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Summary. Quorum systems have been used to implement
many coordination problems in distributed systems. In this pa-
per, we study the cost of accessing quorums in asynchronous
systems. We formally define the asynchronous access cost of
quorum systems and argue that the asynchronous access cost
and not the size of a quorum is the right measure of mes-
sage complexity of protocols using quorums in asynchronous
systems. We show that previous quorum systems proposed in
the literature have a very high asynchronous access cost. We
propose a reformulation of the definition of Byzantine quo-
rum systems that captures the requirement for non-blocking
access to quorums in asynchronous systems. We present new
Byzantine quorumsystemswith lowasynchronous access cost
whose other performance parameters match those of the best
Byzantine quorum systems proposed in the literature. In par-
ticular,wepresent a construction for thedisjoint failure pattern
that outperforms previously proposed systems for that pattern.
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1 Introduction

A quorum system is a collection of sets (quorums) that mutu-
ally intersect. Quorum systems have been used to implement
mutual exclusion [1,9], replicated data systems [8], commit
protocols [17], and distributed consensus [13]. Work on quo-
rum systems traditionally considered crash failures [1,2,5–9,
16,15]. Malkhi and Reiter [10] proposed the interesting no-
tion of Byzantine quorums–quorum systems that can tolerate
Byzantine failures. They presented protocols to implement a
distributed shared register variable using Byzantine quorums.
Their implementation requires a client accessing a quorum
to wait for responses from every server in a quorum set, but
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they did not study the problem of finding a quorum set whose
elements are available – an available quorum.

In this paper, we study the cost of finding an available quo-
rum in thepresenceofByzantine failures.Weconsider both the
direct accessmodel inwhich processes access a quorum in one
round of communication, and the incremental access model
in which processes can access a quorum in multiple rounds of
communication. We formally define the asynchronous access
cost of quorum systems, and we argue that the asynchronous
access cost and not the size of a quorum is the right measure
of message complexity of protocols using quorums in asyn-
chronous systems. We also show that previous quorum sys-
tems proposed in the literature have a very high asynchronous
access cost.

We propose a reformulation of the definition of Byzan-
tine quorum systems that captures the requirement for non-
blocking access to quorums in asynchronous systems. We in-
troducenon-blockingByzantinequorumsystemsandshow that
they canbeachievedat a lowcost andwepresent non-blocking
Byzantine quorum constructions for two failure models. The
constructions we present are the first that do not require block-
ing and have a low cost of access. Also, the construction we
present for the disjoint failure model yields a Byzantine quo-
rum system that has better performance parameters than pre-
viously proposed systems. Our constructions rely on a new
access model we callpartial access. With partial access, a
processor need not wait for a reply from each process in a quo-
rum set; the quorum system should be designed to ensure that
any two partial accesses have a large enough intersection to
ensure consistency. It turns out that the set of partial accesses
of a non-blocking Byzantine quorum system is a Byzantine
quorum system as defined in [10].

The rest of the paper is organized as follows. Section 2 dis-
cusses related work and Sect.3 summarizes our contributions.
Section 4 presents the definitions and introduces the notion
of asynchronous access cost. Section 5 gives examples of the
asynchronous access cost for two Byzantine quorum systems.
Section 6 reformulates the definition of Byzantine quorums
to capture the asynchronous access cost as a design objec-
tive. Section 7 presents non-blocking quorum systems with
low asynchronous access cost and whose other performance
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parametersmatch those of the best Byzantine quorum systems
proposed in the literature. Section 8 concludes the paper.

2 Related work

The problem of finding an available quorum has been ad-
dressed by researchers for the case of detectable crash fail-
ures [2,12,15]. In [15], theprobe complexityof a quorum sys-
tem is defined. The probe complexity is the minimum num-
ber of processors that need to be contacted to establish the
existence or non-existence of an available quorum in the sys-
tem. In the definition of probe complexity, processors can be
probed incrementally and the identity of the processor to be
probed next can depend on the responses received from previ-
ousprobes. In [12],Neilsenproposesadynamic probe strategy
that improves on the results of [15]. In [2], the author formally
defined the concept ofcost of failures, which can be thought
of as the probe complexity per failure.

Both [2] and [15] assume that failures can be detected.
Their incremental access methods are not directly applicable
to asynchronous systems in which failures cannot be detected.

The problem of finding an available quorum in the pres-
ence of Byzantine failures has not been studied by other re-
searchers. Due to the nature of Byzantine failures and system
asynchrony, the definition of Byzantine quorum systems pro-
posed in [10] requires that an available quorum exists in the
system. Unfortunately, that requirement does not say anything
about the cost of finding an available quorum. The availability
requirement of Byzantine quorum systems was relaxed in [3]
for systems in which timeouts can be used to detect failures. In
such systems, the author shows that any quorum setQ can be
accessed without a need to access servers that do not belong
toQ.

3 Contributions

To our knowledge, this is the first work that studies the cost
of accessing Byzantine quorum systems in asynchronous sys-
tems.We consider both the direct access model and the incre-
mental access model. We introduce non-blocking Byzantine
quorum systems and provide necessary and sufficient condi-
tions for their existence. Unlike Byzantine quorum systems,
non-blocking Byzantine quorum systems capture the asyn-
chronous access cost. In that respect, they are similar to syn-
chronous Byzantine quorums [3].

We propose optimal non-blocking quorum systems and
show that they are not equivalent to previously proposed
Byzantine quorum systems. For the disjoint failure pattern,
we propose a non-blocking quorum system that yields the best
known Byzantine quorum system for that failure model.

4 Definitions and system model

4.1 System model

We assume that the system consists of a setP of n server
processors and a number of client processors that are distinct
from the servers. All processors can communicate using reli-
able message passing.We assume that there are no bounds on

message delivery time or on processors’ speeds and that there
are no failure detectors in the system.

4.2 Failure model

Server processors can fail.1 The assumptions about failures
affect the way a quorum can be used. In this paper, we con-
sider systems in which processors are subject to Byzantine
failures; i.e., they can deviate arbitrarily from their protocols.
In such systems it is usually assumed that there are bounds
on the number of failures that can occur in the system. Such
bounds have traditionally been expressed with a numbert that
is an upper bound on the number of failures that can occur in
the system. This model was later generalized in [10] to allow
more flexibility in describing the failure patterns that the sys-
tem can exhibit. We adopt the model of [10] in this paper.2

The setfaulty denotes the set of faulty processors in the sys-
tem. A failure patternF identifies the possible sets of faulty
processors in the system. We writeF = {F1, F2, . . . , Fm}.
There exists an elementF of F such that at any given instant,
the faulty processors belong toF . The processors do not nec-
essarily knowF .A common example of a failure pattern is the
f -thresholdpattern in whichF = {F ∈ P : |F | = f}. An-
other interesting failure pattern is thedisjointpattern in which
all elements ofF are disjoint [10].

4.3 Quorum and set systems

Definition 1 A set systemS overP is a subset of2P .

In what follows, we assume that all set systems are overP. A
quorum system is a particular type of set systems.

Definition 2 A quorum systemQ overP is a set of subsets
(calledquorums) ofP such that any two quorums have a non-
empty intersection.

The intersection property of quorums is essential for their use
in coordination problems.

Processors access a quorum to coordinate their actions.
Typically, to access a quorum, a client sends a request to every
server, in a quorum set. Upon receiving a request, a correct
server updates its state and sends a reply. The client waits
until it receives a reply from every server in the quorum. If
the client receives replies from all processors in a quorum,
then the access is considered successful. If one of the servers
failed, then the client attempts to access another quorum that
does not have any faulty processor (the question of finding a
quorum with no faulty processors has been addressed in [2,
15] for systems with detectable failures). Since processors ac-
cess a quorum only if all its members are correct, two clients
are always guaranteed to receive a response from a common
correct server that belongs to a non-empty intersection of two
quorums. The correctness of quorum-based protocols rely on
this intersection property. A quorum is said to beavailableif
all its elements are correct processors [14].

1 We do not consider client failures in this paper.
2 In a long-lived system, bounds on failure will be exceeded at

some point. We do not address the problem of recovering failed
servers in this paper.
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4.4 Byzantine quorums in asynchronous systems

If failures are arbitrary, a processor might receive conflicting
replies from faulty and correct processors. It follows that a pro-
cessor must base its coordination decisions on replies that it
knowstobe fromcorrect processors.Motivatedby this require-
ment, Malkhi and Reiter gave the following definition [10]:

Definition 3 A quorum system tolerates failure patternF if

1. ∀ Q1, Q2 ∈ Q ∀ F1, F2 ∈ F : (Q1 ∩Q2) − F1 �⊆ F2.
2. ∀F ∈ F ∃ Q ∈ Q : F ∩Q = ∅
The first condition requires that the intersection of two quo-
rums is not contained in the union of two sets inF . This
guarantees that the reply of some correct processor can be
identified .

The second condition is the availability condition (also
called resiliency requirement in [11]). It requires that some
quorum consists of correct processors. The availability con-
dition is needed in asynchronous systems because there is no
way to differentiate a slow processor from a faulty one. To ac-
cess a quorum in an asynchronous system, a processor cannot
simply send requests to all processors in a quorum set andwait
for replies. In the worst case, even in a failure-free execution,
a processor might have to send requests to every processor in
the system and then wait for replies from a quorum that con-
sists of correct processors (we give an example below). The
availability condition is needed to ensure that some quorum is
available in the system.

We generalize the definition of [10] and define what it
means for a set system to be resilient to a failure patternF .
Definition 4 A set systemS is resilient to failure patternF if
∀ F ∈ F ∃ S ∈ S : S ∩ F = ∅.

The work of Malkhi and Reiter [10] and their subsequent
work [11] does not address the problem of ensuring that a
response is received other than by requiring that the system is
resilient to the failure pattern. Addressing this problem is an
important contribution of this paper.

4.5 Cost of access

In this section we introduce theasynchronous access costof a
quorum system. We first discuss the effects of asynchrony on
accessing a quorum system, then we define our access model
and introduce thecost of accessparameter for evaluating quo-
rum systems.

4.5.1 Asynchrony

In this paper, we consider the problem of accessing quorums
in systems that are fully asynchronous and in which there are
no bounds on message delivery delays or the speed of proces-
sors. In such systems, one way to guarantee replies from some
quorum is to send requests to every processor in the system
and then wait for replies from some quorum. Obviously, send-
ing requests to every processor is too costly and eliminates
the benefits of using quorum systems. Our aim is to improve
on the worst-case scenario in which every server needs to be
contacted to guarantee a response from some quorum set.

4.5.2 Access models

In this paper, we concentrate on thedirect access modelin
which processes access a quorum by sending all requests at
once and then wait for replies. The direct access model is not
the most general model of accessing quorums. For instance,
a process might incrementally access a quorum system by
sending requests to some processes, then send further requests
based on the replies it receives. We also considerincremental
access strategiesand show that an incremental strategy would
require more than one round of message exchange which can
be prohibitively high in a fully asynchronous system.3 The
definition of direct access strategy that we present assumes
that all clients use the same strategy. The definition can be
modified to allow different clients to have different strategies.

In what follows, we will talk about accessing a set system
instead of accessing a quorum system. We start by defining
access sets.

Definition 5 Let S be an element of set systemS that is re-
silient toF . A setA is anaccess setof S with respect toF if
S ⊆ A and

∀ F ∈ F ∃ S′ ∈ S : S′ ⊆ A− F

Note that a setS might have more than one access set for a
given set systemS. Also, an access setAmight be the access
set of more than one setS. In fact, we could have defined an
access set independently of the setS and have it depend only
on S. We chose to define access sets as a function ofS to
emphasize the fact that it is the setS that is the target of the
access. While a particular request to an access set ofS will
not ensure a reply from all elements ofS, such a reply can be
expected under favorable delay conditions (obviously, this is
not guaranteed in asynchronous systems). Also, a request to
access set ofS can ensure replies from some elements ofS,
which might be desirable, under certain conditions4.

Definition 6 A direct access strategyfor set systemS is a
mappingAd : S �→ 2P that assigns for each elementS of S
an access set ofS.

By sending requests toAd(S), a client is guaranteed to
receive replies from some quorum set. The quorum set from
which replies are received is not necessarilyS, but it can be
S.

We present incremental access strategies informally be-
cause our results do not require a formal definition. In an
incremental access strategy, a process need not contact all
servers of an access set at once. It can contact some servers
and then depending on the replies, it decides what servers to
contact next. By avoiding a commitment to one access set at
the outset, it is conceivable that with an incremental access
strategy a smaller number of servers need to be contacted to
force a reply from a quorum. This will be at the cost of extra
message exchanges.

3 A more detailed study of the cost of access of the incremental
strategy is a subject for future research.

4 A more detailed discussion of the advantages of of making the
definition dependent onS is beyond the scope of this paper.
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4.5.3 Cost of access

Definition 7 Let S be an element of set systemS that is re-
silient toF . Theasynchronous access costof S is the size of
the smallest access set ofS with respect toF .

Note that by definition, a Byzantine quorum that tolerates
failure patternF is also resilient toF . It follows that the asyn-
chronous access cost is well defined for all quorum sets of a
Byzantine quorum system.

Definition 8 Theasynchronous access costof a set systemS
that is resilient to failure patternF is

cost(S) = min{|A| : ∀ F ∈ F∃ S ∈ S : S ⊆ A− F}
In the direct accessmodel, the asynchronous access cost gives
the minimum number of servers that need to be contacted to
ensure that a response is received fromsomeset in aset system.

As the following theorem shows, in a fully asynchronous
system, a client needs to send requests tocost(S) servers each
time it needs to successfully access a set system.

Theorem 9 LetS be a set system that is resilient toF . In the
direct accessmodel, a client needs to send requests tocost(S)
servers to guarantee a response from each server in some set
in S.
Proof. In the direct access model, a clientc sends all requests
at the beginning to some set of serversA. If |A| < cost(S),
then, by definition of the asynchronous access cost, there is a
faulty setF ∈ F such thatA − F contains no element ofS.
If processes inF fail, cwill not receive a response from every
server in any element ofS. ��
Corollary 10 In the incremental access model, if less than
cost(S) are contacted in the first round of communication,
then at least two rounds of message are needed to guarantee
a successful access.

Proof. By Theorem 9, if less thancost(S) servers are con-
tacted in the first round of an incremental access strategy, then
no successful access is guaranteed. It follows that at least two
rounds are needed for a successful access. ��

4.6 Strategies and load

This section presents the formal definitions of strategy and
load as in [14]. It discusses the implications of the asyn-
chronous access cost on the load of a quorum system.

A protocol using a quorum system chooses a quorum to
access according to some rules. A strategy is a probabilistic
rule to choose a quorum. Formally, a strategy is defined as
follows.

Definition 11 LetQ = {Q1, . . . , Qm} be a quorum system.
A strategyw ∈ [0, 1]m forQ is a probability distribution over
Q.

For every processorq ∈ P, a strategyw induces a proba-
bility that q is chosen to be accessed. This probability is called
the load onq. Thesystem loadis the load of thebusiestelement
induced by the best possible strategy.

Definition 12 Letw be a strategy for a quorum systemQ =
{Q1, . . . , Qm}. For anyq ∈ P, theload induced byw onq is
lw(q) = Σq∈Qjwj . Theload induced byw onQ is

Lw(Q) = max
q∈P

lw(q)

Thesystem loadonQ is

L(Q) = min
w

{Lw(Q)},
where the minimum is taken over all strategies.

The definition of load implicitly assumes that no extra
servers need to be contacted when a particular quorum is ac-
cessed. This is not the case for Byzantine failures in asyn-
chronous systems because extra servers need to be accessed
even in failure-free runs to guarantee a response (assuming
clients do not know that the run is failure-free). From the
discussion about the cost of access, it follows that the load
definition should take the cost of access into consideration.
The definition of load can simply be changed by replacing a
quorum with the access set of the quorum, while allowing for
different access sets for the same quorum at different times. If
the only access set of any quorum is the setP of all servers,
it follows that the load is 1, regardless of the quorum size.

5 Asynchronous access cost examples

In this section we give examples of the asynchronous access
cost for two Byzantine quorum systems. The first system, the
Pathssystem, has optimal quorum size and load (as tradition-
ally defined) combination and high availability in the presence
of crash failures.We show that it has a large asynchronous ac-
cess cost. The second system, the threshold system, has small
asynchronous access cost relative to the size of its quorums.

5.1 Paths system

ThePathssystem [11] is defined for thef -threshold failure
pattern. It is defined as follows. Letn = d2, be the number
of servers arranged in a square grid of the triangular lattice.
A quorum consists of

√
2f + 1 non-intersecting top-bottom

paths and
√

2f + 1 non-intersecting left-right paths. In [11],
it is shown that any two quorums intersect in2f + 1 distinct
vertices and that thePathssystem can tolerate no more than√
n failures.
ThePathssystems has small quorum size, small load (not

taking access cost into consideration) and high availability
in the presence of crash failures. Unfortunately, the asyn-
chronous access cost of thePathssystem is high as we show
below.

Lemma 13 cost(Path) = Ω((f +
√
f + 1)d).

Proof. Let L andR be the sets consisting of the vertices
of the left and right edges of the square grid. If a setA is
of size |A| < (f +

√
f + 1)d, thenA cannot contain more

than(f +
√
f + 1) − 1 disjoint paths that connectL andR

because each left-right path is of size at leastd. By Menger’s
theorem [4], it follows that there is a setC of vertices of size
less than(f +

√
f + 1) that separatesL andR. Removingf



Access cost for asynchronous Byzantine quorum systems 45

vertices fromC yields a set setA′ with cut set of size at most√
f + 1 − 1. Again, by Menger’s theorem,A′ cannot have√
f + 1 disjoint paths. ��
In particular, the access cost of thePathssystem is very

high if f = Ω(d).

Corollary 14 If f = Ω(d), thencost(Path) = Ω(n).

5.2 Threshold system

The threshold system is defined for thef -threshold failure
pattern. A quorum of the threshold system consists of any
set of sizef + �n+1

2 �. Any two quorums are guaranteed to
intersect in at least2f +1 elements. For the threshold system,
the cost of the system is not much different from the quorum
size, but the quorum size is large.

Lemma 15 The asynchronous access cost of the threshold
system isO(2f + �n+1

2 �).
Proof. In fact, a setAof size2f+�n+1

2 � vertices is guaranteed
to contain a quorum if anyf elements are removed fromA.
Also, a setA of size less than2f + �n+1

2 � vertices is not
guaranteed to contain a quorum iff elements are removed
fromA. ��

6 Non-blocking quorum systems

The goal of definingnon-blocking quorum systemsis to em-
phasize the importance of the asynchronous access cost as a
design parameter, and to provide a more uniform definition of
Byzantine quorum systems. In the examples above, there is
no clear relationship between the cost of access and the size
of the quorum. Our aim is to reformulate the definition of the
quorum system so that the cost of access is found as part of
the design of the quorum system and not after the quorum is
already designed. So, instead of designing the quorum sets,
we directly design the access sets.

We define a non-blocking Byzantine quorum system as
follows.

Definition 16 A set systemQ is anon-blockingmasking quo-
rum systemthat tolerates failure patternF if and only if:

∀ Q1, Q2 ∈ Q ∀ F1, F2, F3, F4 ∈ F :
((Q1 − F1) ∩ (Q2 − F2) − F3) �⊆ F4

We define partial access sets of a non-blocking Byzantine
quorum system as follows.

Definition 17 Thepartial accesssetsofanon-blockingByzan-
tine quorum systemQ that tolerates failure patternF are the
sets of the formQ− F , whereQ ∈ Q andF ∈ F .

Note that the definition of non-blocking masking quorum
systems is similar to the first condition of Definition 3. In
fact, given a non-blocking quorum systemQ, the set of par-
tial access sets ofQ form a Byzantine Quorum system as
defined by Malkhi and Reiter in [10]. Nevertheless, finding
a non-blocking quorum system corresponding to a particular

Byzantine quorum system is not always straightforward. Fur-
thermore, not every Byzantine quorum system is equal to the
set of access sets of a non-blocking Byzantine quorum system.

Our definition non-blocking Byzantine quorum systems
requires that the client be able to determine a correct response
fromany partial access set; to have successful partial accesses,
it is enough to guarantee that the quorum system can handle
the worst-case failure scenario. To access a quorumQ, a client
sends requests to all servers inQ, and thenwaits for a response
from all servers in a partial access set ofQ. Such a response is
guaranteed by the definition of non-blocking Byzantine quo-
rum systems. Once a response from a partial access set is
received, the client can proceed as in [10].

The following theorem gives a sufficient condition for a
collection of sets to be a non-blocking Byzantine quorum sys-
tem.

Theorem 18 A setQ is a non-blocking quorum systemthat
tolerates failure patternF if:

1. ∀ Q1, Q2 ∈ Q ∀ F1, F2 ∈ F : (Q1 ∩Q2) − F1 �⊆ F2,
and

2. ∀ Q1 ∈ Q ∀ F1, F2 ∈ F∃ Q2 ∈ Q : Q2 ⊆ (Q1 −
F1) ∪ F2.

Proof. The proof is by contradiction. LetQ1 andQ2 be two
quorum sets such that∃ F1, F2, F3, F4 ∈ F : ((Q1 − F1) ∩
(Q2−F2)−F3 ⊆ F4. It follows that(Q1−F1)∩(Q2−F2) ⊆
F3∪F4 and((Q1−F1)∪F3)∩ ((Q2−F2)∪F4) ⊆ F3∪F4.
By Condition 2 of the theorem, it follows that there exists two
quorum setsQ andQ′ such thatQ ∩ Q′ ⊆ F3 ∪ F4. This
contradicts Condition 1 of the theorem. ��

As we saw, to each non-blocking Byzantine quorum sys-
temcorrespondsaByzantinequorumsystemasdefined in [10].
The importance of the reformulation lies in the fact that it ties
the quorum size to the asynchronous access cost. When de-
signing a non-blocking quorum system, one would have to
design a quorum system with small quorums sets (all other
parameters being equal), which means that the resulting asyn-
chronous access cost is small. This is due to the fact that the
quorums of a non-blocking quorum system are access sets of
the underlying Byzantine quorum system. On the other hand,
when designing Byzantine quorum systems as defined in the
formulation of [10], the asynchronous cost of access is not
directly related to the quorum size even if the quorum systems
have good performance parameters. One might argue that it is
always possible to construct Byzantine quorum systems with
low access cost and without the need for a reformulation of
the definition. Intuitively, we believe that this is not true unless
the access cost is an explicit design parameter, in which case
one has to use a definition similar to ours. Also, we believe
that our definition provides a natural expression of the access
cost as a design parameter. Finally, previous Byzantine quo-
rum constructions in the literature did not take the access cost
into account as we saw in Sect.5.

6.1 Existence of non-blocking quorum systems

Given a failure pattern, we are interested in deciding whether
there exists a quorum system that tolerates the failure pattern.
The following two propositions give necessary and sufficient
conditions.
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Proposition 19 There exists a non-blocking quorum system
that tolerates failure patternF if and only ifQ = {P} toler-
atesF .

Proof. If Q = {P} toleratesF , then there exists a quorum
system that toleratesF . If there exists a quorum systemQ
that toleratesF , then there exists a quorum inQ that cannot
be contained in the union of less than five elements ofF .
It follows thatP is not equal to the union of less than five
elements inF and that{P} toleratesF . ��
Proposition 20 There exists a non-blocking quorum system
that tolerates failure patternF if and only if

∀ A,B,C,D ∈ F : P �= A ∪B ∪ C ∪D.

Proof. Direct application of Proposition 19. ��
For the case of thef -threshold failure pattern, we get the

following corollary.

Corollary 21 There exists a quorum system that tolerates the
f -threshold failure pattern if and only ifn ≥ 4f + 1.

It is interesting to note that the necessary and sufficient
condition for the existence of a non-blocking Byzantine quo-
rum system is also a necessary and sufficient condition for the
existence of a quorum system [10]. This is expected, given the
extremal nature of the systemused in theproofs. In fact, the ac-
cess sets ofQ = {P} are the Byzantine quorum system used
in [10] to prove the necessary condition for Byzantine quorum
systems.While the necessary conditions are identical to those
for Byzantine quorumsystems, this does not necessarily imply
a correspondencebetweenByzantine quorumsystemandnon-
blocking Byzantine quorum systems. In fact, we will show at
the end of Sect.7.1 that some Byzantine quorum systems are
not equal to the set of partial access sets of any non-blocking
Byantine quorum system. So, it was conceivable that a Byzan-
tine quorum system can be constructed in a system in which
no non-blocking system could be constructed.

7 Non-blocking quorum systems constructions

Depending on the failure patterns, constructing a non-trivial
non-blocking Byzantine quorum systems can be harder than
constructing a Byzantine quorum system (the setQ = {P} is
a trivial system if a non-blocking quorum systemexist). In this
section we present two constructions of non-blocking Byzan-
tine quorum systems, one for the threshold failure pattern and
one for the disjoint failure pattern.

7.1 Threshold failure pattern

Consider a system ofn = d2 processors arranged in ad × d
square grid,d > 4 in the presence of thef -threshold failure
pattern,f < (n − 1)/4. Two vertices(x1, y1) and(x2, y2)
of the grid are connected if:x1 = x2 ∧ y1 = y2 + 1,
x1 = x2 ∧ y2 = y1 + 1, x1 = x2 + 1 ∧ y1 = y2,
x2 = x1 + 1 ∧ y1 = y2, x1 = x2 + 1 ∧ y1 = y2 + 1, or
x2 = x1 + 1 ∧ y2 = y1 + 1.

Similar to thePathssystem [11], we define a non-blocking
quorum systemQfn that consists of2�√f + 1� disjoint left-
right paths and2�√f + 1� disjoint top-bottom paths. Using
the same arguments as in [11], it is easy to show that any
two quorums are guaranteed to intersect in4f + 1 elements.
It follows that the quorum system is a non-blocking quorum
system.

The quorum systemQfn has better fault tolerance than the
Pathssystem. In fact,Qfn can tolerate�(n − 1)/4� failures
(Corollary 21), whereas thePathssystem can tolerate nomore
than

√
n failures in the worst case. The reason is that thePaths

systemrequireseach row tohaveanumberofavailablevertices
for the system to be available. In contrast, a partial access of
Qfn is successful if all butf members of a quorum respond.
This can be achieved even if less than2

√
f + 1 nodes are

available in a given row, whereas thePathssystem will be
unavailable if

√
2f + 1 or less nodes are available in a given

row. Furthermore, if2
√
f + 1 ≤ f (i.e.f ≥ 6), then the non-

blocking quorum system will tolerate the failure of a whole
row which is not possible for thePathssystem. Iff ≥ 7,
thenQfn can tolerate the failure of a whole row and a whole
column.

More importantly, the cost of accessingQfn is
4�√f + 1�d, compared toΩ((f +

√
f + 1)d) for thePaths

system.

The load ofQfn is ≈ 4
√

f+1
n . The proof is identical to

that given for the load of thePathssystems given in [11]. The
load ofQfn is larger than the load of thePathswhich is equal

to≈ 2
√

2f+1
n . The loadgiven forQfn holds evenwhen taking

the cost of access into account; the load for thePathsis much
higher than the load ofQfn when taking the cost of access
into account.

In this paper we assume that the system is subject to only
Byzantine failures. For such systems, failures are constrained
by a failure pattern and we do not calculate the failure proba-
bility in this model.

The Byzantine quorum systemQf = {Q − F : Q ∈
Qfn andF ∈ F} induced byQfn is not directly related to
thePathssystem. In fact, many quorums ofQf do not contain
a quorum of thePathssystem and vice versa. Also,Qf has
better fault tolerance than thePathssystemand the quorumsof
thePathssystem are smaller than those ofQfn. This example
shows the advantage of using the definition of non-blocking
quorum systems.

The difference between the two quorum systems is illus-
trated in Fig.1a. In the figure, accessing the non-blocking quo-
rum will be successful even if all but one node in a given row
fail. In contrast, thePathssystem will be unavailable if less
than three nodes are available in a given row.

Finally, we note that thePathssystem is not equal to the set
of partial access sets of any non-blocking Byzantine quorum
system. In fact, letQnb be a non-blocking quorum system and
letQ be a quorum of thePathssystemwhich is a partial access
set for a quorum inQnb. It follows that for someQ′ ∈ Qnb

Q′ −F = Q, where|F | = t andF is disjoint fromQ. The set
Q′, is of size at most|Q| + t. By argument similar to that in
the proof of Lemma 13, it is easy to show that for appropriate
n and t we can find a setF ′, |F ′| = t, such thatQ′ − F ′
contains no quorum of thePathssystem.
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Fig. 1a.Access set of a non-blocking Byzantine quorum forn = 144
andf = 3 with one quorum in black (the gray squares belong to
access set but not to the quorum). Note that the maximum number of
independent vertical paths in the quorumset is one;bAquorumof the
Pathssystem.Note that it contains no quorum set of the non-blocking
quorum system

7.2 Disjoint failure pattern

In this section we provide an efficient construction of a non-
blocking quorum systemQdn for a failure patternF whose el-
ements are disjoint. The construction is similar to the construc-
tion given in [3].We present the construction in some detail to
show that our definition of non-blocking Byzantine quorum
systems yields quorumsystems that are not easily designed for
the original definition. In fact, the Byzantine quorum system
Qd defined by the partial access sets ofQdn outperforms the
ones proposed in [10] for the disjoint failure pattern. Also, we
do not know how to expressQd other than as the set of partial
access sets ofQdn. We do not provide proofs for most of our
claims because they are almost identical to those of [3].

Let F = {F1, F2, . . . , Fm} be the set of failure sets or-
dered in decreasing size.We assumewithout loss of generality
thatm > 4. Letα = n− (Σ4

i=1|Fi|).
Our construction will proceed as follows. First we show

that there are five disjoint sets of size greater thanα
10 such

that no two of them will have an non-empty intersection with
the same faulty set. Then, on each of the five setsSi, i =
0, . . . , 4, we construct a traditional quorumsystemwhose load
is O( 1√

|Si|
). On P, we construct a quorum system whose

elements consist of the union of five quorums, one from each
of the five sets.

Letm0 = 4 and definemi, i = 1, . . . , 4 as follows:

mi = min


j : |Fi ∪

⋃
mi−1<k≤j+1

Fk| ≥ α

10




Note thatj andk are bound variables in the definition ofmi.
Also,mi, 1 ≤ i ≤ 4, are always guaranteed to exist.

Now, define the five setsSi, 0 ≤ i ≤ 4, as follows:

• Si = Fi ∪ ⋃
mi<k≤mi+1

Fk, if i < 4, and
• S4 =

⋃
m4<k Fk

Proposition 22 Si ∩ Sj = ∅, 0 ≤ i �= j ≤ 4.

Proposition 23 Si ≥ α
10 for 0 ≤ i ≤ 4.

Now, we describe the non-blocking quorum systemQdn.
OnSi,0 ≤ i ≤ 4, defineaquorumsystemwith loadO( 1√

|Si|
).

Many such systems exist. One such system is the triangle lat-
tice system [2]. In the triangle lattice system overSi, we can
choose

√
2|Si| quorums such that each processor belongs to

exactly two quorums. If we choose each quorum with a prob-
ability 1√

2|Si|
, it follows that the load of the triangle lattice

system onSi is at most 2√
2|Si|

=
√

2
|Si| . Define a quorum on

P to be the union of five quorum sets one from each of the
triangle lattices defined onSi, 0 ≤ i ≤ 4.

Proposition 24 The resulting systemQdn is a non-blocking
quorum system that toleratesF .

Proof. In fact, any two quorums intersect in five servers, no
two of which belong to the same faulty set. Therefore the
intersection of two quorums does not belong to the union of
four faulty sets. ��

Let Qd be the Byzantine quorum system defined by the
access sets ofQdn.Qd = {Q−F : Q ∈ Qdn andF ∈ F}.
It follows thatQd tolerates the disjoint failure patternF .
Proposition 25 The load of the quorum systemQd isO( 1√

α
).

Lemma 26 The load ofQd is optimal.

Proof. The proof uses the same techniques as those used in [3]
and is omitted. ��

The load ofQd stated above is the traditional load. Nev-
ertheless, the load ofQdn is of the same order as the load of
Qd and is therefore optimal. Finally, we know of no simpler
way to expressQd or to obtain a Byzantine quorum system
that tolerateF and has a better load.

8 Conclusion

An important contribution of this paper is the recognition that
in asynchronous systems, it is not enough to design a quorum
systems with small quorum sets, but it is more important to
design a quorum set that is amenable to efficient access. We
proposed a new definition of Byzantine quorum systems that
lend themselves to non-blocking access. We have shown that
designing non-blocking Byzantine quorumswith small access
cost is possible in asynchronous systems.

One might think that the only difference between Byzan-
tinequorumsystemsandnon-blockingByzantinequorumsys-
tems is that of how access is achieved, and that it is possible to
come upwith a new definition of access for Byzantine quorum
systems toachievenon-blockingaccess.While this is possible,
the resulting non-blocking quorumsystem is not guaranteed to
have a small access cost. To design Byzantine quorum system
with a small access cost, we believe that a formulation similar
to ours is needed.
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