Trans Syst Man Cybern, 21(5): 1032–1043 (1991)

5. L. Lamport: Synchronizing time servers. Technical Report 18,
Digital System Research Center, 1987

6. J. Lundelius-Welch, N.A. Lynch: A new fault-tolerant algorithm
for clock synchronization.Inform Comput, 77(1): 1–36 (1988)

7. K.A. Marzullo: Maintaining the Time in a Distributed System:
An Example of a Loosely-Coupled Distributed Service. PhD
dissertation, Stanford University, Department of Electrical En-
gineering, February 1984

8. K.A.Marzullo: Tolerating failuresof continuous-valuedsensors.
ACM Trans Comput Syst, 8(4): 284–304 (1990)

9. D.L. Mills: Improved algorithms for synchronizing computer
network clocks.IEEE Trans Networks, 245–254 (1995)

10. OSF.Introduction to OSF DCE. Englewood Cliffs, NJ: Prentice
Hall 1992

11. U. Schmid: Synchronized Universal Time Coordinated for dis-
tributed real-time systems.Control Engineering Practice, 3(6):
877–884 (1995) (Reprint from Proceedings 19th IFAC/IFIP
Workshop on Real-Time Programming (WRTP’94), Lake Re-
ichenau/Germany, 1994, pp. 101–107.)

12. U. Schmid: Orthogonal accuracy clock synchronization.
Chicago Journal of Theoretical Computer Science, 3: 1–77
(2000)

13. K. Schossmaier: An interval-based framework for clock rate
synchronization algorithms. InProceedings 16th ACM Sympo-
sium on Principles of Distributed Computing, pp. 169–178, St.
Barbara, USA, August 21–24, 1997

14. U. Schmid, M. Horauer, N. Ker¨o: How to distribute GPS-time
over COTS-based LANs. In:Proceedings of the 31th IEEE
Precise Time and Time Interval Systems and Application Meet-
ing (PTTI’99), pp. 545–560, Dana Point, California, December
1999.

15. U. Schmid, J. Klasek, T. Mandl, H. Nachtnebel, G.R. Cadek,
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