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Summary. We present a new fault-tolerant intersection func-

tion F, which satisfies the Lipschitz condition for the uniform
metric and is optimal among all functions with this propefy.

thus settles Lamport’s question about such a function raised i

[5]. Our comprehensive analysis reveals thatas exactly the

same worst-case performance as the optimal Marzullo func

tion M, which does not satisfy a Lipschitz condition. The
utilized modelling approach in conjunction with a powerful
hybrid fault model ensures compatibility of our results with
any known application framework, including replicated sen-
sors and clock synchronization.
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Fig. 1.Example of the Marzullo functioM with n = 4 andf = 1.
The edges of the result lie im — f = 3 input intervals. Changing
interval I» to I, has a big impact on the result

It is well-known that, if at mosy of then input intervals
may be faulty, the minimum length result containinig pro-
vided by the Marzullo functiosM/ (Z) introduced in [7]: It
is the largest interval whose edges lie in the intersection of at

Consider some quantity like a pointin real-time (for clock syn- leastn — f different I;’s. Therefore, to compute for exam-

chronization) or a temperature value (for replicated sensorswe the left edge oM/ (), one has to “sweep” over the set
that is not known exactly but only within some range. Such ags intervals from left to right and stop when— f intervals

quantityt can be represented by a real interiak [z, y] con-
taining ¢, which makes the uncertainty explicit by its length

|I| = y—2x. Now suppose that we are somehow provided with

n > 1different intervalsZ = {I,,...,I,} all representing
the samet, and that we want to extract a single interval of
minimum length that contains If all input intervals are ac-
curate (i.e. non-faulty), in the sense that I;,1 <i < mn, it

is obvious that/ = (", I, containst and henceJ # 0. In
fact, J is the best (deterministic) information abduhat can
be deduced frornt.

However, the question arises whatto do if some ofthe inpu
intervals are not accurate (i.e. faulty), thattig I, for some
(unknown);’s. Some sort ofault-tolerant intersectiomas to
be employed here to compute an interval that is guaranteed
containt.

intersect for the first ime. ThusA/ (Z) can be computed in
O(nlogn) time by sorting the intervals’ edges, cf. [8]. Fig-
ure 1 shows an example with = 4 and f = 1. Note that
the unknownt cannot lie in the region between the right edge
of I3 and the left edge of; in this example. However, since
there is no way to decide whethdies in the area left or right
of this region, both must be covered to secure inclusian of

It is easily seen, though, tha1 exhibits a somewhat ir-
regular behavior: If the left edge @t is slightly moved right,
as given by}, then the right edge of the result suddenly jumps
to the right edge of 3. Thus, movingl, by a small amount
€, just large enough to prohibit intersection wikh, causes a
variation by much more than In [5], this behavior was for-

fhalized as violation of &ipschitz conditionw.r.t. a suitable

metric defined on intervals. This is an undesirable property,

* This research has been conducted in our SynUTC-projecsince itimplies thaiM applied to two slightly different input
http://www.auto.tuwien.ac.at/Projects/SynUTC supported by thesets may deliver quite different results.
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For example, in the clock synchronization context, two
nodesp andq usually obtain (slightly) different input sefs,
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andZ, even if all senders are non-faulty, since intervals are _ | Iy
time-dependent here. For that reason, Lamport did not use tr 3 T
Marzullo function for hisSynchronizing Time Serves], but : L ————— 1,
rather an averaging functiad’ based on the Fault-Tolerant j i I3 :

Average algorithm of [6]. However, Lamport wrot&Vhile ' : | 14

the averaging functiod/ gives reasonable worst-case behav- E f

ior, it does not make the best use of the available informatior ' '

because it ignores the widths of intervals. Very wide intervals 1 :

are given the same weight as narrow ones, even though the ' | Fi({I1, 12,13, 14})
provide less information. One can construct examples in whict ' t Fi({I1,15,13,14})

the functionA’ does not provide the best possible approxima-
tion to UT. However, | know of no simple functiérsatisfying
the Lipschitz condition that does better.” Fig. 2.Example of the Fault-Tolerant Interval functidhwith n = 4

The simple Fault-Tolerant Interval (FTI) intersection ~andf = 1. Changing interval; to I has no impact on the resuit.
function F proposed and analyzed in this paper satisfies a
Lipschitz condition and takes into account the widths of inter-
vals. SinceF is in fact optimal among all such functions, we Like Mfl(I), our function is translation invariant in the
can reasonably claim to have settled Lamport's question.  sensethaF/ (I, + A, ..., I, +A) = F/(I,,...,I,)+ A

The remainder of our paper is organized as follows: FTI'Sfor any realA, and can be computed i(nlogn) time by
definition and basic pI’OpeI’tieS can be found in Section 2, alongorting the interva|s’edges: In orderto Compute the left edge of
yvi_th thg proof that_ it satisfies the Lipschitz condition and thalt]_-ﬁ (Z), one has to sweep over the set of intervals (by looking
it is optimal. Section 3 is devoted to the worst case analysisy; their |eft edges) from right to left, discarding left edges until

for local and distributed application &f in presence of faults. the(f+1)-stlargestis encountered. Similarly, to find the right

Some conclusions in Section 4 eventually round off the |oaperedge Ov-ﬁ(I)’ one has to sweep over the set of intervals from

left to right and stop when thigf + 1)-st smallest right edge is
encountered. Figure 2 shows hd#behaves in the scenario
taken from Fig. 1.

We consider real intervals= [z, y],z < y, wherglI| = y—z Note carefully that the resulting interval is the same as
denotes the intervaltength = = left(I) its left edge and ~ computed byM whenl is used as input interval. Neverthe-
y = right(I) its right edge Theintersectionof two intervals  less, it is apparent here that the right edgefd result does

is the set-theoretic one, thmionis defined agr, y] U[u,v] =  Notjump when the slightly moved interva} is used instead.
[min{z, u}, max{y, v}], hence covers the closure of disjoint In Lemma 2.5 below, we will show thaF indeed satisfies
intervals as well. Theon-commutative uniognc-unior) is  the desired Lipschitz condition of [5]; its optimality will be
defined agz, y] U [u,v] = [z,v] if < v or ) otherwise. In ~ proved in Lemma 2.6.

t

2 FTI definition and relations

what follows, we assume a single (unknown) vaiuend a set Definition 2.1_ reveals some similgrity betweﬁ_and the
of real intervalsZ = {I,...,I,},n > 1, that all represent Fault-Tolerant Midpoint (FTM) algorithm of [6]: Given a set
t; we will call such intervalsompatible An intervalI thatis ~ Of point valuesC = {ci,...,c,} with at mostf of those
meant to represenis accurate(also termedorrect) if ¢t € I, being faulty, FTM,(C) is defined as the midpoint (center) of
otherwise it isnon-accuratgalso termedaulty). the interval

The interval-based paradigm and the Marzullo function .
M was introduced in Marzullo’s thesis [7], and several pub- [(f +1)-min{er, . en}s (f + D-max{er, .., en}].
lications [5,4,10,3,11,9,2,16,13,15,14] etc. reveal that it isSF can hence be viewed as a generalization of FTM to the
widely applied in practice. The properties ## have been interval domain. In factF even emulates FTM when ap-
studied thoroughly both in the context of replicated sensorplied to intervals with identical length: If all ; = [z}, y,],
[8] and clock synchronization [12]. Recall that the latter ap-1 < j < n, satisfy |I;| = [, we may writel; = [¢; —
plication differs fundamentally from the former due to the fact 1 /2, ¢; + 1 /2] with midpointc; = cente(I;) = (z; + y;)/2.

thattwo nodes usually perceive slightly differentintervals evenFrom F's definition and the fact that- max{z,...,z,} =

from a non-faulty sender. h-max{cy,...,cp} —1/2 = h-max{y1,...,yn} — [ forany
Our novel Fault-Tolerant Interval intersection functi®  p here, itisimmediately apparentthat Ffi{cy, ..., ¢, }) =

is similar to the Marzullo function and defined as follows:  cente(F/ (7).

Definition 2.1 (Function F). LetasetZ = {I,,...,I,} of We start the detailed analysis #'s properties with the

n > 1 non-empty compatible interval§ = [z;,y;] with at following technical Lemma 2.2, which is needful for proving
mostf < n of those being faulty be given. TRault-Tolerant Lemma 2.3 and Lemma 2.6.

Interval (FTI)intersection functiorfF;,(Z) is defined as the Lemma 2.2 (Edges ofM in presence of disjoint inter-

interval vals). Let a setZ = {I,...,I,} of n > 1 non-empty
[(f + 1)-max{z1,...,2zn}, (f + 1)-min{ys, ...,y }], compatible intervalsI; = [z;,y;] be given, which yields
whereh-max{z1, ..., z,} resph-min{z1, ..., z,} givesthe M = MI(Z) # 0. If there are exactlyf{ + fi < Jin-
h-st largest resph-st smallest element of the sgt;,...,  tervalsl, € ZwithI, N.M =, wheref > Oresp.f; > 0

Zn}- of those lie strictly left resp. right ai1, then
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left(M) = (f +1 — f])-max{x1,...,z,} Proof. Item (1) of the lemma is trivial, since discardirfig- &
fght(M) = (f +1 — f/)-min{y, ..., yn} edges of input intervals i#F’s Definition 2.1 provides a larger
" e interval.
Proof. By the definition of M, there must be: — f inter- For proving item (2), it is sufficient to establish the follow-

vals containing leftM ), and by assumption there are exactly Ing monotonicity properties of the-smallest andh-largest
f/ other intervals strictly left ofMZ, which implies that the = €lement of a set:

remaining f — f/ intervals have a left edge equal or right . .

to left(M). Hence, the edgéf — f/ + 1)-max{z1,...,2,} h-min{ry, ..} < hemindry 1, e}

must determine leftV). The proof for rightM) is analo-  h-max{ly,...,l,,} > h-max{l; —e1,...,l, —&,}

gous. O )
foranye; > 0,1 < i < n,and any integet < h < n. Letus

The foIIowing Lemma 2.3 establishes some relations be-thus assume that, say, the property for theﬁr‘lin_part” was

tweenF and M. not true. However, this would imply that there a@relifferent
. . indicesj withr; < r;+¢&; < h-min{ri+e1,...,r+en} <
Lemma 2.3 (Relations betweerF and M). Given a set . J I . R, .
T ={I, ...(I,L} ofn > 1 non-empty com|)3atible intervals th min{ry,...,7,}, which provides the required contradic-
A Y. f ion.
and anyf such that bothM;, (Z) # 0 and 73, (Z) # 0, the Turning our attention to item (3); > f > 1 implies

following relations hold true: thatn — 1 > f — 1 > 0, henceF!_1(L) is accurate. If the

discarded interval ; contributed a left resp. right edge to the

Fl@) oMz 1 ) » ; :
:ﬁ( )2 }"( ) @) f ones skipped byF? (Z), the same left resp. right edge is
F(Z) = My (T) (2) computed byF/~1(£) as well. If I; did not contribute, the
if AI e ZwithIn M,fl(l') =0 same argument as used in the proof of item (1) applies and
FrUT) = M NT) = Ul I, 3) establishes relation (5). This eventually completes the proof
0 0 " of Lemma2.4. O
Fu(Z) =M, (T) =i, I (4)
Remarks
Proof. To show relation (1), le" = FJ(Z) and M = 1. item (3) of Lemma 2.4 implies that one should always try
M/ (T). Suppose that leffVI) < left(F), then left M) has to detect and discard faulty intervals befdFeis applied,
to be selected from the at most (£ +1) remaining Ieft_edges since this can only improve the result. Note that this does
that are smaller than I€fE"). However, left M) requires at not affect validity/applicability of the results of this paper.
leastn — f intersections, which is not possible here. A similar 2. Comparisoh with [12, Lem. 3] reveals thaf satisfies
contradiction can be derived for right) < right(M). the same monotonicity properties as established for the

The equality relation (2) follows directly from Lemma 2.2 Marzullo functionM.
by settingf; = f/ = 0 and recalling the definition of~.

Finally, the equivalences (3) and (4) are a direct consequence .AS a prerequisite fqr defining the Lipsc;hit“z pondition of
of the functions’ definitions. O an interval-valued function, a suitable metric (“distance func-

tion”) on intervals needs to be chosen. The following ones
Remarks were used in [5]:

1. SinceM computes an accurate result, inclusion (1) guar- e Theuniform metricu (U, V') that equals the maximum of
antees thaf is accurate as well. left(U') — left(V')| and|right(U') — right(V')|.

2. The behavior of both functions “changes” from intersec- e Themidpoint pseudo-metrig(U, V') that equals the dis-
tionto union agf increases, and isidentical forthe extreme  tance of the midpointsente(U) — centefV')| of U and
settings. V', where centdll) = (left(I) + right(I))/2. Note that

. . . T is not a metric, becausgU, V') = 0 does not impl
Next we establish a few useful monotonicity relations of /{] -V, 5 ) Py

function F with respect to both parameters and input argu-
ments. Note carefully thap (U, V') < ¢ impliesu(U, V') < 4, since

o writing left(V') = left(U) + [ and righ{V') = right(U') + r
Lemma 2.4 (Monotonicity). Leta setZ = {I,...,I,} of  delivers|l| < ¢ and|r| < 4, which leads toz(U,V) =

n > f > 0 non-empty compatible intervals wifh, 0 < f < |7 47| /2 < §. The converse, however, is not true in general.
f, faulty ones among those be given. Th&i,(Z) satisfies We will now show thatF satisfies the Lipschitz condition
the following monotonicity relations: for the uniform metric

(1) FI(Z) € FIT*(T)foranyintegek with0 < k <n—f,  Lemma 2.5 (Lipschitz condition for ). The FTI intersec-
2) ]:£ (T) C 7:1{(‘_7) foranyg = {J1,...,J,} withI; C tion functionF satisfies the Lipschitz condition for the uniform
Jyforl1 <l <n, metric 11, which means that for any > 0 and any two sets

(3) Forf = f' 2. LifL=T\{I;}is oki)tain(_ad by discarding ! Note carefully that we used the alternative notatibs; ' in
some faulty interval ; fromZ, .7-'7{:1 (L) isaccurate and  [12], which is equal toM in this paper.
satisfies 2 Since we will primarily consider the uniform metric in our paper,

1 the phrase “the Lipschitz condition” usually assumes this kind of
FiL) € F(T). ®)  metic.
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T =/{I,...,.1,},T = {I},...,I,} of non-empty com-
patible intervals with at most < n of those being faulty,

w(FL) Fl(T)) <6 (6)
provided thatu(I;, I
Proof. Let F = FJ(Z) andF’ = F/(T'). Since

left(F') = h- max{left(I),...,left(I,)}
right(F') = h- min{right(I,),...,right(I,)}

)< 6, 1<i<n.

for h = f + 1, we can look separately at the involved left and
right edges in our proof. Abbreviating, = left(I;), «;
left(I}) andy; = right(I;), y. = right(I}), it boils down to
show that

s M < 6,
Untl <9,

for any integerl < h < n, wherez, = z; + [; andy;, =

y; + r;. Remember that we assumed < [;,r; < 6,1 <

i < n. To show the h-max part”, consider the following

independent cases far, = h-max{z1,...,2,} andx;/ =

h-max{z}, ..., 2} }:

1. Regardingr; eitherx; = x; +1; < x, or > a’,. The
first case immediately provides — ¢ < x; +1; < a7,.
Otherwise there must be anothgr > x; with 2}, = x, +
li, < @, which again yields:; — ¢ < z’,. The existence
of x, is warranted, sincg{x; : @} > o’} \ {z; + [;}| =
h—1>0but|{z;:z; >z} =h.

. Regarding:’, eitherz;, = a%, —l;; < x; or > z; The
first case immediately provides, < z; + ;s < x; + .
Otherwise there must be another < z; with 2}, = x, +
li, > @, which again yields’, < z; + J. The existence
of z is warranted, sinc{; : x; > x;} \ {z, — I/ }| =
h—12>0but|{z:z; >z} = h.

Combining both cases, we arrivesat — 0 < z, < x; + 4

as required. In order to show thé-‘min part” we just note
that theh-smallest element of a set with cardinalityis the
(n+1— h)-largestone. O

s Tp ) — h-max{z], ...
Yn}t — h-min{y], ...

|h- max{x1, .
|h-min{yy, . ..

The following Lemma 2.6 finally shows th# is optimal
in the sense that its result is a lower bound for any prope
intersection functionX that satisfies the Lipschitz condition.

Lemma 2.6 (Optimality). Let a setZ = {I;,...,I,} of
n > f > 0 non-empty compatible intervals with at mgfst
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Fig. 3.Scenario where the approximationgirovided by any “good”
fault-tolerant intersection functio&’ ; ({I1, I, Is, I',}) that satis-
fies the Lipschitz condition is worse than the one providediby

the set of intervals obtained by extending any left and right
edge of the intervals i by §/2. Then, by the definition of
F, left(F) — left(F’') = §/2 for F' = F{(Z'). Moreover,
sinceu(I;, I;) = §/2,the Lipschitz property ok’ guarantees
w(X,X') < 6/2for X' = XJ(Z'). However, combining
this with our hypothesis implies I1X") > left(F’) as well.

Now, since obviously leftM) — left(M') > §/2 for
M' = M/ (Z'), we musthavél' NI’ # (foranyl’ € T',
which in turn impliesF’ = M’ according to Eq. (2). Because
X' mustcertainly includdZ’, we have eventually constructed
the required contradiction. An analogous argument can be used
to disprove rightX) < right(F’). O

Whereas this optimality result shows that no intersection
function satisfying the Lipschitz property can do better, this
does not mean that the midpoint&falways provides the best
approximation of the unknowrecall Section 1. In our deter-
ministic worst-case setting, the optimal choice is the midpoint
of the interval provided by the Marzullo function, as it guar-
antees the smallest maximum distance ito the worst case.
However, the midpoint of an interval that properly contains
M is usually a sub-optimal approximation.

Even worse, it may well be the case that a definitely sub-
optimal function like Lamport'sd/, which is just the Fault-
Tolerant Average algorithm [6] (i.e., the average of the input

Values after discarding thelargest andf smallest ones) ap-

plied to the midpoints of the input intervals, provides a better
approximation of thanF in some cases. We will show that
this is true for any “good” intersection functioki; that satis-

faulty ones among those be given. Any proper fault-toleranfies the Lipschitz condition. Anintersection function is “good”

intersection function¥’ (Z) that satisfies the Lipschitz con-
dition for the uniform metric fulfilsx? (Z) > F/(Z).

Proof. AbbreviatingX = X/ (Z) andF = F/(Z), let us

if it does not compute a sub-optimal result in the case where
no input interval can be cast out as obviously faulty, i.e., when
item (2) of Lemma 2.3 applies. Figure 3 shows the scenario
used in our argument, which is easily generalized to arbitrary

assume that the statement of our lemma was not true, i.en andf.

that w.l.o.g. leftX') > left(F). Then, there must bg > 0
intervalsI, € Z with I, N M = § lying strictly left of
M = M/ (Z), since otherwise lef") = left(M) accord-
ing to Lemma 2.2 and Definition 2.1. This, however, would
contradict our hypothesis due fot’s optimality.

Letd = max,{left(M)—right(I,)}, whichis guaranteed
to be non-negative by the above claim, and defliido be

The input intervals have been chosen appropriately such
that X = X}(Z) = M due toX’s “goodness”. Replacing
I, by Iy with (I, I}) < §in X' = X}(T'), the Lipschitz
property ofX revealsu(X, X') < § and hencg (X, X') <
o0 as well, recall our remark on the introduction of the midpoint
pseudo-metric. On the other hand, the left edga4%E result

jumps by> 26 upon the transition fromiVf to M’, which
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leads topi(M, M') > 6. Combining this with the midpoint (1) F = F/(J) is accurate and contains any intersection

pseudo-metric’s triangle inequality W of n — f > 1 different non-faulty input intervals

JgseoosIm, ;. 0-€.,

(M, M') <M, X') + (X', M') 1 7 f
<X, X) + (X M) W= )Jun CF (7)

eventually yields) < (X', M'). Consequently, the mid- J=1

point of X’ cannot be equal to the one . The midpoint so that| F| > w™~/ (minimal intersection property).

provided byA7, however, is equal to centgvf”) by construc- (2) There are at least — 2f — ! >n — 2f — f,, different
tion, and the claimed sub-optimality &f follows. v p

non-faulty input intervalsly, ..., J, . ., € J such
We hence conclude that, although we can expect the ap- that it
proximation oft provided by centé(F) to surpassi/ in most
cases, we cannot demand that it —like any other “good” inter- n—2f—f, n—2f~fu
section function satisfying the Lipschitz condition— always F C ﬂ Jp, C ﬂ Jy, C))
outperformsA/. j=1 j=1

where the setofindicg$’ }1<;j<,—27- 1, is obtained from

3 Worst-case analysis in presence of faults {biti<j<n—27-y;, bY d|scard|/ngfu — [, arbitrary ele-
ments. Hencg F| < w"2/~fu < yn=2f=fu,

In this section, we analyze the worst-case performancg of (3) There are at leasf — f' + 1 > 1 non-faulty intervals

according to the framework introduced in [12]. Subsection3.1  Jy, resp.J,,, 1 < k < f — f' 4+ 1, in J satisfying

is devoted to the simple case of “local application”, whé&te left(F') < left(J,, ) resp. righ{ F) > right(J.., ).

is applied to a single input set, say, at a particular nade i £ . _

the following Subsection 3.2, we consider the more advance&0f- We first show tha#” = 7, (J) contains any inter-

“distributed application” scenario, where two instancegfof ~ Section of at least — f input intervals: ByF’s definition,

are applied to similar input sets at two different nodesidg. e have at most — (f + 1) intervals with left edge strictly
smaller than leftF’). Therefore, assuming an intersection of

n — f intervals strictly left of lef(F') immediately leads to a
3.1 Local application contradiction. An analogous argument can be applied to the

right edges. Finally, since inclusion of any intersection of at
In order to reason about the behavior Bfin presence of leastn — f intervals Implles inclusion of any such intersection
faults, a fault model is required. Any interval may be faulty made up of non-faulty intervals only, it follows thiat F" and
due to the f0||owing reasons: |F| > w™~f as asserted in item (1) of the lemma.

Turning our attention to item (2), it is apparent that at least

Definition 3.1 (Single Faults).An interval I representing:

/ !/ ! !
can suffer from the following faults: g tg,=2n=2f=2f,—f, ©)
e Omission I = 0. non-faulty inputintervafsmust have a left edge left or equal to
« Non-accurate intervat ¢ I left(F') as well as a right edge right or equal to right). This

e Unbounded accuracy € I but|I| too large according is due to the fact that, apart from tB¢ intervals contributing

to some condition (that need not be known explicitly). ~ the f largest left edges and tffesmallest right edges (which
cannot have this property by Definition 2.1), there may be

Note that it is of course easy to recognize and discard an omisstill up to f,, intervals with unbounded accuracy faults that

sive faulty interval, but usually impossible to decide reliably could have edges both left of |éf) and right of rightF’).

whether an interval is accurate or not. Masking or detecting They musthence be subtracted twice in Eq. (9). Similarly, there

—and thus ruling them out completely— unbounded accuracynay also be up tg;, non-accurate intervals, which must be

faults is also difficult in most circumstances. subtracted only once since any such intet¥alcould satisfy
The following Lemma 3.2 reveals haf behaves in pres-  either lef{J;) < left(F") or else rightJ;) > right(F') but

ence of faults according to Definition 3.1. It answers the queshot both, due to té ¢ J; butt € F.

tion of how many non-faulty intervals are required for tol- However, since there are onfy = n — f’ different non-

erating at mosff,, non-accurate intervals an} unbounded faulty intervals in the input sef/ = {J1,...,J,}, the pi-

accuracy faults. The most important property shown is thageonhole principle reveals that

F's result lies within the intersection of — 2f, — 3f, > 1 P ) ) )

non-faulty input intervals. Gt —9g >2n=2f=2f, —f,—n+f

!
Lemma 3.2 (Local Application). Let J = {J1,...,J,} zn=2f=fu
be a set of» > 1 non-empty compatible accuracy intervals ¢ he intervals counted in Eq.(9), sa, T,
.(9), b,

representing, and definew” to be the length of the largest o . X
intersection ofh > 1 non-faulty intervals among those. If must be the same. Therefcislir?lj?/tlle in the intersection of
those intervals anfF’| < w" « @s asserted. The upper

[, > 0 of theJ ; suffer from unbounded accuracy faults and . . . y

7> 0 are non-accurate, wherg’ < f, and f. < f,, with bound in Eq. (8) follows immediately fronfy, < f,,.
fl+fl=f < futfon=f<n(sothatn—f' >n—f>0 % Note that we do not count different intervals here, but rather
of then intervals are non-faulty), then: intervals according to the total number of edges.
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Finally, item (3) of our lemma follows directly frorF’s Of course, one might consider to employ a consensus pro-
Definition 2.1 in conjunction with the fact that at legst [’ of tocol prior to F’s application for alleviating such inconsis-
the discarded left edges (and analogously for the right edgeggncies. This is expensive, though, since only complete agree-
must belong to non-faulty intervals. This eventually completesment upon the set of faulty/non-faulty senders would render

the proof of Lemma 3.2. O Lemma 2.5 applicable. Lemma 2.3 reveals that using a binary
decision value;, meaning T;N.M(Z;) empty/non-empty”,
Remarks as an input to the-th instance,l < s < n, of a consensus

1. We excluded omission faults in our lemma, sifEeas protocol would lead to consistent input sﬁgsthat even guar-
defined in Definition 2.1 cannot deal with empty intervals. antee¥ (Z;) = M(Z;) for all non-faulty nodeg. Less costly
However, intervals with omission faults can of course be(approximate) agreement protocols, however, are difficult to
discarded befor# is applied. Therefore, if, of presumed ~ @PPply in our context for the reasons explained below.

n intervals suffer from an omission fault, we just have to ~ In fact, any distributed application oF is considerably
setn :=n— f,andf := f — f/ in Lemma 3.2 to obtain complicated by the fact that we cannot always assume that

the results for this case as well. Note that it is feasible tothe information disseminated by a single sensiéeads to
let f depend ory/, see Lemma 3.4. the same interval at two receiversindg, even if there is no

2. Interpreting item (2) of Lemma 3.2 and the previous re-fault at all. More specifically, in typical clock synchronization
mark in terms of the usual fault-tolerance degree notion,applications, it is not a constant-valued interval that is dis-
it follows thatn > f/ + 2f + f/ + 1 nodes are required Seminated by to p andg, but rather a time-dependent one.
to guarantee thaF remains bounded by the length of at Any time-dependent quantity, however, is affected by trans-

least one non-faulty input interval. Hence, as many as ~ Mission delays, clock granularities and related effects. As a
consequencey andg may not only receive slightly different

0 information from non-faulty senders, but also perceive faults
2fn+1  forf, < f, non-accurate faults, differently: An interval from sendes may be correct at but
2fu+ fu+1for fi < fu unbounded accuracy faults 5 1ty at 4, both due to faults occurring at the sending and
nodes are required for tolerating faults of the given type.the receiving side. This implies that approximate agreement
It is thus apparent thaF can tolerate| (n — 1)/2] non-  protocols are of limited use for alleviating inconsistencies (al-
accurate intervals butonlyn—1)/3] intervals that suffer ~ though part of our current research indicates some potential
from unbounded accuracy faults. Note carefully that thefor improvement).
numbers above do not solely depend ongbieialnumber In order to be able to reason about faults in distributed
of faults (e.g.,f;), but also on their maximum number applications, the single-interval faults of Definition 3.1 are
(e.g.,f.); this is due to the fact that the latter is compiled complemented by faults gfairs of intervalsI; € I, resp.
into the superscript argument 8. I, € Z, obtained at nodep resp.q. This will lead to a

3. The lower bound ofF’| in item (1) expresses the rather perception-based fault modas introduced in [12], where the
obvious fact thatF cannot improve the accuracy beyond usual omniscient (= global) perception of faults is replaced
the one “hidden” in the input intervals; the temiinimal by the local perceptions of any two non-faulty nodes in the
intersection propertyvas coined in [7]. Note thak’ con-  system. This way, both node and link faults can be accurately
tains any intersection of — f intervals, hence includes modeled.
intersections involving unbounded accuracy faults aswell.  We therefore assume that the intervals in both input sets

4. Item (3) just says thaf contains the left and right edge of can be uniquely grouped aspairs {I, € Z,,I, € Z,}
at least one (not necessarily the same) non-faulty intervaloriginating in the same source of informatienl < s < n.

5. Comparisohof Lemma 3.2 and [12, Lem. 2] reveals that We will use the ternordered setfor Z, andZ, to indicate this
F has literally the same worst-case performance as th@roperty. The corresponding intervals in two ordered sets need
optimal Marzullo functionM. This means that both func- not be the same, although they should be reasonably similar.
tions produce the same result for worst-case scenarios. Qbefinition 3.3 exhaustively specifies all possible faults of pairs
course, for “average” input set#;, will usually provide a  of intervals:
slightly larger interval.

fl+1 for f/ omission faults,

Definition 3.3 (Pairwise Faults).A pair of compatible accu-
3.2 Distributed application racy intervals{I,, I} representing suffers from
e acrash faultff I; = I; =0,
e asymmetric faultiff either
m (1) bothI; andI; are not accurate in the sense ok

In this section, we will consider the case whéfds applied
to (similar) input set<Z,,, Z, at two different nodes. Those
sets could be produced by a remote clock reading algorith

or replicated sensors, for example. It will turn out that the re- left(I},) an?t < left(I;), or elset > right(I}) and
spective outcomeF', = F/(Z,) andF, = F!(Z,) cannot t > right(I5), _

deviate too much from each other, even if faults lead to quite  (2) without loss of generalityl; = () and I; # () does
different input sets. Note carefully, however, that Lemma 2.5 not suffer from an unbounded accuracy fault.
does not help here, since exploiting the Lipschitz condition ® anasymmetric faultff either _

would requireu(I;,, I';) < ¢ foranyl < i < n. This require- (1) both I, and I, are not accurate in the sense of>

ment cannot be guaranteed when faults cause the input sets to right(I;) andt < left(I;) or elset > right(I;) and
differ at nodep andg. t < left(I,) (true Byzantine fault),



How to reconcile fault-tolerant interval intersection 107

(2) without loss of generalityl;, # 0 is faulty andI; is intervals. Note that using (nc-)unions in our lemma takes into
arbitrary (and none of the other faults applies). account that two different nodgsand ¢ may have slightly
different input sets, even if there is no fault.

Remarks Lemma 3.4 (Distributed Application). LetZ, = {I;, RN

1. The“classical” asymmetl’iC fault [17] is caused by dissem'_[n} andZ, = {Il I”} be two ordered sets of >
. . . . . . . D q qr 17 q )
inating information that is perceived differently;aandg. fot fo+ far fo, f5s fo > 0, compatible (or empty) accuracy

In our special context, it is characterized by the fact thatintervals representing, wheref! < f., . < f., and f! <
nodep arrives at the conclusion that the mten@l from f. of then pairs of intervals{Ii ’ Ii} exhibit asymmetric,
senders is, say, strictly left of the sought valugwhereas gy mmetric, and crash faults, respectively, and the remaining
q thinks thatl; is strictly right of¢ (or correct). This sit-  5neq are non-faulty. Defing" resp.v” to be the length of the
uation usually also occurs in presence of an unboundegh et intersection oh > 1 nc-unions resp. intersections of

accuracy fault. pairs of non-faulty intervals, formally” = max{|U| : U €
2. The“classical” symmetric fault [17] is caused by d|sseml-uhq} andv" = max{|V]:V € V,’.fq} for

nating information that is perceived identicallyyeandq.
In our special context, bothandg must arrive at the same h
conclusion on whether the intervals from sendare both  z/» _ J ;. ¢y — m I U T% withw; # uj,i # §,
left or right oft. Alternatively, one of the intervals may be — ¢ i 1
missing due to a receive omission.
3. Acrash fault causes an omission both at nodedq. Note ui u; ;
carefully, though, that it is impossible for either node to andry' € I,, I, € I, being non-fault>}
decide locally (without further information) whether its
omission is due to a crash fault or a more severe receiv$h
omission. Pq
4. Note that Definition 3.3 does not cover the case where
a more severe fault comes out as a less severe one. For o o .
example, it is reasonable to assume that an asymmetric andI,’ € T,, I, € Z, being non-fault>} .
fault could just be a symmetric or even a crash fault only. In
this paper, we wi’!l typically use phrases Ii_ke “asymmetric Letd,, 0 < d, < f, resp.,, 0 < ¢, < f,, denote the
(or weaker) fault” to indicate such extensions. (unknown) number of empty intervals caused by symmetric
Introducing different classes of faults as in Definition 3.3 resp. asymmetric faults at nogeand 7, = {J1,...,Jn,}
is known as ehybrid fault modelin literature, cf. [1,17]. It  bethesetaf, = n—o, non-empty intervals obtained frdm,
allows us to exploit the fact that maskirfgsymmetric faults by discarding any ofthe (known) = f/+d),+e), < fo+fs+
requires onlyn > 2f + 1 nodes, whereas > 3f + 1 are  f, emptyintervals caused by crash and symmetric/asymmetric
needed if all faults are asymmetric ones. Since a large numbdaults. Using the upper bounft} = f,+ f, —max{0, 0, — f.}
of asymmetric faults is very unlikely in practice, cf. [11], this on the number of intervals id, that (still) may be faulty in
effectively leads to a smaller for tolerating a given number presence o6, omissions, define
of faults.
We should explicitly mention, though, that our definition of F'p = .7"{?; (T»p)
symmetric and asymmetric faults extends and, in some caseg, _ Fla (T.)
apparently contradicts the “classical” meaning of those terms. ¢ g\
Still, we think that their usage is legitimate due to the fact Then,
that our extension preserves the essentials of their meanin?:
The meaning of symmetric / asymmetric fault is basically re{1) bothF, and F'; are accurate and
ceived identically / not identically at different nodes. In our nef!— fofa
_conte_xt, how_ever, we have to relax th_e meaning of “rec_:elved F,NF,D ﬂ NI =V (10)
identically” since we cannot assume identical information at p 1
different nodes even in the faultless case, as explained earlier.
We also have to accept the factthatthe interval-based paradigm for any subseV < v;‘q’fé*fff“, so that|F', N Fy| >
mtrqd_uces unpounded accuracy faults, which are not knovyn in - n—fl—f—fa (distributed minimal intersection property),
traditional settings but can create an asymmetric perceptlon(z) there are at least — min{f’ + f/,2f, — f} — 2f, —
The following Lemma 3.4 gives the number of non-faulty 2f, — f. pairs of non-faulty intervalg I, I**} with

h
- {V:V:ﬂI;imIgiwithvﬁévj,i;Aj,

=1

Jj=1

E?II’S of intervals required ¥ for tolerating a certain number I € J,andI" € J,suchthatF,L F, is contained
(S)in
e crash fau_Itsffg Ig f/c), n—min{f.+f,,2fc—fl}—2fs—2fa—f,
e symmetric faults £, < f), N I uIy- 11)

e asymmetric faults(, < f.). .

The most important result is an upper bound on the nc-union 544 hence
F,UF ,, which mustlie within atleast—min{ f.+ f., 2 f.—

; ; —min{f +f;.2fc—fo}=2fs—2fa— 1,
fe} —2fs — 3fa = 1 nc-unionsI; U I'; of non-faulty input |Fyp U Fy| < urmmintfetfe2fen] y=2fo=2fata,
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Proof. First of all, we note thaif, gives indeed an upper
bound on the number of intervals i, that still may be
faulty in presence ob, = f. +d, +e, < fl.+ fi+ fo <
fe + fs + fo omissions, sincg, = fs + f, if o, < f., and
fp = fs+fa—(0p— fc) otherwise (accounting far, — f. > 0
symmetric/asymmetric faults that must have caused omissions
at nodep), hence

fp§f8+fa- (12)

Evidently, at least, — f, of the intervals inJ, must be
non-faulty. Rewriting the definition

However, we only have = n — f. — fI — f! different
non-faulty pairs of intervals. Thus, the pigeonhole principle
reveals that at leadt = g, ; + g,,» — g given by

Y > 2n + max{—op, — f.} + max{—o4, — f.}
—2fs — 2fa —2f, — fu
+d, et + Ay right + €, 1 €5
—n+ fot fi+ o

>n+ max{—fé - ;,rightv —fe+ d;),left + e;}
+max{—f, — dj jests — fe + di rignt + €4}
+fé - 2fs - 2fa - frlz

> n+max{-2f; — f;, —2fc}
+fé - 2fs - 2fa - f(lz

Z n— mln{fé + f;»ch - fé} - 2fs - 2fa - fc/z

of those must be the same. Abbreviating= min{f, +
! 2f. — f’}, we can conclude that there are at least

uw—2fs — 2f, — f. pairs of accurate intervals, sa;lf,1 U
bn— _ . —f! bn— L —2fs—2fq—f! . .
I, I e ey e e e e with IV € T,

q

andIgi € J 4 such thatF’, U F', is contained €) in

ny — fp=n—0p — fs — fo + max{0,0, — fc}
= n_fs _fa+max{_0pa_f6} (13)
and applyingmax{0, 2} > x for anyz, and the simple fact

that max{—o,, —f.} < —f. since obviouslyo, > f! and
L < 1., itfollows easily that

n_fc_fs_faSnp_fpgn_fé_fs_fa
S n— fs - fa-
Of course, analogous bounds hold fgr— f;.

Lemma 3.2 is applicable, and it follows thAt, and F', of—2fs_ !
7L_IJ/_ s a a

are both accurate and satisfy the (local) minimal intersec- o 2 a2 fuf’
tion property. That isF’, contains any intersection af, — ﬂ Iyury eu,, 5o ey (14)
fp <n— fl— fs — f, non-faulty intervals present if ,,. If j=1

{vj}i<j<n—y .- 5. denotes any set of different indices of which proves Eq.(11). To complete the proof of Lemma 3.4,
non-faulty pairs of interval§I}7 € Z,, I/ € Z,} (of course it only remains to justify|F,, L F,| < u—#2fs=2fa=fo,
also present iy, J,), we thus have which is a simple consequence of the definition:bfas the
maximum length o € U}, O

n—fl—fs—fa np—fp
W, = ﬂ Iy < ﬂ I;CF, Remarks
j=1 j=1

1. Note carefully that Lemma 3.2 could also be used to de-
duce a “distributed application™-related result: SinEg
and F', are both accurate and hence contaiit follows
from item (2) that|F, U F,| < 2w"~2/~/«. However,

and, for the same sgv; }, W, = ﬂ;:lfé_f”_f“ I CF,.
By elementary set algebra, it thus follows tHat= W, N

n—fi—fs—fa iofi i

W_qf,e_};_f . . satisfies Eq. (10). FinallyF, ﬁ F‘I‘ = comparison with item (2) of Lemma 3.4 reveals that this
v fe=fs=1a is a simple consequence of the definitiornv6f result is essentially twice as large.
as the maximum length 6f € V- This completes the proof 2. Our crash faults are more severe than the (system-wide
of item (1). _ _ consistently perceived)enign faultof [17], since it can-

Foritem (2), suppose thgf ; intervals belonging to a non- not be decided locally whether an omissive interval be-
faulty pair of input intervals have a left edge smaller or equal  |ongs to a crash fault or to an (inconsistent) receive omis-
thanlef(F, ), whereag, . intervals belonging to a non-faulty sion. However, it is of course possible to “merge” crash
pair of input intervals have a right edge larger or equal than  3nd symmetric faults, in the sense that the former are
right(F';). We must have counted inf! (resp. f,) and f. = f. = 0 (note that

, , , np— fp = n— fs— fo inthis case). After all, we already ac-

9ot = p = fp = (fa = €p) = (Siet — dypert) counted for symmetric/asymmetric faults involving empty

>n— fs — fo +max{—op,, —fc} intervals in the proof of Lemma 3.4.

! / / 3. Interpreting the accomplishments of Lemma 3.4 and the

Ja = Stert + dp et + €5 . .
, , , , previous remark in terms of the usual fault-tolerance de-

ng = fo = (fa = €4) = (Stignt — dgright) gree notion, itturns out that > min{ f.+ f.,2f.— f.}+
n— fs — fo+max{—o4, —fc} 2fs +2f. + f. + 1 nodes are required to guarantee that

—fa = Stight T 4y right + €45

9q,r

AVARLY,

F, U F, remains bounded by the length of the nc-union
of at least one pair of non-faulty input intervals. Hence, as
much as

wheresjgy + sfgne = f5 < fs are the number of symmetrically
min{ f. + f,2f. — f.} +1 for f/ crash faults,

faulty pairs of intervals lying left resp. right f andd;, e +

bright = dpy dyjer + dy gy = dy denote the number of
omissions among those at nogeesp.q; the lower bounds
follow immediately from (13).

2fs +1 for fI < f; symmetric faults,
2fa + fi+1 for f! < f, asymmetric faults

nodes are required for tolerating faults of the given type.
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4. It should be clear from the proof of Lemma 3.4 that the(2) There are atleast — 2f, — 2f, — f. > n —2fs — 3f,

property that really pins down symmetric faults is the fol-
lowing one: If a symmetrically faulty interval; satis-
fies righ(I;) > right(F,) (correctly accounted for in
Sright), then its corresponding; must not have Ieﬁl;) <
left(F',) (since it is not accounted for ifler;). This is the

reason whyl;, # 0 being faulty andl; # 0 being non-

faulty must be counted as an asymmetric fault in item (2)

of Definition 3.3.
. Comparisoh of Lemma 3.4 with [12, Lem. 4] again re-

pairs of non-faulty intervalg I,)*, I;*} with I'* € J,
andI;* € J, such that

n—2fs—2fa—f,

M

k=1
n—=2fs—3fa

M

k=1

F,UF, C I I

- I LT, (16)

veals thatF has exactly the same worst-case performance

as the optimal Marzullo functioM.

using nc-unions!instead ofJ in the statement of item (2):
It may be the case that, sa¥,, C F,, such thatF,
would determine both left and right edgeBf, U F,. By
applying Lemma 3.2 withy := n,,, f := f,,, andf, < f!
(as well asf, < f,), we could show that there are at
leastn, —2f, — f/, > n—u—2f, —2f, — f. non-faulty
intervalsI’/ in J , the intersection of which majorizds,.
This does not imply, however, that all of those intervals
appear inJg, as well — just think of symmetric faults
appearing non-faulty gb but omissive ay. Hence, we
cannot claim thatall the unio$’ UI.) —the intersection
ofwhichwould of course majorizE ,UF',— involve non-
fauly intervals only. Clearly, focussing updf, U F, C
F, U F, entirely avoids this difficulty.

The following lemma shows that Lemma 3.4 remains valid

if a more severe fault comes out as a less severe one, and
shows what happens if certain fault assumptions are violated.
Note that crash faults are counted as symmetric ones here for

simplicity.

Lemma 3.5 (Graceful Degradation).Let Z, = {I,...,
I'} andZ, = {I,..., I} be two ordered sets of >
fs + far fs, fa = 0, compatible (or empty) accuracy inter-
vals representing, wheref! < f, of then pairs of intervals
{I',I}} exhibit symmetric (or weaker) faultg; < f, ex-

. The proof of Lemma 3.4 reveals the ultimate reason for

®3)

where the sequende. }1<kr<n—27,—37, IS Obtained from
{ur}1<w<n—2f, -2y, by discardingf, — f, arbitrary
elements. TherefordF, U F,| < u?~2/+=2fa~fo <
un72f573fa.

Assume that the fault model is violated in the sense that
= fl+fl > fs+ fobutstiln > 2f + f/ +1,
wheref/ < f! denotes the number of pairs of intervals
that involve unbounded accuracy faults. If the violation of
the fault model is not obvious, in the sense thatand

F, can be computed and are not empty duelto- R

in Definition 2.1, then there are — 2’ — f! non-faulty

H Prn—2f/— 5! .
intervals 1%, ..., I," *" "™ in 7, andn — 2f' — fI

non-faulty interval®', ..., I;"~>" =" in 7, such that
F,U F, (and henceF', LI F';) is contained €) in

n—2f’—f,; n—2f’—f1'L
N m|ul () I¥ 17)
j=1 j=1
Hence|F, UF,| < w, >/ v puw;? _f“,wherew;}

resp.wg denote the length of the largest intersectiorhof
accurate intervals i€, resp.Z,,.

Nevertheless’,, and F', are not necessarily accurate and
possibly not even intersecting; accurateness is guaran-
teed, however, if’ < fs + f, but all f’ faults are asym-
metric ones.

hibit asymmetric (or weaker) faults, and the remaining onesProof. Since crash faults are now considered as symmetric

are non-faulty. As in Lemma 3.4, defin& resp.v” to be the
length of the largest intersection Af> 1 nc-unions € u;}q)
resp. intersectionsq v;}q) of pairs of non-faulty intervals.
LetJ, ={J1,...,Jn,} bethe set oh, = n — o, non-
empty intervals obtained froff, by discarding any of the,

ones and hence accounted forfihand f,, see Remark 2 on
Lemma 3.4, items (1) and (2) follow directly from adopting
the results of Lemma 3.4 tff = f. = 0. Note thain, — f, =

n — fs — f, here. To confirm the assertions for asymmetric
faults appearing as weaker ones, just consider the expressions

empty intervals caused by omissions. Using the upper bounguPPlied by Lemma 3.4 when temporarily settjiig= f. —1

fp = fs+ fa —0p Onthe number of intervals uf,, that (still)
may be faulty in presence of omissions, define

F,=F(TJ,)
F,=Fl1(T,).

Then:
(1) BothF', and F', are accurate and
n—fs—fa
F,nF,2 () IynIy=Vv (15)
j=1

for any possible subsét’ € v;‘q‘f-*‘f“, so that|F, N
F,| > v"~/s=Ja (distributed minimal intersection prop-
erty).

andfs := fs + 1.

To showitem (3), we first note that we only have to consider
the case wherg, + f, — o, > 0, since otherwise there would
have been too many omissions to compilite. Moreover,
recalling that we assumell,, # (), we find

F,=Fltowg,) c Fl (T,) (18)

by item (1) of Lemma 2.4. Lemma 3.2 is now applicable to the
right-hand side of Eq. (18) and it follows by its item (2) that

n—2f"—f!,

M

j=1

F,C Jhi.
An analogous result holds fdr,. Of course, the majorizing
intersections fo#", andF', involve non-faulty intervals only,
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hence are both accurate and thus intersecting. This justifie&cknowledgementsiVe are grateful to Leslie Lamport and an anony-
Eq.(17) and the condition g&', U F';| given in the lemma.  mous referee for their stimulating comments on an earlier version of
Note carefully, however, that this does not imply ti#f and our manuscript. We would not have unveil&ds optimality without

F, itself are accurate or even just intersecting! On the othetthis feedback.

hand, if f < fs + f,, it follows from item (1) of Lemma 3.2

applied to the left-hand side of Eq. (18) th&f, (and analo-
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