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Summary. Knowledge-based program are programs with ex-
plicit tests for knowledge. They have been used successfully in
a number of applications. Sanders has pointed out what seem to
be a counterintuitive property of knowledge-based programs.
Roughly speaking, they do not satisfy a certain monotonic-
ity property, while standard programs (ones without tests for
knowledge) do. It is shown that there are two ways of defin-
ing the monotonicity property, which agree for standard pro-
grams. Knowledge-based programs satisfy the first, but do not
satisfy the second. It is further argued by example that the fact
that they do not satisfy the second is actually a feature, not
a problem. Moreover, once we allow the more general class
of knowledge-based specifications, standard programs do not
satisfy the monotonicity property either.

1 Introduction

Consider a simple program such as

do forever
if x = 0 then y := y + 1 end

end.

Fig. 1.The programPg1

This program, denotedPg1 for future reference, describes
an action that a process (or agent—I use the two words in-
terchangeably here) should take, namely, settingy to y + 1,
under certain conditions, namely, ifx = 0. One way to way to
provide formal semantics for such a program is to assume that
each agent is in somelocal state, which, among other things,
describes the value of the variables of interest. For this sim-
ple program, we need to assume that the local state contains
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enough information to determine the truth of the testx = 0.
We can then associate with the program aprotocol, that is, a
function describing what action the agent should in each local
state. Note that a program is asyntacticobject, given by some
program text, while a protocol is a function, asemanticobject.

Knowledge-based programs, introduced in [6,7] (based on
theknowledge-based protocolsof [9]) are intended to provide
a high-level framework for the design and specification of pro-
tocols. The idea is that, in knowledge-based programs, there
are explicit tests for knowledge. Thus, a knowledge-based pro-
gram might have the form

do forever
if K(x = 0) then y := y + 1 end

end,

Fig. 2.The programPg2

whereK(x = 0) should be read as “you knowx = 0”. We can
informally view this knowledge-based program, denotedPg2,
as saying “if you know thatx = 0, then sety toy+1”. Roughly
speaking, an agent knowsϕ if, in all situations consistent with
the agent’s information,ϕ is true.

Knowledge-based programs are an attempt to capture the
intuition that what an agent does depends on what it knows.
They have already met with some degree of success, having
been used in papers such as [3,8,11,12,19,17,21,22] both
to help in the design of new protocols and to clarify the un-
derstanding of existing protocols. However, Sanders [25] has
pointed out what seems to be a counterintuitive property of
knowledge-based programs. Roughly speaking, she claims
that knowledge-based programs do not satisfy a certain mono-
tonicity property: a knowledge-based program can satisfy a
specification under a given initial condition, but fail to satisfy
it if we strengthen the initial condition. On the other hand, stan-
dard programs (ones without tests for knowledge) do satisfy
the monotonicity property.

In this paper, I consider Sanders’ claim more carefully. I
show that it depends critically on what it means for a program
to satisfy a specification. There are two possible definitions,
which agree for standard programs. If we use the one clos-
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est in spirit to the ideas presented in [9], the claim is false,
although it is true for the definition used by Sanders. But,
even in the case of Sanders’ definition, rather than being a de-
fect of knowledge-base programs, this lack of monotonicity
is actually a feature. In general, we do not want monotonicity.
Moreover, once we allow a more general class ofknowledge-
based specifications, then standard programs do not satisfy the
monotonicity property either.

The rest of this paper is organized as follows: In the next
section, there is an informal review of the semantics of stan-
dard and knowledge-based programs. In Sect. 3, I discuss stan-
dard and knowledge-based specifications. In Sect. 4, I consider
the monotonicity property described by Sanders, and show in
what sense it is and is not satisfied by knowledge-based pro-
grams. I give some examples in Sect. 5 showing why mono-
tonicity is not always desirable. I conclude in Sect. 6 with some
discussion of knowledge-based programs and specifications.

2 Standard and knowledge-based programs:
an informal review

Formal semantics for standardandknowledge-basedprograms
are provided in [6,7]. To keep the discussion in this paper at
an informal level, I simplify things somewhat here, and review
what I hope will be just enough of the details so that, together
with the examples given here, the reader will be able to follow
the main points; the interested reader should refer to [6,7] for
further discussion and all the formal details.

Informally, we view a distributed system as consisting of
a number of interacting agents. We assume that, at any given
point in time, each agent in the system is in somelocal state. A
global stateis just a tuple consisting of each agent’s local state,
together with the state of theenvironment, where the environ-
ment consists of everything that is relevant to the system that
is not contained in the state of the processes. The agents’ lo-
cal states typically change over time, as a result of actions that
they perform. Arun is a function from time to global states. In-
tuitively, a run is a complete description of what happens over
time in one possible execution of the system. Apoint is a pair
(r, m) consisting of a runr and a timem. At a point(r, m),
the system is in some global stater(m). For simplicity, time
here is taken to range over the natural numbers (so that time
is viewed as discrete, rather than continuous). AsystemR is a
set of runs; intuitively, these runs describe all the possible ex-
ecutions of the system. For example, in a poker game, the runs
could describe all the possible deals and bidding sequences.

Of major interest in this paper are the systems that we can
associate with a program. To do this, we must first associate a
system with ajoint protocol. As was said in the introduction,
a protocol is a function from local states to actions. (This
function may be nondeterministic, so that in a given local
state, there is a set of actions that may be performed.) A joint
protocol is just a set of protocols, one for each process.

While the joint protocol describes what each process does,
it does not give us enough information to generate a system.
It does not tell us what the legal behaviors of the environment
are, the effects of the actions, or the initial conditions. We
specify these in thecontext. Formally, a contextγ is a tuple
(Pe,G0, τ, Ψ), wherePe is a protocol for the environment,G0
is a set of initial global states,τ is a transition function, and

Ψ is a set ofadmissibleruns. The environment is viewed as
running a protocol just like the agents; its protocol is used to
capture features of the setting like “all messages are delivered
within 5 rounds” or “messages may be lost”. Given a joint
protocolP = (P1, . . . , Pn) for the agents, an environment
protocolPe, and a global state(se, s1, . . . , sn), there is a set of
possiblejoint actions(ae, a1, . . . , an) that can be performed
in this global state according to the protocols of the agents
and the environment. (It is a set since the protocols may be
nondeterministic.) The transition functionτ describes how
these joint actions change the global state by associating with
each joint action aglobal state transformer, that is, a mapping
from global states to global states. The setΨ of admissible runs
is used to characterize notions like fairness. For the simple
programs considered in this paper, the transition function will
be almost immediate from the description of the global states
andΨ will typically consist of all runs (so that it effectively
plays no interesting role). What will change as we vary the
context is the set of possible initial global states.

A run r is consistent with joint protocolP in contextγ if
(1) r(0), the initial global state ofr, is one of the initial global
states inG0, (2) for allm, the transition from global stater(m)
to r(m + 1) is the result of applyingτ to a joint action that
can be performed by(Pe, P ) in the global stater(m), and (3)
r ∈ Ψ . A systemR representsa joint protocolP in contextγ
if it consists of all runs consistent withP in γ.

Assuming that each test in a standard program run by pro-
cessi can be evaluated in each local state, we can derive a
protocol from the program in an obvious way: to find out what
processi does in a local state�, we evaluate the tests inPg
in � and perform the appropriate action.1 A run is consistent
withPg in contextγ if it is consistent with the protocol derived
from Pg. Similarly, A systemrepresentsPg in contextγ if it
represents the protocol derived fromPg. We useR(Pg, γ) to
denote the system representingPg in contextγ.

Example 2.1.Consider the simple standard programPg1 in
Fig. 1 and suppose there is only one agent in the system. Fur-
ther suppose the agent’s local state is a pair of natural numbers
(a, b), wherea is the current value of variablex andb is the
current value ofy. The protocol derived fromPg1 increments
the value ofb by 1 precisely ifa = 0. In this simple case, we
can ignore the environment state, and just identify the global
state of the system with the agent’s local state. Suppose we
consider the contextγ where the initial states consist of all
possible local states of the form(a, 0) for a ≥ 0 and the tran-
sition function is such that the actiony := y + 1 transforms
(a, b) to (a, b + 1). We ignore the environment protocol (or,
equivalently, assume thatPe performs the actionno–op at each
step) and assumeΨ consist of all runs. A runr is then consis-
tent withPg1 in contextγ if either (1)r(0) is of the form(0, b)
andr(m) is of the form(0, b + m) for all m ≥ 1, or (2)r(m)
is of the form(a, b) for all m anda > 0. That is, either thex
component is originally 0, in which case they component is
continually increased by 1, or else nothing happens.

1 Strictly speaking, to evaluate the tests, we need aninterpreta-
tion that assigns truth values to formulas in each global state. For the
programs considered here, the appropriate interpretation will be im-
mediate from the description of the system, so I ignore interpretations
here for ease of exposition.
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Now we turn to knowledge-based programs. Here the sit-
uation is somewhat more complicated. In a given context, a
process can determine the truth of a test such as “x = 0” by
simply looking at its local state. However, in a knowledge-
based program, there are tests for knowledge. According to
the definition of knowledge in systems, an agenti knows a
fact ϕ at a given point(r, m) in systemR if ϕ is true at all
points inR in which i has the same local state as it does at
(r, m). Thus,i knowsϕ at the point(r, m) if ϕ holds at all
points consistent withi’s information at(r, m). The truth of a
test for knowledge cannot in general be determined simply by
looking at the local state in isolation. We need to look at the
whole system. As a consequence, given a run, we cannot in
general determine if it is consistent with a knowledge-based
program in a given context. This is because we cannot tell how
the tests for knowledge turn out without being given the other
possible runs of the system; what a process knows at one point
will depend in general on what other points are possible. This
stands in sharp contrast to the situation for standard programs.

This means it no longer makes sense to talk about a run
being consistent with a knowledge-based program in a given
context. However, notice that, given a systemR, we can derive
a protocol from a knowledge-based programPgkb for process
i by usingR to evaluate the knowledge tests inPgkb . That
is, a test such asKϕ holds in a local statel if ϕ holds at
all points inR where processi has local statel. In general,
different protocols can be derived from a given knowledge-
based program, depending on what system we use to evaluate
the tests. LetPgR

kb denote the protocol derived fromPgkb given
systemR.

We say that a systemR representsa knowledge-based
programPgkb in contextγ if R represents the protocolPgR

kb .
That is,R representsPgkb if R = R(PgR

kb , γ). Thus, a system
representsPgkb if it satisfies a certain fixed-point equation.

This definition is somewhat subtle, and determining the
system representing a given knowledge-based program may
be nontrivial. Indeed, as shown in [6,7], in general, there may
be no systems representing a knowledge-based programPgkb
in a given context, only one, or more than one, since the fixed-
point equation may have no solutions, one solution, or many
solutions. Moreover, computing the solutions may be a diffi-
cult task, even if we have only finitely many possible global
states. There are conditions sufficient to guarantee that there
is exactly one system representingPgkb , and these conditions
are satisfied by many knowledge-based programs of interest,
and, in particular, by the programs discussed in this paper. If
Pgkb has a unique system representing it in contextγ, then we
again denote this systemR(Pgkb , γ).

Example 2.2.The knowledge-based programPg2 in Fig. 2,
with the testK(x = 0), is particularly simple to analyze. If we
consider the contextγ discussed in Example 2.1, then whether
or notx = 0 holds is determined by the process’ local state.
Thus, in contextγ, x = 0 holds iff K(x = 0) holds, and the
knowledge-based program reduces to the standard program.

On theotherhand, consider thecontextγ′ where theagent’s
local state just consists just of the value ofy, while the value of
x is part of the environment state. Again, we can identify the
global state with a pair(a, b), wherea is the current value of
x andb is the current value ofy, but nowa represents the en-
vironment’s state, whileb represents the agent’s state. We can

again assume the environment performs theno–op action at
each step,Ψ consists of all runs, the transition function is as in
Example 2.1, and the initial states are all possible global states
of the form(a, 0). In this context, there is a also unique system
representingPg2: The agent never knows whetherx = 0, so
there is a unique run corresponding to each initial state(a, 0),
in which the global state is(a, 0) throughout the run.

Finally, letγ′′ be identical toγ′ except that the only initial
state is(0, 0). Again, there will be a unique system represent-
ing Pg2 in γ′′, but it is quite different fromR(Pg2, γ

′). In
R(Pg2, γ

′′), the agent knows thatx = 0 at all times. There is
only one run, where the value ofy is augmented at every step.

This discussion suggests that a knowledge-based program
can be viewed as specifying a set of systems, the ones that
satisfy a certain fixed-point property, while a standard program
can be viewed as specifying a set of runs, the ones consistent
with the program.

3 Standard and knowledge-based specifications

Typically, we think of a protocol being designed to satisfy a
specification, or set of properties. Although a specification is
often written in some specification language (such as temporal
logic), many specifications can usefully be viewed as predi-
cates on runs. This means that we can associate a set of runs
with a specification; namely, all the runs that satisfy the re-
quired properties. Thus, a specification such as “all processes
eventually decide on the same value” would be associated with
the set of runs in which the processes do all decide the same
value.2

Researchers have often focused attention on two types of
specifications:safety properties—these are invariant proper-
ties thathave the form“aparticularbad thingneverhappens”—
andliveness properties—these are properties that essentially
say “a particular good thing eventually does happen” [24].
Thus, a runr has a safety propertyp if p holds at all points
(r, m), while r has the liveness propertyq if q holds at some
point(r, m). Suppose we are interested in a program that guar-
antees that all the processes eventually decide on the same
value. We model this by assuming that each processi has a
decision variablexi, initially undefined, in its local state (we
can assume a special “undefined” value in the domain), which

2 Of course, there are useful specifications that cannot be viewed
as predicates on runs. Whilelinear timetemporal logic assertions are
predicates on runs,branching timetemporal logic assertions are best
viewed as predicates on trees. (See [4,16] for a discussion of the dif-
ferences between linear time and branching time.) For example, Koo
and Toueg’s notion ofweak termination[14] requires that at every
point there is a possible future where everyone terminates. In the no-
tation used in this paper, this would mean that for every point(r, m),
there must be another point(r′, m) such thatr andr′ are identical
up to timem, and at some point(r′, m′) with m′ ≥ m, every pro-
cess terminates. This assertion is easily expressed in branching time
logic. Probabilistic assertions such as “all processes terminate with
probability .99” also cannot be viewed as predicates on individual
runs. Other examples of specifications that cannot be viewed as a
predicate on runs are discussed later in this section. Nevertheless,
specifications that are predicates on runs are sufficiently prevalent
that it seems reasonable to give them special attention.
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is set once in the course of a run, when the decision is made.
Given the way we have chosen to model this problem, we
would expect this program to satisfy two safety properties:
(1) each process’ decision variable is changed at most once
(so that it is never the case that it is set more than once); and
(2) if neitherxi nor xj has value “undefined”, then they are
equal. We also expect it to satisfy one liveness property: each
decision variable is eventually set.

We say that a standard programPg satisfiesa specifica-
tion σ in a contextγ if every run consistent withPg in γ (that
is, every run in the system representingPg in γ) satisfiesσ.
Similarly, we can say that a knowledge-based programPgkb
satisfies specificationσ in contextγ if every run in every sys-
tem representingPgkb satisfiesσ.

The notion of specification we have considered so far can
be thought of as beingrun based. A specificationσ is a pred-
icate on (i.e., set of) runs and a program satisfiesσ if each
run consistent with the program is inσ. Although run-based
specifications arise often in practice, there are reasonable spec-
ifications that are not run based. There are times that it is best
to think of a specification as being, not a predicate on runs,
but a predicate on entiresystems. For example, consider a
knowledge base (KB) that responds to queries by users. We
can imagine a specification that says “To a query ofϕ, answer
‘Yes’ if you know ϕ, answer ‘No’ if you know¬ϕ, otherwise
answer ‘I don’t know’.” This specification is given in terms of
the KB’s knowledge, which depends on the whole system and
cannot be determined by considering individual runs in isola-
tion. We call such a specification aknowledge-based specifi-
cation. Typically, we think of a knowledge-based specification
being given as a formula involving operators for knowledge
and time. Formally, it is simply a predicate on (set of) systems.
(Intuitively, it consists of all the systems where the formula is
valid—i.e., true at every point in the system.)3

We can think of a run-based specificationσ as a special
case of a knowledge-based specification. It consists of all those
systems all of whose runs satisfyσ. A (standard or knowledge-
based) programPg satisfies a knowledge-based specification
σ in contextγ if every system representingPg in γ satisfies
the specification.

Notice that knowledge-based specifications bear the same
relationship to (standard) specifications as knowledge-based
programsbear tostandardprograms.Aknowledge-basedspec-
ification/program in general defines a set of systems; a stan-
dard specification/program defines a set of runs (i.e., a single
system).

4 Monotonicity

Sanders [25] focuses on a particular monotonicity property
of specifications. To understand this property, and Sanders’
concerns, we first need some definitions. Given contextsγ =
(Pe,G0, τ, Ψ) andγ′ = (P ′

e,G′
0, τ

′, Ψ ′), we writeγ′ � γ if
Pe = P ′

e, G′
0 ⊆ G0, τ = τ ′, andΨ ′ ⊆ Ψ . That is, inγ′

3 As the examples discussed in Footnote 2 show, not all predicates
on systems can be expressed in terms of formulas involving knowl-
edge and time. I will not attempt to characterize here the ones that
can be so expressed. It is not even clear that such a characterization
is either feasible or useful.

there may be fewer initial states and fewer admissible runs,
but otherwiseγ andγ′ are the same. The following lemma is
almost immediate from the definitions.

Lemma 4.1. If γ′ � γ, then for all protocolsP , every run
consistent withP in γ′ is also consistent withP in γ, so
R(P, γ′) ⊆ R(P, γ). Similarly, for every standard program
Pg, we haveR(Pg, γ′) ⊆ R(Pg, γ).

The restriction in Lemma 4.1 tostandardprograms is nec-
essary. It is not true for knowledge-based programs. The set
of systems consistent with a knowledge-based program can
be rather arbitrary, as Example 2.2 shows. This example also
shows that safety and liveness properties need not be preserved
when we restrict the context. The safety property “y is never
equal to 1” is satisfied byPg2 in contextγ′ but not in context
γ′′. On the other hand, the liveness property “y is eventually
equal to 1” is satisfied byPg2 in contextγ′′ but notγ′.

Sanders suggests that this behavior is somewhat counter-
intuitive. To quote [25]:

[A] knowledge-based protocol need not be monotonic
with respect to the initial conditions. . . [In particu-
lar,] safety and liveness properties of knowledge-based
protocols need not be preserved by strengthening the
initial conditions, thus violating one of the most intu-
itive and fundamental properties of standard programs
[italics Sanders’].4

It is certainly true that thesystemrepresentingaknowledge-
based program in a restricted context is not necessarily a subset
of the system representing it in the original context. However,
under what is arguably the most natural interpretation of what
it means for a program to satisfy a specification with respect to
an initial condition, a knowledge-based programis monotonic
with respect to initial conditions.

To understand why this should be so, we need to make
precise what it means for a (knowledge-based) program to
satisfy a specification with respect to an initial condition. For-
mally, we can take an initial condition to be a predicate on
global states (so that an initial condition corresponds to a set
of global states). An initial conditionINIT ′ is a strengthen-
ing of INIT if INIT ′ is a subset ofINIT . (In logical terms, this
means thatINIT ′ can be thought of as implyingINIT .) A setG
of global states satisfies an initial conditionINIT if G ⊆ INIT .

Suppose that we fixPe, τ , andΨ , that is, all the compo-
nents of a context except the set of initial global states, and
consider the familyΓ = Γ (Pe, τ, Ψ) of contexts of the form
(Pe,G0, τ, Ψ), where the setG0 varies over all subsets of global
states. Now it seems reasonable to say that programPg satis-
fies specificationσ (with respect toΓ ) given initial condition
INIT if Pg satisfiesσ in every context inΓ whose initial global
states satisfyINIT . With this definition, it is clear that ifPg
satisfiesσ given INIT , andINIT ′ is a strengthening ofINIT ,
thenPg must also satisfyσ with respect toINIT ′, since every
context whose initial global states are inINIT ′ also has its
initial global states inINIT .

4 In [9], a notion of knowledge-basedprotocol was introduced,
and Sanders is referring to that notion, rather than the notion of
knowledge-basedprogramthat I am using here. See [7] for a discus-
sion of the difference between the two notions. Sanders’ comments
apply without change to knowledge-based programs as defined here.
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Thus, under this definition of what it means for a program
to satisfy a specification, Sanders’ observation is incorrect.
However, Sanders used a somewhat different definition. Sup-
pose that rather than considering all contexts inΓ whose initial
global states satisfyINIT , we consider the maximal one, that
is, the one whose set of initial global states consists of all
global states inΣ that satisfyINIT . We say thatPg maximally
satisfies specificationσ (with respect toΓ ) given INIT if Pg
satisfiesσ in the context inΓ whose set of initial global states
consists of all global states satisfyingINIT .

It is almost immediate from Lemma 4.1 and the defini-
tions that for standard programs and standard specifications,
“satisfaction with respect toΓ ” coincides with “maximal sat-
isfaction with respect toΓ ”. On the other hand, they can be
quite different for knowledge-based programs and knowledge-
based specifications, as the following examples show.

Example 4.2.For the knowledge-based programPg2, if we
takeΓ to consist of all contexts(Pe,G0, τ, Ψ), wherePe, τ ,
andΨ are as discussed in Example 2.2 andG0 is some subset
of the global states, then, as we observed above,Pg2 satisfies
the specification “y is never equal to 1” for the initial condition
INIT1 which can be characterized by the formulay = 0 but not
for the initial conditionINIT2 characterized byx = 0∧y = 0.
Similarly, if Pg3 is the result of replacing the testK(x = 0) in
Pg2 by ¬K(x = 0), thenPg3 satisfies the liveness condition
“y is eventually equal to 1” forINIT1 but not forINIT2. This
shows that a standard specification (in particular, one involv-
ing safety or liveness) may not be monotonic with respect to
maximal specification for a knowledge-based program.

Example 4.3.Consider the standard programPg1 again, but
now consider a context where there are two agents. Intuitively,
the second agent never learns anything and plays no role.
Formally, this is captured by taking the second agent’s lo-
cal state to always beλ. Thus, a global state now has the
form (〈a, b〉, λ). We can again identify the global state with
the local state of the first agent (the one performing all the
actions). Thus, abusing notation somewhat, we can consider
the same set of contexts as in Example 4.2. Now consider the
knowledge-based specificationK2(y = 0). This is true with
respect toΓ for the initial conditionINIT1 but not forINIT2.
This shows that even for a standard program, a knowledge-
based specification may not be monotonic with respect to max-
imal satisfaction.

Example 4.4.In the muddy children problem discussed in
[10], the father of the children says “Some [i.e., one or more]
of you have mud on your forehead.” The father then repeatedly
asks the children “Do you know that you have mud on your
own forehead?” Thus, the children can be viewed as running
a knowledge-based program according to which a child an-
swers “Yes” iff she knows that she has mud on her forehead.
The father’s initial statement is taken to restrict the possible
initial global states to those where one or more children have
mud on their foreheads. It is well known that, under this initial
condition, the knowledge-based program satisfies the liveness
property “all the children with mud on their foreheads even-
tually know it”. On the other hand, if the father instead gives
the children more initial information, by saying “Child 1 has
mud on his forehead” (thus restricting the set of initial global
states to those where child 1 has mud on his forehead), none

of the children that have mud on their forehead besides child 1
will be able to figure out that they have mud on their forehead.
Roughly speaking, this is because the information available to
the children from child 1’s “No” answer in the original ver-
sion of the story is no longer available once the father gives
the extra information. (See [6, Example 7.25].) This problem
is not an artifact of using knowledge-based programs or spec-
ifications. Rather, it is really the case in the original puzzle
that if the father had said “Child 1 has mud on his forehead”
rather than “Some of you have mud on your foreheads”, the
children with mud on their foreheads would never be able to
figure out that they had mud on their foreheads. Sometimes
extra knowledge can be harmful!5

As should be clear from the preceding discussion, there are
two notions of monotonicity, which happen to coincide (and
hold) for standard programs and specifications, but differ if
we consider knowledge-based programs or knowledge-based
specifications. For knowledge-based programs and specifica-
tions, the first notion of monotonicity holds, while the second
(monotonicity with respect to maximal satisfaction) does not.
Monotonicity is certainly a desirable property—for a mono-
tonic specification and program, once we prove that the speci-
fication holds for the program for a given initial condition, then
we can immediately conclude that it holds for all stronger spec-
ifications. Without monotonicity, one may have to reprove the
property for all stronger initial conditions. Maximal satisfac-
tion also certainly seems like a reasonable generalization from
the standard case. Thus, we should consider to what extent it is
a problem that we lose monotonicity for maximal satisfaction
when we consider knowledge-based programs and specifica-
tions.

Of course, whether something is problematic is, in great
measure, in the eye of the beholder. Nevertheless, I would
claim that, in the case of maximal satisfaction, the only prop-
erties that are lost when the initial condition is strengthened
are either unimportant properties, or properties that, roughly
speaking,oughtto be lost. More precisely, they are properties
that happen to be true of a particular context, but are not intrin-
sic properties of the program. The examples and the technical
discussion below should help to make the point clearer. Thus,
this lack of monotonicity should not be viewed as a defect
of knowledge-based programs and specifications. Rather, it
correctly captures the subtleties of knowledge acquisition in
certain circumstances.

5 Some examples

Consider again the programPg2. It can be viewed as saying
“perform a sequence of actions (continually increasingy) if
you know thatx = 0”. In the systemR(Pg2, γ

′), the initial
condition guarantees that the agent does not know the value
of x, and thus nothing is done. The strengthening of the initial
condition tox = 0∧y = 0 described byγ′′ guarantees that the
agent does know thatx = 0, and thus actions are performed.
In this case, we surely do not want a safety condition like “y
is never equal to 1”, which holds if the sequence of actions is

5 Another example of the phenomenon that extra knowledge can be
harmful can be found in [20]. This is also a well-known phenomenon
in the economics/game theory literature [23].
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not performed, to be preserved when we strengthen the initial
condition in this way. Similarly, for the programPg3 defined
in Example 4.2, where the action is performed if the agent
does not know thatx = 0, we would not expect a liveness
property like “y is eventually equal to 1” to be preserved.

Clearly, there are times when we would like a safety or a
liveness property to be preserved when we strengthen initial
conditions. But these safety or liveness properties are typi-
cally ones that we want to hold ofall systems consistent with
the knowledge-based program, not just the ones representing
the program in certain maximal contexts. The tests in a well-
designed knowledge-based program are often there precisely
to ensure that desired safety properties do hold in all systems
consistent with the program. For example, there may be a test
for knowledge to ensure that an action is performed only if it is
known to be safe (i.e., it does not violate the safety property). It
is often possible to prove that such safety properties hold in all
systems consistent with the knowledge-based program; thus,
the issue of needing to reprove the property if we strengthen
the initial conditions does not arise. (See [6, pp. 259–270] for
further discussion of this issue.)

In the case of liveness properties, we often want to ensure
that a given action is eventually performed. It is typically the
case that an action in a knowledge-based program is performed
when a given fact is known to be true. Thus, the problem re-
duces to ensuring that the knowledge is eventually obtained.
As a consequence, the knowledge-based approach often makes
it clearer what is required for the liveness property to hold. One
example of how safety properties can be ensured by appropri-
ate tests for knowledge and how liveness properties reduce to
showing that a certain piece of knowledge is eventually ob-
tained is given by the knowledge-based programs of [12]. I
illustrate these points here using a simpler example.

Suppose we have a network ofn processes, connected
via a communication network. The network is connected, but
not necessarily completely connected. For simplicity, assume
each communication link is bidirectional. We assume that all
messages arrive within one time unit. Each process knows
which processes it is connected to; formally, this means that
the local state of each process includes a mapping associating
each outgoing link with the identity of the neighbor at the other
end. We also assume that each process records in its local state
the messages it has sent and received. We want a program for
process 1 to broadcast a binary value to all the processes in
the network. Formally, we assume that each processi has a
local variable, sayxi, which is intended to store the value.
The specification that the program must satisfy consists of
three properties. For every run, and for alli = 1, . . . , n, we
require the following:

1. xi changes value at most once,
2. x1 never changes value, and
3. eventually the value ofxi is equal to that ofx1.

Note that the first two properties are safety properties, and the
last is a liveness property.

A simple standard program that satisfies this specification
is for process 1 to sendv, the value ofx1, to all its neighbors;
then the first time processi (i �= 1) gets the valuev, it sets
xi to v and sendsv to all its neighbors except the one from
which it received the message. Processi does nothing if it
later gets the valuev again. This program is easily seen to

satisfy the specification in the context implicitly described
above. We remark that, in principle, we could modify the first
property to allowx1 to change value a number of times before
finally “stabilizing” on a final value. However, allowing this
would only complicate the description of the property, since
we would have to modify the third property to guarantee that
the value ofxi after stabilizing is equal to that ofx1. We return
to this point below.

The behavior of each process can easily be captured in
terms of knowledge: When a process knows the value ofx1, it
sends the value to all its neighbors except those that it knows al-
ready know the value ofx1. LetKi(x1) be an abbreviation for
“processiknows the value ofx1”. (Thus,Ki(x1) is an abbrevi-
ation forKi(x1 = 0)∨Ki(x1 = 1).) Similarly, letKiKj(x1)
be an abbreviation for “processi knows that processj knows
the value ofx1.” Then we have the joint knowledge-based
programDIFFUSE = (DIFFUSE1, . . . ,DIFFUSEn), where
DIFFUSEi, the program followed by processi, is

do forever
if Ki(x1)
then

xi := x1;
for each neighborj of i
do

if ¬KiKj(x1) then send the value ofx1 to j end
end

end
end.

By considering this knowledge-based program, we abstract
away from the details of howi gains knowledge of the value
of x1. If i = 1, then presumably the value was known all
along; otherwise it was perhaps acquired through the receipt
of a message. Similarly, the fact thati sends the value ofx1 to
a neighborj only if i doesn’t know thatj knows the value of
x1 handles two of the details of the standard program: (1) it
guarantees thati does not send the value ofx1 to j if i received
the value ofx1 from j, and (2) it guarantees thati does not
send the value ofx1 to its neighbors more than once.6 Finally,
observe thatDIFFUSE is correct even if messages can be lost,
as long as the system satisfies an appropriate fairness assump-
tion (if a message is sent infinitely often, it will eventually
be delivered).7 In this case processi would keep sending the
value ofx1 to j until i knows (perhaps by receiving an ac-
knowledgment fromj) thatj knows the value ofx1. The fact
thatDIFFUSE is correct “even if messages can be lost” or “no
matter what the network topology” means that the program
meets its specification in a number of different contexts.

6 This argument depends in part on our assumption that process
i is keeping track of the messages it sends and receives. Ifi forgets
the fact that it received the value ofx1 from j then (if i follows
DIFFUSEi), it would send the value ofx1 back toj. Similarly, if i
receives the value ofx1 a second time and forgets that it has already
sent it once to its neighbors, then according toDIFFUSEi, it would
send it again. In addition, the assumption that there are no process
failures is crucial.

7 Note that this fairness assumption can be captured by using an
appropriate setΨ (consisting only of runs where the fairness condition
is satisfied) in the context.
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This knowledge-based program has another advantage: it
suggests ways to design more efficient standard programs. For
example, processi does not have to send the value ofx1 to all
its neighbors (except the one from which it received the value
of x1) if it has some other way of knowing that a neighbor
already knows the value ofx1. This may happen if the value
of x1 has a header describing to which processes it has already
been sent. It might also happen if the receiving process has
some knowledge of the network topology (for example, there
is no need to rebroadcast the value ofx1 if communication is
reliable and all processes are neighbors of process 1).

Returning to our main theme, notice that in every context
γ consistent with our assumptions, in the system(s) represent-
ing DIFFUSE in γ, the three properties described above are
satisfied:xi changes value at most once in any run,x1 never
changes value, and eventually the value ofxi is equal to that
of x1. Notice also the role of the testKi(x1) in ensuring that
the safety properties hold. As a result of the test, we know that
xi is not updated until the value ofx1 is known; when it is
updated, it is set tox1. This guarantees thatx1 never changes
value, and thatxi changes value at most once and, when it
does, it is set tox1. All that remains is to guarantee thatxi

is eventually set tox1. What the knowledge-based program
makes clear is that this amounts to ensuring that all processes
eventually know the value ofx1. It is easy to prove that this is
indeed the case.

It is also easy to see that there are other properties that do
not hold in all contexts. For a simple example, suppose that
n = 3, so there are three processes in the network. Suppose
that there is a link from process 1 to process 2, and a link from
process 2 to process 3, and that these are the only links in
the network. Moreover, suppose that the network topology is
common knowledge. Given these simplifying assumptions, a
processi’s initial state consists of an encoding of the network
topology, its name, and the value ofxi. Now consider two
contexts: in contextγ1, there are 8 initial global states, in
which (x1, x2, x3) take on all values in{0, 1}3; in γ2, there
are 4 initial global states, in which(x1, x2, x3) take on all
values in{0, 1}3 such thatx1 = x3. Intuitively, in contextγ2,
process 3 knows the value ofx1 (since it is the same as the
value ofx3, which is part of process 3’s initial state), while in
γ1, neither process 2 nor process 3 know the value ofx1. Let
R1 = R(DIFFUSE, γ1) and letR2 = R(DIFFUSE, γ2). It is
not hard to see thatR1 has eight runs, one corresponding to
each initial global state. In each of these runs, process 1 sends
the value ofx1 to process 2 in round 1; process 2 setsx2 to
this value in round 2 and forwards the value to process 3; in
round 3, process 3 setsx3 to i (and sends no messages). (Note
that, formally,round k takes place between timesk − 1 and
k.) Similarly, R2, has four runs, one corresponding to each
initial global state. In these runs, process 3 initially knows the
value ofx1, although process 2 does not. Moreover, process 2
knows this. Thus, in the round of the runs inR2, both process
1 and process 3 send the value ofx1 to process 2. But now,
process 2 does not send a message to process 3 in the second
round.

As expected, we can observe that not all liveness properties
are preserved as we move fromR1 to R2. For example, the
runs inR1 all satisfy the liveness property “eventually process
2 sends a message to process 3”. Clearly the runs inR2 do
not satisfy this liveness property. This should be seen as a

feature, not a bug! There is no reason to preserve the sending
of unnecessary messages. The extra knowledge obtained when
the initial conditions are strengthened may render sending the
message unnecessary.

6 Discussion

When designing programs, we often start with a specification
and try to find an (easily-implementable) standard program
that satisfies it. The process of going from a specification to
an implementation is often a difficult one. I would argue that
quite often it is useful to express the properties we desire us-
ing a knowledge-based specification, proceed from there to
construct a knowledge-based program, and then go from the
knowledge-based program to a standard program. While this
approach may not always be helpful (indeed, if a badly de-
signed knowledge-based program is used, then it may actually
be harmful), there is some evidence showing that it can help.

The first examples of going from knowledge-based speci-
fications to (standard) programs can be found in [1,3,15] (al-
though the formal model used in [1,15] is somewhat differ-
ent from that described here). The approach described here
was used in [12] to derive solutions to thesequence trans-
mission problem(the problem of transmitting a sequence of
bits reliably over a possibly faulty communication channel).
All the programs derived in [12] are (variants of) well-known
programs that solved the problem. While I would argue that
the knowledge-based approach shows the commonality in the
approaches used to solve the problem, and allows for easier
and more uniform proofs of correctness, certainly this exam-
ple by itself is not convincing evidence of the power of the
knowledge-based approach.

Perhaps more convincing evidence is provided by the re-
sults of [3,11,21], where this approach is used to derive pro-
grams that are optimal (in terms of number of rounds required)
for Byzantine Agreement and Eventual Byzantine Agreement.
In this case, the programs derived were new, and it seems that
it would have been quite difficult to derive them directly from
the original specifications.

Knowledge-based specifications are more prevalent than
it might at first seem. We are often interested in constructing
programs that not only satisfy some safety and liveness condi-
tions, but also use a minimal number of messages or rounds. As
we have already observed, specifications of the form “do not
send unnecessary messages” are not standard specifications;
the same is true for a specification of the form “halt as soon as
possible”. Such specifications can be viewed as knowledge-
based specifications. The results of [3,11,21] can be viewed
as showing how knowledge-based specifications arise in the
construction of round-efficient programs. The tests for knowl-
edge in the knowledge-based programs described in these pa-
pers explicitly embody the intuition that a process decides as
soon as it is safe to do so.

Similar sentiments about the importance of knowledge-
based specifications are expressed by Mazer [18] (although the
analogy between knowledge-based programs and knowledge-
based specifications is not made in that paper):

Epistemic [i.e., knowledge-based] specifications are
surprisingly common: a problem specification that as-
serts that a property or value is private to some process
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is an epistemic specification (e.g., “each database site
knows whether it has committed the transaction”). We
are also interested in epistemic properties to capture as-
sertions on the extent to which a process’s local state
accurately reflects aspects of the system state, such
as “each database site knows whether the others have
committed the transaction”.

For another example of the usefulness of knowledge-based
specifications, recall our earlier discussion of the specifica-
tion of the program for broadcasting a message through a net-
work. If we replace the liveness requirements by the simple
knowledge-based requirement “eventually processiknows the
value ofx1”, we can drop the first property (thatxi changes
value at most once) altogether. Indeed, we do not have to men-
tion xi, i �= 1, at all. The knowledge-based specification thus
seems to capture our intuitive requirements for the program
more directly and elegantly than the standard specification
given.

A standard specification can be viewed as a special case
of a knowledge-based specification, one in which the set of
systems satisfying it is closed under unions and subsets. It is
because of these closure properties that we have the property
if a standard program satisfies a standard specificationσ in a
contextγ, then it satisfies it in any restriction ofγ. Clearly,
this is not a property that holds of standard programs once
we allow knowledge-based specifications. Nevertheless, as the
examples above suggest, there is something to be gained—
and little to be lost—by allowing the greater generality of
knowledge-based specifications. In particular, although we do
lose monotonicity, there are other ways of ensuring that safety
and liveness properties do hold in the systems of interest.

By forcing us to think in terms of systems, rather than of in-
dividual runs,bothknowledge-basedprogramsandknowledge-
based specifications can be viewed as requiring more “global”
thinking than their standard counterparts. The hope is that
thinking at this level of abstraction makes the design and spec-
ification of programs easier to carry out.

We still need more experience using this framework before
we can decide whether this hope will be borne out and whether
the knowledge-based approach as described here is really use-
ful. Sanders has other criticisms of the use of knowledge-based
programs that I have not addressed here. Very roughly, she pro-
vides pragmatic arguments that suggest that we use predicates
that have some of the properties of knowledge (for example
Kϕ ⇒ ϕ), but not necessarily all of them. This theme is fur-
ther pursued in [5]. While I believe that using predicates that
satisfy some of the properties of knowledge will not prove to
be as useful as sticking to the original notion of knowledge, we
clearly need more examples to better understand the issues.

Besides more examples, as pointed out by Sanders [25], it
would also be useful to have techniques for reasoning about
knowledge-based programs without having to construct the set
of runs generated by the program. In [6], a simple knowledge-
based programming language is proposed. Perhaps standard
techniques for proving program correctness can be applied to it
(or some variant of it). A first step along these lines was taken
by Sanders [25], who extendedUNITY [2] in such a way
as to allow the definition of knowledge predicates (although
it appears that the resulting knowledge-based programs are
somewhat less general than those described here), and then

used proof techniques developed forUNITY to prove the
correctness of another knowledge-based protocol for the se-
quence transmission problem. (We remark that techniques for
reasoning about knowledge obtained in CSP programs, but not
for knowledge-based programs, were given in [13].) Once we
have a number of examples and better techniques in hand, we
shall need to carry out a careful evaluation of the knowledge-
based approach, and a comparison of it and other approaches.
I believe that once the evidence is in, it will show that there are
indeed significant advantages that can be gained by thinking
at the knowledge level.
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