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Summary. In this paper we study the ability of shared ob-
ject types to implement Consensus in asynchronous shared-
memory systems where at most one process may crash. More
specifically, we consider the following question: Letn ≥ 3
andS be a set of object types that can be used to solve one-
resilient Consensus amongn processes. CanS always be used
to solve one-resilient Consensus amongn− 1 processes? We
prove that forn = 3 the answer is negative, even ifS consists
only of deterministictypes. (This strengthens an earlier result
by the first author proving the same fact fornondeterministic
types.) We also prove that, in contrast, forn > 3 the answer
to the above question is affirmative.
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1 Background and overview

In this paper we consider some questions concerning fault-
tolerant implementations of Consensus in asynchronous
shared-memory systems. In such systems, some number of
processes communicate with each other by accessing shared
typed objects. Processes take steps in a completely asyn-
chronous manner. In one step, a process may invoke an oper-
ation on a shared object. This causes the object to atomically
change its state and return a response to the process invok-
ing the operation. The new state entered by the object and
the response returned to the operation are determined by the
specification of the type to which the object belongs. A pro-
cess maycrash– i.e., stop taking steps before completing its
execution. A process that does not crash is calledcorrect.
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In this model of computation, an algorithm involvingn
processes ist-resilient, wheret < n, if each correct process
completes the task it initiates, as long as no more thant pro-
cesses crash. Thealgorithm iswait-freeif it is (n−1)-resilient.
Thus, in a wait-free algorithm, each correct process completes
its task after a finite number of its own steps regardless of the
progress made by other processes. In particular, it must do so,
even if all other processes crash.

Consensus is a fundamental problem in fault-tolerant dis-
tributed computing because it captures the essence of many
practical problems that require some form of agreement. In
the Consensus problem, each process has a private input value
and eventually may decide (irrevocably) on some value. An
algorithmA for n processesimplements(orsolves) t-resilient
Consensus amongn > t processes if every execution ofA
satisfies the following properties: (i) no two processes decide
different values (Agreement); (ii) thevaluedecidedbyanypro-
cess is the input value of someprocess (Validity); and (iii) if no
more thant processes crash in the execution then, eventually,
each correct process must decide (Termination).

A set of typesS implements(or solves) t-resilient Con-
sensus amongn processes, if there is an algorithmA that
implementst-resilient Consensus amongn processes and ev-
ery object used byA belongs to a type inS. Throughout this
paper we assume thatS contains typeregister. Objects of this
type are shared registers that support (only) read and write op-
erations. We refer to such objects simply as “registers”.1

LetS be a set of types that implementst-resilient Consen-
sus amongn processes, forn− 1 > t. It is easy to see thatS
can be used to solvet-resilient Consensus amongn + 1 pro-
cesses – and thus any number of processes greater thann: n of

1 Several kinds of shared registers have been studied in the liter-
ature, differing in the number of processes that may read and write
them, the number of values they can store, and the assurances they
provide to concurrent read and write operations. It has been estab-
lished that the strongest kind of registers –multi-reader, mutli-writer,
multi-valued, atomic registers – can be implemented from the weak-
est kind – single-reader, single-writer, two-valued, safe registers (cf.
[8] for more details and pointers to the relevant literature). Our for-
mal model of shared types (cf. Sect. 2.1) commits us to multi-reader,
multi-writer, atomic registers. In view of the above-mentioned result,
however, this causes no loss of generality.
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the processes solve Consensus usingS and write the decision
to a register; the remaining process obtains the decision from
that variable. It is not nearly as clear whetherS can also be
used to solvet-resilient Consensus amongn− 1 processes –
and thus any number of processes in the ranget+1 andn−1.
Now, reaching Consensus appears more difficult, since the al-
gorithm can rely on fewer correct processes (n− t−1 instead
of n − t). Thus,prima facie, it appears possible that a set of
types is strong enough to solvet-resilient Consensus amongn
processes, but too weak to solvet-resilient Consensus among
n− 1 processes.

The question of whether this is possible was studied by
Chandra et al. [4]. They showed that for anyn − 1 > t ≥ 2,
any set of types strong enough to solvet-resilient Consensus
amongn processes, is also strong enough to solvet-resilient
Consensus amongn− 1 processes. The case oft = 1was left
open in that investigation. This special case is an important
one since, in practice, handling a single failure is often an ad-
equate degree of fault-tolerance [14]. Subsequent to [4], the
first author considered this special case and proved that the re-
striction tot ≥ 2 is necessary.Specifically, in [10] heexhibited
anondeterministictypewor with the following property: Us-
ing onlywor objects and registers, it is possible to implement
one-resilient Consensus for three, but not for two, processes.

In this paper we complete the study of the special case of
t = 1. First, we strengthen the result of [10] by exhibiting a
deterministictype that can be used (together with registers) to
implement one-resilient Consensus for three, but not two, pro-
cesses. This object type has another interesting property: To
our knowledge it is the only knowndeterministictype at level
one of the Consensus hierarchy [6] which cannot be imple-
mented in a one-resilient manner for three or more processes
using only registers.2 Second, and in contrast, we show that for
anyn ≥ 4, a set of (deterministic or nondeterministic) types
strong enough to implement one-resilient Consensus among
n processes is also strong enough to implement one-resilient
Consensus amongn − 1 processes. The proof of this result
is based on a variant of techniques previously employed by
Borowsky and Gafni [1] (see also [13,2]) and Chandra et al.
[4].

The rest of the paper is organised as follows: In Sect. 2, we
define formally the model of computation. In Sect. 3 we de-
fine the deterministic type that can be used to implement one-
resilient Consensus for three, but not two, processes. In Sect. 4
we prove that for alln ≥ 4, a set of types strong enough to im-
plement one-resilient Consensus amongn processes, is also
strong enough to implement one-resilient Consensus among
n− 1 processes. We conclude in Sect. 5.

2 The level of a type in the Consensus hierarchy is the maximum
positive integern such that we can implement wait-free (i.e.,(n−1)-
resilient) Consensus amongn processes using only objects of that
type and registers. (If there is no suchmaximum, the level of the type
in the Consensus hierarchy is∞.) The significance of this hierarchy
lies in the following fundamental result, due toHerlihy [6]: If a typeT
is at leveln of the Consensus hierarchy, then it is possible to use only
objects of typeT and registers to give a wait-free implementation of
anyobject type in a system ofn processes.

Fig. 1.Commutative and overwriting operations

2 The model of computation

2.1 Types and objects

An object typeT is a tuple(ST ,OP ,RES , δ). ST is a set
of states, OP is a set ofoperations, RES is a set ofre-
sponsesto operations, andδ : ST × OP → 2RES×ST is
a state transition function. The state transition function ofT
describes the behaviour of an object of typeT , and is some-
times called the type’ssequential specification. Informally,
(res, q′) ∈ δ(q, op) means that if the current state of the ob-
ject isq and operationop is applied to it, then it is possible that
res will be returned to the operation and the object will enter
stateq′. For convenience, we require that the object’s response
to an operation applied at some state uniquely determines the
object’snewstate.Moreprecisely, for any(q, op) ∈ ST×OP ,
if δ(q, op) contains(res, q′) and(res, q′′), thenq′ = q′′.

T exhibits finite nondeterminismif δ(q, op) is finite, for
all (q, op) ∈ ST × OP . T is deterministicif |δ(q, op)| ≤ 1,
for all (q, op) ∈ ST × OP . T is total if δ(q, op) 	= ∅, for all
(q, op) ∈ ST × OP . If T is deterministic and total,δ(q, op)
contains exactly one element. In this case, we will slightly
abusenotationandwriteδ(q, op) todenote that element (rather
than the set that contains it). In other words, for deterministic
total types we will viewδ as a function fromST × OP to
RES × ST (rather than to2RES×ST ).

Let op andop′ be operations of a deterministic total type
T , q be a state ofT , andδ be the state transition function
of T . The two operationscommuteat q if applying them in
either order has the same effect. More precisely, there exist
responsesr, r′ and statess, s′, q′ such thatδ(q, op) = (r, s),
δ(s, op′) = (r′, q′), δ(q, op′) = (r′, s′), and δ(s′, op) =
(r, q′); seeFig. 1(a).Operationop overwritesop′ atq, if apply-
ingop afterop′ atq has thesameeffect asapplyingop by itself.
More precisely, there exist responsesr, r′ and statess, q′ such
thatδ(q, op′) = (r′, s) andδ(q, op) = δ(s, op) = (r, q′); see
Fig. 1(b).

An objectis an instance of an object type. For the purposes
of this paper, we can think of an objectO of type T as an
automaton whose states and state transition function are as in
T – except that states are labeled withO, to distinguish them
from the states of other objects of the same type.

2.2 Processes and algorithms

A processis a deterministic automaton that interacts with ob-
jects. More precisely, letA be a set of objects, andOP ,RES
be the set of all operations and responses, respectively, of the
types to which the objects inA belong. We define aprocess
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that usesA as a tupleP = (Σ,Σ0, ν, τ), whereΣ is a set
of states; Σ0 ⊆ Σ is a set ofinitial states; and the functions
ν : Σ → OP × A, andτ : Σ × RES → Σ describe the
interaction of the process with the objects. Intuitively, ifP is
in a stateσ ∈ Σ andν(σ) = 〈op, O〉, then in its next stepP
will apply operationop to objectO. Based on its own current
state,O will return a responseres to P and will enter a new
state, in accordance with the state transition function of the
type to whichO belongs. Finally,P will enter stateτ(σ, res),
as a result of the response it received fromO.

An algorithmA consists of a set of processesΠ, a set
of objectsA so that eachP ∈ Π uses a subset ofA, and
an initial state for each object inA. The designated initial
state of an object is one of the states of the type to which the
object belongs. IfA is finite, thenA is aboundedalgorithm. A
configurationC ofA is a tuple consisting of the state of each
process inΠ andeach object inA.C is aninitial configuration
ofA if each process is in oneof its initial states andeachobject
is in the state designated as the initial state byA.

A stepof processP is a tuple(P, op, O, res); this indi-
cates thatP has applied operationop to objectO and received
responseres. LetP = (Σ,Σ0, ν, τ) andC be a configuration,
where the state ofP in C isσ. If ν(σ) = 〈op, O〉, we say that
P has operationop to objectO pendingin C. If, in addition,
the state ofO inC isq, and(res, q′) ∈ δ(q, op) (whereδ is the
state transition function ofO’s type), then we say that the step
e = (P, op, O, res) is applicabletoC. If e = (P, op, O, res)
is applicable toC, e(C) denotes the configuration resulting
from C after stepe. More precisely, if inC the state ofP is
σ and the state ofO is q, thene(C) is the configuration in
which all processes other thanP and all objects other than
O are in the same state as inC, P has stateτ(σ, res), andO
is in stateq′ such that(res, q′) ∈ δ(q, op), whereδ the state
transition function ofO’s type. (Note thatq′ is well-defined
by our requirement that objectO’s response to operationop
applied in stateq uniquely determinesO’s new state,q′.)

A scheduleS of algorithmA is a (finite or infinite) se-
quence of steps ofA’s processes. If every step inS is a step
of processP , S is a solo schedule ofP . We say thatS =
e1, e2, . . . , ei, . . . is applicable to a configurationC, if e1 is
applicable toC, andei+1 is applicable toei(ei−1(. . . (e1(C))
. . . )), for all i. If S is finite and hask steps,S(C) denotes
ek(ek−1(. . . (e1(C)) . . . )), i.e., the configuration that results
after applying the steps inS one at a time, starting with con-
figurationC. If S andS′ are schedules,S · S′ denotes their
concatenation. For any configurationsC andC ′, we say that
C ′ is reachablefromC, if there is a scheduleS applicable to
C such thatC ′ = S(C).

LetS be any infinite schedule applicable to an initial con-
figurationI of algorithmA. We say that a processP crashes
(or is faulty) in S if P has only finitely many steps inS; oth-
erwise, we say thatP is correct in S. The idea of modeling
correct processes as ones that take infinitely many steps in an
infinite execution – and crashed processes as ones that take
only finitely many steps – was introduced in [5]. It turns out
to be a very convenient convention. We can easily accommo-
date processes that terminate in this framework by imagining
that a process that reaches a final state takes infinitely many
“do-nothing” steps thereafter.

An executionof algorithmA is a pair(I, S), whereI is
an initial configuration ofA andS is an infinite schedule of
A applicable toI.

2.3 The Consensus problem

In the Consensus problem, each process has a private initial
value, drawn from the set{0, 1}. Thus, each initial config-
uration of a Consensus algorithm may be associated with a
function mapping each of the processes to{0, 1}. Some states
of each process are associated with an irrevocable decision in
{0, 1}. The decision is irrevocable in the sense that if a pro-
cess enters a state associated with decisiond, then all states
it may subsequently enter are also associated withd. Let n, t
be integers such thatn > t ≥ 1. A t-resilient Consensus al-
gorithmA for n processes satisfies the following properties.
For any initial configurationI ofA, and any scheduleS ofA
applicable toI,

Agreement: If two processes have decided inS(I), then
their decisions are the same.

Validity: If a process has decided inS(I), then its deci-
sion must be the initial value of some process
in I.

Termination: If S is infinite and at mostt processes crash in
S, then for any correct processP in S, there
is a prefixS′ of S such thatP has decided in
S′(I).

If t = n−1, we say thatA is await-freeConsensus algorithm
for n processes.

A set of typesS implementst-resilient (wait-free)Consen-
sus forn processes if there is at-resilient (wait-free) Consen-
sus algorithmA for n processes. If, in addition,A is bounded,
then we say thatS boundedly implementst-resilient (wait-
free) Consensus forn processes.

3 The (exceptional) case of three processes

In this section we introduce a deterministic type, nameddor3,
that (together with registers) is strong enough to solve one-
resilient Consensus for three processes, but not for two pro-
cesses. The type is defined in Sect. 3.1. We prove that it is
strong enough to solve one-resilient Consensus for three pro-
cesses in Sect. 3.2. Finally, we prove that it is tooweak to solve
one-resilient Consensus for two processes (equivalently: wait-
free Consensus for two processes) in Sect. 3.3.

3.1 Specification ofdor

The specification ofdor is motivated by a specific algorithm
that we have in mind for implementing one-resilient Consen-
sus among three processes using an object of this type and
registers. Thus, it is best to explaindor alongside an informal
description of that algorithm.

A process can apply two kinds of operations to ador ob-
ject: “enroll” an integer in the set{0, . . . , 5}, and “query”
3 dor stands fordeterministicone-resilient.
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whether 0 was enrolled before 1. In the algorithm that im-
plements one-resilient Consensus among three processesQ0,
Q1 andQ2, each process enrolls two integers to ador object
O: Q0 enrolls 0 and 3,Q1 enrolls 1 and 4, andQ2 enrolls
2 and 5. The three processes follow a particular pattern in
enrolling their integers.Q0 andQ1 follow the same pattern,
while Q2 follows a slightly different one. Specifically, each
Q ∈ {Q0, Q1} enrolls its first integer and waits for one of the
other two processes to do the same.Q then enrolls its second
integer and, again, waits for one of the other two processes to
do the same. In contrast,Q2 firstwaits for one of the other two
processes to enroll its first integer and then enrolls its own first
integer. Similarly,Q2 waits for one of the other two processes
to enroll its second integer and then enrolls its own second in-
teger. Thus,Q0 andQ1 follow the pattern: enroll, wait, enroll,
wait; whileQ2 follows the pattern: wait, enroll, wait, enroll.
Note that, as a result of this protocol, the first integer to be
enrolled is either the first integer enrolled byQ0 or the first
integer enrolled byQ1 – i.e., 0 or 1.

After enrolling its integers in this manner, each process
Qk “queries”O to determine whether0 was enrolled before
1. This allows the three processes to agree on which of the two
integers was enrolled first – and thus to agree on the identity
of one ofQ0 or Q1, so that if they agree onQk, thenQk

has taken at least one step (the step required to enrollk). By
requiring each ofQ0 andQ1 to write its input value into a
shared register before enrolling its first integer, we can easily
turn agreement on the identity of one of these two processes
into agreement on that process’ input value. In this way, we
can solve one-resilient Consensus among the three processes
using only onedor object and some registers.

We must make special provisions to ensure thatdor can-
not be used to implement one-resilient Consensus fortwopro-
cesses. Informally, we shall accomplish this by ensuring that
any use of ador object that does not conform to the one de-
scribed above puts the object in a state fromwhich it is impos-
sible to get “useful” information. In particular, it is impossible
to reliably determine whether 0 or 1 was the “winner” (i.e.,
was enrolled first). The nondeterministic typewor described
in [10] did this by defining an “upset” state that awor object
enters if not accessed as required by the algorithm described
above. The object responds by nondeterministically returning
0 or 1 if queried about thewinnerwhile in that state.We cannot
use this techniqueherebecausewewant todefineadeterminis-
tic type. Instead,wedesign the type to return deterministic, but
misleading, responses if accessed “inappropriately”. Doing so
while ensuring that the resulting type is not strong enough to
implement one-resilientConsensus for twoprocesses turnsout
to be nontrivial.

We now describe the typedor in more detail. It supports
the following operations:enroll(v), for v ∈ {0, 1, . . . , 5},
andreveal.enroll(v) is used to enrollv. Itmay change the
state of the object but always returns the same response,ack .
A reveal is used to find out if 0 was enrolled before 1. It does
not change the state, and returns a value, 0 or 1. Intuitively,
response 1 is supposed to indicate that 1 was enrolled before
0 (or that neither has been enrolled yet); while response 0
is supposed to indicate that 0 was enrolled before 1. Under
certain conditions, however, even though0wasenrolledbefore
1, the object will (misleadingly) respond 1 to such a question.
This will be the case if the question is asked “prematurely”,

Each node of the graph below represents a state ofdor. Let δ denote
the state transition function of typedor, andq be any node of the
graph shown below.

enroll(v) for v ∈ {0, . . . , 5}: If there is an arc labeledwithv from
nodeq to nodeq′, thenδ(q, enroll(v)) = (ack , q′); otherwise,
δ(q, enroll(v)) = (ack , ).

reveal: If q is a blacknode thenδ(q,reveal) = (0, q); otherwise
(q is a white node),δ(q,reveal) = (1, q).

Fig. 2.State transition function of typedor

or after the object has been “mishandled”. The question is
premature if it is asked before at least two of{3, 4, 5} have
been enrolled. The object is mishandled if and only if, starting
with the enrollment of 0, one of the following conditions takes
place: (a) any number other than 5 is enrolled more than once,
or (b) 5 is enrolled more than once after both 2 and one of
{3, 4} have been enrolled.

The behaviour ofdor is formally specified by the state
transition diagram in Fig. 2. The type has seventeen states,
represented as nodes in the diagram. The state labeledis
called thefreshstate; the state labeled is called theupset
state; the remaining are callednormalstates. The colour of a
node (black or white) indicates the response (0 or 1, respec-
tively) of areveal applied to the corresponding state. Recall
that eachenroll operation returnsack , so there is no need
to explicitly represent that in the diagram.

The directed edges of the diagram represent transitions
caused byenroll operations (recall thatreveal opera-
tions do not affect the state). The label of an edge denotes
the parameter of the correspondingenroll. For example, an
enroll(0) operation applied to the fresh state causesdor
to enter the normal stateN0. Note that, in each state other
than fresh, one or more edges (corresponding to one or more
enroll operations) are missing. In that case, there is an im-
plicit transition to the upset state. Thus, for instance, node
N01 has implicit transitions labeled 0 and 1 to the upset state.
In terms of our earlier informal description ofdor, implicit
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transitions to the upset state correspond to operation invoca-
tions that “mishandle” the type. Thus, after such a transition
has taken place, the type will (misleadingly) respond 1 to a
reveal, even though 0 was enrolled before 1.

The fresh state is a source, in the sense that it is not reach-
able from any other state. The upset state is a sink, in the sense
that no other state is reachable from it. Intuitively, it is the state
reached if the object is initialised to the fresh state and either
1 is enrolled before 0, or the object is mishandled. The nor-
mal states are the states reached if the object is initialised to
the fresh state, 0 is enrolled before 1, and the object is not
mishandled. In the diagram, each normal state is denoted by
a node labeledNv1...vi , where{v1, . . . , vi} is a nonempty
subset of{0, 1, . . . , 5}. Intuitively, the subscript of a normal
state represents the set of numbers enrolled “so far”, assuming
the object is initialised in the fresh state. However, some en-
rollments are “ineffectual” (they do not affect the state), and
some enrollments are “implicit” (they occur as a side-effect of
other enrollments). Specifically, any attempt to enroll a num-
ber before enrolling 0 or 1 is ineffectual. (This corresponds to
the self-loop at the fresh state.) Also, any attempt to enroll 5
before both 2 and one of{3, 4} have been enrolled is ineffec-
tual. (This corresponds to the self-loops in the normal states.)
An implicit enrollment of 1 is forced if an attempt is made to
enroll 4 before 1 has been enrolled, or to enroll 3 before both 1
and 2 have been enrolled. (This corresponds to the state tran-
sitions that “jump” a level in the diagram – e.g., the transitions
labeled 3 and 4 atN0.) Note that the subscripts of the white
normal states are precisely those that contain at most one of
{3, 4, 5}. In other words, they are precisely the states where at
most one of{3, 4, 5} has been (effectively) enrolled. Recall,
from our earlier informal discussion of the type, that these are
the states in whichreveal returns a misleading response be-
cause the question whether 0 was enrolled before 1 is asked
“prematurely”.

We use the following terminology for the state transitions
of typedor. Let op be an operation,q be a state andδ be the
state transition function ofdor. We say thatop isstationaryat
q if δ(q, op) = (r, q), for some responser. In terms of Fig. 2,
this corresponds to the self-loop transitions. We say thatop is
upsettingat q if δ(q, op) = (r, ), for some responser. This
corresponds to (implicit and explicit) transitions leading to the
upset state in the diagram. We say thatop is ordinaryat q, if
op is neither stationary nor upsetting atq. This corresponds to
explicitly represented transitionson the left sideof thediagram
(i.e., all edges explicitly shown, except for the self-loops at the
fresh and upset states, and the edge from the fresh to the upset
state).

The reader should observe that, with very few exceptions,
in each state of the typedor, any two operations either com-
mute, or one overwrites the other. The specification ofdorwas
crafted deliberately in thismanner. Asweshall see inSect. 3.3,
this turns out to be crucial in proving thatdor cannot imple-
ment one-resilient Consensus between two processes.

3.2 Typedor solves one-resilient Consensus
for three processes

In this subsection we prove thatdor (together with registers)
implements one-resilient Consensus for three processes. An

Shared O: dor, initialised to state
D0,D1: register, each initialised to⊥
R0,R1,R2: register, each initialised to0

Code for processQk, for k ∈ {0, 1}
1 Dk := initial value ofQk

2 for � := 1, 2do
3 Apply(Qk,enroll(3(�− 1) + k), O)
4 Rk := �
5 wait until Rk ≥ � or R2 ≥ �
6 i := Apply(Qk,reveal, O)
7 decideDi

Code for processQ2

1 for � := 1, 2do
2 wait until R0 ≥ � or R1 ≥ �
3 Apply(Q2,enroll(3(�− 1) + 2), O)
4 R2 := �
5 i := Apply(Q2,reveal, O)
6 decideDi

Fig. 3.A one-resilient Consensus algorithm for three processes using
objects of typedor and registers

algorithm that does this was described informally in the pre-
vious subsection; it is shown in pseudocode in Fig. 3. In the
algorithm, and throughout the paper, ifk ∈ {0, 1}, we de-
note byk the complement ofk, i.e., k = 1 − k. The nota-
tion Apply(Q, op, O) denotes the procedure by which pro-
cessQ applies operationop to objectO; the procedure re-
turns the response of the object to that operation. RegisterRk,
k ∈ {0, 1, 2}, is used by processQk to indicate how many
numbers it has enrolled so far. Before enrolling their first num-
bers,Q0 andQ1 write their input values into registersD0 and
D1, respectively.

We now turn to the correctness proof of the algorithm.

Lemma 1 Consider any execution of the algorithm in Fig. 3,
in which at most one process crashes. In this execution, no
correct process is stuck forever in thewait statement of its
code (line 5 ofQ0 andQ1, or line 2 ofQ2).

Proof. Suppose, for contradiction, that a correct processQk,
for somek ∈ {0, 1, 2}, is stuck in thewait statement in the
execution. There are two cases:

Case 1.Qk is stuck in the first iteration of thefor loop:We
first claim thatk 	= 2. If not, then by line 2 of its code,Q2
must always readR0 = 0 andR1 = 0 when it executes the
wait statement during its first iteration of thefor loop. This is
possible only if bothQ0 andQ1 crash, before executing line 4,
during their first iteration of thefor loop. This contradicts our
hypothesis that at most one process may crash.

We next argue thatk 	∈ {0, 1}. Suppose, for contradiction,
that processQk is stuck in thewait statement in line 5, for
somek ∈ {0, 1}. ThenQk must always readRk = 0 and
R2 = 0 in executing that line. SinceRk is always equal to 0,
it follows thatQk crashes before executing its line 4 during
its first iteration of thefor loop. Similarly, asR2 always equal
to 0, it must be thatQ2 crashes before executing its line 4
during its first iteration of thefor loop (because we have just
shown that ifQ2 is correct then in the first iteration of thefor
loopQ2 cannot be stuck forever in line 2 and hence it must
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Fig. 4.Possible state transitions of objectO of the algorithm in Fig. 3,
in which the first operation applied toO is enroll(0)

eventually execute line 4). Thus, bothQk andQ2 are faulty.
This again contradicts the assumption that there is at most one
faulty process.

Case 2. Qk is stuck in its second iteration of thefor loop:
We have just shown that no correct process can be stuck when
executing its first iteration of thefor loop.Hence, every correct
process executes the second iteration of thefor loop. Using
this fact and an argument similar to the one in Case 1, we can
prove that no correct process canbe stuck in thewait statement
during the second iteration of thefor loop, as well.

Since each of these two cases leads to a contradiction, the
lemma follows.

Lemma 2 Consider any execution of the algorithm in Fig. 3.
Letd be the parameter of the firstenroll operation applied
to thedor objectO in that execution. Then,d ∈ {0, 1} and
everyreveal operation applied toO during that execution
returns responsed.

Proof. By the specification of the algorithm, it can be readily
verified that the first operation applied to thedor objectO
is eitherenroll(0) or enroll(1). Thus,d ∈ {0, 1}. We
consider these two cases in turn.

Case 1.d = 1: We show that whenever areveal operation
is applied, objectO is in state . Since thereveal operation
returns 1 at state , it follows that everyreveal operation
applied toO returns 1. To this end, first note thatenroll(1) is
upsetting at . Since the initial state ofO is and the first op-
eration applied toO in the execution isenroll(1),O enters
state after the first operation is applied. Since every opera-
tion is stationary at , O stays in state throughout the rest
of the execution. Consequently, whenever a process applies
reveal, objectO is in state and returns 1, as required.

Case 2.d = 0: We need to show that everyreveal operation
applied toO gets back response 0. To do so, it suffices to show

that areveal operation will be applied only ifO is in a black
state, since thereveal operation returns 0 in all black states.
By Fig. 3, in any execution of the algorithm:

(a) for eachk ∈ {0, 1, 2}, the sequence of operations that pro-
cessQk applies toO is (a prefix of)enroll(k), enroll
(k + 3), reveal;

(b) at least two of{enroll(v) : 0 ≤ v ≤ 2 } are applied
before bothenroll(3) andenroll(4) (because before
executing its second iteration of thefor loop, each ofQ0
andQ1 waits for another process to apply its firstenroll
operation);

(c) eitherenroll(3)orenroll(4) is appliedbeforeenroll
(5) (because before applyingenroll(5) toO, Q2 waits
for at least one of{Q0, Q1} to apply its secondenroll
operation); and

(d) at least two of{enroll(v) : 3 ≤ v ≤ 5 } are applied
before areveal (because before applyingreveal toO,
every process waits for another process to apply its second
enroll operation).

Using (a)–(c), it is easy to verify that if the first operation
applied toO in theexecution isenroll(0), thenOwill always
be in a normal state – i.e.,O never enters state – during the
execution. To assist with this verification, in Fig. 4 we have
shown all the possible state transitions of objectO in response
to theenrolloperations applied under the algorithm inFig. 3
whenenroll(0) is the first operation applied.

By (a) and (d),whenaprocess applies arevealoperation
to O, at least two of the three processes have each applied
exactly twoenroll operations. By inspection of Fig. 4, it is
easy to see thatO is inN0123, N0124, or a black state. (Note
thatN0123 andN0124 are white.) We claim that ifO is in
N0123 orN0124, no process will applyreveal, until at least
one moreenroll operation is performed – which will put
O in a black state. This is because in stateN0123, only Q0
has done twoenroll operations (with parameters 0 and 3),
while each ofQ1 andQ2 has done only one (with parameters
1 and 2, respectively). Thus, ifO is inN0123, by (a), the only
process whose next access toO is areveal is Q0. By (d),
however,Q0 must wait untilQ1 or Q2 has done its second
enroll operation before it can applyreveal toO. A similar
argument (interchanging the roles ofQ0 andQ1) applies for
stateN0124.

This shows that beforeany process appliesreveal, O
must have entered a black state. Furthermore, it can be im-
mediately seen from Fig. 4 that onceO enters a black state, it
remains in a black state throughout the execution. Thus, when-
ever a process applies areveal,O is in a black state and thus
returns 0 to thereveal operation, as wanted.

Theorem 1 The algorithm in Fig. 3 is a one-resilient Consen-
sus algorithm for three processes that uses only objects of type
dor and registers.

Proof. It is clear that the algorithm in Fig. 3 uses only ob-
jects of typedor and registers. For the rest of the proof, fix
an arbitrary execution of the algorithm in which at most one
process crashes. We need to show that this execution satisfies
the three properties of Consensus – Termination, Validity and
Agreement.
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Termination: By Lemma 1, no correct process can be stuck
in any execution of the algorithm. Therefore, every correct
process decides in the execution.

Validity: By Fig. 3, it is clear that, in any execution of the
algorithm, only processQk writes intoDk, and the valueQk

writes there is its initial value, for eachk ∈ {0, 1}. Therefore,
to show that the execution satisfies Validity, it suffices to show
that if a process decides the value inDd, for somed ∈ {0, 1},
thenQd has previously written intoDd. This follows from
Lemma 2, since in every execution of the algorithm, a process
writes intoDk before applyingenroll(k) to O, for each
k ∈ {0, 1}.
Agreement: Suppose that two distinct processesQ andQ′
have decided in the execution (otherwise, Agreement is triv-
ially satisfied). By Lemma 2 and the specification of the al-
gorithm (lines 6–7 ofQ0 andQ1, and lines 5–6 ofQ2), both
Q andQ′ decide the value in the same registerDd, where
d ∈ {0, 1} is the parameter of the firstenroll operation ap-
plied to thedor objectO during the execution. As just argued,
a process readsDd only afterQd haswritten into it. Since only
one value is written intoDd,Q andQ′ decide the same value.
Thus Agreement is satisfied.

3.3 Typedor does not solve wait-free Consensus
for two processes

In this subsection we show that, using only objects of typedor
and registers, we cannot solve wait-free Consensus for two
processes. (Recall that the concepts of wait-freedom and one-
resilience coincide for two-process algorithms.) The argument
uses a technique introduced in [10], and is outlined in the
following three paragraphs.

Assume, by way of contradiction, that there exists a wait-
free Consensus algorithmA for two processesP0 andP1 that
uses only objects of typedor and registers. Assume, further,
thatA uses a minimal number ofdor objects. Since wait-
free Consensus for two processes is not solvable using only
registers [12], it follows thatA uses at least onedor object.

To derive a contradiction, we proceed in two stages. In
the first stage, we show that the assumed algorithmA must
have a special configuration,B0, and ador object,O, with the
following properties: For eachk ∈ {0, 1}, processPk has an
enroll(k + 2) operation toO pending inB0. Starting from
B0, after applyingenroll(k + 2) to O, Pk cannot apply
enroll(v) toO, for anyv ∈ {0, 1, 2, 3}, and cannot decide
unless it applies

• anenroll(4) toO; or
• anenroll(5) to O, after the other process has taken at
least one step.

Furthermore, if each process is about to apply toO the
enroll(4) or enroll(5) that it must execute before decid-
ing, one process must be about to applyenroll(4) while the
other must be about to applyenroll(5): they cannot both be
about to applyenroll with the same parameter.

In the second stage of the proof, starting from configura-
tion B0, we show how to solve Consensus for two processes
without using thedor objectO. Roughly speaking, the fact
that, starting fromB0, the two processes must applyenroll

operations toO with differentparameters is exploited to sat-
isfy Agreement, while the fact that the process that is to apply
enroll(5)must do so in a nonsolo execution is exploited to
satisfy Validity. In this way we construct a Consensus algo-
rithm for two processes that uses onedor object less thanA.
This contradicts our hypothesis that the number ofdor objects
used inA is minimal. This contradiction means that the as-
sumed wait-free Consensus algorithmA that uses onlydor
objects and registers does not exist.

3.3.1 Preliminaries

We first review the definition of valence for configurations of a
Consensus algorithm, which was first defined in [5]. LetC be
any configuration ofA. We say thatC is bivalent if there are
configurationsC0 andC1, reachable fromC, such that some
process decides0 in C0 and some process decides1 in C1.
C is v-valent, for v ∈ {0, 1}, if there is no configurationC ′
reachable fromC so that some process decidesv in C ′. C is
univalentif it is either 0-valent or1-valent. We say that two
univalent configurationshave the samevalenceif they are both
0-valent or both1-valent, andhaveopposite valenceif one is0-
valent and the other is1-valent. By the definitions of univalent
andbivalent configuration it follows that if a configurationC of
A is neither univalent nor bivalent, then no process decides in
any configuration reachable fromC. Since this contradicts the
Termination property, we conclude that every configuration of
a Consensus algorithm is either univalent or bivalent.

Weestablish someelementary properties of configurations
that will be used subsequently.

Lemma 3 Let C be any configuration ofA, andP be any
process. There exists a solo scheduleS of processP such that
S is applicable toC andP has decided inS(C).

Proof. Immediate from the Termination requirement of Con-
sensus and the fact that algorithmA is wait-free.

Lemma 4 LetC andC ′ be any two univalent configurations
such that the state of some process and each object is the same
in C as inC ′. Then,C andC ′ have the same valence.

Proof. LetP be the process whose state is the same inC as in
C ′, andS be a solo schedule ofP applicable toC such thatP
has decided inS(C). Because the state ofP and each object
is the same inC as inC ′, by induction on the length ofS, we
can show thatS is also applicable toC ′. This implies thatP
has decided the same value, sayv ∈ {0, 1}, in bothS(C) and
S(C ′). Thus, bothS(C) andS(C ′) arev-valent. SinceC and
C ′ are univalent, it follows that they must also bev-valent.

Lemma 5 LetC andC ′ be any configurations ofA. LetS be
any finite schedule applicable toC such that (i) every process
that takes a step inS and every object, except onedor object
O, is in the same state inC as inC ′; (ii) O is in a white state
in C ′ and inS′(C), for every prefixS′ of S; and (iii) every
operation applied toO in S is stationary at the state ofO in
C ′. Then,

• S is applicable toC ′,
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• every process that takes a step inS and every object except
O is in the same state inS(C) as inS(C ′), and

• O is in the same state inC ′ as inS(C ′).

Proof. Let Si be the prefix ofS of length i. Recall that a
revealoperationapplied toadorobject returns1 if theobject
is in a white state, and that a stationary operation applied to a
dor object does not change the object’s state. Using these two
properties, by a straightforward induction oni, we can show
that

Si is applicable toC ′, every process that takes a step
in S and every object exceptO is in the same state in
Si(C) as inSi(C ′), andO is in the same state inC ′
as inSi(C ′).

The lemma follows immediately from this statement.

3.3.2 Stage one of the proof

We now show the existence of a configuration and ador object
of A that satisfy the properties described at the beginning of
Sect. 3.3.

Lemma 6 There exist a bivalent configurationC ofA, steps
e0 ande1 of processesP0 andP1, respectively, applicable to
C, and an objectO such that

• e0(C) ande1(C) are univalent and have opposite valence,
and

• e0 ande1 both accessO.

Proof. Using a, by now, standard argument [5,6], it can be
shown thatA has a bivalent initial configurationI. From this,
and the fact thatA iswait-free, it follows that there is abivalent
configurationC, reachable fromI, so that any step applicable
to C leads to a univalent configuration. SinceA uses deter-
ministic types, for eachk ∈ {0, 1}, Pk has exactly one step,
ek, applicable toC. SinceC is bivalent whilee0(C) ande1(C)
are univalent, it follows thate0(C) ande1(C) have opposite
valence.

It remains to prove thate0 ande1 access the same object.
If not, it is easy to see thate0(e1(C)) = e1(e0(C)), which
contradicts thate0(C) ande1(C) have opposite valence.

In the rest of this section we focus exclusively on config-
urations that are reachable from the bivalent configurationC.
Without loss of generality, we assume thate0(C) is 0-valent
ande1(C) is 1-valent. (If not, we simply interchange the roles
of e0 and e1 throughout the argument presented below.) In
what follows, letq∗ denote the state ofO in configurationC.

Since this stage of the proof is rather long, we give a
roadmap to help explain its overall structure. We first prove
thatO is a dor object (Lemma 8) and thatq∗ is the fresh
state (Lemma 10). The proof of this makes heavy use of the
earlier-noted fact thatdor exhibits a great deal of commuta-
tivity and overwriting between operations. We then prove that
there is a solo scheduleE0 of P0 so thatP0 hasenroll(2) to
O pending inE0(e1(e0(C))) (Lemma 11). In addition, there
is a solo scheduleE1 of P1 so thatP1 hasenroll(3) to O
pending inE1(E0(e1(e0(C)))) (Lemma12). Finally, we show
that configurationB0 = E1(E0(e1(e0(C)))) anddor object
O (defined above in Lemma 6) have the properties stated at
the beginning of Sect. 3.3 (Lemmata 15 and 16).

Lemma 7 The two operations pending inC do not commute
at q∗, and neither one of them overwrites the other atq∗.

Proof. Using a standard argument [6,12] we show that the
operations pending inC neither commute nor overwrite one
another. Letop0 andop1 denote the operations toO of P0
andP1, respectively, that are pending inC. Let δ be the state
transition function ofO’s type.
Operationsop0 andop1 do not commute atq∗: If not, then
by definition there exist responsesr0, r1 and statesq0, q1, q
such that, for eachk ∈ {0, 1}, δ(q∗, opk) = (rk, qk) and
δ(qk, opk) = (rk, q). Thus,e0 = (P0, op0,O, r0) ande1 =
(P1, op1,O, r1), and they are applicable toe1(C) ande0(C),
respectively. Also,O has the same state, namelyq, in both
e0(e1(C)) ande1(e0(C)). Thus, the state of each process and
each object is in the same state ine0(e1(C)) as ine1(e0(C)).
By Lemma4,e0(e1(C)) ande1(e0(C)) have the same valence.
This contradicts the fact thate0(e1(C)) ande1(e0(C)) have
opposite valence (becausee1(C) ande0(C) do).

Neither one ofop0 andop1 overwrites the other atq∗: Sup-
pose, for contradiction, thatopk overwritesopk, for some
k ∈ {0, 1}. Then, there exist responsesr0, r1 and statess, q
such thatδ(q∗, opk) = (rk, s) andδ(q

∗, opk) = δ(s, opk) =
(rk, q). Thus,ek = (Pk, opk,O, rk) andek = (Pk, opk, O,
rk), andek is applicable toek(C). After ek is applied toek(C),
it is easy to see that the state ofPk and each object (includ-
ing O) is the same inek(ek(C)) as inek(C). By Lemma 4,
ek(ek(C)) andek(C) have the same valence. This contradicts
the fact thatek(ek(C)) is k-valent (becauseek(C) is) while
ek(C) is k-valent.

Lemma 8 ObjectO is of typedor; furthermore, no operation
pending inC is stationary atq∗.

Proof. If O was a register, then each of the operations ofP0
andP1 pending inC is either a read or a write toO. For each of
the four possible combinations, it is straightforward to verify
that the two operations commute or one of them overwrites
the other, contradicting Lemma 7. Thus,O is ador object.

If, for somek ∈ {0, 1}, the operation ofPk pending in
C is stationary atq∗, then the operation ofPk pending inC
overwritesPk ’s operation atq∗. But this is not possible, by
Lemma 7.

From the specification ofdor, it is easy to verify that every
operation is stationary at , and that thereveal operation
is stationary at every state ofdor. By Lemma 8,q∗ 	= and
both processes have anenroll operation toO pending inC.
Therefore,e0 ande1 areenroll steps toO, and thus are ap-
plicable toe1(C) ande0(C), respectively. For eachk ∈ {0, 1},
let vk be the parameter ofPk ’s enroll operation pending in
C.
Lemma 9 If q∗ is normal, then

(a) For eachk ∈ {0, 1}, enroll(vk) is not upsetting atq∗.
(b) v0 	= v1.

Proof. (a) Suppose, for contradiction, thatenroll(vk) is
upsetting atq∗ for somek ∈ {0, 1}.Without loss of generality,
assume thatk = 0. By Lemma 8,enroll(v1) cannot be
stationary inq∗, and therefore there are two remaining cases:
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Case 1. enroll(v1) is upsetting atq∗: Then,enroll (v0)
andenroll(v1) overwrite each other atq∗. This contradicts
Lemma 7.

Case 2.enroll(v1) is ordinary atq∗: Let q be the state of
O in e1(C). Sinceenroll(v0) is upsetting atq∗, it is easy to
verify from the specification ofdor thatenroll(v0) is also
upsetting atq. But thenenroll(v0) overwritesenroll(v1)
at q∗. This again contradicts Lemma 7.

Since both cases contradict Lemma 7, noenroll operation
toO pending inC is upsetting atq∗, as wanted.

(b) Note that, for any stateq of dor andv ∈ {0, . . . , 5}, two
enroll(v) operations commute atq. If, contrary to this part
of the lemma,v0 = v1 = v, for somev ∈ {0, . . . , 5}, the two
enroll(v) operations pending inC commute atq∗, contrary
to Lemma 7. Thus,v0 	= v1.

In the rest of this section, letC0 = e1(e0(C)) andC1 =
e0(e1(C)).

Lemma 10 q∗ = .

Proof. By Lemma 8,q∗ 	= . Thus, it suffices to show that
q∗ is not normal. By Lemmata 7–9, ifq∗ is a normal state, the
following properties hold: The twoenroll operations pend-
ing inC have distinct parameters, and they are ordinary, do not
commute, and neither one of them overwrites the other atq∗.
By inspection of Fig. 2, it can be verified that no normal state
exceptN0 satisfies this property. (See Fig. 5 for the details of
this verification.) We now eliminate the remaining possibility,
i.e., thatq∗ = N0.

By the specification ofdor, enroll(v) is ordinary atN0
for v ∈ {1, 2, 3, 4}. Thus, by Lemma 8 and Lemma 9(a),
v0, v1 ∈ {1, 2, 3, 4}. First we prove thatv0, v1 	= 1. Sup-
pose to the contrary thatvk = 1 for somek ∈ {0, 1}. Then,
by Lemma 9(b),vk ∈ {2, 3, 4}. By inspection of the graph
in Fig. 2, at stateN0, enroll(2) andenroll(1) commute,
enroll(3) overwritesenroll(1), and enroll(4) over-
writes enroll(1). Each of these three cases contradicts
Lemma 7. Hence,v0, v1 	= 1.

Next we show thatv0, v1 	= 4. Again suppose, for con-
tradiction, thatvk = 4 for somek ∈ {0, 1}. Then vk ∈
{2, 3} (by Lemma 9(b) and the claim in the preceding para-
graph). By inspection of Fig. 2,enroll(4) commutes with
bothenroll(2)andenroll(3)atN0. This contradicts Lem-
ma 7.

We have shown thatv0, v1 	∈ {1, 4}. Thus,v0, v1 ∈ {2, 3}
and, by Lemma 9(b), they are distinct. Without loss of gener-
ality assume thatv0 = 2 andv1 = 3. (The other case, where
v0 = 3 andv1 = 2, is similar.) Thus,e0 = (P0,enroll(2),
O, ack) ande1 = (P1,enroll(3),O, ack). Note thatC0 and
C1 are identical, except the state ofO in the former isN023
while in the latter it isN0123.

Claim 10.1There is a schedulêS such that (a)̂S is applicable
to bothC0 andC1 (b) the state of each process and each object
exceptO is the same in̂S(C0) as inŜ(C1), (c) each process has
anenroll operation toO pending in botĥS(C0) andŜ(C1),
and (d) the state ofO in Ŝ(C0) is N023 while in Ŝ(C1) it is
N0123.

Proof of Claim 10.1.By Lemma 3,P0 has a solo schedule
S applicable toC0 such thatP0 has decided inS(C0). Since

For eachv ∈ {1, 2, 3, 4}, enroll(v) is ordinary atNV if v �∈ V .
Also, enroll(5) is ordinary atNV if 5 �∈ V and2 and at least one
of {3, 4} are inV .

1. N01:Onlyenroll(2),enroll(3)andenroll(4)areordinary
atN01, and any two of these three commute.

2. N02: Only enroll(1), enroll(3) and enroll(4) are or-
dinary atN02; andenroll(4) overwritesenroll(1), while
enroll(3) commutes withenroll(1) andenroll(4).

3. N012: Only enroll(3) andenroll(4) are ordinary atN012,
and they commute.

4. N013: Only enroll(2) andenroll(4) are ordinary atN013,
and they commute.

5. N014: Only enroll(2) andenroll(3) are ordinary atN014,
and they commute.

6. N023: Only enroll(1), enroll(4) and enroll(5) are or-
dinary atN023; andenroll(4) overwritesenroll(1), while
enroll(5) commutes withenroll(1) andenroll(4).

7. N0123: Onlyenroll(4) andenroll(5) are ordinary atN0123,
and they commute.

8. N0124: Onlyenroll(3) andenroll(5) are ordinary atN0124,
and they commute.

9. N0134: Only enroll(2) is ordinary atN0134.
10. N0235: Onlyenroll(1) andenroll(4) are ordinary atN0235,

andenroll(4) overwritesenroll(1).
11. N01234: Only enroll(5) is ordinary atN01234.
12. N01235: Only enroll(4) is ordinary atN01235.
13. N01245: Only enroll(3) is ordinary atN01245.
14. N012345: There is no ordinaryenroll operation atN012345.

Fig. 5.Normal states that cannot beq∗

C0 is 0-valent,P0 decides 0 inS(C0). We claim thatS has an
enroll step toO. If not, sinceN023 andN0123 (the states of
O in C0 andC1, respectively) are bothwhite and sincereveal
(the only other kind of operation that may be applied toO) is
stationary at these states, then by Lemma 5,S is applicable
to C1 andP0 has the same state inS(C0) as inS(C1). This
impliesP0 also decides 0 inS(C1), which contradicts the fact
thatC1 is 1-valent. Thus,S contains anenroll step toO, as
claimed.

Let S0 be the longest prefix ofS that does not contain an
enroll step toO. Again by Lemma 5,S0 is applicable toC1,
the state of each process and each object exceptO is the same
in S0(C0) as inS0(C1), and the state ofO in S0(C0) isN023
while in S0(C1) it is N0123. Clearly, by the definition ofS0,
the operation ofP0 pending in bothS0(C0) andS0(C1) is an
enroll toO.

Applying a similar argument (replacingP0 with P1) to
configurationsS0(C0) andS0(C1), we can show that there ex-
ists a solo scheduleS1 of P1 such thatS1 is applicable to both
S0(C0) andS0(C1), the state of each process and each object
exceptO is the same inS1(S0(C0)) as inS1(S0(C1)), P1 has
anenroll toO pending in bothS1(S0(C0)) andS1(S0(C1)),
and the state ofO in S1(S0(C0)) isN023 while inS1(S0(C1))
it is N0123. Recall thatP0 has anenroll to O pending in
S0(C0) andS0(C1). SinceS1 is a solo schedule ofP1, the op-
eration ofP0 pending in bothS1(S0(C0)) andS1(S0(C1)) is
still an enroll to O. Thus,Ŝ = S0 · S1 has the properties
stated in the claim. Claim 10.1
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Let A0 = Ŝ(C0) andA1 = Ŝ(C1), and letw0 andw1
be the parameters of theenroll operations ofP0 andP1,
respectively, pending in bothA0 andA1. For eachk ∈ {0, 1},
let ck = (Pk,enroll(wk),O, ack); i.e.,ck is the step ofPk

that is applicable to bothA0 andA1. There are four cases:

Case 1. wk ∈ {0, 2, 3}, for somek ∈ {0, 1}: Then
enroll(wk) is upsetting in bothN023 andN0123 (see Fig. 2).
SinceO has statesN023 andN0123 in configurationsA0 and
A1, respectively, it follows thatO is in state in bothck(A0)
andck(A1). Then, the state ofPk and each object (including
O) in ck(A0) is the same as inck(A1). By Lemma 4,ck(A0)
andck(A1) have the same valence. This contradicts the fact
thatck(A0) is 0-valent andck(A1) is 1-valent.

Case 2. wk = 4, for somek ∈ {0, 1}: In this case, the
state ofO in bothck(A0) andck(A1) isN01234 (see Fig. 2).
Thus, the state ofPk and each object is the same inck(A0) as
in ck(A1). By Lemma 4,ck(A0) andck(A1) have the same
valence. which is a contradiction as in Case 1.

Case 3. wk = 1, for somek ∈ {0, 1}: In this case,O is
in the same state, namelyN0123, in bothck(A0) andA1 (see
Fig. 2). The state ofPk and each object is the same inck(A0)
as inA1. By Lemma 4,ck(A0) andA1 have the same valence.
This contradicts the fact thatck(A0) is 0-valent whileA1 is
1-valent.

Case 4.w0 = w1 = 5: Then,O is in the same state, namely
, in bothc1(c0(A0)) andc1(c0(A1)) (see Fig. 2). It follows

that every process and every object is in the same state in
c1(c0(A0)) as inc1(c0(A1)). This contradicts Lemma 4, since
the nodesc1(c0(A0)) andc1(c0(A1)) have opposite valence.

Each of these cases leads to a contradiction. Thusq∗ 	= N0,
and the lemma follows.

By the specification ofdor (see Fig. 2), every operation –
exceptenroll(0) andenroll(1) – is stationary at . Thus,
by Lemma 8, the two operations toO pending inC must be
eitherenroll(0) or enroll(1). Furthermore, one of these
must beenroll(0), while the other isenroll(1). (If not,
since twoenroll(0)’s or two enroll(1)’s commute at ,
then the two operations pending inC commute at , which
contradicts Lemma 7.) Without loss of generality, we assume
thatP0 andP1 haveenroll(0) andenroll(1) toO, respec-
tively, pending inC. (If not, we simply interchange the roles
of P0 andP1, as well as ofe0 ande1, throughout the argu-
ment presented below.) Thus,e0 = (P0,enroll(0),O, ack)
ande1 = (P1,enroll(1),O, ack), and thereforeC0 andC1
differ only in that the state ofO in C0 isN01 while in C1 it is
.

Lemma 11 There exists a solo scheduleE0 of processP0
such that

• E0 is applicable to bothC0 andC1;
• E0(C0) andE0(C1) are identical, except the state ofO in
E0(C0) isN01, while inE0(C1) it is ; and

• P0 has anenroll(2) to O pending in bothE0(C0) and
E0(C1).

Proof. Consider the configuratione0(C). By Lemma 3,P0 has
a solo scheduleS applicable toe0(C) such thatP0 has decided
inS(e0(C)). Sincee0(C) is 0-valent,P0 decides 0 inS(e0(C)).

For eachk ∈ {0, 1}, ek = (Pk, enroll(k), O, ack).

Fig. 6.A solo scheduleS of P0 that is applicable toC

(See Fig. 6.) We claim thatS contains anenroll(v) step to
O for somev ∈ {0, . . . , 4}. To prove this claim we suppose,
for contradiction, thatS does not contain such anenroll
step. First, note that processP0 and each object exceptO is in
the same state ine0(C) as inC1 (recall thatC1 = e0(e1(C))).
Also, the state ofO in e0(C) isN0 while in C1 it is ; thus,
O is in a white state in bothe0(C) andC1. Sinceenroll(5)
andreveal (the only operations that may be applied toO in
S) are stationary at bothN0 and , it follows from Lemma 5
(with C = e0(C) andC ′ = C1) thatS is applicable toC1 and
P0 has the same state inS(e0(C)) as inS(C1). This implies
thatP0 also decides 0 inS(C1), which contradicts the fact that
C1 is 1-valent. Hence,S contains anenroll(v) step toO, for
somev ∈ {0, . . . , 4}, as claimed.

Let E0 · d be the shortest prefix ofS that contains an
enroll step toO other thanenroll(5). Thus,d = (P0,
enroll(v), O, ack) for somev ∈ {0, . . . , 4}, andE0 con-
tains noenroll step toO exceptenroll(5). SinceN0,N01
and (the states ofO in e0(C), C0 andC1, respectively) are
white and bothenroll(5) andreveal (the only operations
that may be applied toO in E0) are stationary at these states,
it follows from Lemma 5 (withC = e0(C), C ′ ∈ {C0, C1},
andS = E0) that

• E0 is applicable to bothC0 andC1,
• the state ofP0 and each object exceptO is the same in
E0(C0) as inE0(C1), and

• the state ofO in E0(C0) isN01, while inE0(C1) it is .

Clearly,P1 has the samestate inE0(C0)as inE0(C1) (sinceE0
is a solo schedule ofP0). To complete the proof of this lemma,
it remains to show thatv = 2. For this, it suffices to preclude
the possibility thatv ∈ {0, 1, 3, 4}. LetA0 = d(E0(e0(C)))
andA1 = d(E0(C1)).

Case 1. v = 0: SinceO is in stateN0 in E0(e0(C)) and
enroll(0) is upsetting atN0 (see Fig. 2),O is in state in
A0. SinceO is in state in E0(C1), it remains in that state in
A1. Thus, the state ofP0 and each object is the same inA0 as
in A1. By Lemma 4,A0 andA1 have the same valence. This
is a contradiction, sinceA0 andA1 have opposite valence.
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Case 1. v ∈ {1, 3, 4}: SinceO has stateN0 in E0(e0(C)),
the state ofO in A0 isN01 if v = 1,N013 if v = 3, andN014
if v = 4 (see Fig. 2). Recall thatP1 has anenroll(1) toO
pending ine0(C). Consequently, asE0 · d is a solo schedule
of P0, the operation ofP1 pending inA0 is still enroll(1) to
O. Thus,e1 = (P1,enroll(1),O, ack) is the step ofP1 that
is applicable toA0. By the specification ofdor, enroll(1) is
upsetting at each of{N01, N013, N014}. It follows thatO is in
state in e1(A0). Then, each process and object (including
O) has the same state ine1(A0) as inA1. By Lemma4,e1(A0)
and andA1 have the same valence. This contradicts the fact
thate1(A0) is 0-valent andA1 is 1-valent.

Lemma 12 Let E0 be as in Lemma 11. There exists a solo
scheduleE1 of processP1 such that

• E1 is applicable toE0(C0) andE0(C1);
• B0 = E1(E0(C0)) andB1 = E1(E0(C1)) are identical,
except the state ofO in B0 isN01 while inB1 it is ; and

• for somev ∈ {3, 4}, P1 has anenroll(v) toO pending
in bothB0 andB1.

Proof. Consider the configurationE0(C0). By Lemma 3, pro-
cessP1 has a solo scheduleS1 applicable toE0(C0) such that
P1 has decided inS(E0(C0)). By Lemma 5, using an argu-
ment similar to that in Lemma 11, we can show thatS has a
prefixE1 ·d such thatd = (P1,enroll(v),O, ack) for some
v ∈ {0, . . . , 4},E1 is applicable to bothE0(C0) andE0(C1),
andB0 = E1(E0(C0)) andB1 = E1(E0(C1)) are identical,
except that the state ofO in B0 is N01 while in B1 it is .
To complete the proof it remains to show thatv ∈ {3, 4}. For
this, it suffices to preclude the possibility thatv ∈ {0, 1, 2}.
Case 1. v ∈ {0, 1}: SinceO is in stateN01 in B0 and both
enroll(0) andenroll(1) are upsetting atN01 (see Fig. 2),
objectO is in state in d(B0). Clearly, asO is in state in
B1, it remains in state in d(B1). Therefore, each process and
object is in the same state ind(B0) as ind(B1). By Lemma 4,
d(B0) andd(B1) have the same valence. This contradicts the
fact thatd(B0) is 0-valent andd(B1) is 1-valent.

Case 1.v = 2: In this case,O is in stateN012 in d(B0) (see
Fig. 2). By Lemma 11,P0 hasenroll(2) to O pending in
bothE0(C0) andE0(C1). SinceE1 ·d is a solo schedule ofP1,
the operation ofP0 pending in bothd(B0) andd(B1) is still
enroll(2) toO. Let d′ = (P0,enroll(2),O, ack) denote
the step ofP0 that is applicable to bothd(B0) andd(B1).

Sinceenroll(2) is upsetting atN012 (the state ofO in
d(B0)), it follows thatO is in state in d′(d(B0)). Because
O is in state in e1(C), it is also in that state ind′(d(B1)).
Thus, each process and object is in the same state ind′(d(B0))
as ind′(d(B1)). By Lemma 4,d′(d(B0)) andd′(d(B1)) have
the same valence. This contradicts the fact thatd′(d(B0)) is
0-valent andd′(d(B1)) is 1-valent.

By Lemma 12, we can assume, without loss of generality,
thatP1 hasenroll(3) toO pending in bothB0 andB1. (If the
operation ofP1 toO pending inB0 andB1 is anenroll(4),
insteadofenroll(3), we interchange the roles ofenroll(3)
andenroll(4), and replace statesN013 andN0123 with states
N014 andN0124, respectively, throughout the argument pre-
sented below.)

For eachk ∈ {0, 1}, ek = (Pk, enroll(k), O, ack).

Fig. 7.Some configurations reachable fromC

To summarise,B0 andB1 satisfy the following properties:
They are 0-valent and 1-valent configurations, respectively,
reachable fromC and differ only in that the state ofO in B0
isN01 while in B1 it is . Furthermore, for eachk ∈ {0, 1},
processPk has anenroll(k + 2) to O pending in bothB0
andB1. (See Fig. 7.)

We now prove some properties of schedules that are ap-
plicable toB0.

Lemma 13 Let S be any schedule that is applicable toB0.
For eachk ∈ {0, 1}, the first step taken byPk in S is an
enroll(k + 2) to objectO.

Proof. Immediate from the fact that processPk has an
enroll(k + 2) to O pending in bothB0 andB1, for each
k ∈ {0, 1}.

LetS be any schedule of algorithmA that is applicable to
B0. We say thatS is decidingif it contains either

• anenroll(4) step toO, or
• anenroll(5) step toO by a process that appears after a
step inS by the other process.

S is nondecidingif it is not deciding.

Lemma 14 LetS be any schedule that is applicable toB0. If
S is nondeciding then

(a) S is applicable toB1, and the state of each process and
each object exceptO is the same inS(B0) as inS(B1);
and

(b) S contains at most oneenroll(2) step toO, at most one
enroll(3) step toO, and noenroll(v) step toO for
anyv ∈ {0, 1}.

Proof. (a) By Lemma 12,B0 andB1 differ only in that the
state ofO in the former isN01, while in the latter it is . As
mentioned, bothN01 and arewhite. SinceS is nondeciding,
S does not contain anenroll(4) step toO, or anenroll(5)
step toO by a process that appears after a step inS by the
other process. Recall that, for eachk ∈ {0, 1}, Pk has an
enroll(k + 2) to O pending inB0. Therefore,S does not
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contain anenroll(5) step toO that appears after both an
enroll(2) and anenroll(3) step toO. Given these facts, it
is easy to verify (using Fig. 2) that for every prefixS′ of S, the
state ofO in S′(B0) is one of{N01, N012, N013, N0123, }.
Since all these states are white and every operation of typedor
is stationary at (the state ofO in B1), by Lemma 5,S is
applicable toB1, and the state of each process and each object
exceptO is the same inS(B0) as inS(B1).
(b) Suppose, for contradiction, thatS contains more than one
enroll(2) step toO, or more than oneenroll(3) step toO,
or anenroll(v) step toO for somev ∈ {0, 1}. By inspection
of Fig. 2, it is easy to verify that, under this assumption, the
state ofO in S(B0) is . By (a),S is applicable toB1 and the
state of each process and each object exceptO is the same in
S(B0) as inS(B1). SinceO is in state in B1, it remains in
state in S(B1). Thus, the state of each process and object
(includingO) is the same inS(B0) as inS(B1). By Lemma 4,
S(B0) andS(B1) have the same valence. This contradicts the
fact thatS(B0) is 0-valent andS(B1) is 1-valent.

The next two lemmata show that the configurationB0 and
the dor objectO satisfy the properties stated at the begin-
ning of this section. That is, starting fromB0, no process can
decide unless at least one of them has applied toO either an
enroll(4), or anenroll(5)aftertheotherprocesshas taken
at least one step (Lemma 15). Furthermore, ifbothprocesses
are about to execute theenroll(4) or enroll(5) operation
toO that they must execute before they can decide, then one
of the two must execute anenroll(4), and the other must
execute anenroll(5): they can’t both be about to execute
the same operation (Lemma 16).

Lemma 15 LetS be any finite schedule that is applicable to
B0 such that some process has decided inS(B0). ThenS is
deciding.

Proof. LetP be the process that has decided inS(B0). Since
S(B0) is 0-valent,P decides 0 inS(B0). If S is nondeciding,
then by Lemma 14(a),S is applicable toB1, and the state of
each process and each object exceptO is the same inS(B0)
as inS(B1). In particular,P has the same state inS(B0) as in
S(B1). But thenP also decides 0 inS(B1). This contradicts
the fact thatS(B1) is 1-valent.

Lemma 16 LetS be any schedule applicable toB0 such that

• S is nondeciding;
• both processes have taken steps inS; and
• for eachk ∈ {0, 1}, processPk has anenroll(vk) toO
pending inS(B0) for somevk.

Then,v0, v1 ∈ {4, 5} andv0 	= v1.

Proof. SinceS is nondeciding and both processes have taken
steps inS, by Lemma13and Lemma14(b),S contains exactly
oneenroll(2) step toO, exactly oneenroll(3) step toO,
and noenroll(v) step toO for any v ∈ {0, 1}. Then, by
inspection of Fig. 2, it is easy to see thatO must be in state
N0123 in S(B0).

For eachk ∈ {0, 1}, let ck = (Pk,enroll(vk),O, ack).
From the specification ofdor, each of{enroll(v) : 0 ≤
v ≤ 3 } is upsetting atN0123. If vk ∈ {0, 1, 2, 3} for some

k ∈ {0, 1}, thenO is in state in ck(S(B0)). SinceO is
also in state in ck(S(B1)), it follows that each process and
each object is in the same state inck(S(B0)) as inck(S(B1)).
By Lemma 4,ck(S(B0)) andck(S(B1)) have the same va-
lence. This contradicts the fact thatck(S(B0)) is 0-valent and
ck(S(B1)) is 1-valent. Therefore,v0, v1 ∈ {4, 5}.

To complete the proof it remains to show thatv0 	= v1.
Sincec1 is an enroll step toO, it is applicable to both
c0(S(B0))andc0(S(B1)). LetA0 = c1(c0(S(B0)))andA1 =
c1(c0(S(B1))). If v0 = v1, thenO is in state in bothA0 and
A1. Then, each process and each object has the same state in
A1 as inA0. By Lemma 4,A0 andA1 have the same valence.
This contradicts the fact thatA0 is 0-valent andA1 is 1-valent.
Hence, it must be thatv0 	= v1, as desired.

3.3.3 Stage two of the proof

We now describe an algorithm, derived fromA, that solves
one-resilient Consensus for two processes,Q0 andQ1, and
uses onedor object less thanA. The idea is very similar to the
algorithm used in [10]: Each processQk simulates the actions
of the corresponding processPk in an execution ofA, and
uses this execution to determine what value to decide. In this
simulation, the processes are allowed to access all objects used
byA, exceptO; each of these objects is initialised to the state
it has in configurationB0.

Each processQk starts its simulation ofPk by pretending
that Pk is in the state it has in configurationB0. Based on
the current state of (the simulated)Pk, Qk determines the
operationop thatPk would apply next, and the objectO to
whichop would beapplied. IfO 	= O, thenQk hasaccess toO
and can applyop to it directly to determine the response and
update the (simulated) state ofPk accordingly. If, however,
O = O, this is not possible, sinceQk is not allowed to access
O. Instead, in this case,Qk acts as follows:

If op is areveal operation, thenQk pretends that it applied
this operation toO and received response 1.

If op is anenroll(v) operation, then there are three cases:

Case 1.v = k+ 2: Qk pretends that it applied this operation
toO and received responseack .

Case 2. v = 4: Qk stops simulating steps ofPk in A and
decides its own initial value.

Case 3. v = 5: Qk first checks whetherQk has simulated
its first step ofPk. If not, Qk pretends that it applied the
enroll(5) operation toO and received responseack . Other-
wise,Qk stops simulating steps ofA and decidesQk ’s initial
value.

If Qk does not decide, then it updates the (simulated) state of
Pk as if op were applied toO (as described above) and then
proceeds with the simulation of the next operation ofPk.

The algorithm is described more formally in Fig. 8. A few
remarks about the conventions used in the pseudocode are in
order. Recall, from Fig. 3, that Apply(Pk, op, O) is the proce-
dure by whichPk invokes operationop on objectO; it returns
the result of this invocation (and updates the state ofO accord-
ingly). In addition, we assume that we are given two functions
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Shared: all objects used inA exceptO,
each initialised to the state it has inB0

D0,D1: register, each initialised to⊥
R0,R1: register, each initialised to0
S : auxiliary variable : schedule ofA applicable toB0,
initially empty

Code for processQk, k ∈ {0, 1}
1 Dk := initial value ofQk

2 state := state ofPk in B0
3 while Qk has not decideddo
4 〈op, O〉 := NextOp(Pk, state)
5 if O 	= O then
6 [[ r := Apply(Pk, op, O)
7 S := S · (Pk, op, O, r) ]]
8 state := NextState(Pk, state, r)
9 else(∗ O = O ∗)
10 if op = reveal then
11 S := S · (Pk,reveal,O, 1)
12 state := NextState(Pk, state, 1)
13 else ifop = enroll(k + 2) then
14 [[ Rk := 1
15 S := S · (Pk,enroll(k + 2),O, ack) ]]
16 state := NextState(Pk, state, ack)
17 else ifop = enroll(5) then
18 [[ if Rk = 0 then
19 S := S · (Pk,enroll(5),O, ack) ]]
20 state := NextState(Pk, state, ack)
21 else
22 decideDk
23 else(∗ op = enroll(4) ∗)
24 decideDk

Fig. 8.Solving wait-free Consensus for two processes usingA with
one fewerdor object

that describe the behaviour of processesP0 andP1 inA (these
correspond to the functionsν andτ discussed when we for-
mally defined processes in Sect. 2.2).

• NextOp(Pk, s): returns the pair〈op, O〉, where the next
operation thatPk executes inAwhen in states is to apply
op to objectO.

• NextState(Pk, s, r): returns the state thatPk enters inA if
it receives responser from the operation it invokes when
in states.

In the algorithm, registerRk, k ∈ {0, 1}, with initial
value 0 is used by processQk to indicate whether it has simu-
lated a step ofPk, Specifically,Qk writes 1 intoRk to signify
that it has simulated the step ofPk that is pending inB0 (lines
14–15). Another shared registerDk is usedbyQk intowhich it
writes its initial value for Consensus before it starts simulating
the steps ofPk (line 1). In addition to these shared variables,
we also use an auxiliary variableS whose value, informally
speaking, is thescheduleof stepsofA thathavebeensimulated
byQ0 andQ1 so far. This variable is not needed by the algo-
rithm, but it is useful in proving its correctness (Lemma17). In
one atomic step, besides accessing an ordinary variable, each
process can also modify the auxiliary variableS. To empha-
sise this, we bracket with “[[· · · ]]” the actions that correspond
to an atomic step affecting both an ordinary variable and the
auxiliary variableS.

Lemma 17 If A is a wait-free Consensus algorithm for pro-
cessesP0 andP1, then the algorithm in Fig. 8 is also a wait-
free Consensus algorithm for processesQ0 andQ1, using one
fewerdor object.

Proof. It is obvious that the algorithm in Fig. 8 uses one fewer
dor object thanA. Consider an arbitrary execution of the algo-
rithm in Fig. 8. We must prove that in this execution the three
properties of Consensus – Termination, Validity and Agree-
ment – are satisfied. First we establish some facts.

Let Si be the value of the auxiliary variableS whenS
contains a schedule with exactlyi steps. A straightforward in-
duction onalli ≥ 0 such thatSi is defined shows the following
invariants:

(a) Si is applicable toB0.
(b) Si is nondeciding.
(c) LetQk be the process that assignsSi to S, andstatek be

the value to whichQk sets its local variablestate just after
assigningSi to S. For allj ≥ i, if Sj is defined and does
not contain a step ofPk after its prefixSi, thenstatek is
the state of processPk in configurationSj(B0) ofA.

We now turn to the proof that the three properties of a Con-
sensus algorithm are satisfied.

Termination: Suppose, for contradiction, thatQk is correct
and never decides in the execution. This means that thewhile
loopof processQk doesnot terminate. Thus, there is an infinite
scheduleS∗ ofA that contains infinitelymanystepsofPk such
thatS∗ is applicable toB0 and is nondeciding (by Invariants (a)
and (b) above). By Lemma 15,Pk does not decide inS′(B0),
for all prefixesS′ of S∗. This contradicts the fact thatA is a
wait-freeConsensusalgorithm for twoprocesses (inparticular,
it contradicts the Termination property ofA).

Validity: In any execution of the algorithm in Fig. 8, only pro-
cessQk writes intoDk, for eachk ∈ {0, 1}, and the valueQk

writes there is its initial value (line 1). Thus, to show the exe-
cution satisfies Validity, it suffices to show that ifQk decides
the value inD�, thenQ� has previously written intoD�. There
are two cases:

Case 1. Qk decides in line 24:ThenQk decides the
value inDk, into which it has previously written.
Case 2.Qk decides in line 22:ThenQk readsRk = 1
in line 18. This means thatQk has already executed
line 14, and hence line 1 as well. Thus,Qk has written
intoDk beforeQk decides the value inDk.

Agreement:Suppose bothQ0 andQ1 decide in the execution.
(Otherwise, Agreement is trivially satisfied.) LetS∗ be the
value ofS after both processes have decided. (Note thatS∗
is finite.) For eachk ∈ {0, 1}, let statek be the value of the
local variablestate of Qk whenQk decides. By Invariants
(a) and (b),S∗ is applicable toB0 and is nondeciding. By
Invariant (c),statek is the state ofPk in S∗(B0), and by the
algorithm in Fig. 8,Qk decides only when the operation of
Pk pending inS∗(B0) is enroll(vk) to O, for somevk.
Also bothP0 andP1 have taken steps inS∗ (because, by the
algorithm in Fig. 8, eachQk must simulate at least one step of
Pk before deciding). We have thus shown that the hypothesis
of Lemma 16 applies forS = S∗. Therefore, by Lemma 16,
v0, v1 ∈ {4, 5} andv0 	= v1. Thus, one ofQ0 andQ1 decides
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by line 22, while the other decides by line 24. Therefore, both
processes decide the value in the same registerD�, for some
� ∈ {0, 1}. By Validity, this happens afterQ� has written into
D�. Since at most one value is written intoD�, both processes
decide that one value.

Equipped with Lemma 17, we can now prove the main
result of this section.

Theorem 2 There is no wait-free Consensus algorithm for
two processes using onlydor objects and registers.

Proof. Suppose, for contradiction, that there is a wait-free
Consensus algorithm for two processes using onlydor ob-
jects and registers. Using König’s Lemma, it is easy to see
that any wait-free Consensus algorithm that uses objects that
belong to types that exhibit finite nondeterminismuses finitely
many objects. Sincedor andregister are deterministic types
(and,a fortiori, they exhibit finite nondeterminism), the as-
sumed algorithm uses a finite number ofdor objects. LetA be
such an algorithm that uses a minimal number ofdor objects.
Since wait-free Consensus for two processes in unsolvable us-
ing registers alone [6,12],A uses at least onedor object. By
Lemma 17, we can construct a wait-free Consensus algorithm
for two processes that uses one fewerdor object, contrary to
the definition ofA.

4 The case of four or more processes

In this section we show that forn ≥ 4, any set of typesS
(that includesregister) strong enough to solve one-resilient
Consensus amongn processes is also strong enough to solve
one-resilient Consensus amongn − 1 processes. This holds
even ifSmaycontainnondeterministic types.Weprove this by
showing how a one-resilient Consensus algorithm forn ≥ 4
processes can be simulated by just three processes using only
registers in addition to the objects already used by theConsen-
sus algorithm. This simulation implies that, ifS implements
one-resilient Consensus forn processes, it also implements
one-resilient Consensus for three processes; and therefore,
as mentioned in Sect. 1, for any number of processes that is
greater than (or equal to) 3. In particular, then,S implements
one-resilient Consensus forn− 1 processes.

Similar techniqueswere previously used byBorowsky and
Gafni [1] (see also [13,2]) and by Chandra et al. [4]. (See
Sect. 5 for further comments on howour approach differs from
these earlier ones.) In Sect. 4.1 we give a special implemen-
tation of typetest-and-set-register that is used as a subrou-
tine in our simulation. The simulation itself is described in
Sect. 4.2.

4.1 Typetest-and-set-register

The object typetest-and-set-register has two states 0 and
1, and supports a single operationtest&set. A test&set
sets the state to 1 and returns the old state. Thus, the first
timetest&set is applied to state 0, it changes the state and
returns 0; thereafter, anytest&set returns 1 leaving the state
unchanged. In the sequel we shall refer to an object of type
test-and-set-register as a “TAS register”.

Shared: Active: array [0..s − 1] of register, each is a Boolean
variable, initially false

Closed : register, a Boolean variable, initially false
Done: register, a Boolean variable, initially false

test&set, return 0 or 1. Code for processQk,k ∈ {0, . . . , s−1}
1 if Closed then return 1
2 Closed := true
3 Active[k] := true
4 for i := k to s− 1 do
5 repeat
6 for j := 0 to k − 1 do
7 if Active[j] then
8 Active[k] := false; return 1
9 until i = k or not Active[i]

(∗ Beginning of CRITICAL SECTION∗)
10 if not Done then
11 Done := true
12 result := 0
13 else
14 result := 1

(∗ End of CRITICAL SECTION∗)
15 Active[k] := false;return result

Fig. 9.A non-wait-free implementation of a TAS register using only
registers.

Our simulation (of a Consensus algorithm forn ≥ 4 pro-
cesses by only three processes) uses a non-wait-free imple-
mentation oftest-and-set-register, initialised to state 0, for
three processes. The implementation is not wait-free because
a correct process may initiate atest&set operation but be
unable to finish it because another process crashes while ap-
plying its own test&set operation. The implementation,
however, guarantees that process crashes can preventat most
onecorrect process from finishing itstest&set invocation.
This property, as we shall see, is crucial to our simulation.

An implementation of TAS registers shared bys ≥ 2 pro-
cesses with this property is shown in Fig. 9. It is based on
a mutual exclusion algorithm discovered independently by
Burns and Lynch [3], and Lamport [9]. A shared variable
Closed , initially false, is used to record whether atest&set
has already been invoked on the TAS register. To apply a
test&set, a process first checks ifClosed is true (mean-
ing, that atest&set has been invoked). If so, the process
immediately returns 1. Otherwise, the process setsClosed to
true and tries to enter the critical section (CS) – perhaps com-
peting with other processes that also foundClosed = false.
Thetest&set operation of the first process to enter the CS
returns 0; all others return 1. To determinewhich process is the
first to enter the CS, we use another shared Boolean variable
Done with initial value false. The first process that enters the
CS findsDone = false, and setsDone to true before it leaves
the CS.

Lemma 18 In any execution of the algorithm in Fig. 9, it is
impossible that twoprocessesexecute thecritical section (lines
10–14) at the same time.

Proof. Suppose, for contradiction, that two processes, say
Qk andQ�, are in the critical section (CS) at the same time.
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Without loss of generality, assume thatk < �. SinceQ� enters
the CS,Q� must findActive[k] = false when it executes
line 7 with j = k. So,Q� executes its line 3 beforeQk. (This
is because, by our assumption thatQk andQ� execute the
CS concurrently, after settingActive[k] to true in line 3,Qk

can setActive[k] back to false only in line 15.) SinceQk

also enters the CS,Qk must findActive[�] = false when it
executes line 9 withi = �. So,Qk executes its line 3 before
Q� – a contradiction.

Consider an infinite executionE of processesQ0, . . . ,
Qs−1 in which each of them invokes (sequentially) zero or
more test&set operations by executing the algorithm in
Fig. 9. We say thatQ is potentially interruptingin E if it
crashes inE during its firsttest&set invocation, after it has
taken at least one step. We say thatQ is blockedin E if it
is correct inE but never returns a response to atest&set
invocation it has initiated. Note that a process may be blocked
in E only during its first test&set invocation (because
in all subsequenttest&set invocations, the process finds
Closed = true and returns immediately in line 1). The next
lemma shows that the algorithm in Fig. 9 implements a TAS
register with the “limited blocking” property described at the
beginning of this subsection.

Lemma 19 Consider any infinite concurrent execution of
processesQ0, . . . , Qs−1 in which each of them invokes (se-
quentially) zero or moretest&set operations by executing
the algorithm in Fig. 9. In this execution,

(a) at most one process is blocked;
(b) if a process is blocked, then some process is potentially

interrupting;
(c) if there is no potentially interrupting process, then some

process’ firsttest&set invocation returns 0; and
(d) at most onetest&set invocation returns 0.

Proof. (a) Suppose, for contradiction, that there are two
blocked processes, sayQk andQk′ , for somek 	= k′. Without
loss of generality, assume thatk′ < k. By Fig. 9 and the defini-
tion of blocked process, it follows thatQk andQk′ are correct
and execute nonterminatingrepeat loops in lines 5–9. Fur-
thermore, eventuallyActive[k] = Active[k′] = true, forever.
Sincek′ < k, k′ ∈ {0, 1, . . . , k − 1}. Therefore, eventually
Qk will execute line 7 withj = k′ afterActive[k′] has been
permanently set to true.At that time,Qk will execute line8and
return, contradicting that it executes a nonterminating loop in
lines 5–9.

(b) SupposeQk is blocked. Therefore,Qk is correct and exe-
cutes a nonterminatingrepeat loop in lines 5–9 withi = k′,
for somek′ > k. This means thatQk findsActive[k′] = true
(in line 9) infinitely often. Hence,Qk′ setsActive[k′] = true
in line 3 of its firsttest&set invocation (in subsequent in-
vocations it returns in line 1), and never sets it to false (ifQk′

setActive[k′] to false, it would never reset it to true, soQk

wouldn’t findActive[k′] = true infinitely often). By part (a),
Qk′ cannot also be blocked. Therefore,Qk′ crashes during its
first test&set invocation after taking at least one step – i.e.,
Qk′ is potentially interrupting.

(c) Suppose there is no potentially interrupting process. By
part (b) there is no blocked process, so every process finishes

its first test&set invocation, if it initiates one. LetQk be
the process with the smallest index that findsClosed = false
in line 1 during its firsttest&set invocation. This invoca-
tion finishes byQk returning either in line 8 or in line 15. In
this invocation,Qk does not return in line 8 because it does
not execute this line (by the minimality ofk, Qk must find
Active[j] = false in line 7, for everyj ∈ {0, . . . , k − 1}).
Thus,Qk finishes its firsttest&set by returning in line 15.
Hence, some process (namelyQk) executes the CS during its
first test&set invocation. By Lemma 18, there is a well-
defined first process to enter the CS. It is easy to see that the
first test&set invocation of that process returns 0.
(d) Suppose, for contradiction, that two invocations of
test&set, say by processesQk andQ�, both return 0. Thus,
in these invocationsQk andQ� both execute the CS and find
thatDone = false in line 10. By Lemma 18, one of these two
processes, sayQk, finishes the CS before the other enters the
CS. SinceQk findsDone = false in line 10, it setsDone to
true in line 11. SinceDone is never set to false again, when
Q� later enters the CS it will findDone = true, andwill return
1, not 0 – contrary to the assumption.

4.2 The simulation algorithm

Suppose we are given an arbitrary one-resilient Consensus
algorithmA for n processes,P0, P1, . . . , Pn−1, for some
n ≥ 4. We make no assumptions about the set of base ob-
jects used by this algorithm. We show how, usingA and only
some additional registers, three processesQ0,Q1 andQ2, can
solve one-resilient Consensus. LetQ = {Q0, Q1, Q2} and
P = {P0, P1, . . . , Pn−1}.

The main idea is that the processes inQ will simulate the
steps of the processes inP so that they end up simulating an
execution ofA. As soon as someP ∈ P decides in the sim-
ulated execution, the processes inQ will adoptP ’s decision
and solve Consensus. Special care must be exercised to en-
sure that if at most one process inQ crashes, the simulated
execution ofA will be one in which at most one process in
P crashes. SinceA is one-resilient, eventually some process
will decide in the simulated execution, and thus so will the
correct processes inQ.

To ensure that each step ofA is simulated, the processes in
Q simulate the steps of processes inP in round-robin fashion.
Specifically, eachQk tries to simulate the first step ofP0, the
first step ofP1 and so on, until the first steps of all processes in
P have been simulated. ThenQk tries to simulate the second
step ofP0, the second step ofP1 and so on, until the second
steps of all processes inP have been simulated.

For the simulation to be proper, however, the processes
in Q must coordinate to ensure that they don’t repeat the
simulation of a step that has already been simulated. (Such
a repetition would be disastrous because then the simulated
execution might not be a legitimate execution ofA. Consider,
for example, what would happen if an “increment by one” step
is simulated several times!) To prevent this, we use TAS regis-
ters shared byQ0,Q1 andQ2. For eachi, 0 ≤ i ≤ n− 1, and
eachr ≥ 1, there is a TAS registerTAS [i, r] initialised to 0,
implemented using the algorithm in Fig. 9 (withs = 3). Be-
fore simulating therth step of processPi, processQk applies
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a test&set operation toTAS [i, r]. If Qk wins TAS [i, r]
(i.e.,Qk ’s test&set returns 0), it is the unique process re-
sponsible for simulating therth step ofPi. Otherwise, that
step has already been or will be simulated by another process
in Q, andQk goes on to simulate a step of the next process.

By usingTAS [i, r] registers implemented as discussed in
Sect. 4.1, we ensure that the crash of one of the processes
in Q, in the middle of applying thetest&set operation to
TAS [i, r], will block at most one other process’ execution of
test&setonTAS [i, r] (Lemma19(a)). Since there are three
processes inQ, there will still remain a process inQ which
neither crashes nor is blocked by the crash. This process will
continue simulating steps of the processes inP (except for
Pi – the process in the simulation of whose step the crash
occurred) until one of them decides. (This, incidentally, is the
reason why we need at least three simulator processes, and
the reason why this simulation cannot be made to work in the
case ofn = 3 discussed in Sect. 3.)

The simulation algorithm is shown in Fig. 10. In addition
to theTAS [i, r] registers already mentioned, the simulation
uses the following shared objects:

• Instr : an array[0..n− 1] of n registers.Instr [i] contains
the index of the first instruction ofPi that has not been
simulated yet.

• State: an array[0..n− 1] of n registers.State[i] contains
the current (simulated) state ofPi.

• Decision: a register. If a processQ in Q simulates a step
of some processP in P as a result of whichP decides,
thenQ writesP ’s decision intoDecision.

Besides these shared objects, the simulation also uses two
auxiliary variables,S andW .S is the schedule ofA consisting
of the steps simulated so far.W is a two-dimensional array
that keeps track of which process inQ has simulated which
step of each process inP. Specifically, if therth step ofPi has
been simulated byQk, thenW [i, r] = k; if the rth step ofPi

has not been simulated yet, thenW [i, r] = ⊥.
The simulation ofA byQ0, Q1 andQ2 proceeds as fol-

lows. EachQk enters awhile loop (lines 2–23), from which
it will exit when a process inP has decided in the simulated
execution ofA. In successive iterations of the loop,Qk con-
siders the processes inP in round-robin fashion:P0, P1, . . . ,
Pn−1, P0, P1, . . . Pn−1,. . . . When consideringPi, Qk first
checks to see whether it should try to simulate the “next” step
of Pi, namely stepr = Instr [i] (line 3). It will do so if at
most one process inP has had fewer thanr − 1 of its steps
simulated (line 4). In other words,Qk tries to keep the simula-
tion of all but one process inP within one step of each other.
(It cannot hope to keep the simulation ofall processes within
one step of each other, because the simulation of one of them
may be interrupted due to a crash.)4 Assuming, then, thatPi’s
simulation is not too far ahead of the others,Qk attempts to
simulate therth step ofPi by first applying atest&set to
TAS [i, r] (line 7). (For now, ignore thecoexecutestatement
in lines 6–9, and replace it by line 7. We shall explain the
meaning of and need for thecoexecutestatement shortly.) If

4 Preventingprocesses inP fromgettingarbitrarily aheadof others
during the simulation is important for keeping bounded the number
of registers used in the simulation (see Lemma 20); if we do not care
about this issue, we can dispense with line 4.

Shared: all objects used inA, each initialised as specified byA
TAS : array [0..n − 1, 1..∞] of test-and-set-register,

each implemented by the algorithm in Fig. 9
Instr : array [0..n − 1] of register, each initialised to 1
State: array [0..n − 1] of register, each initialised to⊥
Decision: register, initialised to⊥
S: auxiliary variable, contains a schedule ofA, initially

empty
W : auxiliary variable, contains an array[0..n − 1, 1..∞]

of {⊥, 0, 1, 2}, each initially⊥
Code for processQk, k ∈ {0, 1, 2}
1 id := 0
2 while Decision = ⊥ do
3 rd := Instr [id]
4 if |{ t : 0 ≤ t < n∧ Instr [t] < rd }| ≤ 1 then
5 winner := 1
6 coexecute
7 winner :=Apply(Qk,test&set,TAS [id, rd])

8 repeat until Decision 	= ⊥
9 coend
10 if winner = 0 then

(∗Qk winsTAS [id, rd] andmust simulate the
rdth step ofPid ∗)

11 if rd = 1 then (∗ first step ofPid ∗)
12 letu be the initial value of processQk

13 State[id] := initial state ofPid wherePid

has initial valueu
14 〈op, O〉 := NextOp(Pid,State[id])
15 [[ res := Apply(Pid, op, O)
16 W [id, rd] := k
17 S := S · (Pid, op, O, res) ]]
18 State[id] := NextState(Pid,State[id], res)
19 if Pid has decided inState[id] then
20 Decision := the value decided byPid

21 else
22 Instr [id] := rd+ 1
23 id := (id+ 1) mod n
24 decideDecision

Fig. 10.Solving one-resilient Consensus for three processes usingA

Qk winsTAS [i, r] (line 10), it does, in fact, simulate therth
step ofPi (line 15). If this is the first step ofPi, i.e.,r = 1,
Qk uses its own initial value as the initial value ofPi (lines
11–13). Next,Qk updates the state of the simulated process
in State[i] (line 18). If the simulated step causesPi to decide,
then that decision is written intoDecision (line 20). Other-
wise, Instr [i] is incremented by one to reflect the fact that
another step ofPi has been simulated (line 22), andQk turns
its attention to the next process in round-robin order (line 23).

In addition to the notation and conventions introduced in
conjunction with the simulation described in Fig. 8, we also
use the construct “coexecuteM1 M2 coend”, whereM1 and
M2 are arbitrary statements. This interleaves the execution
of steps of the two (potentially nonterminating) statements,
until one of the two terminates. When (and if) that occurs, the
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execution of steps of the other statement is abandoned, and
thecoexecutestatement itself terminates.

We now explain the reason for using thecoexecutestate-
ment (lines 6–9). Consider an execution of the simulation
in Fig. 10 in which a process inQ, sayQk, crashes while
it is executing its firsttest&set on TAS [i, r]. Suppose
that the other two processes are correct in this execution. By
Lemma 19(a), the crash ofQk may cause at most one correct
process, sayQ�, to be blocked in antest&set invocation on
TAS [i, r]. Therefore, the remaining correct process inQ, say
Qm, will not be blocked in any of itstest&set invocations
onTAS [i, r]. Thus,Qm will be able to simulate steps of pro-
cesses inP (other thanPi) until one of them decides.Qm will
then write its decision intoDecision and after breaking out of
thewhile loop (lines 2–23), it will decide. Remember, how-
ever, that there is also a correct process inQ, namelyQ�, that
is blocked in atest&set invocation onTAS [i, r]. By ap-
plying test&set toTAS [i, r] as one branch of acoexecute
statement (line 7) and checking whetherDecision 	= ⊥ in an-
other branch (line 8), we ensure thatQ� will eventually break
out of the potentially nonterminatingtest&set invocation,
and will decide.

Lemma 20 LetS be any set of types andA be a one-resilient
Consensus algorithm forn ≥ 2 processesP0, . . . , Pn−1 us-
ing S. The algorithm in Fig. 10 is a one-resilient Consensus
algorithm for three processesQ0, Q1, Q2 usingS. Further-
more, if every type inS exhibits finite nondeterminism, then the
algorithm in Fig. 10 uses only a bounded number of registers
in addition to the objects used byA.

Proof. By inspection, besides the shared objects used inA, all
the additional nonauxiliary shared objects used by the algo-
rithm in Fig. 10 are registers. SinceS contains typeregister,
it follows that the algorithm uses only objects of types inS.

We now show that the algorithm in Fig. 10 solves one-
resilient Consensus for the three processes inQ. To this end,
in the rest the proof we fix an arbitrary execution of the algo-
rithm in Fig. 10 in which at most one process inQ crashes.
Henceforth, our discussion refers to this fixed execution. We
shall prove that in this execution the three properties of Con-
sensus – Termination, Validity and Agreement – are satisfied.

First we make some definitions. LetSj be the value of
S whenS contains a schedule of exactlyj steps (undefined
if S never hasj steps). LetWj be the value assigned toW
whenSj is assigned toS (both auxiliary variables are up-
dated in the same “atomic” action in lines 16–17.) Note that
if Wj [i, r] 	= ⊥, then for allj′ ≥ j whereWj′ is defined,
Wj′ [i, r] = Wj [i, r]. This is because at most one process in
QwinsTAS [i, r] (Lemma 19(d)), and that is the only process
that may assign its id toW [i, r] (line 16). LetIj be the set of
initial configurationsI of A that satisfy the following prop-
erty: IfWj [i, 1] = k 	= ⊥, then the initial value ofPi in I is
equal to the initial value ofQk. That is, all the initial configu-
rations inIj agree on exactly the initial values of all processes
in P that have at least one step inSj ; the initial value of any
such process, sayPi, is equal to the initial value of the process
in Q that simulatedPi’s first step inSj (i.e., the processQk

such thatWj [i, 1] = k). Note that ifj ≤ j′, thenIj ⊇ Ij′ .
We now defineS∗ andW ∗. The intuition behind these

definitions is thatS∗ andW ∗ are the final values of the aux-
iliary variablesS andW , if these variables eventually stop

being updated. IfS andW keep changing forever,S∗ andW ∗
are the “limit” values of these variables. More precisely,S∗
is defined as follows: ifSj is defined then thejth step ofS∗
is the last step ofSj ; otherwise,S∗ does not have ajth step.
W ∗ is defined as follows:

W ∗[i, r] =
{⊥ if for every j,Wj [i, r] = ⊥,
k if for somej,Wj [i, r] = k 	= ⊥.

Note thatW ∗ is well-defined because ifWj [i, r] = k then,
for anyj′ ≥ j such thatWj′ is defined,Wj′ [i, r] = k as well.
Finally, we defineI∗ (derived fromW ∗, just asIj is derived
fromWj) as the set of initial configurationsI ofA that satisfy
the following property: IfW ∗[i, 1] = k 	= ⊥, then the initial
value ofPi in I is equal to that ofQk.

With these definitions, it is easy to show that the following
properties are invariants of the algorithm in Fig. 10: For all
j ≥ 0 such thatSj is defined,

(a) Sj is a schedule ofA that is applicable to everyI ∈ Ij .
(b) Wj [i, r] 	= ⊥ if and only if Sj has at leastr steps ofPi.
(c) For any processPi, the suffix ofSj consisting of all steps

afterPi has decided contains no step ofPi.
(d) LetPi be the process such that the last step ofSj is a step

of Pi, andσ be the value assigned toState[i] just afterSj

is assigned toS. For everyj′ ≥ j, if Sj′ is defined and
contains no steps ofPi after its prefixSj , thenσ is the
state ofPi in configurationSj′(I) ofA, for all I ∈ Ij′ .

(e) If some process hasr steps inSj , then at most one process
has fewer thanr − 1 steps inSj .

We are now ready to prove that the fixed execution satisfies the
three properties of Consensus. For eachi ∈ {0, . . . , n − 1}
andr ≥ 1, letEi,r denote the subexecution consisting of steps
taken only by the processes inQwhen they applytest&set
operations toTAS [i, r] in line 7.

Termination: Assume, for contradiction, that some correct
process never decides. Then, that process must always find
Decision = ⊥ in line 2 and line 8. Therefore, no process (cor-
rect or crashed) ever executes line 20 – because onceDecision
is set to a non-⊥ value, it is never set back to⊥. Hence,

Decision = ⊥, forever. (∗)

Claim 20.1. At least one correct process inQ executes the
while loop (lines 3–23) infinitely often.

Proof of Claim 20.1.Suppose, for contradiction, that no cor-
rect process executes thewhile loop (lines 3–23) infinitely
often. Since at most one process inQ may crash, there are
at least two correct processes, sayQ andQ′. By assumption,
neitherQ norQ′ executes thewhile loop infinitely often. By
line 2 of Fig. 10 and(∗), these two processes cannot exit the
while loop. Therefore, eventually each ofQ andQ′ applies
a nonterminatingcoexecutestatement (lines 6–9). Leti and
r be the values ofQ’s local variablesid andrd afterQ has
started its nonterminatingcoexecutestatement; leti′ andr′
be values with corresponding interpretations forQ′. By line 7,
it must be thatQ andQ′ apply a nonterminatingtest&set
operation toTAS [i, r] andTAS [i′, r′], respectively. In other
words,Q andQ′ are blocked inEi,r andEi′,r′ , respectively.
Let Q′′ be the remaining process (other thanQ andQ′) in
Q. By Lemma 19(b),Q′′ is potentially interrupting in both
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Ei,r andEi′,r′ ; therefore,(i, r) = (i′, r′). By Lemma 19(a),
at most one process can be blocked inEi,r, contradicting that
bothQ andQ′ are. Claim 20.1

Claim 20.2. For anyi ∈ {0, 1, . . . , n − 1}, Instr [i] is non-
decreasing.

Proof of Claim 20.2.The claim follows immediately from the
following two facts. For any positive integerr,

(i) at most one process writesr + 1 into Instr [i]; and
(ii) Instr [i] is set tor before it is set tor + 1.

Fact (i) is true because, to writer+1 into Instr [i] (line 22), a
process must winTAS [i, r] (lines 7 and 10), and at most one
process can do so (by Lemma 19(d)). Fact (ii) is true because,
before a process writesr + 1 into Instr [i] (line 22), it must
have previously readr from Instr [i] (line 3). Claim 20.2

SinceInstr [i] is nondecreasing, it follows that, over time,
its value is either unboundedor it attains somemaximumvalue
and never changes thereafter.

Claim 20.3. For any i ∈ {0, 1, . . . , n − 1}, if Instr [i] is
bounded with maximum valuer, then some process inQ
crashes either (a) during its first invocation oftest&set on
TAS [i, r] or (b) after winningTAS [i, r] in line 7 but before
incrementingInstr [i] in line 22.

Proof of Claim 20.3.Suppose, for contradiction, that there
is somei ∈ {0, 1, . . . , n − 1} and somer > 0 such that
Instr [i] is bounded with maximum valuer, and no process
in Q crashes (a) during its first invocation oftest&set on
TAS [i, r], or (b) after winningTAS [i, r] in line 7 but before
incrementingInstr [i] in line 22. Without loss of generality,
let r be the minimum value so that these conditions are met.

By Claim 20.1, some correct process, sayQk, executes
thewhile loop (lines 2–23) infinitely often. Since in each it-
erationQk increments its local variableid by one modulon
(line 23),Qk executes the while loop withid = i infinitely
often. By Claim 20.2 and our hypothesis, after some point in
time, rd = r forever. Therefore,Qk executes the while loop
with id = i andrd = r infinitely often. By the minimality
of r, for eacht ∈ {0, 1, . . . , n − 1}, one of the following is
the case: (i)Instr [t] is unbounded; or (ii)Instr [t] is bounded
and its maximum value is at leastr; or (iii) some process in
Q crashes while its local variableid = t. Since at most one
process inQ may crash, eventually for all but at most one
t ∈ {0, 1, . . . , n−1}, Instr [t] ≥ r. Therefore, there is a time
after which in each of its infinitely many executions of the
while loop with id = i andrd = r, Qk will find the condi-
tional in line 4 to be true. Thus,Qk invokes infinitely many
test&set operations onTAS [i, r] (line 7). Hence,Ei,r is
nonempty. Since, by assumption (a), no process inQ crashes
during its first invocation of atest&set onTAS [i, r], there
is nopotentially interruptingprocess inEi,r. By Lemma19(c),
some process winsTAS [i, r]. By assumption (b), this process
does not crash before incrementingInstr [i] to r+1 in line 22.
This contradicts the assumption thatr is the maximum value
thatInstr [i] attains. Claim 20.3

By Claim 20.3, there is at most one elementi ∈ {0, 1, . . . ,
n− 1} such thatInstr [i] is bounded. (Otherwise, there would

have to be two processes inQ that crash.) If there is such an
element, let̂ı be it – otherwise, let̂ı be an arbitrary element of
{0, 1, . . . , n− 1}. Thus, for alli ∈ {0, . . . , n− 1} \ {ı̂} the
value ofInstr [i] is unbounded. Before incrementingInstr [i]
to r + 1 (in line 22), a process inQ must have previously
setW [i, r] to a non-⊥ value (line 16). Thus, for alli ∈
{0, . . . , n − 1} \ {ı̂} and allr ≥ 1, W ∗[i, r] 	= ⊥. By In-
variant (b),S∗ contains infinitely many steps ofPi, for all
i ∈ {0, . . . , n − 1} \ {ı̂}. This means thatS∗ is an infinite
schedule in which at most one process inP crashes. By In-
variant (a),S∗ is a schedule ofA that is applicable to every
I ∈ I∗. By (∗), for everyI ∈ I∗ andi 	= ı̂, there is no prefix
S′ ofS∗ such thatPi has decided inS′(I). This contradicts the
fact thatA is a one-resilient Consensus algorithm forn pro-
cesses (in particular, it contradicts the Termination property
ofA).

We reached this contradiction by assuming that the Ter-
mination property in violated. Thus, Termination is satisfied.

Agreement and Validity: By theTermination property shown
above,S∗ is a finite schedule.

Claim 20.4. For any processQ ∈ Q and valuev ∈ {0, 1}, if
Q writes v into Decision (line 20), then some process inP
decidesv in S∗(I), for everyI ∈ I∗.

Proof of Claim 20.4. Let i andr be the values of its local
variablesid andrd whenQ writesv intoDecision in line 20.
Let σ be the value thatQ last wrote intoState[i] in line 18
beforeQ assignsv toDecision. In other words,Q simulates
therth step ofPi; as a result of this stepPi enters stateσ in
which it decidesv (cf. line 19).

By Invariant (c),Pi has no additional steps inS∗ after it
decides. By Invariant (d),σ is the state ofPi in S∗(I), for
everyI ∈ I∗. SinceQ assignsv to Decision in line 20, it
must be thatPi decidesv in σ. Thus,Pi decidesv in S∗(I),
for everyI ∈ I∗ – as wanted. Claim 20.4

To prove that Agreement is satisfied, suppose that two
distinct processes inQ decide the valuesv and v′, respec-
tively, that they read fromDecision. Thus, bothv andv′ are
written intoDecision by some processes inQ in line 20. By
Claim 20.4, some process inP decidesv in S∗(I) and some
process inP decidesv′ in S∗(I), for everyI ∈ I∗. By the
Agreement property ofA, v = v′. Therefore, the algorithm
in Fig. 10 satisfies Agreement.

Finally we prove that Validity is satisfied. This is obvious
if both 0 and 1 are initial values of the processes inQ. Thus,
we may assume that, for somev ∈ {0, 1}, all processes inQ
have initial valuev. Let Iv be the initial configuration ofA in
which every process inP has initial valuev. Clearly,Iv ∈ I∗.
Suppose now that some process inQ decides the valueu that
it reads fromDecision. By Claim 20.4, some processP in P
decidesu in S∗(I), for everyI ∈ I∗. In particular,P decides
u in S∗(Iv). By the Validity property ofA, u = v. Thus, if
all processes inQ have initial valuev, then any process that
decides, must decidev. Therefore, the algorithm in Fig. 10
satisfies Validity.

Bounded number of additional registers:To complete the
proof of Lemma 20, it remains to show that if every type inS
exhibits finite nondeterminism, then the algorithm in Fig. 10
uses only a bounded number of registers in addition to the



On the power of shared object types to implement one-resilient Consensus 237

objects used byA. To show this, it suffices to prove that there
is a bound on the number of thetest-and-set-register objects
in arrayTAS used by executions of the algorithm in Fig. 10
in which at most one process crashes. Finally, to prove this it
suffices to prove that the length of the schedule in the auxiliary
variableS is bounded.

To prove this we proceed as follows. For any initial con-
figurationI of algorithmA, we define a treeTI , whose nodes
are schedulesS that satisfy the following three properties:

(1) S is a finite schedule ofA that is applicable toI.
(2) S does not contain a step ofPi afterPi has decided.
(3) If S hasr steps of some process, then at most one process

has fewer thanr − 1 steps inS.

The treeTI has an edge from node (schedule)S to S′ if and
only if S is a prefix ofS′ and|S′| = |S| + 1.

Claim 20.5.For any initial configurationI ofA, TI is finite.

Proof of Claim 20.5. Suppose, for contradiction, thatTI

is infinite, for someI. Since every type inS exhibits fi-
nite nondeterminism, every node inTI has finite degree. By
König’s Lemma,TI has an infinite path. It is easy to see that
this path corresponds to an infinite scheduleS∞ such that:
(i) S∞ is applicable toI (by property (1) of the nodes ofTI );
(ii) some correct process never decides inS∞ (by property
(2) of the nodes ofTI ); and (iii) at most one process is faulty
in S∞ (by property (3) of the nodes ofTI ). These three facts
contradict thatA is a one-resilient Consensus algorithm for
{P0, P1, . . . , Pn−1}. Claim 20.5

ByClaim20.5, there is a positive integer�I that is an upper
bound on the length of any scheduleS that satisfies properties
(1), (2) and (3). Let

� = max{ �I : I is an initial configuration ofA }
(such amaximumexists, sinceA has finitelymany initial con-
figurations). By Invariants (a), (c) and (e), the schedule stored
in the auxiliary variableS in any execution of the algorithm
in Fig. 10 in which at most one process crashes satisfies prop-
erties (1), (2) and (3). Therefore, the length of the schedule
stored in the auxiliary variableS in any execution of the al-
gorithm in Fig. 10 in which at most one process crashes is
bounded by�, as wanted.

Lemma 20 immediately implies:

Theorem 3 Let S be any set of object types that includes
register, andn ≥ 4 be any integer.

(a) If S implements one-resilient Consensus amongn pro-
cesses, thenS implements one-resilient Consensus among
three (and therefore amongn− 1) processes.

(b) IfS boundedly implementsone-resilientConsensusamong
n processes and every type inS exhibits finite nondeter-
minism, thenS boundedly implements one-resilient Con-
sensus among three (and therefore amongn − 1) pro-
cesses.

Part (b) of Theorem 3, regardingboundedimplementabil-
ity, applies ifS contains only types that exhibit finite nonde-
terminism. It is natural to inquire whether this requirement is

necessary. In fact, it is not: the result holds forall sets of types,
even those that contain types with infinite nondeterminism.
Theproofof this stronger result is basedonamorecomplicated
simulation that usesO(n) “resettable”test-and-set-register
objects and a garbage collection technique to recycle them.
This simulation is described in [11].

5 Conclusion

The results of this paper, togetherwith those in [4], completely
characterise the relationship between the solvability of Con-
sensus among different numbers of processes. More precisely,
the results show that, given any setS of object types and any
integersn, t such thatn− 1 > t ≥ 1, the statement

t-resilient Consensus amongn processes is solvable
usingS if and only if
t-resilient Consensus amongn − 1 processes is solv-
able usingS

is valid if and only if t ≥ 2 or n ≥ 4. Besides this char-
acterisation, these results also reveal a qualitative difference
between level one and other levels of the Consensus hierarchy
[6,7]. If S contains an object type at level two or above of the
Consensus hierarchy, the result of Chandra et al. implies that
the statement above is valid. On the other hand, ifS contains
only object types at level one of the Consensus hierarchy, our
result in Sect. 3 shows that the statement is false. This shows
that level one of the Consensus hierarchy may have a richer
structure than other levels.

Typedor defined in Sect. 3 is the only deterministic type
we know of that is at level one of the Consensus hierarchy
and has no one-resilient implementation for three or more
processes using only registers.

Simulations similar to that described inSect. 4.2were used
first by Borowsky and Gafni [1] (see also [13,2]), and later
by Chandra et al. [4]. The main innovation here is the TAS
register implementationofSect. 4.1.BorowskyandGafni used
a simulation that requires processes to agree on the outcome
of each step by solving (a restricted form of) Consensus using
only (read/write) registers. Instead of agreeing on the outcome
of a step, we use (a similarly restricted form of) TAS registers
to ensure that only one process simulates each step. Unlike
the simulation of Borowski and Gafni, which applies only
when the simulated algorithm uses (read/write) registers (or
types of equivalent power), our simulation does not place any
restriction on the types of the objects used by the simulated
algorithm: these canof any type(s)whatseover. Thesimulation
of Chandra et al. is also general in the sense that it works
regardless of the types of the objects used by the simulated
algorithm, but it applies to a context in which TAS registers
are available directly and need not be implemented.
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