Distrib. Comput. (2000) 13: 145-153 @Dg’ﬁ@ﬂ@ﬁ@@
COMPUTTNG

© Springer-Verlag 2000

A note on knowledge-based programs and specifications

Joseph Y. Halpern

Computer Science Department, Cornell University, Ilthaca, NY 14853, USA
(e-mail: halpern@cs.cornell.edu, http://www.cs.cornell.edu/home/halpern)

Received: January 1997 / Accepted January 2000

Summary. Knowledge-based program are programs with ex-enough information to determine the truth of the test 0.
plicittests for knowledge. They have been used successfully iWe can then associate with the programpretocol that is, a
anumber of applications. Sanders has pointed out what seem fanction describing what action the agent should in each local
be a counterintuitive property of knowledge-based programsstate. Note that a program isgntacticobject, given by some
Roughly speaking, they do not satisfy a certain monotonicprogram text, while a protocol is a functionseamantiobject.
ity property, while standard programs (ones without tests for ~Knowledge-based prograrniatroducedin[6, 7] (based on
knowledge) do. It is shown that there are two ways of defin-theknowledge-based protoca$ [9]) are intended to provide
ing the monotonicity property, which agree for standard pro-a high-level framework for the design and specification of pro-
grams. Knowledge-based programs satisfy the first, but do ndbcols. The idea is that, in knowledge-based programs, there
satisfy the second. Itis further argued by example that the facare explicit tests for knowledge. Thus, a knowledge-based pro-
that they do not satisfy the second is actually a feature, nogram might have the form
a problem. Moreover, once we allow the more general class
of knowledge-based specificatiossandard programs do not
satisfy the monotonicity property either. do forever

if K(zx=0)theny:=y+1lend
end,

Fig. 2. The progranPg,
1 Introduction

Consider a simple program such as whereK (x = 0) should be read as “you knaw= 0". We can
informally view this knowledge-based program, dendied,
as saying “ifyou know that = 0, then sey toy+1". Roughly

do forever speaking, an agent knowsif, in all situations consistent with
if z=0theny:=y+1lend the agent’s informationy is true.
end. Knowledge-based programs are an attempt to capture the

intuition that what an agent does depends on what it knows.
They have already met with some degree of success, having
been used in papers such as [3,8,11,12,19,17,21,22] both
to help in the design of new protocols and to clarify the un-
derstanding of existing protocols. However, Sanders [25] has
pointed out what seems to be a counterintuitive property of
under certain conditions, namelygif= 0. One way to way to knowledge-based programs. Roughly sp_eaklng, sh_e claims
provide formal semantics for such a program is to assume th at kpowledge-pased programs do not satisfy a certain mono-
each agent is in soniecal state which, among other things, onicity property: a kn(_)wle(_ige_-based_program can sat|_sfy a
describes the value of the variables of interest. For this Sim§pe0|f|cat|on under agen |n|t|a_l .condltlon, but fail to satisfy
ple program, we need to assume that the local state contairl fwe strengthenthelnlt_lal condition. Onthe otherhand,stgn-

' ard programs (ones without tests for knowledge) do satisfy

Much of this work was carried out while the author was atthe IBM Al- the monotonicity property.

maden Research Center. IBM's support is gratefully acknowledged. In this paper, | consider Sanders’ claim more carefully. |
The work was also supported in part by NSF under grant IRI-96-show that it depends critically on what it means for a program
25901, and by the Air Force Office of Scientific Research underto satisfy a specification. There are two possible definitions,
contract F49620-91-C-0080 and grant F49620-96-1-0323. which agree for standard programs. If we use the one clos-

Fig. 1. The progranPg,

This program, denotellg, for future reference, describes
an action that a process (or agent—I use the two words in
terchangeably here) should take, namely, setjing y + 1,

146 J.Y. Halpern

est in spirit to the ideas presented in [9], the claim is false W is a set ofadmissibleruns. The environment is viewed as
although it is true for the definition used by Sanders. But,running a protocol just like the agents; its protocol is used to
even in the case of Sanders’ definition, rather than being a dezcapture features of the setting like “all messages are delivered
fect of knowledge-base programs, this lack of monotonicitywithin 5 rounds” or “messages may be lost”. Given a joint
is actually a feature. In general, we do not want monotonicity.protocol P = (P,..., P,) for the agents, an environment
Moreover, once we allow a more general claskrdwledge- protocolP., and a global states., s1, . . ., s,), there is a set of
based specificationthen standard programs do not satisfy the possiblejoint actions(a., a1, - . ., a,) that can be performed
monotonicity property either. in this global state according to the protocols of the agents
The rest of this paper is organized as follows: In the nextand the environment. (It is a set since the protocols may be
section, there is an informal review of the semantics of stannondeterministic.) The transition function describes how
dard and knowledge-based programs. In Sect. 3, | discuss stathese joint actions change the global state by associating with
dard and knowledge-based specifications. In Sect. 4, | considerach joint action global state transformethat is, a mapping
the monotonicity property described by Sanders, and show ifirom global states to global states. Theseff admissible runs
what sense it is and is not satisfied by knowledge-based prds used to characterize notions like fairness. For the simple
grams. | give some examples in Sect. 5 showing why monoprograms considered in this paper, the transition function will
tonicity is not always desirable. | conclude in Sect. 6 with somebe almost immediate from the description of the global states
discussion of knowledge-based programs and specificationsand ¥ will typically consist of all runs (so that it effectively
plays no interesting role). What will change as we vary the
context is the set of possible initial global states.
2 Standard and knowledge-based programs: A run r is consistent with joint protocaP in contexty if
an informal review (1) r(0), the initial global state of, is one of the initial global
states irGy, (2) for allm, the transition from global statém)
Formal semantics for standard and knowledge-based progrante »(m + 1) is the result of applying to a joint action that
are provided in [6,7]. To keep the discussion in this paper atan be performed byP., P) in the global state(m), and (3)
an informal level, | simplify things somewhat here, and reviewr € ¥. A systemR represents joint protocolP in contexty
what | hope will be just enough of the details so that, togetheiif it consists of all runs consistent with in ~.
with the examples given here, the reader will be able to follow ~ Assuming that each test in a standard program run by pro-
the main points; the interested reader should refer to [6, 7] foccessi can be evaluated in each local state, we can derive a
further discussion and all the formal details. protocol from the program in an obvious way: to find out what
Informally, we view a distributed system as consisting of process does in a local staté, we evaluate the tests kg
a number of interacting agents. We assume that, at any givein ¢ and perform the appropriate actibm run is consistent
pointintime, each agentin the systemisin sdowal state A~ with Pg in contexty if it is consistent with the protocol derived
global statds just a tuple consisting of each agent’s local state ,from Pg. Similarly, A systenrepresent$g in contexty if it
together with the state of trevironmentwhere the environ- represents the protocol derived frdtg. We useR (Pg,) to
ment consists of everything that is relevant to the system thalenote the system representifgin contexty.
is not contained in the state of the processes. The agents’ lo-
cal states typically change over time, as a result of actions thaExample 2.1.Consider the simple standard progré&g, in
they perform. Arunis a function from time to global states. In- Fig. 1 and suppose there is only one agent in the system. Fur-
tuitively, a run is a complete description of what happens ovetther suppose the agent’s local state is a pair of natural numbers
time in one possible execution of the systenpdintis a pair (a,b), wherea is the current value of variable andb is the
(r,m) consisting of a rum and a timem. At a point(r, m), current value ofy. The protocol derived frorRg, increments
the system is in some global staten). For simplicity, time the value ob by 1 precisely ifa = 0. In this simple case, we
here is taken to range over the natural numbers (so that timean ignore the environment state, and just identify the global
is viewed as discrete, rather than continuousyystenik isa state of the system with the agent’s local state. Suppose we
set of runs; intuitively, these runs describe all the possible exeonsider the contexy where the initial states consist of all
ecutions of the system. For example, in a poker game, the runsossible local states of the forfn, 0) for « > 0 and the tran-
could describe all the possible deals and bidding sequencessition function is such that the actign:= y + 1 transforms
Of major interest in this paper are the systems that we cafia, b) to (a,b + 1). We ignore the environment protocol (or,
associate with a program. To do this, we must first associate aquivalently, assume th&t performs the actiono—op at each
system with goint protocol As was said in the introduction, step) and assumg consist of all runs. A rum is then consis-
a protocol is a function from local states to actions. (ThistentwithPg, in contexty if either (1)r(0) is of the form(0, b)
function may be nondeterministic, so that in a given localandr(m) is of the form(0, b+ m) for all m > 1, or (2)r(m)
state, there is a set of actions that may be performed.) A joinis of the form(a, b) for all m anda > 0. That is, either the:
protocol is just a set of protocols, one for each process. component is originally 0, in which case thecomponent is
While the joint protocol describes what each process does;ontinually increased by 1, or else nothing happens.
it does not give us enough information to generate a system.
It doeS not te” us What the Iegal behaVIOI‘S Of the enV'rOnment 1 Str|ct|y Speakmg7 to evaluate the testsv we needhmpreta_
are, the effects of the actions, or the initial conditions. Wetion that assigns truth values to formulas in each global state. For the
specify these in theontext Formally, a contexty is a tuple programs considered here, the appropriate interpretation will be im-
(P.,Go, T,¥), whereP, is a protocol for the environment, mediate from the description of the system, so | ignore interpretations
is a set of initial global states, is atransition functionand here for ease of exposition.

Knowledge-based programs and specifications

147

Now we turn to knowledge-based programs. Here the sitagain assume the environment performsrbeop action at
uation is somewhat more complicated. In a given context, aach stepl consists of all runs, the transition functionis as in

process can determine the truth of a test suchras ‘0" by
simply looking at its local state. However, in a knowledge-

Example 2.1, and the initial states are all possible global states
of the form(a, 0). In this context, there is a also unique system

based program, there are tests for knowledge. According toepresentindg®g,: The agent never knows whether= 0, so

the definition of knowledge in systems, an agekhows a
fact ¢ at a given point{r, m) in systemR if ¢ is true at all

points inR in which i has the same local state as it does at

(r,m). Thus,i knowsp at the point(r, m) if ¢ holds at all
points consistent witlis information at(r, m). The truth of a

there is a unique run corresponding to each initial iate),
in which the global state i&, 0) throughout the run.

Finally, lety” be identical toy’ except that the only initial
state i(0, 0). Again, there will be a unique system represent-
ing Pg, in 7", but it is quite different fromR(Pg,,~’). In

test for knowledge cannot in general be determined simply byR (Pg,,v"), the agent knows that = 0 at all times. There is
looking at the local state in isolation. We need to look at theonly one run, where the value gfis augmented at every step.

whole system. As a consequence, given a run, we cannot in
general determine if it is consistent with a knowledge-based ~ This discussion suggests that a knowledge-based program
program in a given context. This is because we cannot tell hovgan be viewed as specifying a set of systems, the ones that
the tests for knowledge turn out without being given the othersatisfy a certain fixed-point property, while a standard program
possible runs of the system; what a process knows at one poigein be viewed as specifying a set of runs, the ones consistent
will depend in general on what other points are possible. Thigvith the program.
stands in sharp contrast to the situation for standard programs.

This means it no longer makes sense to talk about a run
being consistent with a knowledge-based program in a giver3 Standard and knowledge-based specifications
context. However, notice that, given a systRnywe can derive
a protocol from a knowledge-based prograg),, for process
¢ by usingR to evaluate the knowledge testsRg;,. That

Typically, we think of a protocol being designed to satisfy a
specificationor set of properties. Although a specification is
is, a test such a&¢ holds in a local staté if ¢ holds at often written in some specification language (such as temporal
all points inR where process has local staté. In general, logic), many specifications can usefully be viewed as predi-
different protocols can be derived from a given knowledge-cates on runs. This means that we can associate a set of runs
based program, depending on what system we use to evaluaidth a specification; namely, all the runs that satisfy the re-
the tests. LePg 5, denote the protocol derived frog,, given quired properties. Thus, a specification such as “all processes
systemR. eventually decide on the same value” would be associated with
We say that a syster® representsa knowledge-based the set of runs in which the processes do all decide the same
programPg,, in contexty if R represents the protocBgﬁb. value? .
Thatis,R represent®g,, if R = R(Pg,~). Thus, asystem Researchers have often focused attention on two types of
represent®g,, if it satisfies a certain fixed-point equation. ~ SPecificationssafety properties-these are invariant proper-
This definition is somewhat subtle, and determining theli€s thathave the form*“a particular bad thing never happens™—
system representing a given knowledge-based program ma@,ndlll‘venes_s propertles-th_ese are properties that esser;ﬂally
be nontrivial. Indeed, as shown in [6, 7], in general, there may>@Y @ particular good thing eventually does happen” [24].
be no systems representing a knowledge-based praggam Thus, a run has a safety property if p holds at all points
in a given context, only one, or more than one, since the fixed{”>), While r has the liveness propergif ¢ holds at some
point equation may have no solutions, one solution, or manyPint(r; m). Suppose we are interested in a program that guar-
solutions. Moreover, computing the solutions may be a diffi-antees that all the processes eventually decide on the same
cult task, even if we have only finitely many possible global Value. We model this by assuming that each processs a
states. There are conditions sufficient to guarantee that the/@eCision variable;, initially undefined, in its local state (we
is exactly one system representidg, ,, and these conditions Can assume a special “undefined” value in the domain), which
are satisfied by many knowledge-based programs of interest;;
and, in particular, by the programs discussed in this paper. Ig
Pg,, has a unique system representing it in contgxien we
again denote this systeR(Pg,;,).

Of course, there are useful specifications that cannot be viewed
s predicates on runs. Whileear timetemporal logic assertions are
predicates on rungranching timegemporal logic assertions are best
viewed as predicates on trees. (See [4, 16] for a discussion of the dif-
ferences between linear time and branching time.) For example, Koo
and Toueg’s notion ofveak terminatiorj14] requires that at every
point there is a possible future where everyone terminates. In the no-
tation used in this paper, this would mean that for every peint:),

Example 2.2.The knowledge-based prografg, in Fig. 2,
with the testK'(z = 0), is particularly simple to analyze. If we
consider the contextdiscussed in Example 2.1, then whether
or not_x = 0 holds is determlned by the process’ local State'there must be another poifit’, m) such that- andr’ are identical
Thus, in contexty, z = 0 holds iff K(z = 0) holds, and the up to timerm, and at some poirtt”’, m') with m’ > m, every pro-
knowledge-based program reduces to the standard programeess terminates. This assertion is easily expressed in branching time

Onthe other hand, consider the contgxthere the agent’s
local state just consists just of the valuejpivhile the value of

logic. Probabilistic assertions such as “all processes terminate with
probability .99” also cannot be viewed as predicates on individual

z is part of the environment state. Again, we can identify theruns. Other examples of specifications that cannot be viewed as a

global state with a paifa, b), wherea is the current value of
2 andb is the current value of, but nowa represents the en-

predicate on runs are discussed later in this section. Nevertheless,
specifications that are predicates on runs are sufficiently prevalent

vironment's state, whilé represents the agent’s state. We canthat it seems reasonable to give them special attention.

148 J.Y. Halpern

is set once in the course of a run, when the decision is maddhere may be fewer initial states and fewer admissible runs,
Given the way we have chosen to model this problem, webut otherwisey and~’ are the same. The following lemma is
would expect this program to satisfy two safety properties:almost immediate from the definitions.

(1) each process’ decision variable is changed at most once

(so that it is never the case that it is set more than once); ansemma4.1. If o' C , then for all protocolsP, every run

(2) if neitherz; nor z; has value “undefined”, then they are consistent with” in 4’ is also consistent wittP in -, so
equal. We also expect it to satisfy one liveness property: eaclR(£,7) € R(P,~). Similarly, for every standard program
decision variable is eventually set. Pg, we haveR (Pg,7’) € R(Pg, 7).

We say that a standard progrdhg satisfiesa specifica-
tion o in a contexty if every run consistent witRg in -y (that
is, every run in the system representifg in v) satisfiess.
Similarly, we can say that a knowledge-based progPa),
satisfies specificatiom in contexty if every run in every sys-
tem representingg,,, satisfiess.

The notion of specification we have considered so far ca
be thought of as beingin basedA specificatiors is a pred-
icate on (i.e., set of) runs and a program satisfigseach o :))
run consistent with the program is in Although run-based equal to 1" is satisfied bi?g, in contexty” but noty'.
specifications arise often in practice, there are reasonable spec- _S_anders suggests .that this behavior is somewhat counter-
ifications that are not run based. There are times that it is bedf™I!Ve- To quote [25]:
to think of a specification as being, not a predicate on runs, [A] knowledge-based protocol need not be monotonic

The restrictionin Lemma 4.1 &tandardprograms is nec-
essary. It is not true for knowledge-based programs. The set
of systems consistent with a knowledge-based program can
be rather arbitrary, as Example 2.2 shows. This example also
shows that safety and liveness properties need not be preserved
ryvhen we restrict the context. The safety propenys' never
equal to 1" is satisfied bRg, in contexty’ but not in context
~". On the other hand, the liveness propenis eventually

but a predicate on entirgystemsFor example, consider a with respect to the initial conditions. . [In particu-
knowledge base (KB) that responds to queries by users. We lar,] safety and liveness properties of knowledge-based
can imagine a specification that says “To a query ainswer protocols need not be preserved by strengthening the
‘Yes' if you know ¢, answer ‘No’ if you know—y, otherwise initial conditions thus violating one of the most intu-
answer ‘I don't know'.” This specification is given in terms of itive and fundamental properties of standard programs

the KB’s knowledge, which depends on the whole system and [italics Sanders'}:
cannot be determined by considering individual runs in isola-

tion. We call such a specificationkmowledge-based specifi- based broaram in a restricted context is not n il bset
cation Typically, we think of a knowledge-based specification asedprogra arestricted contextis notnecessarily a Subse
of the system representing it in the original context. However,

being given as a formula involving operators for knowledge . ; :
and time. Formally, itis simply a predicate on (set of) SyS,[ems_under what is arguably the most natural interpretation of what

(Intuitively, it consists of all the systems where the formula is ltmeans fora program to satisfy a speC|f|cat|qn with respectto
valid—i.e., true at every point in the systefh.) an initial condition, a knowledge-based programonotonic

We can think of a run-based specificatioras a special with respect to initial cond_|t|ons.
case of aknowledge-based specification. It consists of all those To understand why this should be so, we need to make
systems all of whose runs satisfyA (standard or knowledge- precise what It means _for a (knowledg'(—:-—_b'ased) program to
based) prograrfg satisfies a knowledge-based specificationSat'sfy a specification with respect to an initial condition. For-
o in contexty if every system representiriRg in ~ satisfies mally, we can take an initial condition 1o be a predicate on
the specification. global states (so that an initial cqndmon/c.orresponds to a set

Notice that knowledge-based specifications bear the sam%f global st_ates). ,An initial conditiofNIT IS astrengthelj-
relationship to (standard) specifications as knowledge—base'm'ilg OfINIT if INIT" s a subset oNIT.. (In logical terms, this

eans thaliNIT’ can be thought of as implyin$lIT.) A setG
programs bearto standard programs. Aknowledge-based spec: g 2 -)
P . . . of global states satisfies an initial conditid T if G C INIT.
ification/program in general defines a set of systems; a stan Suppose that we fig,, 7, and¥, that is, all the compo-

ificati fi f ie. ingl O
g?;?efﬁ)eu ication/program defines a set of runs (i.e., a sing %ents of a context except the set of initial global states, and

consider the familyi” = I'(P,, 7, ¥) of contexts of the form
(P.,Go, T,¥),where the sdf varies over all subsets of global
states. Now it seems reasonable to say that profasatis-
fies specificatiom (with respect ta") given initial condition
INIT if Pg satisfiesr in every contextinl” whose initial global
Sanders [25] focuses on a particular monotonicity propertystates satisfyNIT. With this definition, it is clear that iPg
of specifications. To understand this property, and Sanderssatisfiess givenINIT, andINIT’ is a strengthening dNIT,
concerns, we first need some definitions. Given contexts thenPg must also satisfy with respect tdNIT’, since every
(Pe,Go,7,¥) andy' = (P, Gy, 7', ¥'), we writey’ © v if context whose initial global states arelMIT’ also has its
P, =P, Gy, C Go,7 = 7,and¥’ C ¥.Thatis, inY nitial global states inNIT.

Itis certainly true that the system representing aknowledge-

4 Monotonicity

3 As the examples discussed in Footnote 2 show, not all predicates * In [9], a notion of knowledge-basegtotocol was introduced,
on systems can be expressed in terms of formulas involving knowland Sanders is referring to that notion, rather than the notion of
edge and time. | will not attempt to characterize here the ones thaknowledge-baseprogramthat | am using here. See [7] for a discus-
can be so expressed. It is not even clear that such a characterizatision of the difference between the two notions. Sanders’ comments
is either feasible or useful. apply without change to knowledge-based programs as defined here.

Knowledge-based programs and specifications 149

Thus, under this definition of what it means for a programof the children that have mud on their forehead besides child 1
to satisfy a specification, Sanders’ observation is incorrectwill be able to figure out that they have mud on their forehead.
However, Sanders used a somewhat different definition. SupRoughly speaking, this is because the information available to
pose that rather than considering all contexts imhose initial ~ the children from child 1's “No” answer in the original ver-
global states satisfiNIT, we consider the maximal one, that sion of the story is no longer available once the father gives
is, the one whose set of initial global states consists of alithe extra information. (See [6, Example 7.25].) This problem
global states itk that satisfyINIT . We say thaPg maximally is not an artifact of using knowledge-based programs or spec-
satisfies specification (with respect tal”) givenINIT if Pg ifications. Rather, it is really the case in the original puzzle
satisfiesr in the context inl” whose set of initial global states that if the father had said “Child 1 has mud on his forehead”
consists of all global states satisfyitigIT . rather than “Some of you have mud on your foreheads”, the

It is almost immediate from Lemma 4.1 and the defini- children with mud on their foreheads would never be able to
tions that for standard programs and standard specificationgigure out that they had mud on their foreheads. Sometimes
“satisfaction with respect t6” coincides with “maximal sat- extra knowledge can be harmfl!
isfaction with respect td™. On the other hand, they can be . .)
quite different for knowledge-based programs and knowledge- As should be clear from the preceding discussion, there are

based specifications, as the following examples show. two notions of monotonicity, which happen to coincide (and
hold) for standard programs and specifications, but differ if

Example 4.2.For the knowledge-based progrdha,, if we we consider knowledge-based programs or knowledge-based
takeI" to consist of all contextéP., Gy, 7, %), whereP,, 7, specifications. For knowledge-based programs and specifica-
andv are as discussed in Example 2.2 #hds some subset tions, the first notion of monotonicity holds, while the second
of the global states, then, as we observed abiege satisfies (monotonicity with respect to maximal satisfaction) does not.
the specificationg} is never equal to 1” for the initial condition Monotonicity is certainly a desirable property—for a mono-
INIT ; which can be characterized by the formyla: 0butnot tonic specification and program, once we prove that the speci-
for the initial conditionINIT 5 characterized by = 0Ay = 0. fication holds for the program for a given initial condition, then
Similarly, if Pg5 is the result of replacing the tekt(z = 0) in we canimmediately conclude thatit holds for all stronger spec-
Pg, by =K (z = 0), thenPg satisfies the liveness condition ifications. Without monotonicity, one may have to reprove the
“y is eventually equal to 1” folNIT ; but not forINIT 5. This property for all stronger initial conditions. Maximal satisfac-
shows that a standard specification (in particular, one involvtion also certainly seems like a reasonable generalization from
ing safety or liveness) may not be monotonic with respect tathe standard case. Thus, we should consider to what extent it is
maximal specification for a knowledge-based program. a problem that we lose monotonicity for maximal satisfaction

) . when we consider knowledge-based programs and specifica-
Example 4.3.Consider the standard progrdfg; again, but tions

now consider a context where there are two agents. Intuitively, O.f course, whether something is problematic is, in great

the second agent never learns anything and plays no rolgneasyre, in the eye of the beholder. Nevertheless, | would
Formally, this is captured by taking the second agent's 10-¢|aim that, in the case of maximal satisfaction, the only prop-

cal state to always ba. Thus, a global state now has the gties that are lost when the initial condition is strengthened
form ({a,b), \). We can again identify the global state with 5re ejther unimportant properties, or properties that, roughly
the_ local state of the_ first agent (the one performing all t,hespeakingoughtto be lost. More precisely, they are properties

actions). Thus, abusing notation somewhat, we can C_OnS'that happen to be true of a particular context, but are not intrin-
the same set of contexts as in Example 4.2. Now consider thgjc hroperties of the program. The examples and the technical
knowledge-based specificatidty,(y = 0). This is true with giscussion below should help to make the point clearer. Thus,
respect ta’” for the initial conditionINIT ; but not forINIT 5. this lack of monotonicity should not be viewed as a defect

This shows that even for a standard program, a knowledgest knowledge-based programs and specifications. Rather, it

based specification may not be monotonic with respect to MaXzorrectly captures the subtleties of knowledge acquisition in
imal satisfaction. certain circumstances.

Example 4.4.In the muddy children problem discussed in
[10], the father of the children says “Some [i.e., one or more] Some examples
of you have mud on your forehead.” The father then repeatedlyr’ P

asks the children “Do you know that you have mud on your ~ - <iqar again the proaral It can be viewed as savin
own forehead?” Thus, the children can be viewed as mnningperform agsequencz o?ath?%ris (continually increasjmgf 9
a knowledge-based program according to which a child an: know thatz — 0”. In th temR.(P N the initial
swers “Yes” iff she knows that she has mud on her forehead” oo 1o aw = e systemR(Pg,, '), the initia
condition guarantees that the agent does not know the value

Th? father's initial statement is taken to restrict th_e pOSSIbIeof x, and thus nothing is done. The strengthening of the initial
initial global states to those where one or more children hav

. : oS iti = = i " hatth
mud on their foreheads. Itis well known that,underthls|n|t|al%0ndltlontow 07y = 0 described by,” guarantees that the

o o . agent does know that = 0, and thus actions are performed.
condition, the knowledge-based program satisfies the Ilvene:ﬁ% this case, we surely do not want a safety condition like *

property “all the children with mud on their foreheads even-; " : : : :
tually know it". On the other hand, if the father instead gives Is never equal to 1", which holds if the sequence of actions is
the children more initial information, by saying “Child 1 has 5 Another example of the phenomenon that extra knowledge can be
mud on his forehead” (thus restricting the set of initial global harmful can be found in [20]. This is also a well-known phenomenon
states to those where child 1 has mud on his forehead), nonie the economics/game theory literature [23].

150 J.Y. Halpern

not performed, to be preserved when we strengthen the initiadatisfy the specification in the context implicitly described

condition in this way. Similarly, for the prografg; defined above. We remark that, in principle, we could modify the first

in Example 4.2, where the action is performed if the agentproperty to allowr; to change value a number of times before

does not know that: = 0, we would not expect a liveness finally “stabilizing” on a final value. However, allowing this

property like “y is eventually equal to 1” to be preserved. would only complicate the description of the property, since
Clearly, there are times when we would like a safety or awe would have to modify the third property to guarantee that

liveness property to be preserved when we strengthen initiathe value ofc; after stabilizing is equal to that af, . We return

conditions. But these safety or liveness properties are typito this point below.

cally ones that we want to hold afl systems consistent with The behavior of each process can easily be captured in

the knowledge-based program, not just the ones representirtgrms of knowledge: When a process knows the valug ot

the program in certain maximal contexts. The tests in a wellsends the value to allits neighbors exceptthose that it knows al-

designed knowledge-based program are often there precisefgady know the value of;. Let K;(z1) be an abbreviation for

to ensure that desired safety properties do hold in all system%rocess knows the value af,”. (Thus,K;(x1) isan abbrevi-

consistent with the program. For example, there may be a testtion for K;(z, = 0) V K;(z1 = 1).) Similarly, letK; K (x)

for knowledge to ensure that an action is performed only if itisbe an abbreviation for “proces&nows that procesgknows

known to be safe (i.e., it does not violate the safety property). Ithe value ofz;.” Then we have the joint knowledge-based

is often possible to prove that such safety properties hold in alprogramDIFFUSE = (DIFFUSE,, ..., DIFFUSE,,), where

systems consistent with the knowledge-based program; thu§)IFFUSE;, the program followed by processis

the issue of needing to reprove the property if we strengthen

the initial conditions does not arise. (See [6, pp. 259-270] fordo forever

further discussion of this issue.) if K;(z1)
In the case of liveness properties, we often want to ensure then
that a given action is eventually performed. It is typically the T = x1;
casethatan actionin a knowledge-based programis performed for each neighboy of i
when a given fact is known to be true. Thus, the problem re- do
duces to ensuring that the knowledge is eventually obtained. if =K;K;(r1) then send the value of, to j end

As aconsequence, the knowledge-based approach oftenmakes end
it clearer whatis required for the liveness property to hold. One end
example of how safety properties can be ensured by appropriend.

ate tests for knowledge and how liveness properties reduce to

showing that a certain piece of knowledge is eventually ob—By considering this knowledge-based program, we abstract
tained is given by the knowledge-based programs of [12]. laway from the details of howgains knowledge of the value
illustrate these points here using a simpler example. of 1. If i = 1, then presumably the value was known all

_ Suppose we have a network ofprocesses, connected giong; otherwise it was perhaps acquired through the receipt
via a communication network. The network is connected, buiyf 5 message. Similarly, the fact thatends the value of; to
not necessarily completely connected. For simplicity, assume neighborj only if i doesn’t know thayj knows the value of
each communication link is bidirectional. We assume that allx1 handles two of the details of the standard program: (1) it
messages arrive within one time unit. Each process knowgarantees thatloes not send the valuef to j if i received
which processes it is connected to; formally, this means thajhe value ofz; from 4, and (2) it guarantees thatoes not
the local state of each process includes a mapping associatingng the value of; to its neighbors more than oné&inally,
each outgoing link with the identity of the nelghbor at the other gpserve thablFFUSE is correct even if messages can be lost,
end. We also assume that each process recordsinits local stajg long as the system satisfies an appropriate fairess assump-
the messages it has sent and received. We want a program fggn, (if a message is sent infinitely often, it will eventually
process 1 to broadcast a binary value to all the processes e deliveredy. In this case processwould keep sending the
the network. Formally, we assume that each pro¢ésss a yajue ofz; to 5 until i knows (perhaps by receiving an ac-
local variable, say:;, which is intended to store the value. knowledgment frony) thatj knows the value of;. The fact
The specification that the program must satisfy consists ofhatDIFFUSE is correct “even if messages can be lost” or “no

three properties. For every run, and for@ak= 1,...,n, W matter what the network topology” means that the program
require the following: meets its specification in a number of different contexts.

1. z; changes value at most once,

2. xy1 never changes value, and 5 This argument depends in part on our assumption that process
3. eventually the value af; is equal to that of. 1 is keeping track of the messages it sends and receiveforifets

i . i the fact that it received the value ef from j then (if ¢ follows

Notg that. the first two properties are safety properties, and th%IFFUSEi), it would send the value of; back toj. Similarly, if i
last is a liveness property. o . __ receives the value af; a second time and forgets that it has already

A simple standard program that satisfies this specificationsent it once to its neighbors, then according&FUSE;, it would
is for process 1 to send the value ofry, to all its neighbors; send it again. In addition, the assumption that there are no process
then the first time process(i # 1) gets the value, it sets failures is crucial.
x; to v and send® to all its neighbors except the one from 7 Note that this fairness assumption can be captured by using an
which it received the message. Proceskes nothing if it appropriate sek (consisting only of runs where the fairness condition
later gets the value again. This program is easily seen to is satisfied) in the context.

Knowledge-based programs and specifications 151

This knowledge-based program has another advantage: feature, not a bug! There is no reason to preserve the sending
suggests ways to design more efficient standard programs. Fof unnecessary messages. The extra knowledge obtained when
example, processdoes not have to send the valuewgfto all the initial conditions are strengthened may render sending the
its neighbors (except the one from which it received the valuemessage unnecessary.
of x1) if it has some other way of knowing that a neighbor
already knows the value af;. This may happen if the value
of z; has a header describing to which processes it has already Discussion
been sent. It might also happen if the receiving process has L) o
some knowledge of the network topology (for example, there"Vhen designing programs, we often start with a specification
is no need to rebroadcast the value:gff communicationis ~ and try to find an (easily-implementable) standard program
reliable and all processes are neighbors of process 1). tha_t satisfies it. .The. process o_f going from a specification to

Returning to our main theme, notice that in every context@" implementation is often a difficult one. | would argue that
~ consistent with our assumptions, in the system(s) represenflUité often it is useful to express the properties we desire us-
ing DIFFUSE in ~, the three properties described above arelNd & knowledge-based specification, proceed from there to
satisfiedzz; changes value at most once in any ruppever ~ construct a knowledge-based program, and then go from the
changes value, and eventually the value:pfs equal to that knowledge-based program to a standard program. While this
of z;. Notice also the role of the tesf; (z1) in ensuring that ~@PProach may not always be helpful (indeed, if a badly de-
the safety properties hold. As a result of the test, we know thafigned knowledge-based program is used, then it may actually
x; is not updated until the value af; is known; when it is be harmful), there is some e_wdence showing that it can help.
updated, it is set ta; . This guarantees that never changes . 1 he firstexamples of going from knowledge-based speci-
value, and that:; changes value at most once and, when itfications to (standard) programs can be found in [1,3,15] (al-
does, it is set tar;. All that remains is to guarantee thag ~ though the formal model used in [1,15] is somewhat differ-
is eventually set ta:;. What the knowledge-based program ent from that descrlbed'here). The approach described here
makes clear is that this amounts to ensuring that all process&¥aS used in [12] to derive solutions to tsequence trans-
eventually know the value af,. Itis easy to prove that thisis Mission problenithe problem of transmitting a sequence of
indeed the case. bits reliably over a possibly faulty communication channel).

Itis also easy to see that there are other properties that ¢8!! the programs derived in [12] are (variants of) well-known
not hold in all contexts. For a simple example, suppose thaPrograms that solved the problem. While | would argue that
n = 3, so there are three processes in the network. Suppod8€ knowledge-based approach shows the commonality in the
that there is a link from process 1 to process 2, and a link fronf:PProaches used to solve the problem, and allows for easier
process 2 to process 3, and that these are the only links iAd more uniform proofs of correctness, certainly this exam-
the network. Moreover, suppose that the network topology iole by itself is not convincing evidence of the power of the
common knowledge. Given these simplifying assumptions, &nowledge-based approach. , _
process’s initial state consists of an encoding of the network _ Perhaps more convincing evidence is provided by the re-
topology, its name, and the value of. Now consider two sults of [3,11,21], where this approach is used to derive pro-

contexts: in contexty;, there are 8 initial global states, in 9rams thatare optimal (in terms of number of rounds required)
which (z1, 22, z3) take on all values i{0, 1}3; in 4s, there for Byzantine Agreement and Eventual Byzantine Agreement.

are 4 initial global states, in whichr;, 22, 23) take on all !n this case, the progrgms_d_erived were new, ano_| it seems that
values in{0, 1} such thatr; = 3. Intuitively, in contexty, it would have been quite difficult to derive them directly from

process 3 knows the value of (since it is the same as the the original specifications.
value ofz5, which is part of process 3's initial state), while in _Knowledge-based specifications are more prevalent than
~1, neither process 2 nor process 3 know the value,of et it might at first seem. We are often interested in constructing
R1 = R(DIFFUSE, v;) and letR, = R(DIFFUSE, 7»). Itis programs that not only satisfy some safety and liveness condi-
not hard to see théﬁl has eight runs, one corrésponding to tions, butalso use aminimal number of messages or rounds. As
each initial global state. In each of these runs, process 1 send¥ have already observed, specifications of the form “do not
the value ofz, to process 2 in round 1; process 2 sefso send unnecessary messages” are not standard specifications;
this value in round 2 and forwards the value to process 3: irfhe same is true for a specification of the form “halt as soon as
round 3, process 3 sets to i (and sends no messages). (Note possible”. S_uph §pe0|f|cat|ons can be viewed as know[edge—
that, formally,round k takes place between timés— 1 and based specifications. The results of [3,11,21] can be viewed
k.) Similarly, R, has four runs, one corresponding to each@S showmg how knowledge—based specifications arise in the
initial global state. In these runs, process 3 initially knows theconstruction of round-efficient programs. The tests for knowl-
value ofz;, although process 2 does not. Moreover, process £d9€ in the knowledge-based programs described in these pa-
knows this. Thus, in the round of the runsi, both process ~ Pers explicitly embody the intuition that a process decides as
1 and process 3 send the valuexgfto process 2. But now, SOON as itis safe to do so. _
process 2 does not send a message to process 3 in the second Similar sentiments about the importance of knowledge-
round. based specifications are expressed by Mazer [18] (although the
As expected, we can observe that not all liveness propertie@n@logy between knowledge-based programs and knowledge-
are preserved as we move frofy to R,. For example, the ~Pased specifications is not made in that paper):
runsinRR; all satisfy the liveness property “eventually process Epistemic [i.e., knowledge-based] specifications are
2 sends a message to process 3". Clearly the rufi&;idlo surprisingly common: a problem specification that as-
not satisfy this liveness property. This should be seen as a serts that a property or value is private to some process

152

is an epistemic specification (e.g., “each database site
knows whether it has committed the transaction”). We
are alsointerested in epistemic properties to capture as-
sertions on the extent to which a process’s local state
accurately reflects aspects of the system state, such
as “each database site knows whether the others have
committed the transaction”.

J.Y. Halpern

used proof techniques developed IGNITY to prove the
correctness of another knowledge-based protocol for the se-
guence transmission problem. (We remark that techniques for
reasoning about knowledge obtained in CSP programs, but not
for knowledge-based programs, were given in [13].) Once we
have a number of examples and better technigues in hand, we
shall need to carry out a careful evaluation of the knowledge-
based approach, and a comparison of it and other approaches.

For another example of the usefulness of knowledge-basetbelieve that once the evidence is in, it will show that there are
specifications, recall our earlier discussion of the specificaindeed significant advantages that can be gained by thinking
tion of the program for broadcasting a message through a negt the knowledge level.

work. If we replace the liveness requirements by the simple
knowledge-based requirement “eventually pro¢&ssws the
value ofx,”, we can drop the first property (that changes

Acknowledgementd.would like to thank Ron Fagin, Yoram Moses,
Beverly Sanders, and particularly Vassos Hadzilacos, Murray Mazer,

value at most once) altogether. Indeed, we do not have to menyqshe vardi, and Lenore Zuck for their helpful comments on earlier
tionz;, 7 # 1, at all. The knowledge-based specification thus yragts of the paper. Moshe gets the credit for the observation that
seems to capture our intuitive requirements for the progranknowledge-based protocols do satisfy monotonicity. Finally, | would
more directly and elegantly than the standard specificationike to thank Karen Seidel for asking a question at PODC '91 that

given.
A standard specification can be viewed as a special case
of a knowledge-based specification, one in which the set of

inspired this paper.

systems satisfying it is closed under unions and subsets. It iReferences

because of these closure properties that we have the property
if a standard program satisfies a standard specificationa L
contextw, then it satisfies it in any restriction ef Clearly,

this is not a property that holds of standard programs once .,
we allow knowledge-based specifications. Nevertheless, as the
examples above suggest, there is something to be gained—;
and little to be lost—by allowing the greater generality of
knowledge-based specifications. In particular, although we do
lose monotonicity, there are other ways of ensuring that safety 4.
and liveness properties do hold in the systems of interest.

By forcing us to think in terms of systems, rather than of in-
dividual runs, both knowledge-based programs and knowledge->-
based specifications can be viewed as requiring more “global”
thinking than their standard counterparts. The hope is that
thinking at this level of abstraction makes the design and spec-
ification of programs easier to carry out. 6

We still need more experience using this framework before
we can decide whether this hope will be borne out and whether
the knowledge-based approach as described here is really useg
ful. Sanders has other criticisms of the use of knowledge-based
programs that | have notaddressed here. Very roughly, she pro-
vides pragmatic arguments that suggest that we use predicates.
that have some of the properties of knowledge (for example
K¢ = ¢), but not necessarily all of them. This theme is fur-
ther pursued in [5]. While | believe that using predicates that
satisfy some of the properties of knowledge will not prove to
be as useful as sticking to the original notion of knowledge, we

clearly need more examples to better understand the issues.10-

Besides more examples, as pointed out by Sanders [25], it
would also be useful to have techniques for reasoning about
knowledge-based programs without having to construct the se
of runs generated by the program. In [6], a simple knowledge-
based programming language is proposed. Perhaps standard
techniques for proving program correctness can be appliedtoi ,
(or some variant of it). A first step along these lines was taken
by Sanders [25], who extendd@dNITY [2] in such a way

as to allow the definition of knowledge predicates (although 13.

it appears that the resulting knowledge-based programs are
somewhat less general than those described here), and then

F. Afrati, C. H. Papadimitriou, G. Papageorgiou. The synthe-
sis of communication protocols. Algorithmica, 3(3):451-472
(1988)

K. M. Chandy, J. Misra. Parallel Program Design: A Foundation.
Reading, Mass.: Addison-Wesley 1988

C. Dwork, Y. Moses. Knowledge and common knowledge in a
Byzantine environment: crash failures. Inf Comput, 88(2):156—
186 (1990)

E. A. Emerson, J. Y. Halpern. “Sometimes” and “not never” re-
visited: on branching versus linear time temporal logic. Journal
of the ACM, 33(1):151-178 (1986)

K. Engelhardt, R. van der Meyden, Y. Moses. Knowledge and
the logic of local propositions. In: I. Gilboa (ed.) Theoretical As-
pects of Rationality and Knowledge: Proc. Seventh Conference.
San Francisco, Calif.: Morgan Kaufmann 1998

. R.Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi. Reasoning about

Knowledge. Cambridge, Mass.: MIT Press 1995

7. R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi. Knowledge-

based programs. Distrib Comput, 10(4):199-225 (1997)

. V. Hadzilacos. A knowledge-theoretic analysis of atomic com-

mitment protocols. In: Proc. 6th ACM Symp. on Principles of
Database Systems, pp 129-134, 1987

J. Y. Halpern, R. Fagin. Modelling knowledge and action in
distributed systems. Distrib Comput, 3(4):159-179 (1989). A
preliminary version appeared in Proc. 4th ACM Symposium
on Principles of Distributed Computing, 1985, with the title
“A formal model of knowledge, action, and communication in
distributed systems: preliminary report”

J. Y. Halpern, Y. Moses. Knowledge and common knowledge
in a distributed environment. Journal of the ACM, 37(3):549—
587 (1990). A preliminary version appeared in Proc. 3rd ACM
Symposium on Principles of Distributed Computing, 1984

1. J.Y.Halpern, Y. Moses, O. Waarts. A characterization of even-

tual Byzantine agreement. In: Proc. 9th ACM Symp. on Princi-
ples of Distributed Computing, pp 333-346, 1990

. J. Y. Halpern, L. D. Zuck. A little knowledge goes a long way:

knowledge-based derivations and correctness proofs for a fam-
ily of protocols. Journal of the ACM, 39(3):449-478 (1992)

S. Katz, G. Taubenfeld. What processes know: definitions and
proof methods. In Proc. 5th ACM Symp. on Principles of Dis-
tributed Computing, pp 249-262, 1986

Knowledge-based programs and specifications 153

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

R. Koo, S. Toueg. Effects of message loss on the termination ofoseph Y. Halpernreceived a Bs.C. in mathematics from the Univer-
distributed programs. Inform Process Lett, 27:181-188 (1988)sity of Toronto in 1975 and a Ph. D. in mathematics from Harvard in
R. Kurki-Suonio. Towards programming with knowledge ex- 1981. In between, he spent two years as the head of the Mathematics
pressions. In: Proc. 13th ACM Symp. on Principles of Program-Department at Bawku Secondary School, in Ghana. After ayear as a
ming Languages, pp 140-149, 1986 visiting scientistat MIT, he joined the IBM Almaden Research Center
L. Lamport. “Sometimes” is sometimes “not never”: on the tem- in 1982, where he remained until 1996. He then moved to Cornell Uni-
poral logic of programs. In: Proc. 7th ACM Symp. on Principles versity, where he is a professor of Computer Science and co-director
of Programming Languages, pp 164-185, 1980 of the Cognitive Studies program. He was also a consulting profes-
M. S. Mazer. A link between knowledge and communication in sor in the Computer Science Department at Stanford University from
faulty distributed systems. In: R. Parikh (ed.) Theoretical As- 1984-1996. From 1988 to 1990, he was the manager of the Mathe-
pects of Reasoning about Knowledge: Proc. Third Conferencematics and Related Computer Science Department at IBM. His major
pp 289-304. San Francisco, Calif.: Morgan Kaufmann 1990 research interests are in reasoning about knowledge and uncertainty,
M. S. Mazer. Implementing distributed knowledge-based pro-distributed computation, and modal logic. Together with his former
tocols. Submitted for publication, 1991 student, Yoram Moses, he pioneered the approach of applying rea-
M. S. Mazer, F. H. Lochovsky. Analyzing distributed commit- soning about knowledge to analyzing distributed protocols and multi-
ment by reasoning about knowledge. Technical Report CRLagent systems. He has coauthored 5 patents, a book (“Reasoning
90/10, DEC-CRL, 1990 About Knowledge”), and over 100 technical publications. Halpern
Y. Moses, D. Dolev, J. Y. Halpern. Cheating husbands and othewas program chairman and organizer of the first conference on The-
stories: a case study of knowledge, action, and communicationoretical Aspects of Reasoning about Knowledge, program chairman
Distrib Comput, 1(3):167—-176 (1986) of the fifth ACM Symposium on Principles of Distributed Comput-

Y. Moses, M. R. Tuttle. Programming simultaneous actions us4ing, and program chairman of the 23rd ACM Symposium on Theory
ing common knowledge. Algorithmica, 3:121-169 (1988) of Computing. He received the Publishers’ Prize for Best Paper at at
G. Neiger, S. Toueg. Simulating real-time clocks and com-the International Joint Conference on Artifical Intelligence in 1985
mon knowledge in distributed systems. Journal of the ACM, (joint with Ronald Fagin) and in 1989, the 1997 Godel Prize (joint

40(2):334-367 (1993) with Yoram Moses), and two IBM Outstanding Innovation Awards.
A. Neyman. The positive value of information. Games and Eco-He is a Fellow of the American Association of Artificial Intelligence.
nomic Behavior, 3:350-355 (1991) He is editor-in-chief of Journal of the ACM, and also serves on the

S. Owicki, L. Lamport. Proving liveness properties of concur- editorial board of Information and Computation, Journal of Logic
rent programs. ACM Trans. on Programming Languages andand Computation, Chicago Journal of Theoretical Computer Science,
Systems, 4(3):455-495 (1982) and Artificial Intelligence. He coordinates CoRR (the Computer Re-
B. Sanders. A predicate transformer approach to knowledgsearch Repository — http://xxx.lanl.gov/archive/cs/intro.html), where
and knowledge-based protocols. In: Proc. 10th ACM Symp.he believes all researchers should deposit their papers.

on Principles of Distributed Computing, pp 217-230, 1991. A

revised report appears as ETH Informatik Technical Report 181,

1992

