Distrib. Comput. (2000) 13: 219-238 @H@ﬁ@ﬂ@ﬁ@@
C@MPUIING

© Springer-Verlag 2000

On the power of shared object types to implement one-resilient Consensus

Wai-Kau Lo *, Vassos Hadzilacos

University of Toronto, Toronto, Ontario, Canada M55 3H5 (e-rfaiklo,vasso$@cs.utoronto.ca)

Received: July 1997 / Accepted: May 2000

Summary. In this paper we study the ability of shared ob- In this model of computation, an algorithm involving
ject types to implement Consensus in asynchronous sharegrocesses is-resilient wheret < n, if each correct process
memory systems where at most one process may crash. Mommpletes the task it initiates, as long as no more thano-
specifically, we consider the following question: Let> 3 cesses crash. The algorithnuiait-freeif itis (n—1)-resilient.
andS be a set of object types that can be used to solve onefhus, in a wait-free algorithm, each correct process completes
resilient Consensus amongrocesses. Cafialways be used its task after a finite number of its own steps regardless of the
to solve one-resilient Consensus ameng 1 processes? We progress made by other processes. In particular, it must do so,
prove that fom = 3 the answer is negative, everSfconsists even if all other processes crash.
only of deterministidypes. (This strengthens an earlier result ~ Consensus is a fundamental problem in fault-tolerant dis-
by the first author proving the same fact fasndeterministic tributed computing because it captures the essence of many
types.) We also prove that, in contrast, for- 3 the answer practical problems that require some form of agreement. In
to the above question is affirmative. the Consensus problem, each process has a private input value

and eventually may decide (irrevocably) on some value. An
Keywords: Distributed algorithms —Fault-tolerance — SharedalgorithmA for n processesnplementgor solve3 ¢-resilient
objects — Consensus Consensus among > t processes if every execution af
satisfies the following properties: (i) no two processes decide
differentvalues (Agreement); (ii) the value decided by any pro-
cess is the input value of some process (Validity); and (iii) if no
more thant processes crash in the execution then, eventually,
1 Background and overview each correct process must decide (Termination).

A set of typesS implementqor solve$ ¢-resilient Con-

In this paper we consider some questions concerning faultsensus among processes, if there is an algorith/ that
tolerant implementations of Consensus in asynchronougnplements-resilient Consensus amongorocesses and ev-
shared-memory systems. In such systems, some number 6fy Object used by belongs to a type i. Throughout this
processes communicate with each other by accessing shar@@per we assume thétcontains typeegister. Objects of this
typed objects. Processes take steps in a completely asyfype are shared registers that support (only) read and write op-
chronous manner. In one step, a process may invoke an opegrations. We refer to such objects simply as “registérs”.
ation on a shared object. This causes the object to atomically LetS be a set of types thatimplementigesilient Consen-
change its state and return a response to the process invo&US among: processes, for — 1 > ¢. Itis easy to see that
ing the operation. The new state entered by the object angan be used to solveresilient Consensus among+ 1 pro-
the response returned to the operation are determined by tf&sses —and thus any number of processes greater:tharf
specification of the type to which the object belongs. A pro-
cess mayrash—i.e., stop taking steps before completing its ! several kinds of shared registers have been studied in the liter-

execution. A process that does not crash is caltedect ature, differing in the number of processes that may read and write
them, the number of values they can store, and the assurances they
* Supported by a Canadian Commonwealth Scholarship. provide to concurrent read and write operations. It has been estab-

** Supported by a grant from the Natural Sciences and Engineerlished that the strongest kind of registers — multi-reader, mutli-writer,

ing Research Council of Canada, and a fellowship from the U.K.multi-valued, atomic registers — can be implemented from the weak-
Engineering and Physical Sciences Research Council. est kind — single-reader, single-writer, two-valued, safe registers (cf.
A preliminary version of the results in this paper appears in the Pro{8] for more details and pointers to the relevant literature). Our for-

ceedings of the 16th ACM SIGACT-SIGOPS Symposium on Prin- mal model of shared types (cf. Sect. 2.1) commits us to multi-reader,
ciples of Distributed Computing, Santa Barbara, California, Augustmulti-writer, atomic registers. In view of the above-mentioned result,

1997. however, this causes no loss of generality.

220 W.-K. Lo, V. Hadzilacos

the processes solve Consensus uslagnd write the decision
to a register; the remaining process obtains the decision from
that variable. It is not nearly as clear whetlkiecan also be
used to solve-resilient Consensus amomg— 1 processes — s
and thus any number of processes in the rangéandn — 1.
Now, reaching Consensus appears more difficult, since the al-
gorithm can rely on fewer correct processes-(t — 1 instead f
of n — t). Thus,prima facie it appears possible that a set of
types is strong enough to solt«eesilient Consensus among
processes, but too weak to sotveesilient Consensus among Fig. 1. Commutative and overwriting operations
n — 1 processes.

The question of whether this is possible was studied by, The model of computation
Chandra et al. [4]. They showed that for amy- 1 > ¢ > 2,
any set of types strong enough to solveesilient Consensus 2 1 Types and objects
amongn processes, is also strong enough to seluesilient

Consensus among— 1 processes. The casetof 1 wasleft An object typeT is a tuple(ST, OP, RES,§). ST is a set
open in that investigation. This special case is an importanpf states OP is a set ofoperations RES is a set ofre-
one since, in practice, handling a single failure is often an adsponsedo operations, and : ST x OP — 2BESxST jg
equate degree of fault-tolerance [14]. Subsequent to [4], the state transition functionThe state transition function af
firstauthor considered this special case and proved that the retescribes the behaviour of an object of typeand is some-
strictiontot > 2is necessary. Specifically, in [10] he exhibited times called the type’sequential specificatiorinformally,
anondeterministi¢ypewor with the following property: Us- (res, ¢/) € §(q, op) means that if the current state of the ob-
ing only wor objects and registers, it is possible to implementject isq and operatiomp is applied to it, then it is possible that
one-resilient Consensus for three, but not for two, processesy.s will be returned to the operation and the object will enter
In this paper we complete the study of the special case otate;’. For convenience, we require that the object’s response
¢t = 1. First, we strengthen the result of [10] by exhibiting a to an operation applied at some state uniquely determines the
deterministidype that can be used (together with registers) togbject's new state. More precisely, forafy op) € STx OP,
implement one-resilient Consensus for three, but not two, projt 6(q, op) contains(res, ¢') and(res, ¢), theng’ = ¢"'.
cesses. This object type has another interesting property: To 7" exhibits finite nondeterminisif 6(q, op) is finite, for
our knowledge it is the only knowtteterministiaype atlevel all (¢, op) € ST x OP. T is deterministidf |5(¢, op)| < 1,
one of the Consensus hierarchy [6] which cannot be implefgr all (g,0p) € ST x OP. T istotal if 6(¢, op) # 0, for all
mented in a one-resilient manner for three or more processeg;, op) € ST x OP. If T is deterministic and totali(q, op)
using only register$ Second, and in contrast, we show that for contains exactly one element. In this case, we will slightly
anyn > 4, a set of (deterministic or nondeterministic) types abuse notation and writég, op) to denote that element (rather
strong enough to implement one-resilient Consensus amonghan the set that contains it). In other words, for deterministic
n processes is also strong enough to implement one-resilieRbtal types we will views as a function fromST x OP to
Consensus among — 1 processes. The proof of this result REg x ST (rather than t@RES*ST),
is based on a variant of techniques previously employed by | et op andop’ be operations of a deterministic total type
Borowsky and Gafni [1] (see also [13,2]) and Chandra et al.7", 4 be a state off’, and§ be the state transition function
[4]. of T'. The two operationsommuteat ¢ if applying them in
The rest of the paper is organised as follows: In Sect. 2, wesither order has the same effect. More precisely, there exist
define formally the model of computation. In Sect. 3 we de'responses, ' and states, ', ¢’ such thats(q, op) = (r, s),
fine the deterministic type that can be used to implement ones(s, op') = (+/,¢'), 6(q, 0p’) = (',s'), andé(s’, op) =
resilient Consensus for three, but not two, processes. In Sect.(4~7 ¢'); seeFig. 1(a). Operatiar overwritesop’ atq, if apply-
we prove that for ath > 4, a set of types strong enoughtoim- jng op afterop’ atq has the same effect as applyingby itself.
plement one-resilient Consensus amengrocesses, is also More precisely, there exist responseg’ and states, ¢’ such
strong enough to implement one-resilient Consensus amonghate(q, op’) = (', s) andd(q, op) = (s, op) = (r,¢'); see
n — 1 processes. We conclude in Sect. 5. Fig. 1(b).

An objectis an instance of an object type. For the purposes
of this paper, we can think of an obje€ of type T" as an
automaton whose states and state transition function are as in
T — except that states are labeled withto distinguish them

2 The level of a type in the Consensus hierarchy is the maximum{fOM the states of other objects of the same type.
positive integer. such that we can implement wait-free (i@—1)-
resilient) Consensus amongprocesses using only objects of that)
type and registers. (If there is no such maximum, the level of the type2-2 Processes and algorithms
in the Consensus hierarchyds.) The significance of this hierarchy
liesin the following fundamental result, due to Herlihy [6]: Ifatype A processs a deterministic automaton that interacts with ob-
is at leveln of the Consensus hierarchy, then it is possible to use onlyjects. More precisely, letl be a set of objects, andP, RES
objects of typel” and registers to give a wait-free implementation of be the set of all operations and responses, respectively, of the
anyobject type in a system of processes. types to which the objects i belong. We define arocess

(op.7) (or's7)

(op's7') (op.7)

(a) op and op' commute at g (b) op overwrites op’ at g

On the power of shared object types to implement one-resilient Consensus 221

that usesA as a tupleP = (X, Xy, v, 7), whereX' is a set An executionof algorithm A is a pair(I, S), wherel is
of states Xy C X' is a set ofinitial states and the functions an initial configuration ofA and S is an infinite schedule of
v:X — OP x A andt : X x RES — X describe the A applicable tal.
interaction of the process with the objects. IntuitivelyPifs
in a stater € X andv(o) = (op, O), then in its next stefp’
will apply operationop to objectO. Based on its own current 2.3 The Consensus problem
state,O will return a responsees to P and will enter a new
state, in accordance with the state transition function of then the Consensus problem, each process has a private initial
type to whichO belongs. FinallyP will enter stater (o, res), value, drawn from the sef0,1}. Thus, each initial config-
as a result of the response it received from uration of a Consensus algorithm may be associated with a
An algorithm A consists of a set of processgs a set function mapping each of the processe§(iol }. Some states
of objects A so that eachP ¢ II uses a subset ofl, and of each process are associated with an irrevocable decision in
an initial state for each object i. The designated initial {0, 1}. The decision is irrevocable in the sense that if a pro-
state of an object is one of the states of the type to which theess enters a state associated with decigjdhen all states
object belongs. I is finite, thenA is aboundedalgorithm. A it may subsequently enter are also associated avittet n, ¢
configurationC' of A is a tuple consisting of the state of each be integers such that > ¢t > 1. A t-resilient Consensus al-
process i/ and each objectid. C'is aninitial configuration gorithm A for n processes satisfies the following properties.
of A ifeach processisin one ofits initial states and each objecFor any initial configuratiod of A, and any schedul§ of A
is in the state designated as the initial stateAby applicable tal,
A stepof processP is a tuple(P, op, O, res); this indi-
cates thaP has applied operatiosp to objectO and received
responsees. LetP = (X, Xy, v, 7) andC be a configuration,

Agreement: If two processes have decided #{I), then
their decisions are the same.

where the state aP in C is 0. If v(0) = (op, O), we say that Validity: Ifa procesz hahs d_epi_dled E;U)’ tfhen its deci-
P has operatiomp to objectO pendingin C. If, in addition, isr:oln must be the Initial value of some process

the state 00 in C'isq, and(res, ¢') € d(q, op) (Whered is the
state transition function ad's type), then we say that the step
e = (P, op, O, res) is applicableto C. If e = (P, op, O, res) : : . -
is applicable toC, ¢(C) denotes the configuration resulting ISa prefix5’ of 5 such that” has decided in
from C after stepe. More precisely, if inC' the state ofP is S'(1).

o and the state of is g, thene(C) is the configuration in |f ¢ = — 1, we say thatA is await-freeConsensus algorithm
which all processes other than and all objects other than for , processes.

O are in the same state as@h P has state (o, res), andO A set of typesS implements-resilient (wait-free) Consen-
is in stateg’ such that(res, ¢') € 6(q, op), wheres the state sus forn processes if there istaresilient (wait-free) Consen-
transition function ofO’s type. (Note thay’ is well-defined sys algorithmA for » processes. If, in additior. is bounded,
by our requirement that objec’s response to operatiosp then we say thaS boundedly implementsresilient (wait-

applied in state uniquely determine®’s new stateq’.) free) Consensus for processes.
A scheduleS of algorithm A is a (finite or infinite) se-

guence of steps cA’s processes. If every step fis a step

Termination: If S is infinite and at most processes crash in
S, then for any correct proced3in S, there

of processP, S is asolo schedule ofP. We say thatS = 3 The (exceptional) case of three processes
e1,ea,...,¢;, ... IS applicable to a configuratiofl, if e; is
applicable ta”, ande;, is applicable te;(e;—1 (... (e1(C)) In this section we introduce a deterministic type, named,

...)), for all i. If S'is finite and has: steps,S(C) denotes that (together with registers) is strong enough to solve one-
er(er—1(...(e1(C))...)), i.e., the configuration that results resilient Consensus for three processes, but not for two pro-
after applying the steps ifi one at a time, starting with con- cesses. The type is defined in Sect.3.1. We prove that it is
figurationC' If S and.S” are schedulesy - S” denotes their strong enough to solve one-resilient Consensus for three pro-
concatenation. For any configuratioisandC”, we say that cessesin Sect. 3.2. Finally, we prove that it is too weak to solve
C" is reachablefrom C, if there is a schedul# applicable o gne-resilient Consensus for two processes (equivalently: wait-

C such thatl” = S(C'). _ o free Consensus for two processes) in Sect. 3.3.
Let S be any infinite schedule applicable to an initial con-

figuration of algorithm A.. We say that a proced3 crashes

(orisfaulty) in S'if P has only finitely many steps ifi; oth- 31 gpecification odor

erwise, we say thaP is correctin S. The idea of modeling

correct processes as ones that take infinitely many steps in afhe specification oflor is motivated by a specific algorithm
infinite execution — and crashed processes as ones that takgat we have in mind for implementing one-resilient Consen-

only finitely many steps — was introduced in [5]. It turns out g ;g among three processes using an object of this type and
to be a very convenient convention. We can easily aCCoMMOregisters. Thus, it is best to explaior alongside an informal
date processes that terminate in this framework by imaginingjescription of that algorithm.

that a process that reaches a final state takes infinitely many - a process can apply two kinds of operations toa ob-
“do-nothing” steps thereafter. ject: “enroll” an integer in the sefo,... ,5}, and “query”

3 dor stands fordeterministiconetesilient.

222 W.-K. Lo, V. Hadzilacos

whether 0 was enrolled before 1. In the algorithm that im-E@ach node of the graph below represents a statewfletJ denote

plements one-resilient Consensus among three procggses the state transition function of typ#or, andq be any node of the
01 andQ,, each process enrolls two integers tda object ~ 9raph shown below.

Zo'agg esnr_(l)_lrl]se ?h?gg SrQoéeir;rgS”Sfo}loic(;A:),a?t?gfarerpl)raotltlan i ENROLL(v) forv € {0,..., 5}: If there is an arc labeled withfrom
L 'hodeq to nodeq’, thens(g, ENROLL(v)) = (ack,q'); otherwise,

enrolling their integersQo and @ follow the same pattern, (¢, ENROLL(v)) = (ack,®).

while @), follows a slightly different one. Specifically, each ' ’

Q € {Qo, Q1 } enrolls its first integer and waits for one of the REVEAL: If gisablacknode thef(q, REVEAL) = (0, ¢); otherwise

other two processes to do the saifethen enrolls its second (¢ is @ white node)§ (¢, REVEAL) = (1, g).

integer and, again, waits for one of the other two processes to

do the same. In contragd, firstwaits for one of the other two

processes to enroll its first integer and then enrolls its own first

integer. SimilarlyQ- waits for one of the other two processes

to enroll its second integer and then enrolls its own second in-

teger. Thus@)y and@, follow the pattern: enroll, wait, enroll,

wait; while Q5 follows the pattern: wait, enroll, wait, enroll.

Note that, as a result of this protocol, the first integer to be

enrolled is either the first integer enrolled By or the first

integer enrolled by), —i.e., 0 or 1.

After enrolling its integers in this manner, each process .
Q. “queries” O to determine whethey was enrolled before
1. This allows the three processes to agree on which of the two
integers was enrolled first — and thus to agree on the identity
of one of Qo or @1, so that if they agree of),, thenQ, o @
has taken at least one step (the step required to grrdly
requiring each of)y, and @; to write its input value into a
shared register before enrolling its first integer, we can easilyVoizs
turn agreement on the identity of one of these two processes
into agreement on that process’ input value. In this way, we
can solve one-resilient Consensus among the three processes
using only onedor object and some registers.

We must make special provisions to ensure tlatcan-
not be used to implement one-resilient Consensusvopro-
cesses. Informally, we shall accomplish this by ensuring that
any use of alor object that does not conform to the one de- or after the object has been “mishandled”. The question is
scribed above puts the object in a state from which itis impospremature if it is asked before at least two{sf 4,5} have
sible to get “useful” information. In particular, itis impossible been enrolled. The object is mishandled if and only if, starting
to reliably determine whether O or 1 was the “winner” (i.e., with the enrollment of 0, one of the following conditions takes
was enrolled first). The nondeterministic typwer described place: (a) any number other than 5 is enrolled more than once,
in [10] did this by defining an “upset” state thater object or (b) 5 is enrolled more than once after both 2 and one of
enters if not accessed as required by the algorithm describefB, 4} have been enrolled.
above. The object responds by nondeterministically returning The behaviour oflor is formally specified by the state
0 or1if queried about the winner while in that state. We cannotransition diagram in Fig. 2. The type has seventeen states,
use this technique here because we wantto detiegsaminis- represented as nodes in the diagram. The state latlisd
tictype. Instead, we design the type to return deterministic, butalled thefreshstate; the state labeled is called theupset
misleading, responses if accessed “inappropriately”. Doing s&tate; the remaining are calledrmalstates. The colour of a
while ensuring that the resulting type is not strong enough tanode (black or white) indicates the response (0 or 1, respec-
implement one-resilient Consensus for two processes turns otively) of arEVEAL applied to the corresponding state. Recall

Fig. 2. State transition function of typdor

to be nontrivial. that eaclENROLL operation returngck, so there is no need
We now describe the typgor in more detail. It supports to explicitly represent that in the diagram.
the following operationseNROLL(v), forv € {0,1,... 5}, The directed edges of the diagram represent transitions

andrREVEAL. ENROLL(v) isused to enrolb. It may changethe caused byeNRrROLL operations (recall thakEvEAL opera-
state of the object but always returns the same respange, tions do not affect the state). The label of an edge denotes
A REVEAL is used to find outif 0 was enrolled before 1. It does the parameter of the correspondimgroLL. For example, an

not change the state, and returns a value, 0 or 1. IntuitivelyeNrROLL(0) operation applied to the fresh state caudes
response 1 is supposed to indicate that 1 was enrolled befote enter the normal stat®/,. Note that, in each state other

0 (or that neither has been enrolled yet); while response @han fresh, one or more edges (corresponding to one or more
is supposed to indicate that O was enrolled before 1. UnderNrOLL operations) are missing. In that case, there is an im-
certain conditions, however, even though 0 was enrolled beforelicit transition to the upset state. Thus, for instance, node
1, the object will (misleadingly) respond 1 to such a question. Ny, has implicit transitions labeled 0 and 1 to the upset state.
This will be the case if the question is asked “prematurely”, In terms of our earlier informal description dbr, implicit

On the power of shared object types to implement one-resilient Consensus 223

transitions to the upset state correspond to operation invocashared O dor, initialised to stat&)
tions that “mishandle” the type. Thus, after such a transition Do, D register, each initialised tal
has taken place, the type will (misleadingly) respond 1 to a Ro, Ry, Ry register, each initialised to
REVEAL, even though O was enrolled before 1. Code for proces§s, for k € {0, 1}
The fresh state is a source, in the sense that it is not reach- Dy, := initial value of Q;, '
able from any other state. The upset state is asink, inthe sensg ¢, .= 1, 2do
that no other state is reachable from it. Intuitively, it is the state _
reached if the object is initialised to the fresh state and eithe3]A%Splzy(g@k’ BNROLL(3(£ —1) + k), O)
1 is enrolled before 0, or the object is mishandled. The norg wait until R. > £or Ry >/
mal states are the states reached if the object is initialised tg , .— Apply(Qy, IfE;E AL, O) -
the fresh state, 0 is enrolled before 1, and the object is N0y gecige D, 7 ’
mishandled. In the diagram, each normal state is denoted by

a node labeledV,, ..., where{vy,... ,v;} is a nonempty Code for proces§)>

subset of{0,1,... ,5}. Intuitively, the subscript of a normal 1 for £:=1, 2do

state represents the set of numbers enrolled “so far”, assuming wait until Ry > £or Ry > ¢

the object is initialised in the fresh state. However, some en3 Apply(Q2, ENROLL(3(¢ — 1) + 2),0)
rollments are “ineffectual” (they do not affect the state), and4 Ry =1t

some enroliments are “implicit” (they occur as a side-effect of5 7 := Apply(Q2, REVEAL, O)
other enrollments). Specifically, any attempt to enroll a num-6 decide D;
ber before enrolling 0 or 1 is ineffectual. (This corresponds togig 3 A one-resilient Consensus algorithm for three processes using
the self-loop at the fresh state.) Also, any attempt to enroll Sypjects of typedor and registers
before both 2 and one 4B, 4} have been enrolled is ineffec-
tual. (This corresponds to the self-loops in the normal states.)
An implicit enroliment of 1 is forced if an attempt is made to algorithm that does this was described informally in the pre-
enroll 4 before 1 has been enrolled, or to enroll 3 before both dious subsection; it is shown in pseudocode in Fig. 3. In the
and 2 have been enrolled. (This corresponds to the state traaigorithm, and throughout the paper.kfc {0,1}, we de-
sitions that “jump” a level in the diagram —e.g., the transitionsngte byk the complement of;, i.e.,k = 1 — k. The nota-
labeled 3 and 4 alVy.) Note that the subscripts of the white tjon Apply(Q, op, O) denotes the procedure by which pro-
normal states are precisely those that contain at most one @ess() applies operatiorwp to objectO; the procedure re-
{3,4,5}. In other words, they are precisely the states where afyrns the response of the object to that operation. Register
most one of{3, 4, 5} has been (effectively) enrolled. Recall, i < {0,1,2}, is used by proces§; to indicate how many
from our earlier informal discussion of the type, that these arenumbers it has enrolled so far. Before enrolling their first num-
the states in whicREVEAL returns a misleading response be- pers (), and@; write their input values into registef, and
cause the question whether 0 was enrolled before 1 is askeg, | respectively.
“prematurely”. We now turn to the correctness proof of the algorithm.
We use the following terminology for the state transitions
of typedor. Let op be an operation; be a state and be the =~ Lemma 1 Consider any execution of the algorithm in Fig. 3,
state transition function afor. We say thabp is stationaryat ~ in which at most one process crashes. In this execution, no
qif 8(¢, op) = (r, q), for some response In terms of Fig.2, ~ correct process is stuck forever in theait statement of its
this corresponds to the self-loop transitions. We saydpas ~ code (line 5 of)o and @1, or line 2 of@Q2).
upsettingatq if §(q, op) = (r,®), for some response This
corresponds to (implicit and explicit) transitions leading to the
upset state in the diagram. We say thatis ordinary at g, if
op is neither stationary nor upsettingeafThis corresponds to
explicitly represented transitions on the left side of the diagramCase 1. Q). is stuck in the first iteration of thfar loop: We
(i.e., all edges explicitly shown, except for the self-loops at thefirst claim thatk # 2. If not, then by line 2 of its code)-
fresh and upset states, and the edge from the fresh to the upsaust always readt, = 0 and R; = 0 when it executes the
state). wait statement during its first iteration of tifier loop. This is
The reader should observe that, with very few exceptionspossible only if botiQ), and@ crash, before executing line 4,
in each state of the typaor, any two operations either com- during their first iteration of théor loop. This contradicts our
mute, or one overwrites the other. The specificatiotiasfvas hypothesis that at most one process may crash.
crafted deliberately in this manner. Aswe shall seein Sect. 3.3, We nextargue thdt ¢ {0, 1}. Suppose, for contradiction,
this turns out to be crucial in proving thdbr cannot imple- that proces%);, is stuck in thewait statement in line 5, for
ment one-resilient Consensus between two processes. somek € {0,1}. Then@, must always read?;; = 0 and
R, = 0in executing that line. Sinc&; is always equal to 0,
it follows that Q)+ crashes before executing its line 4 during
3.2 Typedor solves one-resilient Consensus its first iteration of thdor loop. Similarly, asRk, always equal
for three processes to 0, it must be that), crashes before executing its line 4
during its first iteration of théor loop (because we have just
In this subsection we prove thdor (together with registers) shown that ifQ), is correct then in the first iteration of thier
implements one-resilient Consensus for three processes. Anop Q> cannot be stuck forever in line 2 and hence it must

Proof. Suppose, for contradiction, that a correct proa@ss
for somek € {0, 1,2}, is stuck in thewait statement in the
execution. There are two cases:

224

N012345

Fig. 4.Possible state transitions of obj&ézbf the algorithm in Fig. 3,
in which the first operation applied @ is ENROLL(0)

eventually execute line 4). Thus, bafh; andQ, are faulty.

W.-K. Lo, V. Hadzilacos

that aREVEAL operation will be applied only i is in a black
state, since theREVEAL operation returns 0 in all black states.
By Fig. 3, in any execution of the algorithm:

(a) foreachk € {0,1,2}, the sequence of operations that pro-
cessy;, applies toO is (a prefix of)JENROLL(k), ENROLL
(k + 3), REVEAL;
(b) at least two off ENROLL(v) : 0 < v < 2} are applied
before bottENROLL(3) andENROLL(4) (because before
executing its second iteration of tf@ loop, each of),
and@); waits for another process to apply its fiEstROLL
operation);
eithetrENROLL(3) orENROLL(4) is applied beforeNROLL
(5) (because before applyir@vROLL(5) to O, Q2 waits
for at least one of Qy, Q1 } to apply its secon@&NROLL
operation); and
at least two off ENROLL(v) : 3 < v < 5} are applied
before arEVEAL (because before applyimEvEAL to O,
every process waits for another process to apply its second
ENROLL operation).

(©

(d)

Using (a)—(c), it is easy to verify that if the first operation
applied taO in the execution iENROLL(0), thenO will always

be in a normal state —i.&) never enters stafe — during the
execution. To assist with this verification, in Fig.4 we have
shown all the possible state transitions of objeah response

This again contradicts the assumption that there is at most oni® theENROLL operations applied under the algorithmin Fig. 3

faulty process.
Case 2.), is stuck in its second iteration of tHer loop:

executing its firstiteration of ther loop. Hence, every correct
process executes the second iteration offthdoop. Using

this fact and an argument similar to the one in Case 1, we ca

prove that no correct process can be stuck imthi statement
during the second iteration of ther loop, as well.

wheneNROLL(0) is the first operation applied.
By (a) and (d), when a process appligsa/EAL operation

49 O, at least two of the three processes have each applied

exactly twoENROLL operations. By inspection of Fig. 4, it is
easy to see tha® is in Nyi123, No124, OF @ black state. (Note
ECat No123 and Np124 are Whlte) We claim that i) is in
0123 OF No124, NO process will applREVEAL, until at least
one MOreENROLL operation is performed — which will put
O in a black state. This is because in stafg 3, only Qg

Since each of these two cases leads to a contradiction, thgas done twaNROLL operations (with parameters 0 and 3),

lemma follows. O
Lemma 2 Consider any execution of the algorithm in Fig. 3.
Letd be the parameter of the firsNrROLL operation applied
to thedor objectO in that execution. Thenj € {0,1} and
eVeryREVEAL operation applied ta@ during that execution
returns response.

Proof. By the specification of the algorithm, it can be readily
verified that the first operation applied to ther objectO

is eitherENROLL(0) or ENROLL(1). Thus,d € {0,1}. We
consider these two cases in turn.

Case 1.d = 1: We show that whenevergevEAL operation
is applied, objecD is in state®. Since thekEVEAL operation
returns 1 at stat®, it follows that everyrREVEAL operation
applied toO returns 1. To this end, first note thatROLL(1) is

upsetting af>. Since the initial state @ is© and the first op-
eration applied t@ in the execution iENROLL(1), O enters

state® after the first operation is applied. Since every opera-p o

tion is stationary a9, O stays in staté throughout the rest
of the execution. Consequently, whenever a process appli
REVEAL, objectO is in state® and returns 1, as required.

Case 2.d = 0: We need to show that eveRgeVEAL operation

while each ofQ; and@- has done only one (with parameters
1 and 2, respectively). Thus,@ is in Ny123, by (a), the only
process whose next acces1ds aREVEAL IS Q. By (d),
however,QQo must wait until@Q; or () has done its second
ENROLL operation before it can apphEvEAL to O. A similar
argument (interchanging the roles@f, and 1) applies for
stateNyi24.

This shows that beforany process applieREVEAL, O
must have entered a black state. Furthermore, it can be im-
mediately seen from Fig. 4 that on€eenters a black state, it
remains in a black state throughout the execution. Thus, when-
ever aprocess applieR&veAL, O is in a black state and thus
returns O to th&EVEAL operation, as wanted. O

Theorem 1 The algorithm in Fig. 3 is a one-resilient Consen-
sus algorithm for three processes that uses only objects of type
dor and registers.

It is clear that the algorithm in Fig. 3 uses only ob-
ects of typedor and registers. For the rest of the proof, fix
an arbitrary execution of the algorithm in which at most one
process crashes. We need to show that this execution satisfies
the three properties of Consensus — Termination, Validity and

applied toO gets back response 0. To do so, it suffices to showAgreement.

On the power of shared object types to implement one-resilient Consensus 225

Termination: By Lemma 1, no correct process can be stuckoperations ta? with differentparameters is exploited to sat-
in any execution of the algorithm. Therefore, every correctisfy Agreement, while the fact that the process that is to apply
process decides in the execution. ENROLL(5) must do so in a nonsolo execution is exploited to
satisfy Validity. In this way we construct a Consensus algo-
rithm for two processes that uses alw@ object less tham\.
writes there is its initial value, for eaghe {0, 1}. Therefore, This contradicts our hypothesis that the numbefarfobjects

. e ST . used inA is minimal. This contradiction means that the as-
e o el e 21 med vt fee Consersus algoriivat uses onr
: . : . : objects and registers does not exist.
then Q4 has previously written intd),. This follows from
Lemma 2, since in every execution of the algorithm, a process
writes into Dy, before applyingeNroLL(k) to O, for each
ke {0,1}.

Agreement: Suppose that two distinct processgsand Q’ We first review the definition of valence for configurations of a
have decided in the execution (otherwise, Agreement is triv-Consensus algorithm, which was first defined in [5]. Cete
ially satisfied). By Lemma 2 and the specification of the al-any configuration ofA. We say that” is bivalentif there are
gorithm (lines 6-7 of), and@, and lines 5-6 0f)3), both configuration<, andC}, reachable front”, such that some

Q@ and Q' decide the value in the same regisfeg, where process decides in Cy and some process decidesn C;.

d € {0,1} is the parameter of the firgstNrROLL operation ap- C'is v-valent for v € {0, 1}, if there is no configuratiod”’
plied to thedor objectO during the execution. As just argued, reachable fronC' so that some process decidem C’. C is

a process read3, only after@, has writteninto it. Since only univalentif it is either 0-valent or1-valent. We say that two
one value is written intd,, @ andQ’ decide the same value. univalent configurationisave the same valenif¢hey are both
Thus Agreement is satisfied. O 0-valent or both 1-valent, arichve opposite valendne isO-
valent and the other isvalent. By the definitions of univalent
and bivalent configuration it follows that if a configuratiorof

A is neither univalent nor bivalent, then no process decides in
any configuration reachable froff Since this contradicts the
Termination property, we conclude that every configuration of

In this subsection we show that, using only objects of type & Consensus algorithm is either univalent or bivalent.
and registers, we cannot solve wait-free Consensus for two e establish some elementary properties of configurations

processes. (Recall that the concepts of wait-freedom and ondbat will be used subsequently.
resilience coincide for two-process algorithms.) The argument o jyma 3 Let C be any configuration oA, and P be any

uses a technique introduced in [10], and is outlined in theprocess. There exists a solo schedilef process? such that

following three paragraphs. - . . S'is applicable toC and P has decided irt(C).
Assume, by way of contradiction, that there exists a wait-

free Consensus algorith# for two processe®, andP; that Proof. Immediate from the Termination requirement of Con-
uses only objects of typaor and registers. Assume, further, sensus and the fact that algoritbAnis wait-free. O
that A uses a minimal number afor objects. Since wait-

free Consensus for two processes is not solvable using onlyemma 4 LetC andC’ be any two univalent configurations
registers [12], it follows thafA uses at least orgor object. such that the state of some process and each object is the same

To derive a contradiction, we proceed in two stages. Inin ¢ as inC’. Then,C andC’ have the same valence.
the first stage, we show that the assumed algorithmust

have a special configuratioiy, and ador object,O, withthe Proof. Let P be the process whose state is the sant@ &s in
following properties: For each € {0, 1}, processP, hasan (', andS be a solo schedule @ applicable taC such thatP
ENROLL(k + 2) operation toO pending inBB,. Starting from has decided it (C). Because the state f and each object
By, after applyingeNroLL(k + 2) to O, P, cannot apply isthe same i as inC’, by induction on the length of, we
ENROLL(v) to O, for anyv € {0, 1,2, 3}, and cannot decide can show thaf is also applicable t@"’. This implies thatP
unless it applies has decided the same value, say {0, 1}, in both.S(C) and
S(C"). Thus, bothS(C') andS(C”’) arev-valent. Since” and
C" are univalent, it follows that they must also bevalent.
U

Validity: By Fig. 3, it is clear that, in any execution of the
algorithm, only proces§);, writes into Dy, and the valu&);

3.3.1 Preliminaries

3.3 Typedor does not solve wait-free Consensus
for two processes

e anENROLL(4) to O; or
e anENROLL(5) to O, after the other process has taken at
least one step.

Furthermore, if each process is about to applyQothe
ENROLL(4) or ENROLL(5) that it must execute before decid-
ing, one process must be about to apmyroLL(4) while the
other must be about to appiwrOLL(5): they cannot both be

about to applyENROLL with the same parameter. in C’ and inS’(C), for every prefixS’ of S; and (iii) every

~In the second stage of the proof, starting from Conf'gura'operation applied t@) in S is stationary at the state @b in
tion By, we show how to solve Consensus for two processes rpan

without using thedor object©. Roughly speaking, the fact
that, starting front3,, the two processes must appiyROLL e Sis applicable toC"’,

Lemma 5 LetC andC’ be any configurations k. LetS be
any finite schedule applicable @ such that (i) every process
that takes a step iy and every object, except oder object
O, isin the same state if as inC”; (ii) O is in a white state

226

e every process that takes a stegpiand every object except
O isin the same state ii(C') as inS(C"), and
e O isin the same state i6” as inS(C").

Proof. Let S’ be the prefix ofS of lengthi. Recall that a
REVEAL operation applied todor object returns 1 if the object

W.-K. Lo, V. Hadzilacos

Lemma 7 The two operations pending thdo not commute
at ¢*, and neither one of them overwrites the othegat

Proof. Using a standard argument [6,12] we show that the
operations pending i neither commute nor overwrite one
another. Letop, and op, denote the operations 0 of P,

is in a white state, and that a stationary operation applied to and P;, respectively, that are pendingdh Let § be the state
dor object does not change the object’s state. Using these twtransition function ofD’s type.

properties, by a straightforward induction grwe can show
that

S is applicable ta”’, every process that takes a step
in S and every object exce is in the same state in
S*(C) asinS*(C"), andO is in the same state i@’
asinsS*(C").

The lemma follows immediately from this statement. [

3.3.2 Stage one of the proof

We now show the existence of a configuration addeobject

of A that satisfy the properties described at the beginning o

Sect. 3.3.

Lemma 6 There exist a bivalent configuratighof A, steps
ep ande; of processe$, and Py, respectively, applicable to
C, and an object) such that

Operationsop, and op; do not commute aj*: If not, then
by definition there exist responseg, r; and stategyg, g1, ¢
such that, for eaclt € {0,1}, 6(¢*, opi) = (rk,qx) and
d(qz, opy) = (r,q). Thus,eq = (P, 0py, O,79) ande; =
(Py, opy,O,11), and they are applicable tq(C) andey(C),
respectively. Also© has the same state, namelyin both
eo(e1(C)) ande; (eo(C)). Thus, the state of each process and
each object is in the same stateeifie; (C)) as inej(eg(C)).
By Lemmad4gg(e1(C)) ande; (eq(C)) have the same valence.
This contradicts the fact that (e;(C)) ande;(ep(C)) have
opposite valence (becausgC) andeq(C) do).

gleither one obp, and op,; overwrites the other aj*: Sup-

ose, for contradiction, thaip, overwritesopy, for some
k € {0,1}. Then, there exist responses r; and states, g
such thab(q*, opy) = (5, s) ando(q*, opy,) = 6(s, opy) =
(rk,q). Thus,ep, = (Py, opy, O,) andey = (P, opy, O,
1), andey, is applicable te;(C). After e, is applied tae(C),

and
e ¢ ande; both acces®.

Proof. Using a, by now, standard argument [5, 6], it can be

shown thatA has a bivalent initial configuratioh From this,
andthe factthaA is wait-free, it follows that there is a bivalent
configuratiorC, reachable frond, so that any step applicable
to C leads to a univalent configuration. Sindeuses deter-
ministic types, for eactt € {0, 1}, P, has exactly one step,
ex, applicable tc. SinceC is bivalent whileey (C) ande; (C)
are univalent, it follows that,(C) ande; (C) have opposite
valence.

It remains to prove thaty ande; access the same object.
If not, it is easy to see thaty(e1(C)) = e1(eo(C)), which
contradicts thato(C) ande; (C) have opposite valence. (J

In the rest of this section we focus exclusively on config- | amyma 7.

urations that are reachable from the bivalent configuration
Without loss of generality, we assume tlg{C) is 0-valent

ing O) is the same ire,(e;(C)) as inex(C). By Lemma 4,
ex(ez(C)) andey (C) have the same valence. This contradicts
the fact thate, (e;(C)) is k-valent (because;(C) is) while
er(C) is k-valent.

Lemma 8 ObjectQ is of typedor; furthermore, no operation
pending inC is stationary aty*.

Proof. If O was a register, then each of the operation&pf
andP; pendingirC is either a read or a write 16. For each of
the four possible combinations, it is straightforward to verify
that the two operations commute or one of them overwrites
the other, contradicting Lemma 7. Thi@3,is ador object.

If, for somek € {0,1}, the operation ofP, pending in
C is stationary ay*, then the operation of;; pending inC
overwrites P,’s operation afy*. But this is not possible, by
O

From the specification afor, it is easy to verify that every

ande; (C) is 1-valent. (If not, we simply interchange the roles operation is stationary &b, and that thekEvEAL operation
of eg ande; throughout the argument presented below.) Injg stationary at every state dor. By Lemma 84* # & and

what follows, letg* denote the state @ in configurationC.

both processes have anroLL operation taD pending inC.

Since this stage of the proof is rather long, we give aThgreforep, ande; areENROLL steps a0, and thus are ap-
roadmap to help explain its overall structure. We first provepjicaple toe; (C) ande (C), respectively. For eadh e {0, 1},

that O is a dor object (Lemma 8) and that* is the fresh

let vy, be the parameter df,’s ENROLL operation pending in

state (Lemma 10). The proof of this makes heavy use of the

earlier-noted fact thador exhibits a great deal of commuta-

tivity and overwriting between operations. We then prove thattemma 9 If ¢* is normal, then

there is a solo schedulg, of P, so thatP, haseNROLL(2)

to (a) Foreachk € {0,1}, ENROLL(vy) is not upsetting ag*.

O pending inEy(e1(eo(C))) (Lemma 11). In addition, there (b) vo # v1.

is a solo schedul&; of P, so thatP; haseNROLL(3) to O
pending inE; (Ey(e1(eo(C)))) (Lemma 12). Finally, we show
that configuration3, = E4(Ey(e1(eo(C)))) anddor object

Proof. (a) Suppose, for contradiction, theNROLL(vy) is
upsetting a* for somek € {0, 1}. Without loss of generality,

O (defined above in Lemma 6) have the properties stated aassume that = 0. By Lemma 8,ENROLL(v;) cannot be

the beginning of Sect. 3.3 (Lemmata 15 and 16).

stationary ing*, and therefore there are two remaining cases:

On the power of shared object types to implement one-resilient Consensus

Case 1. ENROLL(v1) is upsetting ag*: Then,ENROLL (vg)
andeNROLL(v;) overwrite each other at*. This contradicts
Lemma 7.

Case 2.ENROLL(v7) is ordinary atg*: Let ¢ be the state of
Oine;(C). SINCEENROLL(vp) is upsetting ay*, it is easy to
verify from the specification oflor that ENROLL(vg) is also
upsetting ay. But thenENROLL(vg) OvVerwriteSENROLL (v)
atq*. This again contradicts Lemma 7.

Since both cases contradict Lemma 7 ,BMROLL operation
to O pending inC is upsetting at*, as wanted.

(b) Note that, for any statgof dor andv € {0, ... ,5}, two
ENROLL(v) operations commute at If, contrary to this part

of the lemmay, = v; = v, for somev € {0, ... ,5}, the two
ENROLL(v) operations pending i commute at*, contrary
to Lemma 7. Thusyy # vs. O

In the rest of this section, l&ly = e;1(eo(C)) andC; =
eo(e1(C)).
Lemma 10 ¢* = ©.

Proof. By Lemma 8,¢* # ®. Thus, it suffices to show that

¢* is not normal. By Lemmata 7-9, 4§ is a normal state, the 10

following properties hold: The twaNRrROLL operations pend-

ing inC have distinct parameters, and they are ordinary, don

commute, and neither one of them overwrites the othet .at

13.

227

For eachv € {1,2,3,4}, ENROLL(v) is ordinary atNv if v ¢ V.
Also, ENROLL(5) is ordinary atNy if 5 ¢ V and2 and at least one
of {3,4} areinV.

1. No1:OnlyENROLL(2), ENROLL(3) andENROLL(4) are ordinary
at No1, and any two of these three commute.

2. No2: Only ENROLL(1), ENROLL(3) and ENROLL(4) are or-
dinary atNo2; and ENROLL(4) overwriteSENROLL(1), while
ENROLL(3) commutes witlENROLL(1) andENROLL(4).

3. Noi2: Only ENROLL(3) andENROLL(4) are ordinary atVo12,
and they commute.

4. Nopi3: Only ENROLL(2) andENROLL(4) are ordinary atVo13,
and they commute.

5. Noi4: Only ENROLL(2) andENROLL(3) are ordinary atVo14,
and they commute.

6. No23: Only ENROLL(1), ENROLL(4) and ENROLL(5) are or-
dinary atNg23; andENROLL(4) overwriteSENROLL(1), while
ENROLL(5) commutes withENROLL(1) andENROLL(4).

7. Noi23: Only ENROLL(4) andENROLL(5) are ordinary afVo123,
and they commute.

8. Noi24: Only ENROLL(3) andeNROLL(5) are ordinary afVoi24,
and they commute.

9. Nois4: Only ENROLL(2) is ordinary atNoi3a.

Noass: Only ENROLL(1) andENROLL(4) are ordinary afVo2ss,

andENROLL(4) overwriteSENROLL(1).

oJfl. No1234: Only ENROLL(5) is ordinary atNoi234.

2. Noi235: Only ENROLL(4) is ordinary atNp1235.
No1245: Only ENROLL(3) is ordinary atNoi245.

By inspection of Fig. 2, it can be verified that no normal state
exceptN, satisfies this property. (See Fig. 5 for the details of
this verification.) We now eliminate the remaining possibility,
i.e., thatg* = Ng.

By the specification oflor, ENROLL(v) is ordinary atNy
for v € {1,2,3,4}. Thus, by Lemma 8 and Lemma 9(a),

14. Noi2345: There is no ordinargNROLL operation atVo12345.

Fig. 5. Normal states that cannot p&

vo,v1 € {1,2,3,4}. First we prove thatg,v; # 1. Sup-
pose to the contrary that, = 1 for somek < {0,1}. Then,
by Lemma 9(b)uz € {2,3,4}. By inspection of the graph
in Fig. 2, at statéVy, ENROLL(2) andeENROLL(1) commute,
ENROLL(3) overwriteSENROLL(1), and ENROLL(4) over-

Co is O-valent,P, decides 0 inS(Cy). We claim thatS has an
ENROLL step toO. If not, sinceNy23 andNy;23 (the states of
Oin(CyandCy, respectively) are both white and sinceveEAL
(the only other kind of operation that may be appliedXpis

writes ENROLL(1). Each of these three cases contradictsstationary at these states, then by Lemma& % applicable

Lemma 7. Henceyy, v1 # 1.
Next we show thaty,v; # 4. Again suppose, for con-
tradiction, thaty, = 4 for somek € {0,1}. Thenvy €

to C; and P, has the same state 8Y{Cy) as inS(Cy). This
implies P, also decides 0 i§(C;), which contradicts the fact
thatC; is 1-valent. Thus$ contains arENROLL step toO, as

{2,3} (by Lemma 9(b) and the claim in the preceding para-claimed.

graph). By inspection of Fig. ZNROLL(4) commutes with
bothENROLL(2) andENROLL(3) atNy. This contradicts Lem-
ma’.

We have shown thag, v; & {1,4}. Thus,wg, v; € {2,3}

Let Sy be the longest prefix of that does not contain an
ENROLL Step toO. Again by Lemma 55 is applicable ta;,
the state of each process and each object exgépthe same
in Sp(Cy) as inSy(Cy), and the state o in Sy (Cp) is No23

and, by Lemma 9(b), they are distinct. Without loss of gener-while in S,(C,) it is Noy23. Clearly, by the definition o8,

ality assume thaty = 2 andv; = 3. (The other case, where
vo = 3 andv; = 2, is similar.) Thusgg = (FPo, ENROLL(2),
O, ack) ande; = (P, ENROLL(3), O, ack). Note that, and
C, are identical, except the state 6fin the former isNy3
while in the latter it isNg123.

Claim 10.1There is a schedul§ such that (a) is applicable

the operation ofP, pending in bothS,(Cy) and.Sy(C,) is an
ENROLL t0 O.

Applying a similar argument (replacing, with P;) to
configurationsSy (Cy) andSy(C1), we can show that there ex-
ists a solo schedulg, of P; such thatS, is applicable to both
So(Co) andSy(Cy), the state of each process and each object

to bothC, andC; (b) the state of each process and each objecBXCeptO is the same b, (50 (Co)) as inS1(So(Cy1)), Pr has

excepl? is the same i5(Cy) asinS(Cy), (c) each process has
anENROLL operation ta® pending in bothS (Cy) andS(Cy),
and (d) the state oP in S(Cy) is Noa3 while in S(Cy) it is
No12s-

Proof of Claim 10.1. By Lemma 3,P, has a solo schedule
S applicable taC, such thatP, has decided ir5(Cy). Since

anENROLL to O pending in bott6; (So(Co)) andS1 (So(C1)),
and the state a® in S, (So(C0)> is Ngo23 While in Sl(S() (Cl))

it is Ng123. Recall thatP, has anENROLL to O pending in
So(Co) andSy(Cy). SincesS; is a solo schedule df;, the op-
eration of P, pending in bothS; (Sy(Co)) and S (So(C1)) is
still an ENROLL to ©. Thus,S = S, - S; has the properties
stated in the claim. O Claim 10.1

228

Let Ay = S(Co) andA4; = S(Cy), and letw, and w,
be the parameters of thevrRoLL operations ofP, and Py,
respectively, pending in both, andA; . For eachk € {0,1},
letc;, = (Pg, ENROLL(wy), O, ack); i.e., ¢y is the step ofP;,
that is applicable to botd, and A,. There are four cases:

Case 1. w, € {0,2,3}, for somek < {0,1}: Then
ENROLL(wy,) iS upsetting in bottiVoe3 andNy123 (see Fig. 2).
SinceO has state$Vyo3 and Nyi23 in configurations4, and
Ay, respectively, it follows tha®) is in state? in bothcy (Ap)
andci(A1). Then, the state aP, and each object (including
O)in ¢, (Ap) is the same as i, (A;). By Lemma 4 ¢, (Ayp)

andci(A;) have the same valence. This contradicts the fact

thatcy (Ap) is O-valent and, (A4,) is 1-valent.

Case 2. w, = 4, for somek € {0,1}: In this case, the
state ofO in both ¢ (Ag) andeg (A1) is No1234 (See Fig. 2).
Thus, the state aP,, and each object is the samerif(Ay) as

in c;(A1). By Lemma 4,c,(Ap) andci(A4;) have the same
valence. which is a contradiction as in Case 1.

Case 3. w, = 1, for somek € {0,1}: In this caseO is
in the same state, namely;23, in bothc,(A4g) and A; (see
Fig. 2). The state of; and each object is the samecjn(Ao)
asinA;. By Lemma4g,(Ap) andA; have the same valence.
This contradicts the fact thaf,(Ap) is 0-valent whileA; is
1-valent.

Case 4.wg = wy; = 5: Then,O is in the same state, namely
@, in bothe; (¢o(Ao)) ander (co(Ar)) (see Fig. 2). It follows

that every process and every object is in the same state
c1(co(Ap)) asiney (¢p(Ayr)). This contradicts Lemma 4, since
the nodesg (co(Ao)) andc; (co(A1)) have opposite valence.

Each of these cases leads to a contradiction. Thug Ny,
and the lemma follows. O

By the specification oflor (see Fig. 2), every operation —
excepENROLL(0) andENROLL(1) —is stationary ab. Thus,
by Lemma 8, the two operations @ pending inC must be
eithereENrROLL(0) or ENROLL(1). Furthermore, one of these
must beENROLL(0), while the other iENROLL(1). (If not,
since twoENROLL(0)’s or two ENROLL(1)'s commute a9,
then the two operations pending ghcommute at®, which

W.-K. Lo, V. Hadzilacos

For eachk € {0,1}, ex = (Px, ENROLL(k), O, ack).

ei(eo(C)) = Co

d(Eo(Co))

&S(Cl)

Fig. 6. A solo schedules of P, that is applicable t@

(See Fig. 6.) We claim theff contains areNrROLL(v) step to
O for somev € {0, ... ,4}. To prove this claim we suppose,
for contradiction, thatS does not contain such aNROLL
step. First, note that process and each object exceftis in
the same state iey (C) as inC; (recall thatC; = eg(e1(C))).
Also, the state 0® in e (C) is Ny while in Cy it is &); thus,
i is in a white state in both,(C) andC,. SinCEENROLL(5)
andrEVEAL (the only operations that may be applied2dn
S) are stationary at botly, and®, it follows from Lemma 5
(with C = e(C) andC’ = C;) that S is applicable ta’; and
P, has the same state 81¢y(C)) as inS(Cy). This implies
that P, also decides 0 i§(C;), which contradicts the fact that
C1 is 1-valent. Hence§ contains alENROLL(v) step toO, for
somev € {0, ... ,4}, as claimed.

Let Ey - d be the shortest prefix of that contains an
ENROLL step toO other thanENROLL(5). Thus,d = (P,
ENROLL(v), O, ack) for somev € {0,... ,4}, andE, con-
tains NOENROLL step toO exceptENROLL(5). SinceNy, No;
and® (the states 0® in eq(C), Cy andCy, respectively) are

contradicts Lemma 7.) Without loss of generality, we assumeVhite and botlENROLL(5) andrREVEAL (the only operations

that P, andP; haveENROLL(0) andeENROLL(1) to O, respec-
tively, pending inC. (If not, we simply interchange the roles
of Py and Py, as well as ofey ande;, throughout the argu-
ment presented below.) Thus, = (P, ENROLL(0), O, ack)
ande; = (P1,ENROLL(1), O, ack), and therefor€, andC;
differ only in that the state a® in Cy is Ny; while inCy it is

Lemma 11 There exists a solo schedul&, of processpP,
such that

e [y is applicable to boti€, and(Cy;

e Fy(Co) and Ey(Cy) are identical, except the state 6fin
Eo(Co) is No1, while inEo(Cl) itis ®; and

e Py has anENROLL(2) to O pending in bothE,(Cy) and
Eo(Cy).

Proof. Consider the configuratiany (C). By Lemma 3,/ has
a solo schedul® applicable tae, (C) such that?, has decided
in S(ep(C)). Sinceey(C) is 0-valent,P, decides 0irb (eg(C)).

that may be applied t® in E,) are stationary at these states,
it follows from Lemma 5 (withC' = e¢(C), C’" € {Co,C1},
andS = FEj) that

e Fy is applicable to botld, andCy,

e the state ofP, and each object exce is the same in
Ey(Cy) asinEy(Cy), and

e the state oD in Ey(Cy) is No1, While in Ey(Cy) itis &.

Clearly, P, has the same statelfy (Cy) asinEy(C;) (sinceEy

is a solo schedule d?)). To complete the proof of this lemma,
it remains to show that = 2. For this, it suffices to preclude
the possibility that € {0,1,3,4}. Let Ay = d(Ep(eo(C)))
andA; = d(Eo(Cl))

Case 1. v = 0: SinceO is in stateNy in Ey(eo(C)) and
ENROLL(0) is upsetting atV, (see Fig. 2)(is in state® in
Ayp. SinceQ is in state® in Fy(Cy), it remains in that state in
A;. Thus, the state afy and each object is the sameAg as

in A;. By Lemma 4,47 and A; have the same valence. This
is a contradiction, sincd, and A; have opposite valence.

On the power of shared object types to implement one-resilient Consensus

Case 1.v € {1,3,4}: SinceO has stateVy in Ey(eq(C)),
the state ofD in Ay is Noy if v =1, Ngy3 if v = 3, andNyy4
if v = 4 (see Fig. 2). Recall tha®, has arENrOLL(1) to O
pending iney(C). Consequently, a&) - d is a solo schedule
of Py, the operation of; pending inA, is still ENROLL(1) to
O.Thus,e; = (P;,ENROLL(1), O, ack) is the step ofP; that
is applicable tad,. By the specification odlor, ENROLL(1) is
upsetting at each dfNy1, No13, No14 }- It follows thatO is in

state® in e; (Ap). Then, each process and object (including

O) has the same statedn(Ay) asinA;. By Lemmade; (Aop)

and andA4; have the same valence. This contradicts the fact

thate; (Ay) is 0-valent and4; is 1-valent. O

Lemma 12 Let Ey be as in Lemma 11. There exists a solo

schedulef; of processP; such that

e F is applicable toE(Cy) and Ey(Cy);

e By = F; (E()(C())) andB; = El(E()(Cl)) are identical,
except the state @ in By is Ny; while in By itis ®; and

e for somev € {3,4}, P, has anENROLL(v) to O pending
in both By and ;.

Proof. Consider the configuratioB,(Cp). By Lemma 3, pro-
cessP; has a solo schedulg applicable taF(Cy) such that
Py has decided ir6(Ey(Cp)). By Lemma 5, using an argu-
ment similar to that in Lemma 11, we can show tHatas a
prefix E; - d such thatl = (P;, ENROLL(v), O, ack) for some
v €A{0,...,4}, E, is applicable to bottE (Cy) andEy(Cy),
andB() = El(E()(C(])) and81 = El(E()(Cl)) are identical,
except that the state @ in By is Ny; while in By it is &®.
To complete the proof it remains to show that {3, 4}. For
this, it suffices to preclude the possibility that {0, 1, 2}.

Case 1.v € {0,1}: SinceO is in stateNy; in B, and both
ENROLL(0) andENROLL(1) are upsetting alVy; (see Fig. 2),
objectQ is in state® in d(By). Clearly, ag0 is in state® in

229

For eachk € {0,1}, ex = (Px, ENROLL(E), O, ack).

C
eg(C) el(C)
€1 €o
er(eo(C)) = Co C1 = eo(e1(C))
E(]l: EEO
Eo(Co)é éEO(Cl)
Eli :El

By (Eo(Co)) = Bo é &Bl = E1(Eo(Cy))

Fig. 7. Some configurations reachable fram

To summarisel3, andB; satisfy the following properties:
They are 0-valent and 1-valent configurations, respectively,
reachable fronT and differ only in that the state @ in 5,
is No1 while in By it is &. Furthermore, for each € {0,1},
processP;, has anENROLL(k + 2) to O pending in both5,
andB;. (See Fig.7.)

We now prove some properties of schedules that are ap-
plicable tos,.

Lemma 13 Let S be any schedule that is applicable By.
For eachk € {0, 1}, the first step taken by in S is an
ENROLL(k + 2) to objectO.

Proof. Immediate from the fact that procedy, has an
ENROLL(k + 2) to O pending in both3, and B;, for each

By, itremains in stat€in d(8,). Therefore, each process and # € {0,1}. O

object is in the same stated(3,) as ind(5;). By Lemma 4,

d(By) andd(B;) have the same valence. This contradicts the

fact thatd(By) is O-valent and{(53;) is 1-valent.

Case 1.v = 2: In this case() is in stateNy12 in d(By) (see
Fig.2). By Lemma 11F, haseENROLL(2) to O pending in
both Ey(Cp) andEy(Cy). SinceFE; - dis a solo schedule d?y,
the operation of?, pending in bothi(B,) andd(B;) is still
ENROLL(2) to O. Letd = (P, ENROLL(2), O, ack) denote
the step ofF, that is applicable to botti(55,) andd (B).

SinceENROLL(2) is upsetting atVy12 (the state oD in
d(By)), it follows thatO is in state® in d’'(d(By)). Because
O is in state® in e1(C), it is also in that state id’ (d(B1)).
Thus, each process and object is in the same stdted(i53,))
asind'(d(B1)). By Lemma 44’ (d(By)) andd’(d(B;)) have
the same valence. This contradicts the fact thai(5,)) is
O-valent andl’ (d(B;)) is 1-valent.

Let.S be any schedule of algorithi that is applicable to
By. We say thatS is decidingif it contains either

e ANnENROLL(4) step toO, or
e aneENROLL(5) step toO by a process that appears after a
step inS by the other process.

S is nondecidingf it is not deciding.

Lemma 14 LetS be any schedule that is applicableffg. If
S'is nondeciding then

(a) S is applicable toB;, and the state of each process and
each object excef® is the same irt(By) as in S(B1);
and

(b) S contains at most oneNrOLL(2) step toO, at most one
ENROLL(3) step toO, and noENROLL(v) step toO for
anyv € {0, 1}.

By Lemma 12, we can assume, without loss of generalityProof. (a) By Lemma 123, andB; differ only in that the

thatP; haseNROLL(3) to O pending in bothB, andB; . (Ifthe
operation ofP; to O pending in3, andB; is anENROLL(4),
instead ofENROLL(3), we interchange the rolespRROLL(3)
andeNROLL(4), and replace staté¥,;3 and Ny 23 with states

state ofQ in the former isNy¢, while in the latter it is®. As
mentioned, bottVy; and® are white. Sincé is nondeciding,
S does not contain amvROLL(4) step toO, or anENROLL(5)
step toO by a process that appears after a step iby the

No14 and Ny124, respectively, throughout the argument pre- other process. Recall that, for eakhe {0,1}, P, has an

sented below.)

ENROLL(k + 2) to O pending inBBy. Therefore,S does not

230 W.-K. Lo, V. Hadzilacos

contain anENROLL(5) step toO that appears after both an &k € {0,1}, thenO is in state® in ¢;(S(By)). SinceO is
ENROLL(2) and areENROLL(3) step toO. Given these facts, it also in stat&? in ¢, (S(B1)), it follows that each process and
is easy to verify (using Fig. 2) that for every prefikof S,the ~ each object is in the same state:ji{S(By)) as inc, (S(B1)).
state ofOQ in S’(By) is one of{ No1, Noi2, No1s, Noi2s, D} By Lemma 4,c;(S(By)) and ¢ (S(B1)) have the same va-
Since all these states are white and every operation oftype lence. This contradicts the fact that S(B,)) is 0-valent and
is stationary at® (the state of® in B;), by Lemma 5,5 is ¢, (S(By)) is 1-valent. Thereforey, v, € {4,5}.

applicable td3,, and the state of each process and each object To complete the proof it remains to show thgt# v;.
exceptO is the same it (By) as inS(By). Sincec; is an ENROLL step toQ, it is applicable to both

(b) Suppose, for contradiction, théicontains more than one €o(S(Bo)) andco (S(By)). LetAg = c1(co(S(Bo))) andA; =
ENROLL(2) step ta®, or more than oneNroLL(3) stepta®, 1(co(S(B1))). If vo = v, thenOisinstate®inbothApand
Or aNENROLL(v) step to? for somev € {0, 1}. By inspection A;. Then, each process and each object has the same state in
of Fig. 2, it is easy to verify that, under this assumption, the 41 as in4o. By Lemma 4.4, and4, have the same valence.
state of0 in S(B,) is®@. By (a), 5 is applicable td3; and the This contradmts the fact that, is 0—va|_ent and, is 1-valent.

state of each process and each object ex@astthe same in Hence, it must be that, # v,, as desired. O

S(By) as inS(By). SinceO is in state® in By, it remains in

state® in S(B;). Thus, the state of each process and object

(includingO) is the same i§(B5,) as inS(B1). By Lemma4, 333 Stage two of the proof

S(By) andS(B;) have the same valence. This contradicts the

fact thatS(B) is O-valent and5(B,) is 1-valent. L' \We now describe an algorithm, derived fro that solves
one-resilient Consensus for two procesggg,and @, and
uses onelor object less thar\. The idea is very similar to the
algorithm used in [10]: Each proce®g simulates the actions

of the corresponding proceg, in an execution ofA, and
uses this execution to determine what value to decide. In this
ENROLL(4), OraneNroLL(5) afterthe other process hastaken gjmjation, the processes are allowed to access all objects used
at least one step (Lemma 15). Furthermor@afhprocesses A excepio; each of these objects is initialised to the state
are about to execute tH/ROLL(4) or ENROLL(5) operation it'has in configuratior,.

to O that they must execute before they can decide, thenone . proces§), starts its simulation o, by pretending

of the two must execute amNROLL(4), and the other must 4t p is in the state it has in configuratidfy,. Based on
execute arENRo;L(5): they can't both be about to execute e current state of (the simulated).,), determines the
the same operation (Lemma 16). operationop that P, would apply next, and the obje@ to
which op would be applied. [# O, then@;, has access 0

and can applyp to it directly to determine the response and
update the (simulated) state 8f accordingly. If, however,

O = O, thisis not possible, sina@y, is not allowed to access

Proof. Let P be the process that has decidedii,). Since O Instead, in this cas€),. acts as follows:

S(Bo) is 0-valent,P decides 0ir5(By). If S'is nondeciding, |t) is arEvEAL operation then(;, pretends that it applied
then by Lemma 14(a)5 is applicable td3;, and the state of ipig operation ta@ and received response 1.

each process and each object exe@ps the same ir5(5y)

asinS(B,). In particular,P has the same state f(B;) asin If op is anENROLL(v) operation then there are three cases:
S(B;). But thenP also decides 0 it (B;). This contradicts
the fact thatS(B,) is 1-valent. O

The next two lemmata show that the configuratifyrand
the dor object O satisfy the properties stated at the begin-
ning of this section. That is, starting froBy, no process can
decide unless at least one of them has applie@ &ther an

Lemma 15 Let S be any finite schedule that is applicable to
B, such that some process has decided (#,). ThensS is
deciding.

Case 1.v = k + 2: Qi pretends that it applied this operation
to © and received responsek.

Lemma 16 Let S be any schedule applicable B suchthat ~ Case 2.v = 4: @, stops simulating steps df in A and
: - decides its own initial value.
e S is nondeciding;

e for eachk € {0,1}, processP; has anENROLL(v;,) to © its first step of /. If not, @ pretends that it applied the
pending inS(By) for someuy. ENROLL(5) operation ta0 and received responsek. Other-
wise, Q. stops simulating steps & and decideg);’s initial
Then,Uo,’Ul S {4, 5} and’UO 7é V1. value.

Proof. SincesS is hondeciding and both processes have takerf @, does not decide, then it updates the (simulated) state of
stepsinS, by Lemma 13 and Lemma 14(t5jcontains exactly Py as if op were applied ta) (as described above) and then
ONEENROLL(2) step toO, exactly one&ENROLL(3) step toO, proceeds with the simulation of the next operatiorPpf

and noENROLL(v) step toO for anywv € {0,1}. Then, by The algorithm is described more formally in Fig. 8. A few
inspection of Fig. 2, it is easy to see ti@tmust be in state remarks about the conventions used in the pseudocode are in
No123 in S(Bp). order. Recall, from Fig. 3, that Appl¥, op, O) is the proce-

For eacht € {0,1}, letc,, = (Py, ENROLL(vg), O, ack). dure by whichP;, invokes operatiomp on objectO; it returns

From the specification aflor, each of{ ENROLL(v) : 0 < the result of this invocation (and updates the state atcord-
v < 3} is upsetting atVp123. If vr € {0,1,2,3} for some ingly). In addition, we assume that we are given two functions

On the power of shared object types to implement one-resilient Consensus 231

Shared: all objects used im\ exceptO, Lemma 17 If A is a wait-free Consensus algorithm for pro-
each initialised to the state it has/f cesses?, and Py, then the algorithm in Fig. 8 is also a wait-
Do, Dy register, each initialised ta. free Consensus algorithm for procesggsandQ, using one

Ro, Ri: register, each initialised t®
S : auxiliary variable : schedule ok applicable ta3y,
initially empty Proof. Itis obvious that the algorithm in Fig. 8 uses one fewer
Code for proces§s, k € {0, 1} dor objectthanA.. Consider an arbitrary execution of the algo-
1 D, :=initial value ofé)k rithm in Fig. 8. We must prove that in this execution the three
2 state = state ofP, in B, properties of (?onsens'us - Termmquon, Validity and Agree-
3 while Q,, has not decidedo ment — are satisfied. First we establish some facts.

fewerdor object.

— Let S; be the value of the auxiliary variablgé when S

g ffog’ 0) := NextOp P, state) contains a schedule with exactlgteps. A straightforward in-
O then ; _ : ! .

6 [+ := Apply(Py, op, O) duction on alk > 0suchthat; is defined shows the following
7 S:=S-(Ppop,0,1)] invariants:
8 state := NextStatéPy, state,r) (a) S; is applicable td3,.
9 else(x O = O %) (b) S; is nondeciding.
10 if op = REVEAL then (c) Let@: be the process that assigsisto .S, andstate; be
11 S: =8 (Pg,REVEAL, O, 1) the value to whicl®);, sets its local variabletate just after
12 state = NextStateFy, state, 1) assignings; to S. For all j > i, if S; is defined and does
13 else ifop = ENROLL(k + 2) then not contain a step of, after its prefixS;, thenstatey, is
14 [Rr:=1 the state of procesB;, in configurationS;(B,) of A.
15 S =S (Pg,ENROLL(k + 2), O, ack) | .
16 state 1= NextStatéPy, state, ack) We now turn to the proof that the three properties of a Con-
17 else ifop = ENROLL(5) then sensus algorithm are satisfied.
18 [if Rz = 0then Termination: Suppose, for contradiction, théx, is correct
19 S =8 (Py,ENROLL(5), O, ack) | and never decides in the execution. This means thavtfiie
20 state := NextStatePy, state, ack) loop of proces€);, does notterminate. Thus, there is an infinite
21 else schedules™* of A that contains infinitely many stepsBf such
22 decide Dy thatS* is applicable td3, and is nondeciding (by Invariants (a)
23 else(x op = ENROLL(4) *) and (b) above). By Lemma 1%, does not decide is’ (1),
24 decide Dy, for all prefixesS’ of S*. This contradicts the fact that is a
Fig. 8. Solving wait-free Consensus for two processes ugingith ~ Wait-free Consensus algorithm for two processes (in particular,
one fewerdor object it contradicts the Termination property &f).

Validity: In any execution of the algorithm in Fig. 8, only pro-

that describe the behaviour of procesBgandP; in A (these €Sk Writes intoDy., for eachk € {0, 1}, and the valu€),

correspond to the functionsandr discussed when we for- Writes there is its initial value (line 1). Thus, to show the exe-
mally defined processes in Sect. 2.2). cution satisfies Validity, it suffices to show that¥, decides

. the value inD,, then@, has previously written int®,. There
o NextOp(Py, s): returns the paiKop, O), where the next 416 two cases:

operation thaf’, executes imA when in state is to apply

op to objectO. Case 1. ;. decides in line 24Then Q) decides the
o NextStat¢P,, s, r): returns the state thay, enters inA if value inDy, into which it has previously written.

it receives responsefrom the operation it invokes when Case 2.Qy, decides in line 22ThenQ);, readsi;; = 1

in states. in line 18. This means thaf); has already executed

line 14, and hence line 1 as well. Thigg; has written

In the algorithm, registe?;, &k € {0,1}, with initial into D;. before@);, decides the value ifx.

value 0 is used by proceé; to indicate whether it has simu-
lated a step oP;, Specifically,Qx writes 1 intoR;, to signify ~ Agreement: Suppose botty, and@); decide in the execution.
that it has simulated the step Bf that is pending i3, (lines (Otherwise, Agreement is trivially satisfied.) L8t be the
14-15). Another shared regist@y, is used byQ, intowhichit value of S after both processes have decided. (Note #iat
writes its initial value for Consensus before it starts simulatingis finite.) For eachi € {0, 1}, let state, be the value of the
the steps of; (line 1). In addition to these shared variables, local variablestate of @, when @y decides. By Invariants
we also use an auxiliary variable whose value, informally (a) and (b),S* is applicable toB3;, and is nondeciding. By
speaking, isthe schedule of stepaahat have been simulated Invariant (c),statey, is the state o, in S*(B,), and by the

by Qo and@, so far. This variable is not needed by the algo- algorithm in Fig. 8,Q; decides only when the operation of
rithm, butitis useful in proving its correctness (Lemma 17). In P, pending inS*(By) is ENROLL(vg) to O, for someuwy.

one atomic step, besides accessing an ordinary variable, eaétiso both P, and P; have taken steps ifi* (because, by the
process can also modify the auxiliary varialeTo empha- algorithm in Fig. 8, eacky;, must simulate at least one step of
sise this, we bracket with[“- -]” the actions that correspond P, before deciding). We have thus shown that the hypothesis
to an atomic step affecting both an ordinary variable and theof Lemma 16 applies fof = S*. Therefore, by Lemma 16,
auxiliary variableS. vo, v1 € {4,5} andvy # v1. Thus, one of), and@; decides

232 W.-K. Lo, V. Hadzilacos

by line 22, while the other decides by line 24. Therefore, bothShared: Active: array [0..s — 1] of register, each is a Boolean

processes decide the value in the same regigtefor some variable, initially false -
¢ € {0, 1}. By Validity, this happens aftep, has written into Close.d. reglster, a Boolean va}nable_, |_n_|t|ally false
D,. Since at most one value is written int, both processes Done: register, a Boolean variable, initially false
decide that one value. O
) . . TEST&SET, return 0 or 1. Code for procegk., k € {0,...,s—1}
Equipped with Lemma 17, we can now prove the mainy it crosed then return 1
result of this section. 2 Closed = true
Theorem 2 There is no wait-free Consensus algorithm for 3 Active[k] := true
two processes using ontior objects and registers. 4 fori:=ktos—1do
5 repeat
Proof. Suppose, for contradiction, that there is a wait-freeg pfor j=0tok—1do
Consensus algorithm for two processes using ady ob- 7 if Active[j] then
jects and registers. UsingdKig's Lemma, it is easy to see g Active[k] := false; return 1
that any wait-free Consensus algorithm that uses objects thaf until i = k or not Activei]

belong to types that exhibit finite nondeterminism uses finitely (+ Beginning of CRITICAL SECTIONk)
many objects. Sincdor andregister are deterministic types 19 if not Done then

(and,a fortiori, they exhibit finite nondeterminism), the as- 11 Done = true

sumed algorithm uses a finite numbedof objects. LetA be 12 result == 0

such an algorithm that uses a minimal numbedafobjects. 13 g|se

Since wait-free Consensus for two processes in unsolvable ug- result ~— 1

ing registers alone [6,12]A uses at least orgor object. By (+ End of CRITICAL SECTIONk)
Lemma 17, we can construct a wait-free Consensus algorithms 4 qtjye (k] := false;return result

for two processes that uses one fewer object, contrary to

the definition ofA.. 0 Fig. 9. A non-wait-free implementation of a TAS register using only
registers.
4 The case of four or more processes Our simulation (of a Consensus algorithm foe> 4 pro-

) _ cesses by only three processes) uses a non-wait-free imple-

In this section we show that for > 4, any set of typesS mentation oftest-and-set-register, initialised to state 0, for
(that includegregister) strong enough to solve one-resilient nree processes. The implementation is not wait-free because
Consensus amongprocesses is also strong enough to solveg correct process may initiater@sT&sET operation but be
one-resilient Consensus among- 1 processes. This holds ynaple to finish it because another process crashes while ap-
even ifS may contain nondeterministic types. We prove this byplying its own TEST&SET operation. The implementation,
showing how a one-resilient Consensus algorithmvfor 4 however, guarantees that process crashes can peavest
processes can be simulated by just three processes using ojecorrect process from finishing itesT&SET invocation.
registers in addition to the objects already used by the Consenrhjs property, as we shall see, is crucial to our simulation.
sus algorithm. This simulation implies that,Sfimplements An implementation of TAS registers sharedby 2 pro-
one-res@l!ent Consensus farprocesses, it also implements cesses with this property is shown in Fig.9. It is based on
one-resilient Consensus for three processes; and thereforg, mytual exclusion algorithm discovered independently by
as mentioned in Sect. 1, for any number of processes that igrns and Lynch [3], and Lamport [9]. A shared variable
greater than (or equal to) 3. In particular, thsrimplements 5.4, initially false, is used to record whetherasT&SET
one-resilient Consensus far— 1 processes. has already been invoked on the TAS register. To apply a

Similar techniques were previously used by Borowsky andrgsr& seT, a process first checks @flosed is true (mean-
Gafni [1] (see also [13,2]) and by Chandra et al. [4]. (Seejng, that aTesT&sET has been invoked). If so, the process
Sect. 5 for further comments on how our approach differs fromimmediately returns 1. Otherwise, the process §8ised to
these earlier ones.) In Sect. 4.1 we give a special implemenyye and tries to enter the critical section (CS) — perhaps com-
tation of typetest-and-set-register that is used as a subrou- peting with other processes that also foufiidsed = false.
tine in our simulation. The simulation itself is described in The TEsT&SET operation of the first process to enter the CS
Sect. 4.2. returns 0; all others return 1. To determine which process is the
first to enter the CS, we use another shared Boolean variable
Done with initial value false. The first process that enters the
CSfindsDone = false, and set®one to true before it leaves

The object typdest-and-set-register has two states 0 and the CS.

1, and supports a single operatioRST&SET. A TEST&SET | emma 18 In any execution of the algorithm in Fig. 9, it is

sets the state to 1 and returns the old state. Thus, the firghpossible thattwo processes execute the critical section (lines
time TEST&SET is applied to state 0, it changes the state and10—14) at the same time.

returns O; thereafter, amygsT& SET returns 1 leaving the state
unchanged. In the sequel we shall refer to an object of typdProof. Suppose, for contradiction, that two processes, say
test-and-set-register as a “TAS register”. Qi andQy, are in the critical section (CS) at the same time.

4.1 Typeest-and-set-register

On the power of shared object types to implement one-resilient Consensus 233

Without loss of generality, assume thak ¢. SinceQ, enters its first TEST&SET invocation, if it initiates one. Le®);. be
the CS,Q, must find Active[k] = false when it executes the process with the smallest index that firilssed = false
line 7 with j = k. S0,Q, executes its line 3 befor@;.. (This in line 1 during its firstrEST&SET invocation. This invoca-

is because, by our assumption thiat and @, execute the tion finishes byQ; returning either in line 8 or in line 15. In
CS concurrently, after settindctive[k] to true in line 3,Qx this invocation,();, does not return in line 8 because it does
can setActive[k] back to false only in line 15.) Sinc€y, not execute this line (by the minimality @f, @, must find

also enters the C%), must find Active[¢] = false when it Active[j] = false in line 7, for everyj € {0,... ,k — 1}).
executes line 9 with = /. So, Q. executes its line 3 before Thus,Qy finishes its firstrEsT&SET by returning in line 15.
Q. — a contradiction. O Hence, some process (namély) executes the CS during its
first TEST&SET invocation. By Lemma 18, there is a well-
Consider an infinite executiofy of processes),,..., defined first process to enter the CS. It is easy to see that the

Q.s_1 in which each of them invokes (sequentially) zero or first TEST&SET invocation of that process returns 0.

more TEST&SET operations by executing the algorithm in (d) Suppose, for contradiction, that two invocations of
Fig.9. We say that) is potentially interruptingin E if it TpgT&sET, say by processe$, andQ,, both return 0. Thus,
crashes irE during its firstresT&SET invocation, afterithas jn these invocationg),, andQ, both execute the CS and find
taken at least one step. We say thiats blockedin E'if it that Done = false in line 10. By Lemma 18, one of these two
is correct in£’ but never returns a response t@BST&SET processes, sayy, finishes the CS before the other enters the
invocation it has initiated. Note that a process may be blockeg¢ s, Since)), finds Done = false in line 10, it setDone to

in £ only during itsfirst TEST&SET invocation (because trye in line 11. SinceDone is never set to false again, when

in all subsequentEST&SET invocations, the process finds (), later enters the CS it will findone = true, and will return
Closed = true and returns |mmEd|atE|y in line l) The next 1,not0 — contrary to the assumption_ O

lemma shows that the algorithm in Fig. 9 implements a TAS
register with the “limited blocking” property described at the
beginning of this subsection.

4.2 The simulation algorithm
Lemma 19 Consider any infinite concurrent execution of
processes)o, ... , @s—1 in which each of them invokes (se- Suppose we are given an arbitrary one-resilient Consensus
quentially) zero or moreEST&SET operations by executing algorithm A for n processespPy, Py, ..., P,_;, for some
the algorithm in Fig. 9. In this execution, n > 4. We make no assumptions about the set of base ob-
jects used by this algorithm. We show how, usignd only
some additional registers, three procesggd; and@-, can
¥%olve one-resilient Consensus. let= {Qo, @1,Q=2} and
P={Py,Py,...,P._1}.

The main idea is that the processe®inwill simulate the
steps of the processes’nso that they end up simulating an
execution ofA. As soon as somf < P decides in the sim-
ulated execution, the processesdnwill adopt P’s decision
and solve Consensus. Special care must be exercised to en-
sure that if at most one processdhcrashes, the simulated
execution ofA will be one in which at most one process in
P crashes. Sincd is one-resilient, eventually some process
will decide in the simulated execution, and thus so will the
correct processes i@.

(a) at most one process is blocked;

(b) if a process is blocked, then some process is potentiall
interrupting;

(c) if there is no potentially interrupting process, then some
process’ firstresT&SET invocation returns 0; and

(d) at most oneEST&SET invocation returns 0.

Proof. (a) Suppose, for contradiction, that there are two
blocked processes, s&y, andQ),, for somek £ k’. Without
loss of generality, assume thidt< k. By Fig. 9 and the defini-
tion of blocked process, it follows thél;, andQy- are correct
and execute nonterminatirrgpeat loops in lines 5-9. Fur-
thermore, eventuallyctive[k] = Active[k’] = true, forever.

Sincek’ < k, k' 1,... ,k — 1}. Therefore, eventuall . .
< € {0,) y To ensure that each stepAfis simulated, the processes in

Qy. will execute line 7 withj = &’ after Active[k’] has been imulate the st ¢ Bii 4-robin fashi
permanently setto true. At that tim@;, will execute line 8 and Q simulate e Steps of processesm round-robinfasnion.
Specifically, eacld),, tries to simulate the first step 6%, the

return, contradicting that it executes a nonterminating loop in; ; ; .
lines 5-9 g gioop first step ofP; and so on, until the first steps of all processes in

. . P have been simulated. Théh, tries to simulate the second
(b) Suppos&);. is blocked. Therefore);, is correct and exe- giep of P, the second step d?, and so on, until the second
cutes a nonterminatingpeatloop in lines 5-9 withi = &', steps of all processes 7 have been simulated.
for somek’ > k. This means tha®);, finds Active[k'] = true For the simulation to be proper, however, the processes
(in line 9) infinitely often. Henceq),: setsActive[k’] = true i o must coordinate to ensure that they don't repeat the
in line 3 of its firstTEST&SET invocation (in subsequent in- gimylation of a step that has already been simulated. (Such
vocations it returns in line 1), and never sets itto fals€if 3 repetition would be disastrous because then the simulated
set Active[k'] to false, it would never reset it to true, 8. execution might not be a legitimate executiondafConsider,
wouldn't find Active[k'] = true infinitely often). By part (a), for example, what would happen if an “increment by one” step
Qs cannot also be blocked. Therefoeg, crashes duringits g simulated several times!) To prevent this, we use TAS regis-
first .TEST&SI*?T |n_/ocat|on.aftertak|ng atleast one step —i.e., ors shared b, Q1 andQ,. For each, 0 < i < n— 1, and
Qy is potentially interrupting. eachr > 1, there is a TAS registef'AS[i, 7] initialised to O,
(c) Suppose there is no potentially interrupting process. Byimplemented using the algorithm in Fig. 9 (with= 3). Be-
part (b) there is no blocked process, so every process finishdere simulating theth step of process;, process);. applies

234 W.-K. Lo, V. Hadzilacos

a TEST&SET operation toTAS[i, r]. If Q wins TAS[i, 7] Shared: all objects used im, each initialised as specified by

(i.e., Qi's TEST&SET returns 0), it is the unique process re- TAS: array [0..n — 1, 1..00] of test-and-set-register,

sponsible for simulating theth step of P,. Otherwise, that each implemented by the algorithm in Fig. 9

step has already been or will be simulated by another process Instr: array [0.n — 1] of register, each initialised to 1

in Q, andQ;, goes on to simulate a step of the next process. State: array [0..n — 1] of register, each initialised tol
By using TAS[i,] registers implemented as discussed in g_e”“.oﬁ' register, initialised to L -

Sect. 4.1, we ensure that the crash of one of the processes + uxiliary variable, contains a scheduleAf initially

Sect. 4.1, we . P empty

n Q, n the .mlddle of applying th@EST&SET operation to W auxiliary variable, contains an arr@y..n — 1,1..c0]

TAS[i,r], will block at most one other process’ execution of of {1,0,1,2}, each initially L

TEST&SET on TAS[i, r] (Lemma 19(a)). Since there are three o

processes iR, there will still remain a process i@ which Code for proces§x, k € {0, 1,2}

neither crashes nor is blocked by the crash. This process wil id:=0

continue simulating steps of the processe®iifexcept for 2 while Decision = 1 do

P, — the process in the simulation of whose step the crasl3 rd := Instr[id]

occurred) until one of them decides. (This, incidentally, is the4 if {t:0<t<nAlInstrlt] <rd}| <1lthen

reason why we need at least three simulator processes, aid winner =1

the reason why this simulation cannot be made to work in thes coexecute

case ofn = 3 discussed in Sect. 3.) 7 winner := Apply(Q, TEST&SET, TAS[id, rd))
The simulation algorithm is shown in Fig. 10. In addition

to the TAS[i, r] registers already mentioned, the simulation]

uses the following shared objects: 8 repeat until Decision # L

coend

e Instr: an array[0..n — 1] of n registers.nstr[i] contains 5130
the index of the first instruction aP; that has not been
simulated yet.

e State:an array{0..n — 1] of n registers State[i] contains 14
the current (simulated) state 6f. 12

e Decision: a register. If a procesg in Q simulates a step 13
of some proces# in P as a result of whichP decides,
then@ writes P’s decision intoDecision. 14

Besides these shared objects, the simulation also uses twkp

if winner = 0then

(* Qr wins TAS[id, rd] and must simulate the

rdth step ofP;g *)

if rd = 1then (x first step ofP;4)
letu be the initial value of proces3y,
State[id] := initial state ofP,; whereP,,

has initial valueu
(op, O) := NextOQ P4, State[id)])
[res == Apply(Pia, op, O)

auxiliary variabless andiV. S is the schedule oA consisting 16 Wlid,rd) =k
of the steps simulated so fdi’ is a two-dimensional array 17 S=8 (P, op,0,res) |
that keeps track of which process @has simulated which 18 State[id] := NextStateP,q, State[id], res)
step of each process Specifically, if therth step ofP, has 19 if Piq has decided irbtatelid] then
been simulated b, thenW i, 7] = k; if the rth step of?, 20 Decision := the value decided b¥;,
has not been simulated yet, thBA[i,] = L. 21 else

The simulation ofA by Q,, Q; andQ- proceeds as fol- 22 Instrlid] :==rd + 1
lows. EachQ,, enters awhile loop (lines 2—23), from which 23 id := (id + 1) mod n
it will exit when a process ifP has decided in the simulated 24 decide Decision
execution ofA.. In successive iterations of the loap;, con-
siders the processesin round-robin fashion?;, P, ...,
P,_1, Py, Py, ... P,_1,.... When considering®;, @y, first
checks to see whether it should try to simulate the “next” step
of P;, namely step = Instr[i] (line 3). It will do so if at
most one process iR has had fewer than — 1 of its steps) .)]]
simulated (line 4). In other wordg);, tries to keep the simula- @« Wins TAS[i,] (line 10), it does, in fact, simulate th¢h
tion of all but one process i® within one step of each other. Step ofF; (line 15). If this is the first step of, i.e.,r = 1,
(It cannot hope to keep the simulationaif processes within @k USes its own initial value as the initial value bf (lines
one step of each other, because the simulation of one of therhl—13). Next(),; updates the state of the simulated process
may be interrupted due to a cradhAssuming, then, thab,'s in Stateli] (line 18). Ifthe simulated step causBsto decide,
simulation is not too far ahead of the othef, attempts to then that decision is written intdecision (line 20). Other-
simulate therth step ofP; by first applying arest&ser to Wise, Instr[i] is incremented by one to reflect the fact that
TAS[i, 7] (line 7). (For now, ignore theoexecutestatement ~ another step of; has been simulated (line 22), aqy turns
in lines 6-9, and replace it by line 7. We shall explain the its attention to the next process in round-robin order (line 23).

meaning of and need for themexecutestatement short'y_) If In addition to the notation and conventions introduced in
conjunction with the simulation described in Fig. 8, we also

* Preventing processesfrom getting arbitrarily ahead of others USe the constructbexecutel/; B M, coend, whereM; and
during the simulation is important for keeping bounded the numberM-> are arbitrary statements. This interleaves the execution
of registers used in the simulation (see Lemma 20); if we do not car®f steps of the two (potentially nonterminating) statements,
about this issue, we can dispense with line 4. until one of the two terminates. When (and if) that occurs, the

Fig. 10.Solving one-resilient Consensus for three processes Using

On the power of shared object types to implement one-resilient Consensus 235

execution of steps of the other statement is abandoned, argking updated. I§ andWW keep changing foreves* andiV*
the coexecutestatement itself terminates. are the “limit” values of these variables. More precisély,
We now explain the reason for using tbeexecutestate- is defined as follows: if5; is defined then thgth step ofS™*
ment (lines 6-9). Consider an execution of the simulationis the last step of}; otherW|se,S* does not have gth step.
in Fig.10 in which a process iQ, say @i, crashes while W* is defined as follows:
it is executing its firstTEST&SET on TAS(i, r]. Suppose . ,]
that the other two processes are correct in this execution. By y+[;,] = { L ifforeveryj, Wjli,r] = L,
Lemma 19(a), the crash ¢f,, may cause at most one correct k. iffor somej, Wj[i,r] = k # L.
process, sa§),, to be blocked in amEsT&SET invocation on
TAS[i, r]. Therefore, the remaining correct procesglirsay
Qm, Will not be blocked in any of itsEST&SET invocations
on TAS[i, r]. Thus,Q,, will be able to simulate steps of pro-
cesses ifP (other thanP;) until one of them decides),,, will
then write its decision int@ecision and after breaking out of
thewhile loop (lines 2—23), it will decide. Remember, how-
ever, that there is also a correct proces®jmamelyQ),, that ; X . ; i i
is blocked in arEsT&SET invocation onTAS|i, r]. By ap- properties are invariants of the algorithm in Fig. 10: For all
plying TEST&SET to TAS[i,] as one branch ofevexecute /= U such thatS; is defined,
statement (line 7) and checking whetlitcision # Linan- (a) S; is a schedule oA that is applicable to every € Z;.
other branch (line 8), we ensure ti¢ will eventually break (b) W;[i,7] # L if and only if S; has at least steps ofP;.
out of the potentially nonterminatingesT& sET invocation, (c) For any process;, the suffix ofS; consisting of all steps
and will decide. after P; has decided contains no stepiof
(d) LetP; be the process such that the last step 0 a step
of P;, ando be the value assigned Bate[:] just afters;
is assigned t&. For everyj’ > j, if S/ is defined and
contains no steps aP; after its prefixS;, theno is the
state ofF; in configurationS (Jof A, forall I € Z;.
ée) If some process hassteps inS;, then at most one process
has fewer tham — 1 steps |n9

Note thatiW™* is well-defined because W;[i,r] = k then,
forany;’ > j such thatV; is definedW;.[i,r] = k as well.
Finally, we defineZ* (derived fromW*, just asZ; is derived
from ;) as the set of initial configurationsof A that satisfy
the following property: IfW*[i, 1] = k # L, then the initial
value of P; in I is equal to that o).

With these definitions, it is easy to show that the following

Lemma 20 LetS be any set of types amtl be a one-resilient
Consensus algorithm for > 2 processed™, ... , P,_1 Us-
ing S. The algorithm in Fig. 10 is a one-resilient Consensus
algorithm for three process&9y, @1, Q2 usingS. Further-
more, if every type it exhibits finite nondeterminism, then the
algorithm in Fig. 10 uses only a bounded number of register
in addition to the objects used by.

We are now ready to prove that the fixed execution satisfies the
three properties of Consensus. For eaeh{0,... ,n — 1}

andr > 1, let E; , denote the subexecution con3|st|ng of steps
taken onIy by the processesdhwhen they appIrEST& SET
operations tal'AS[i, 7] in line 7.

Proof. By inspection, besides the shared objects used il
the additional nonauxiliary shared objects used by the algo-
rithm in Fig. 10 are registers. Sincecontains typeegister,
it follows that the algorithm uses only objects of typesSin
We now show that the algorithm in Fig. 10 solves one-
resilient Consensus for the three processeg.iifo this end, Termination: Assume, for contradiction, that some correct
in the rest the proof we fix an arbitrary execution of the algo-process never decides. Then, that process must always find
rithm in Fig. 10 in which at most one processdhcrashes. Decision = L inline 2 and line 8. Therefore, no process (cor-
Henceforth, our discussion refers to this fixed execution. Werect or crashed) ever executes line 20 — becauseBaeeion
shall prove that in this execution the three properties of Conis set to a nont value, it is never set back to. Hence,
sensus — Termination, Validity and Agreement — are satisfied.
First we make some definitions. L&t be the value of
S when S contains a schedule of exactlysteps (undefined
if S never hagj steps). Leti?; be the value assigned &
when S; is assigned td5 (both auxiliary variables are up-
dated in the same “atomic” action in lines 16—17.) Note thatProof of Claim 20.1.Suppose, for contradiction, that no cor-
if W;li,r] # L, then for allj > j whereW;, is defined, rect process executes thile loop (lines 3-23) infinitely
Wi, r] = W;[i, r]. This is because at most one process inoften. Since at most one processdhmay crash, there are
Qwins TAS[i, r] (Lemma 19(d)), and that is the only process at least two correct processes, $agndQ’. By assumption,
that may assign its id td#/[z, r] (line 16). LetZ; be the set of neither@ nor @’ executes thevhile loop infinitely often. By
initial configurationsl of A that satisfy the following prop- line 2 of Fig. 10 andx), these two processes cannot exit the
erty: If W;[i, 1] = k # L, then the initial value of?; in I is while loop. Therefore, eventually each f andQ’ applies
equal to the initial value of);,. That is, all the initial configu- a nonterminatingoexecutestatement (lines 6-9). Létand
rations inZ; agree on exactly the initial values of all processesr be the values of)’s local variablesid andrd after @ has
in P that have at least one stepSh; the initial value of any started its nonterminatingoexecutestatement; let’ and’
such process, sa;, is equal to the initial value of the process be values with corresponding interpretations@rBy line 7,
in Q that simulated;’s first step inS; (i e., the procesg) it must be that) andQ’ apply a nonterminatingEST& SET
such thafi¥/;[i, 1] = k). Note that if;j < 7' thenI DZj. operation toTAS[i, r] and TAS|i’, '], respectively. In other
We now defineS* and W*. The intuition behlnd these words,@ and@’ are blocked inE; , andE ,, respectively.
definitions is thats* andW* are the final values of the aux- Let Q” be the remaining process (other th@nandQ) in
iliary variablesS and W, if these variables eventually stop Q. By Lemma 19(b),Q" is potentially interrupting in both

Decision = L, forever. (%)

Claim 20.1. At least one correct process @ executes the
while loop (lines 3—-23) infinitely often.

236

E;, andE; ,.; therefore(i,r) = (¢/,7’). By Lemma 19(a),
at most one process can be blockedjn., contradicting that
both@ and@’ are. O Claim 20.1

Claim 20.2. For anyi € {0,1,...
decreasing.

,n — 1}, Instr(i] is non-

Proof of Claim 20.2.The claim follows immediately from the
following two facts. For any positive integer

(i) at most one process writest 1 into Instr[i]; and
(i) Instr[i] is set tor before it is set to- + 1.

Fact (i) is true because, to writet 1 into Instr[i] (line 22), a

W.-K. Lo, V. Hadzilacos

have to be two processes @that crash.) If there is such an
element, let be it — otherwise, letbe an arbitrary element of
{0,1,...,n—1}. Thus, foralli € {0,... ,n—1}\ {i} the
value of Instr[i] is unbounded. Before incrementidgstr|:]
to r + 1 (in line 22), a process i must have previously
set W[i,r] to a non-L value (line 16). Thus, for alf €
{0,...,n—1}\ {i} and allr > 1, W*[i,r] # L. By In-
variant (b),S* contains infinitely many steps d?;, for all

i € {0,...,n—1}\ {i}. This means tha§* is an infinite
schedule in which at most one processArcrashes. By In-
variant (a),S* is a schedule oA that is applicable to every
I € T*. By (x), for everyl € Z* andi # i, there is no prefix
S’ of $* such that?; has decided i$’(I). This contradicts the

process must wirfAS[i, r] (lines 7 and 10), and at most one fact thatA is a one-resilient Consensus algorithm fopro-
process can do so (by Lemma 19(d)). Fact (ii) is true becausgesses (in particular, it contradicts the Termination property
before a process writes+ 1 into Instr[i] (line 22), it must of A).

have previously read from Instr(i] (line 3). [claim 20.2 We reached this contradiction by assuming that the Ter-

mination property in violated. Thus, Termination is satisfied.
Sincelnstr|i] is nondecreasing, it follows that, over time, . L
its value is either unbounded or it attains some maximum valué‘dreementand Validity: By the Termination property shown

and never changes thereafter.

Claim 20.3. For anyi € {0,1,... ,n — 1}, if Instr[i] is

bounded with maximum value, then some process i@

crashes either (a) during its first invocationtafsT&SET on

TAS[i,r] or (b) after winningTAS[i, 7] in line 7 but before
incrementinglnstr[i] in line 22.

Proof of Claim 20.3. Suppose, for contradiction, that there

is somei € {0,1,...,n — 1} and somer > 0 such that
Instrli] is bounded with maximum valug and no process
in Q crashes (&) during its first invocation oEST&SET on

TAS[i,r], or (b) after winningTAS[i,] in line 7 but before
incrementinglnstr[i] in line 22. Without loss of generality,

let r be the minimum value so that these conditions are met.

By Claim 20.1, some correct process, €@y, executes

thewhile loop (lines 2—23) infinitely often. Since in each it-

erationQ, increments its local variabl&l by one modula:
(line 23), Q. executes the while loop withd = 7 infinitely

often. By Claim 20.2 and our hypothesis, after some point in

time, rd = r forever. ThereforeQ); executes the while loop
with id = i andrd = r infinitely often. By the minimality
of r, for eacht € {0,1,... ,n — 1}, one of the following is
the case: (iYnstr[t] is unbounded; or (iiynstr|t] is bounded
and its maximum value is at leastor (iii) some process in
Q crashes while its local variablg = t. Since at most one

process inQ may crash, eventually for all but at most one
,n—1}, Instr[t] > r. Therefore, there is atime
after which in each of its infinitely many executions of the

te{0,1,...

while loop withid = i andrd = r, Q will find the condi-
tional in line 4 to be true. Thus);, invokes infinitely many
TEST&SET operations orll’AS|i,] (line 7). HenceE; , is

nonempty. Since, by assumption (a), no procesg arashes
during its first invocation of @EsT&SET on TAS[i, 7], there
is no potentially interrupting process#) .. By Lemma 19(c),

some process WingAS|i, r]. By assumption (b), this process

does not crash before incrementihgtr|i] tor+ 1 inline 22.
This contradicts the assumption tha the maximum value
that Instr[i] attains. L Claim 20.3

By Claim 20.3, there is at most one elemert {0, 1, . . .,

n — 1} such thatinstr[i] is bounded. (Otherwise, there would uses only a bounded number of registers in addition to the

above,S* is a finite schedule.

Claim 20.4. For any proces§) € Q and valuev € {0, 1}, if
Q writes v into Decision (line 20), then some process ™
decidesv in S*(I), for everyl € 7*.

Proof of Claim 20.4. Let i andr be the values of its local
variablesid andrd whenQ writeswv into Decision in line 20.
Let o be the value thaf) last wrote intoState[:] in line 18
before@ assigns to Decision. In other words() simulates
therth step ofP;; as a result of this step; enters state in
which it decides (cf. line 19).

By Invariant (c),P; has no additional steps isi* after it
decides. By Invariant (d)s is the state ofP; in S*(I), for
everyl € Z*. Since(@ assignsv to Decision in line 20, it
must be that; decidesv in o. Thus, P; decidesv in S*(I),
for everyl € 7* — as wanted. O Claim 20.4

To prove that Agreement is satisfied, suppose that two

distinct processes iQ decide the values andv’, respec-
tively, that they read fronDecision. Thus, bothw andv’ are
written into Decision by some processes @ in line 20. By
Claim 20.4, some process f decidesv in S*(I) and some
process irP decidesy’ in S*(I), for everyl € I*. By the
Agreement property oA, v = v’. Therefore, the algorithm
in Fig. 10 satisfies Agreement.

Finally we prove that Validity is satisfied. This is obvious
if both 0 and 1 are initial values of the processe®inThus,
we may assume that, for some= {0, 1}, all processes i®
have initial valuev. Let I,, be the initial configuration oA in
which every process iR has initial valuev. Clearly,I, € Z*.
Suppose now that some proces&mecides the value that
it reads fromDecision. By Claim 20.4, some proce$sin P
decidesu in S*(I), for everyl € Z*. In particular,P decides
u in S*(I,). By the Validity property ofA, v = v. Thus, if
all processes i have initial valuev, then any process that
decides, must decide. Therefore, the algorithm in Fig. 10
satisfies Validity.

Bounded number of additional registers: To complete the
proof of Lemma 20, it remains to show that if every typeSin
exhibits finite nondeterminism, then the algorithm in Fig. 10

On the power of shared object types to implement one-resilient Consensus 237

objects used by.. To show this, it suffices to prove that there necessary. Infact, itis not: the result holdsdtirsets of types,
is a bound on the number of thest-and-set-register objects even those that contain types with infinite nondeterminism.
in array TAS used by executions of the algorithm in Fig. 10 The proof of this stronger resultis based on a more complicated
in which at most one process crashes. Finally, to prove this isimulation that use® (n) “resettable’test-and-set-register
suffices to prove that the length of the schedule in the auxiliaryobjects and a garbage collection technique to recycle them.
variableS is bounded. This simulation is described in [11].

To prove this we proceed as follows. For any initial con-
figurationI of algorithmA, we define a tre&’, whose nodes
are scheduleS that satisfy the following three properties:

(1) Sis afinite schedule oA that is applicable td.
(2) S does not contain a step &f after P, has decided.
(3) If S hasr steps of some process, then at most one processhe results of this paper, together with those in [4], completely
has fewer tham — 1 steps inS. characterise the relationship between the solvability of Con-
The treeT’ has an edge from node (schedufedo ' if and sensus among diﬁerent.numbers of processes. More precisely,
only if S is a prefix ofS’ and|S’| = |S| + 1. the results show that, given any seof object types and any
integersn, t such thatn — 1 > ¢ > 1, the statement

5 Conclusion

Claim 20.5. For any initial configuratiod of A, T7 is finite.

t-resilient Consensus amomgprocesses is solvable
usings if and only if

t-resilient Consensus amomng— 1 processes is solv-
able usingS

Proof of Claim 20.5. Suppose, for contradiction, th&f;

is infinite, for somel. Since every type inS exhibits fi-
nite nondeterminism, every node T has finite degree. By
Konig's Lemma/T; has an infinite path. It is easy to see that
this path corresponds to an infinite schedfifg such that:
(i) S* is applicable ta (by property (1) of the nodes af);

(ii) some correct process never decidesSiy (by property
(2) of the nodes of;); and (iii) at most one process is faulty
in S (by property (3) of the nodes @f;). These three facts
contradict thatA is a one-resilient Consensus algorithm for
{Po, Pr,...,Py1}. O Claim 20.5

is valid if and only ift > 2 or n > 4. Besides this char-
acterisation, these results also reveal a qualitative difference
between level one and other levels of the Consensus hierarchy
[6,7]. If S contains an object type at level two or above of the
Consensus hierarchy, the result of Chandra et al. implies that
the statement above is valid. On the other hand,ébntains
only object types at level one of the Consensus hierarchy, our
result in Sect. 3 shows that the statement is false. This shows
that level one of the Consensus hierarchy may have a richer
structure than other levels.

Typedor defined in Sect. 3 is the only deterministic type
we know of that is at level one of the Consensus hierarchy
and has no one-resilient implementation for three or more

(such a maximum exists, sin@ehas finitely many initial con- ~ Processes using only registers.

figurations). By Invariants (), (c) and (e), the schedule stored, Simulations similar to that described in Sect. 4.2 were used
in the auxiliary variableS in any execution of the algorithm first by Borowsky and Gafni [1] (see also [13,2]), and later
in Fig. 10 in which at most one process crashes satisfies prog2y Chandra et al. [4]. The main innovation here is the TAS
erties (1), (2) and (3). Therefore, the length of the scheduld@disterimplementation of Sect. 4.1. Borowsky and Gafni used
stored in the auxiliary variabl in any execution of the al- @ Simulation that requires processes to agree on the outcome

gorithm in Fig. 10 in which at most one process crashes i€f €ach step by solving (a restricted form of) Consensus using
bounded by, as wanted. O only (read/write) registers. Instead of agreeing on the outcome

of a step, we use (a similarly restricted form of) TAS registers
to ensure that only one process simulates each step. Unlike
the simulation of Borowski and Gafni, which applies only
Theorem 3 Let S be any set of object types that includes When the simulated algorithm uses (read/write) registers (or

By Claim 20.5, there is a positive integgrthat is an upper
bound on the length of any sched@¢hat satisfies properties
(1), (2) and (3). Let

¢ =max{ ¢, : Iis an initial configuration ofA }

Lemma 20 immediately implies:

register, andn > 4 be any integer. types of equivalent power), our simulation does not place any
. . restriction on the types of the objects used by the simulated

(a) If S implements one-resilient Consensus amongo- 4i50rithm: these can of any type(s) whatseover. The simulation
cesses, thefiimplements one-resilient Consensus amongy chandra et al. is also general in the sense that it works
three (and therefore among— 1) processes. regardless of the types of the objects used by the simulated

(b) 1S boundedly implements one-resilient Consensus amongyqrithm, but it applies to a context in which TAS registers

n processes and every typednexhibits finite nondeter- 4 gyailable directly and need not be implemented.
minism, therS boundedly implements one-resilient Con-

sensus among three (and therefore amang 1) pro-
cesses. AcknowledgmentsOur thinking on shared memory distributed com-

puting has been deeply influenced from discussions with Tushar
Part (b) of Theorem 3, regardimgpundedmplementabil- ~ Chandra, Prasad Jayanti and Sam Toueg. We are grateful to Faith
ity, applies ifS contains only types that exhibit finite nonde- Fich and to the anonymous referees for their insightful and helpful
terminism. It is natural to inquire whether this requirement is comments on earlier drafts of this paper.

238

References 11.
1. E.Borowsky, E. Gafni: Generalized FLP impossibility result for
t-resilient asynchronous computations. Rroceedings of the
Twenty-Fifth ACM Symposium on Theory of CompuytpmP1—

100, May 1993

. E. Borowsky, E. Gafni, N.A. Lynch, S. Rajsbaum: The BG dis- 13.
tributed simulation algorithm. Technical Report MIT/LCS/TM-
573, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, MA, December 1997

. J.Burns, N. Lynch: Mutual exclusion using indivisible reads and 14.
writes. In:Proceedings of Eighteenth Annual Allerton Confer-
ence on Communications, Control and Computpm833—842,
1980

. T. Chandra, V. Hadzilacos, P. Jayanti, S. Toueg: Wait-freedom
versust-resiliency and the robustness of wait-free hierarchies.
In: D. Peleg (edProceedings of the Thirteenth ACM Symposium
on Principles of Distributed Computingp 334-343, August
1994

12.

tributed consensus with one faulty processurnal of the ACM
32(2): 374-382 (1985)
. M. Herlihy: Wait-free synchronizationACM Transactions on
Programming Languages and Systettiy(1): 124-149 (1991)
P. Jayanti: On the robustness of Herlihy’s hierarchy. In: S. Toueg
(ed)Proceedings of the Twelfth ACM Symposium on Principles

W.-K. Lo, V. Hadzilacos

W.-K. Lo: On the relative power of shared objects in fault-
tolerant distributed system®hD thesis, University of Toronto,
January 1997

M. Loui, H. Abu-Amara: Memory requirements for agreement
among unreliable asynchronous processesdmancesin Com-
puter Researchvol 4, pp 163-183. JAI Press Inc., 1987

N. Lynch, S. Rajsbaum: On the Borowsky-Gafni simulation al-
gorithm (extended abstract). Rioceedings of the Fourth Israeli
Symposium on Theory of Computing and Systpmé-15, June
1996

M. Stumm, S. Zhou: Fault tolerant distributed shared memory.
In Proceedings of the Second IEEE Symposium on Parallel and
Distributed Processingpp 719-724, December 1990

Vassos Hadzilacosvas born in Volos, Greece in 1959. He received
a BSE from Princeton University in 1980, and a PhD from Harvard
. M.J. Fischer, N.A. Lynch, M.S. Paterson: Impossibility of dis- University in 1984, both in Computer Science. In 1984 he joined the
faculty at the University of Toronto, where he is currently a Professor.
His research intersts are in distributed computing, especially fault-
tolerance and synchronization.

of Distributed Computingop 145-158, August 1993

P. Jayanti: Wait-free computing. IRroceedings of the Ninth
International Workshop on Distributed Algorithmsp 19-50,
September 1995

L. Lamport: The mutual exclusion problem: Parts | &burnal

of the ACM 33(2): 313—348 (1986)

W.-K. Lo: More ont-resilence vs. wait-freedom. In: V. Hadzi-
lacos (ed)Proceedings of the Fourteenth ACM Symposium on
Principles of Distributed Computingp 110-119, August 1995

10.

Wai-Kau Lo obtained his BSc (Computer Studies) from the Univer-
sity of Hong Kong in 1990. He went to University of Toronto in 1991
and obtained his PhD (Computer Science) in 1997. Since then, Wai-
Kau worked for two years as a research associate in the Enterprise
Integration Laboratory at University of Toronto. He is now working

as a software engineer at Novator Systems, an ecommerce profes-
sional service startup based in Toronto. His research interests are in
theory of distributed systems, with emphasis on fault-tolerant shared
object computing.

