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Abstract. Weintroduce and study anew concept of aweak elliptic equation for measureson
infinitedimensional spaces. Thisconcept allowsoneto consider equationswhose coefficients
are not globally integrable. By using a suitably extended Lyapunov function technique, we
deriveapriori estimates for the solutions of such equations and prove new existence results.
As an application, we consider stochastic Burgers, reaction-diffusion, and Navier-Stokes
equations and investigate the elliptic equations for the corresponding invariant measures.
Our general theorems yield a priori estimates and existence results for such elliptic equa-
tions. We a so obtain moment estimates for Gibbs distributions and prove an existence result
applicable to awide class of models.

1. Introduction

In this work we consider weak €elliptic equations for measures on infinite dimen-
sional spacesthat can be formally writtenas LY zu = 0in the sense that

/LA,Bl/fdu=o, Yy e, (L1)
where ¢ is acertain class of test functionson X and L 4_p isformally given by
(,¢] oo
Lapy =Y Aijdede, ¥+ Y Bjde, s (12)
i,j=1 j=1

with some p.-measurable functions A;; and B; and vectorse; € X. Infact, A and
B are regarded merely as collections A = {A;;}; jeny and {B;} jcn, respectively.
In many cases, however, A is an operator-valued function and B is a vector field.
Typical examples of such a situation are elliptic equations for invariant measures

V.l. Bogachev: Department of Mechanics and Mathematics, Moscow State University,
119899 Moscow, Russia. email: vbogach@rech. mat h. nsu. su

M. Rockner: Fakultat fur Mathematik, Universitat Bielefeld, D—33615 Bielefeld, Germany.
e-mail: r oeckner @rat henmat i k. uni - bi el ef el d. de

Mathematics Subject Classification (2000): Primary 46G12, 35J15, 28C20; Secondary:
60H15, 82B20, 60J60, 60K 35

Key words or phrases: Invariant measures of diffusions — Elliptic equation for measures —
Lyapunov function — Gibbs distribution — Logarithmic gradient — Stochastic Burgers equa-
tion — Stochastic Navier—Stokes equation — Stochastic reaction-diffusion equation



446 V.l. Bogachev, M. Rockner

of diffusion processes and integration by parts formulas for measures. In the finite
dimensional case, anatural choice of 7" isthe class C3° (R") of smooth compactly
supported functions (in this case the series becomes a finite sum). In infinite di-
mensions, there are many natural possibilities to choose 2#"; for example, one can
take the class of smooth cylindrical functions or smooth functions v of bounded
support possessing bounded partial derivatives o,;y and 9., d,;¥. Moreover, the
interpretations of (1.1) and (1.2) may be different. Our definition is this: if, say
A;j = 8;;, then (1.1) and (1.2) areinterpreted as

> /[afnw + Byde,¥]du =0, Vyex. (1.3)

n:lX

We show that under certain technical conditions, it is possible to obtain a pri-
ori estimates for solutions of such equations and prove existence results for them.
Particular emphasis is given to applications. More precisely, we consider elliptic
operators of type (1.2) corresponding to stochastic partial differential equations
such as Burgers, Navier—Stokes, and reaction-diffusion equations. We obtain new
existence results and also improve results obtained in [38], [39], [5], [6]. As com-
paredto[5], [6], we prove existence results (in particular, for Gibbs measure) under
partly weaker assumptions. An advantage of the method employed in this paper is
that it is universal enough to apply to al these cases. Furthermore, from a more
technical point of view it does not require constructing scales of Hilbert spaces, and
the verification of the various conditionsin concrete examples becomes more direct
and elementary. In addition, our method extends to the manifold case (see [18]).

A typical feature of the above mentioned examples of applications is that the
drift term B is only defined on a w-measure zero set. For example, in the case of
the stochastic Burgers equation, the measure . is defined on the Sobolev space
HOZ’l of functions u such that u(0) = u(1) = 0 and u,u’ € L?(0, 1), whereas
B is heurigtically given by the expression B(u) = u” — ¥ (u)u’ + f. Howev-
er, there are well-defined “coordinate functions’ B,, of this non-existing drift B:
By(u) = =@, ny)2 — (Y @', ), + (f. 1a)2, where {,} isan orthormal basis
in L2(0, 1) such that n, € Hg"l. The situation is similar in the cases of the sto-
chastic Navier—Stokes equation, stochastic reaction-diffusion equation, and Gibbs
measures. Nevertheless, even in the case where the functions B, are really com-
ponents of awell-defined mapping B, we obtain new results. In many cases, these
results enable us to find a mapping B defined p-a.e. and taking values in an ap-
propriate enlargement of the original space X such that the B,,’s become indeed
the coordinates of B. For example, in the above considered case of the stochastic
Burgers equation, B can be regarded as a mapping to a suitable negative Sobolev
space.

We want to emphasize that although one of our motivations is the study of
invariant measures of infinite dimensional diffusion processes, we do not discuss
the processes themselves in this paper. We even never assume the existence of the
processes associated with the elliptic operators in question. However, it is known
(see, e.g., [48]) that, under very broad assumptions, once we have a probability
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measure u that solves (1.1), one can construct a diffusion process with generator
L 4. g having u asan invariant (or sub-invariant) measure.

The organization of this paper is as follows: after introducing some notation
and definitionsin Sections 2 and 3, we prove some apriori estimates (in Section 4)
which are of their own interest and which are necessary for the subsequent exis-
tence proofs given in Section 5. Section 6 is devoted to the special symmetric case.
In particular, Gibbs measures are considered here. In Section 7 we present other
applications. Thequestion of regularity of invariant measures (discussed previously
in [1], [12], [15]) is addressed in Section 8. More precisely, we give conditions
ensuring that an invariant measure has partial logarithmic derivatives. Someresults
in this paper have been announced in [17].

2. Notation

Throughout, X is alocally convex space with Borel o-algebra #(X) and topo-
logical dual X*. Let .#(X) denote the set of all signed measures on %(X) with
finite total variation. Given afamily of linear functionals A C X*, we denote by
FE;°(X, A) theclassof al functions f on X of the form

f) =y (1), ..., L,(x)), where ¥ e CPR"),L € A.

If A = X*, then we write 7 %,°(X) instead of .7 %;°(X, X*). In particular, we
shall deal below with the classes 7 %}° (X, {I,}) corresponding to countable sets
{ln} C X*. Replacing C;°(R") by Cg°(R") we obtain the classes 7 43° (X, {l,})
and 7 %5° (X) (these classes are not linear spaces).

Given a Banach space X, we denote by Cé(X), k € N, the class of al func-
tions f with bounded supports such that f has k bounded and continuous Fréchet
derivatives.

Definition 2.1. Wesay that ameasure u € .4 (X) isdifferentiable (in the sense of
Fomin) along a vector & € X with respect to a certain class #" of bounded Borel
functions if every f € " has a bounded (or just -integrable) partial derivative
9, f and there exists a u-measurable function /8,‘1‘ such that, for all f € 2, one
has fB; € L'(w) and

[onsan=- [ 18t an. (2.)
X

X

The function B, is called the partial logarithmic derivative of u along & with
respect to 7.

The above definition gives akind of “local” partia logarithmic derivatives. If
A = FECL(X)and Bl e L(1), thenwe arrive at the usual Fomin differentiabil-
ity (see, e.g., [9]). An advantage of our more general definition isthat it enables us
to consider logarithmic derivatives with very weak integrability properties, which
is convenient, e.g., in the study of Gibbs measures. Below we consider concrete
examples; we only observe here that if % = #'1(X) is the class of all bounded
Borel functions f on X with compact supports such that the partial derivativesay, f
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exist and are bounded, then one can consider logarithmic derivatives ﬂ}’f that are
w-integrable only on compact sets.

Let H C X be a separable Hilbert space (fixed for the rest of this section)
continuously and densely embedded into X. This embedding generates a standard
embedding j,, : X* — H defined by means of the Riesz representation asfollows:

(gD, W)y =(.h), VYleX* heH.

A typica example is X = R* (the space of all sequences with the topology of
pointwise convergence) and H = [2. Then X* = RE° is the space of finite se-
quencesand j, (1) isrepresented by / itself.

Definition 2.2. A u-measurable mapping g#: X — X iscalled logarithmic gra-
dient of . associated to H with respect to a fixed class .7 if, for every [ € X*, the
measure y is differentiable along 2 = j, (1) with respect to 27" and (I, 8*) = ﬂ}f
u-a.e

Logarithmic gradientswere introduced in [2], where the case of globally integ-
rable B;" was considered. Gibbs distributions and invariant measures of diffusion
processes provide important examples which motivate the study of local logarith-
mic gradients. The logarithmic gradient may not exist even if u is differentiable
along all directionsin H (see examplesin[15], [9]). Thisisone of the reasonswhy
it is useful to consider “generalized logarithmic gradients’ of the form (B,,); ;,
where B, = gL, for a given sequence {e,} in H. This was aready done in [15,
Section 6] and was essential for the main result obtained there. We shall see below
that under broad assumptions, it is possible to enlarge the space X with ameasure
w differentiable along a dense linear subspace such that the logarithmic derivative
exists on the enlargement. Henceforth, however, we shall not necessarily assume
that we are additionally given such an embedded Hilbert space H.

3. Weak dliptic equationsfor measures

Let B = (B,) be asequence of Borel functions on X and let {e,} be a sequence
in X. Suppose we are given a certain class 2#" of Borel functions on X such that
the partial derivatives 9,y and e 0e; ¥ existforal v € # andi, j € Nandare
bounded.

Definition 3.1. We shall say that u € .# (X) satisfies the weak elliptic equation

with respect to the class 7" if, for every € ", onehas B, 9., ¢ € L(w) for all
n and

o]

Z/[a&nw + Bude, ¥ ]du =0, Yy ex. (3.2)

n:lX
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Inthiscase, wesay that L4 p = L iSheuristically given by

Ly = Z[afjw + Bjde, V). (3.3)

j=1
However, no assumptions about convergence of the seriesin (3.3) are made.

Remark 3.2. The above definition depends on the choice of {e,} in an essentia
way (e.g., # aready depends on {e,}). For simplicity, we nevertheless only use
the terminology “with respect to 7™ without mentioning {e, } explicitly.

Asin the symmetric case (i.e,, B, = B¢, and the latter exists) already noticed
in [5], [6], this definition enables one to consider equation (3.1) without global
integrability assumptions on B, made in our previous work [14], [15], [12]. Note
that also here the functions B,, may not correspond to any “drift” B on X.

Let {/,} beasequencein X* suchthat /,,(e,) = 1and [, (e,;,) = Ofor al n and
m # n. Given a Borel mapping B: X — X, weset B, = {l,, B). Then we can

o
consider theoperator Ly = ) [83 + B, 8e,,] and (3.1) becomesthe characteristic
n=1
equation for the invariant measures of the diffusion with the drift B /2 (and Wiener

process associated with {e,}) provided it exists. In order to make sense of Lp it
suffices to assume that B, € L1(x) and take for ¢ the class FE;° (X, {I,}), on
which L is defined by its natural expression.

However, thereisalot of examples (some of which are discussed below) where
L isnot defined on ¢ (hence (3.3) has no sense) and (3.1) initself realy only is
asymbolic expression for (3.2).

Let us observe that equation (3.1) is trivially satisfied if the g, 's exist with
respect to theclass ¢, 3,, ¥ € # foral ¢ € # andn € N,and B, = .. n-ae.
Indeed, then every termin the seriesin (3.2) vanishes separately. In particular, large
classes of Gibbs measures satisfy weak elliptic equations with respect to suitably
chosen classes of test functions (see[3], [4], [5], [6]).

4. Someapriori estimates

Our next goal isto establish someapriori estimatesfor the solutions of (3.1). Inthe
subsequent theorem we extend the Lyapunov functions technique to our situation.
Our reasoning uses amodification of standard arguments going back to Hasminskii
(see, e.g., [37]) and used also by many other authors studying stochastic differential
equations (see, e.g., [8], [14], [15], [16], [22], [26], [38], [39], [40], [41], [42], [43],
[52],[53]). Let B := (B,), A", and {e, } be as defined at the beginning of Section 3.

Theorem 4.1. Let p be a probability measure on X satisfying equation (3.1) with
respect to 7" Supposethat V isa nonnegative Borel function on X such that 882'1 v,
neNeisandgpoV € 4 for every ¢ € Cgo(Rl). Let ©® be a nonnegative
Borel function on X that is u-integrable on the sets {V < ¢}, ¢ € [0, o0) (eg.,
let ® = x o V, where x isa nonnegative locally bounded Borel function on RY).
Assume, in addition, that LgV < C — ©® wu-a.e.inthefollowing sense: there exist
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u-measurable functions A; such that onthe sets{V < ¢}, ¢ € [0, +00), the series
o0

An convergesin L1(u) and one has
n=1

862}1V(x) + By (x)9,, V(x) < Ay (x) and an(x) <C-0Ox) u-ae,
n=1

4.1)

where C > 0. Then

/ @du<C. (4.2)
X

Finally, the hypothesis that ® > 0 can be replaced by the following one: ® =
O1 + O, where®1 > 0and ®2 € Li(n).

Proof. Certainly, (4.2) followstrivialy by integrating the estimate LVp < C — ©
and making use of the equality [ LV du = 0. However, due to the above in-
terpretation of both relations, some justification is needed. By our hypothesis, we
have (3.2) with v = ¢ o V for every ¢ € C8°(IR<1). Then the same is true for
every ¢ € C*®(R%Y) such that ¢ = const outside some interval, since ¢ — const €
Cy° (RY) and (3.2) istrivially true for ¢ = const. Now let usfix an even function
e C®RY suchthat¢(r) =¢tif || <1,¢(0) =2ifr >3,0<¢/(r) <1land
¢"(t) <0ifr>0.Forj e Nset¢;(r) = je(e/j)ifr = 0and (1) = ¢;(—1)
if r <0.Clearly, 0 < ¢’(r) < 1and g“]’.’(t) < 0ifr > 0. In addition, ¢;(t) = t if
1[0, jland ¢;(t) = 3j if 1 > 3. Hence, (3.2) is satisfied for y = ¢; o V. We
observe that

05,8 0 V) + Bude, (¢ 0 V) = &5 0 V[IGV + Bade, V] + ¢ 0 V@, V)?
<o V[ZV + Bude, V] < (&) 0 V).

Integrating with respect to . and making use of (3.2) we arrive at the estimate

/(g;oV)@)dusC/;}onusC.
X X

Now the desired estimate follows by Fatou’slemma, since;j’.oV > 0and lim {J’.o

j—o00
V =1 u-a.e Thecasewhere® = ®1+ 07, where®1 > 0and ©2 isu-integrable,
is proved similarly. |

Remark 4.2. Suppose that the functions A,, in the above theorem can be written as
An = u, — wy, Whereu,, and w,, are nonnegative functions, integrable on the sets
o

{V < r}. Then the L(1)-convergence of the series > M onthesets{V < r}
n=1
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o0
follows from the integrability of the series )" u, onthesets {V < r}. Indeed, let

n=1
¢, be the function introduced in the proof of Theorem 4.1. Then, as we have seen,
92 (¢ 0 V) + Byde, (¢ 0 V) < (¢ 0 V)dy = (&) 0 VIup — (] 0 V)wy.

By the above estimate and (3.2) it follows that

> [ wnan =Y [@ovinndn <3 [ @ o v ua
n=ly

":%V§H n:lX

o0
<> Uy p(dx) < o0,
n=liy <3

since0<¢/ <1,¢oV=1on{V <r},and¢/ oV =00n{V > 3r}.

Remark 4.3. The assumption that the functionsin 27" and the functions V and ®
in Theorem 4.1 are Borel can be replaced (as is obvious from the proof) by the
assumption that those functions are u-measurable. We required the Borel measur-
ability just in order to make the initial setting independent of 1. The condition that
V and functions from %" have partial derivatives along e, everywhere serves the
samepurpose. It isobviousfrom the above proof that we only need those derivatives
wn-ae. Finally, one can assume that the functions V and © take valuesin [0, 400,
but are finite on alinear subspace of full -measure containing the sequence {e, }.
The same concerns al the results below. In typical applications, functions¢ € 7,
V, and © are defined on a proper linear subspace X1 of the initial space X with
n(X1) = 1 such that the hypotheses of Theorem 4.1 are fulfilled on this smaller
subspace (in particular, {e,} C X1 and the functionsin question are differentiable
along e,,). We shall use this simple observation bel ow.

In the symmetric casg, i.e., when B,, isthelogarithmic derivative of 1 along e,
with respect to 7", our hypotheses on V can be modified under assumptionswhich
are weaker in many cases.

Theorem 4.4. Let  be a probability measure on X and let B, be the logarithmic
derivative of u along e, with respect to »#" and let U and V be p-measurable
nonnegative functions such that (i) 8§n vV and 9., U exist u-a.e. and ., Ud,,V > 0

u-a.e, (i) for every ¢ € C*(RY), onehas p(U)d,,V € A, o(U)32V € L1 (w).
o

Finally, suppose that (4.1) holds, where the series " A, convergesin L(x) on
n=1

thesets {U < ¢}, ¢ > 0. Then one has (4.2).

Proof. Letp € C°(RY). Since p(U)d,,V € A", one has

e, |00,V | = 0OV + 05, UG W)0, V.
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where both terms on the right are u-integrable, since their sum is bounded and
862,, Vo(U) € LY(n). If g issuch that ¢(U) > 0and ¢/(U) < 0, we obtain

/[az V + Byde, V](p(U)du . / 0/ (U)d, Vo, U dp > 0.

Hence//\,,go(U) du > 0, consequently

C/wWMuz/WW®W~

Taking ¢, € CP(RY) suchthat 0 < ¢, < 1, ¢, < 00n [0, +00), g, = 1on
[—n, n], we arrive at (4.2) by Fatou's theorem. ]

Example 4.5. Let u be a probability measure on X satisfying equation (3.1) with
respect to #". Supposethat V isa nonnegative Borel function on X such that a,, V,
92V existforalln € Nandg o V € . for every ¢ € C(RY). Assume, in
addition, that LgV < C — kV% u-a.e. inthe same sense asin the above theorem
for somea > 0, k > 0. Then

/V“ dp < % (4.3)
X

L et us consider an example which extends aresult from [5], [6], where the spe-
cia symmetric case was considered and more restrictive assumptions on B; were
used. Relations of thisexampleto the resultsin [38], [39], [15] will be commented
below.

If J = (Js.t)s, res isaninfinite symmetric matrix with nonnegative entries J; ,
indexed by a countable set S and g = (g5), s € S, are positive numbers such that
> gs < oo, then we write Jg < Cq with C € [0, o) if Y gsJ;.r < Cq, for
ses seS
every t € S. We denote by /1(¢) the weighted /1-space of all familiesx = (x)ses

such that
Xl = Y gslxgl < oo.

seS
We observe that the condition Jg < Cq is sdtisfied if J; s = b; sct 5, Where

biuqu < Cigrand Y ¢, < Copfordlt,u € S. Inparticular, the latter condition
uesS

isfulfilledif S = Z4 and Jn,j = a(n— j),wherea isan even nonnegative function
suchthat a(n) < const.q,% andg;q,—; <const.q, foraln, j e 74 For example,
the latter holdsif g, ~ |n|™", r > d, and a(n) < const.|n|~%".

We shall assume throughout that J induces a bounded operator on I1(g), i.e.,

onehas Y q/Jislxs] <A qilx| foralx e 1*(¢) and some A > 0. The min-
s,teS teS
imal possible 1 is the operator norm ||/ | »(1(4),- Clearly, the condition Jg < Cq

implies ||/l ¢ 14y = C-
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As an example of suitable J and ¢ let us take the integer lattice S = Z4 in R?
andforn € Z4 set g, = (In| +1)~", wherer > d, sothat _ ¢, < oo. Let the

nes

following condition employed in [6] be satisfied:

Ilp=sup Y @A+[jh*JZ2,,, <oo, VpeN (4.4)
neZd jEZd

ZJn,ij <Ci(jn/2l+1)"" + Z In,j4j
JES lil<Inl/2

< Ci(ln/2l+1)" + Ca(In/2| + 1)
=< C3Qn,

since Jy j < IJI,(X+n—jD™".
Example4.6. Let X = RS and let X be the weighted Banach space of sequences

such that
1/a
xlo = (P aslel”) " < oo,

seS

wherea > 2and g = (gs)ses € 11. Suppose that for J = (J; ;)5 res as above

I lgqigy <2 Y Jor <A

teS

Assumethat B = (By);es iSacollection of Borel functions on Xg with

X By(x) <c— A+ o)+ Y Joilx|® (4.5)

teS

for some positive ¢, e. Suppose that 1 is a probability measure on RS such that
w(Xo) = 1andthat the B;’sare u-integrable on all ballsin Xg. If (3.1) issatisfied
with respect to CS(XO), wheree;, s € S, are the standard unit vectors so that the
s-th coordinate of ¢, is 1 and all other coordinates are zero, then one has

1
/Ixsl" ap=2 vses, (4.6)
X

1
/ xig i) = =3 @)

seS
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Proof. We observethat > J; ,|x|* < oo if x € Xo, Since 11l ¢qr(gyy < o0. We
teS

shall apply Theorem 4.1 to the function V(x) = ) qsxsz, which is possible by

seS
our hypothesis that @« > 2. It should be noted that in order to apply the theorem
cited, we can either refer to Remark 4.3 or simply restrict everything to the space
Xo (equipped with the topology from RS in order to make | - |o-balls compact).
We have
de, V (x) = 2gx, 2V (x) = 2.
Let
A () = 2, +2q5 (€ = G+ Ol [+ Y Sl

teS

By our hypothesis, afsv + B0e, V < . For every x € Xo, because (|x|%) _ €

11(g), we have that
Z CI.SJs,t|xt|a <A Z%|xs|a'

s,teS seS

Z)\s(x) = Z(C“l‘l)Z‘]s - ZSZQSMSW-

seS seS seS

By Theorem 4.1, we obtain the estimate

/Z%|xs|a u(dx) < % qu-

x SE€S ses

seS

Therefore,

In particular, letting
&s =/|xs|aﬂ(dx), seS
X

wehave = (&) € 11(q). Letusfix s € S, 8 > 0and consider the function
Vs(x) :xsz—i-SZq[xtz, x € Xo.
t#£s
Then
2 o o)
02 Vs + By, Vs = 205 (1 ¢ — e+ ol + Y Jualul®) = s,

teS
andforallt e S\ {s}

92 Vs + Byd, Vs < 28, (1 te—O+olnl*+ ) Jf,u|xu|“) =

ues

By Theorem 4.1, we arrive at the estimate

G40 S1H8Y gt Y S +8 Y aic— Gt e+ Juk)-

t#£s teS t#£s ues
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Letting 5 — O we have

1+c¢
J ’
_)»+8 )\.+SZ st%—t

teS

& =

Denoting the element (k. k, . ..) € I1(q) by k, the above estimate means that
E<@+ot+e)t+0+e) e
Therefore, for every m € N, one has

m—1

1+e Z(pﬁs) KIFD) 4+ o+ e)mame.

é_)»-i-

Notingthat || /|1, < »andthat (A +¢) ¥ J¥(1) < A*(A4e)~F,since Y Js, < 2,
teS

1+
we arrive at the estimate £ < —ZA"(A—H?) k=@ +c)/e. O
A+e =0

o0 m
Remark 4.7. By considering the functions V,,,(x) = (Z qsxsz) in the previous

example, one obtains by induction that

/ (i g3?)" pdx) <oo,  VmeN. (4.9
s=1

A typical situation to which Example 4.6 applies is the case of a Gibbs mea-
sure w on RS with the conditional distributions (- |x¢) given by continuously
differentiable densities p(x,|x{) such that

By = Sl e,
p(xs|x§)
provided that the functions B, satisfy (4.5) and are locally bounded on Xg and
w(Xo) = 1. Indeed, in this case . satisfies (3.1) with respect to CS(XO). We refer
to[5], [6] for specific examples.

Assumethat {/,,} isasequence of continuouslinear functionalson X separating

the pointsin X and that {e,} C X issuchthat /;(e;) = &;; forall i, j.

Example 4.8. Suppose that {g,,} € [* is asequence of positive numbers such that

o0

Xo = {x: X2 = 3 gula(x)? < oo} is a separable Hilbert space continuously
n=1

embedded into X. Let u be aprobability measure on X such that (3.1) is satisfied

with respect to CS(X o) and let B, be u-measurable functionsthat are u-integrable
on ballsin Xg. Assume that

> qula(¥)By(x) < C = o(Ix|o) (4.9)

n=1
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in the same sense asin Theorem 4.1, i.e., there exist functions ¢, which are u-in-

o

tegrable on balls in Xg such that the series Y ¢, convergesin LY(w) on ballsin
n=1

Xo and one has

o
Guln (X) By (x) < &y (x) and Y ¢,(x) < C —ollxlo) p-ae, (4.10)
n=1
where o isanonnegative locally bounded function on Ri with
o
lz@lgj ot) > C+ ;qn + ¢
for somee > 0. Then

K(pv Qv Cs g, Zzo:l QH)
& — pSUp, gn

/leé’u(dx) < (4.11)
X

foral p € [0, e/ sup, ¢,). In particular, if, in addition, ;”Tog(t) = 400, then

/ lx|g m(dx) < oo, VmeN. (4.12)
X
o0
Proof. Let V,(x) = [x[3",m > 1,and Q = }_ g,. Then
n=1

2

Bezn Vin + Bnoe, Vin = 2mqy Vip—1 + 4m(m — 1)q,, lfVm_z + 2mgq, Byl Vin—1

< Ay = 2m@y Vip—1 + dm(m — 1)g212Viy_2 + 2mLy V1.

o
The series Y A, convergesin L1(u) on every ball in X and
n=1

oo
D"k < 21 Q Vi1 + 4m(m — 1) SUPG, Vin -1 + 2 Vi1 (C — 0(1x10) )
n=1 "

= 2mV,-1(Q + @n — 2 Upg, + C — o(1xl0) ).

o
Letustakem := 1+ p/2. Thereexists R > Osuchthat o(r) > C + 3. g, + ¢ for
n=1
alt > R. Thenfor ¢’ := ¢ — p sup, g, one has

0+ (2m —2)supg, + C —o(lxlo) = O + psupg, + C — o(lx[o) < —¢’
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if |x]o > R. Therefore,

o

> hn < 2mR¥"2(Q+2(m —1) SUP Gy +C) = 2me Vi1 = 2mM —2me'V,y 1,

n=1 n

where M = M(m, Q, C, sUpg,, R) > 0. Hence/ Vin—1du < M/€'. It remains
n

tonotethat 2m — 2 = p. ]

In a standard way, one also gets exponential moment estimates in the situation
of Example 4.8 when making an appropriate choice of aLyapunov function:

Example 4.9. Consider thesituation of Example4.8and assumethatt Iier o(t) =
—> 100

+o00. Let V(x) = u(x|3), whereu € C2(R?) is an increasing function such that

for someé > 0 onehas

supga)r?u” (1?) < (1 — 8)u' (1Yo ().

Then

/ W' (Ix[§e(lxlo) du < oo.
For example, in order to obtain the integrability of exp(|x|’5’), it suffices to take
u(t) = exp(r™/2) and to require the estimate o(r) > K™ with K sufficiently
large. If one needs the integrability of exp(exp(|x|8)), then a suitable function is

u(t) = exp(expt) and a sufficient estimate is o(r) > Kt2exp(r?) with K large
enough.

Proof. We have d,,V = 2g,l,u'(1x[3), 82 V = 2g,u’(Ix[3) + 4g2(1)%u" (1x13),
and
2V 4 Bu(x)de, V(x) = (24 + 2qln (x) By ()’ (1x15) + 4g71n (x)?u” (|x1§)
< (240 + 2, (0))u’ (1x[5) + 421, (x)%u” (|x[3).
where ¢, isasin (4.10). By our hypothesis,

[e¢]

((20 + 260000 (1x13) + 40212 (121 )

n=

< (20 +2C — 20(1x10))u(1x[3) + 4sup a1 ) 1x13
= (20 +2¢ - 250(Ix10) )u'(13) = € = so(ixlon'(1x13),

for some C > 0, where we used that Jim o(1) = +oo and that x > o(lx]o)
—+00

u’(|x]3) is bounded on ballsin Xo. O
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Example 4.10. Supposethatin Example4.8onehaso(r) = kr?withk > 2A SUPg,,.
Then
2
/@(p(klxlo) u(dx) < oo.

In particular, thisis the case in Example 4.6, provided o > 2.

Remark 4.11. We recall that in the above results the functions B,, need not be
globally u-integrable. However, if B, in Example 4.6 or Example 4.8 satisfies the
estimate |B,(x)| < C, + Kn|x|g”, the integrability of all powersof | - |p yields
that B, isin all L? (). Therefore, in the situation of Example 4.6, the mapping
B = (B,) n-ae. takesvaluesin the weighted Hilbert space

Y—{XGRS chx <oo} wherec, > 0and " ¢, | B, 1|2 < 00.

2
nes L2

nes
In a similar manner, one can construct a suitable Hilbert space Y in Example 4.8
such that Xg iscontained in Y and the functions B,, coincide v-a.e. with the coor-
dinates of amapping B: Xg — Y.

The above results extend to the case of a non-constant diffusion term. Let us
give the precise formulations.

Let A;;, Bj: X — R1, i, j e N, be Borel functions. We shall now define
solutions to the elliptic equation

LY pu =0, (4.13)

where L 4 p isheuristically givenby L, gy = Zl = —14ij0e;0c; ¥ + Z Bpoe, V.

We say that a Radon measure u satisfies equation (4.13) with respect to the class
" and the sequence {e¢,} C X if

oo

Z/(Z Aijde, 0,0 + B.,aejw) du=0, Yy e, (4.14)

j=1y =1

where, for every j, the series Z Ajjde; 0,y converges p-ae. and the existence

of the above integralsis assumed in advance. We think, of course, of cases where
the matrix (A;;) is positive definite. However, this is only used in the following
section. Let us give an analogue of Theorem 4.1 in this more general setting; the
proof is the same as above, and we do not repest it.

Theorem 4.12. Let u be a probability measure on X satisfying equation (4.13)
with respect to #". Suppose that V is a nonnegative Borel function on X such
that d,,V, 9,0, V., n, j € N,eistand g o V € A" for every ¢ € C3°(RY). As-

o0
sume that, for every ¢ € [0, 00), the series ) A;;d,, V I;v <} converges u-a.e. to
i=1
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o o0
a function from L () for every j and the series 3~ 3° Aijd,; V Iy <c converges
j=li=1
in L1(1) to a nonnegative function. Let ® be a nonnegative Borel function on X
that is u-integrable on the sets {V < ¢}, ¢ € [0, >0) (eg., let ® = x o V, where
x is a nonnegative locally bounded Borel function on RY). Finally, assume that
L4V < C—0 pu-ae inthefollowing sense: thereexist -measurable functions

o
An suchthat theseries Y A, convergesin LY(w) onthesets{V < ¢}, ¢ € [0, 00),

n=1
and one has

> Aj(X)3e,8e; V (x) + By(x)de, V(x) < dp(x) and
j=1

D () C-0@) p-ae,
n=1

where C € [0, o0). Then
/@dﬂ <C.
X

Remark 4.13. As a consequence of Theorem 4.12 it is clear that Examples 4.5 to
4.10 above have their obvious generalizations to the case of non-constant diffusion
coefficients.

Hereise.g. an analogue of Example 4.8.

Example4.14. Let{q,}and Xo bethesameasin Example4.8. Let i beaprobabil-
ity measure on Xo and let B,,, A;; be p-measurable functionsthat are w-integrable
on ballsin Xg. Suppose that

o0 o0
sup Y A%()gig; < oo and SUp) gulAm(x)| <oco.  (415)

=1 Y on=1

Assume furthermore that v satisfies (4.13) with respect to C%(Xo) including all
o0
the integrability assumptions. Supposethat > ¢,/, (x) B, (x) < C — o(|x|o) inthe

n=1
same sense as in Example 4.8, where o isanonnegative function on [0, +o00) such
that tlim o(t) = +o0. Then
— 00

/ lx|g m(dx) < oo, VmeN. (4.16)
X

Clearly, (4.15) isfulfilled if sup, ; ; 1Aij(x)] < oo.
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Notethat thefirst conditionin (4.15) isused in the proof to obtain the following
estimate:

ST (qulz)” S (3 A3a) o

ij=1 j=1i=1
o
= (Z UCIIQJ) qul < const. qulz
i,j=1

5. Existenceresults

We now turn to the existence results. The next two theorems are proved by the
same method as in [15, Theorem 5.2]. However, global integrability assumptions
on the coefficients of the drift are replaced by local ones. In order to make this
paper self-contained we give complete proofs.

In this section, {/,,} is a sequence of continuous linear functionals separating
the pointsin X and {e,} C X issuch that ,(ex) = 8,x. We shall start with the
existence results for equation (4.13) in the specia case where A;; = 0if i # j
and A,, = A,, i.e, we are concerned with the operator L4 p heuristically given

o0
by La,g = Y. (And2 + Byde,). Wenote, however, that in the theorems below we

n=1
deal with classes of cylindrical functions, on which L 4 5 makes sense as afinite
sum.
Werecall that afunction G: X — [0, +o00] on atopological space X iscalled
compact if the sets {G < ¢}, ¢ € R, are compact.

Theorem 5.1. Suppose that ®: X — [0, +o0] is compact and is finite on the
finite dimensional spaces E,, spanned by eq, ... ,¢,. Let A, > 0and B, be func-
tions on X which are continuous on the sets {® < ¢}, ¢ € R}, aswell as on the
subspaces E ;. Assume that there exists C e (0, +o0) and a nonnegative function
V on X such that, for every n, the restriction of V to E, is compact and twice
continuously differentiable and one has

Z[Aj(x)aij(x) + 0., V®)B;(x)] <C—0O(), x€E,. (5.1)
j=1

Finally, let us assume that
Ap(x) + |Bp(x)] < Cp + 8,(0(x))O(x), x €{O < +o0}, (5.2

wheres,, isanonnegativebounded Borel functionon [0, 4+-o0) with IiT S,(r)=0
r—>1+00

and C, € (0, +00). Then there exists a probability measure ;« on X such that
LZ,BM = 0 with respect to the class # % ° (X, {1,,}). In addition,

/@(x) u(dx) < C. (5.3

X
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Proof. Let E,, be equipped with theinner product making e1, . .. , ¢, an orthonor-
mal basis. Then thesets{x € E,: ©(x) <c}aecompactin E,. Hence © (x) —
+oo and V(x) — 400 as |x|g, — +oo. According to [16, Corollary 1.3], there
existsaprobability measure i, on E,, suchthat L 11, = Owithrespectto C3°(E,),
where

Loy (x) = ) [Aj@Z Y () + 0, ¥ ()B; ()], ¥ € CF(E).

j=1

Clearly, we also have L}, = 0 with respect to the class Cg(En). The functions
A jaezj V and B; de,; V are bounded on the compact sets {® < ¢} N E,,. According
to (5.1) thefunction ® isbounded on ballsin E,,. Sincegp o V € Cg(En) for every
@ € CZ(RY), it follows from (5.1) and Theorem 4.12 that

/ O(x) tn(dx) < C. (5.4)

E,

Let K, = sup, 8,(r). By (5.2) weobtain

/[Aj(x) + |Bj(x)|] un(dx) < Cj + CKj, Vn,jeN. (5.5)
E,

In particular, we conclude that L;u, = 0 with respect to C;°(E,) = F%°
(E,, {lj};%zl). We shall consider u,, asameasure on X (i.e., we extend u, to X
setting u, (X\E,) = 0). Since the sets {® < ¢} are compact, the sequence {u,,}
is uniformly tight. This yields (since compact sets in X are metrizable because
the sequence {/,,} is separating) that there is a subsequence 1, which converges
weakly to some Radon probability measure i on X. We may assume that thewhole
sequence {u,, } converges weakly to w. It isreadily seen that the measure u is con-
centrated on the union of the compact sets {® < m}, m € N. We observe that we
have not used so far that §, in (5.2) tends to zero at infinity. Note that, for every
function ¥ of the form v (x) = Yo(l1(x), ... , ln(x)), Yo € Ci°(R™), and every
n > m, we have

/ Lapy di = f >[4 @02 W) + 8w @) By 0] )
x /=1

X

= [ 2[5 w) + 0900850 stan) =
x /=1

Let us show that (5.3) holdsand Ly g = Owithrespectto 7 6;°(X, {I,}). Clear-
ly, it sufficesto show that, for every v € #%,°(X, {I,}) and every fixed j, one has
A;j, Bj € LY(w) and

Jim [ 4,600 @0 = [ 4,000 u.

E, X
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nlL@O/B./(X)W(X)Mn(dX) :fBj(X)W(X)M(dX)~

E, X

We verify the second equality, with the first one can proceed completely analo-
goudly. Let R > Oand Qg = {® < R}. Define

gj(R) =R sup 18;(r). (5.6)
te[0,R]

Then ¢; is anonnegative function on [0, 4+-o0) such that

lim ¢;(R)=0 and sup §;(1)t <e&;(R)R.
R—+o00 r€[0,R]

Hencesupg,, |B;| < C; + ¢;(R)R. By (5.4) we have
1n(X\Qg) < CR™L
By the weak convergence and compactness of Q2 we have
w(X\Qg) < liminf u, (X\QRr), VR >0,
n—od
and since © islower semicontinuous
/@(x)u(dx) < Iiminf/@(x) pn(dx) < C, w(X\Qr) < CR™L
n—oo
X X

By (5.2) weobtainthat A;, B; € L(u). Since B ; is continuous on the compact
set Qp, there is a continuous function Gg on X such that Gg = B; on Qg and
IGr| < Cj + ¢;(R)R. By theweak convergence we have

nlLrT;O/GR(XW(X)Mn(dX) =/GR(X)¢(X)M(dX)~

E, X

By the above estimates and the equality G = B; on Qg we obtain

/ |GR(X)Y(x) — Bj(x)¥ (x)| n(dx)

Ell
<[Cj+¢&;(RR]SUp || wn (X \Qr)

rapl [ [c;+8(00)0w] @
X\Qr
< C[C,-R*1 +ej(R)+CjR 4+ sup(Sj(t)] Sup [
>R

The right-hand side of this estimate goes to zero as R — +oo. The sameis true
for w in place of w,,, which completes the proof. ]
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We shall also employ the following modification of Theorem 5.1 proved by a
similar method.

Theorem 5.2. Suppose that in the situation of Theorem 5.1 condition (5.2) is
replaced by the following conditions:

Ay () + |Ba(X)| < Cp + KnV ()% (1+ 5 (@(x))@(x)), x € {0 < +oo),
(5.7)

3 A8, VEOR < C+80W)0mV).,  x ek, (5.8)
j=1

where C,,, K,,,d, > 0, §, and § are nonnegative bounded Borel functions with

”T 8u(r) = ”T 8(r) = 0. Assume, in addition, that V is bounded on the sets
r—+00 r—+00

{® < ¢}, ¢ € [0, +00). Then there exists a probability measure i on X such that
An, By € LYu), L% zu = 0 with respect to the class #7%;°(X, {1,}), and (5.3)
holds. Moreover, if V is continuous on the set {® < oo} (or, more generally, the
functions V" ® are lower semicontinuous), then

/ V™"[14 0]ldu < oo, Vm € N. (5.9)
X

Proof. The same reasoning as in Theorem 5.1 applies except for the justification
of the equality L} pn = 0, which is deduced from the estimates

Sup/ V) "O ) un(dx) = My, < 00, m € N, (5.10)

E,

In order to prove these estimates, we consider the functions V,, := V™, find that
n
Ly Vi :Z[m(m—l)Aj V’”*2|86jV|2+mV’"*1Aj(x)8€2j V4+mV"™1B;d,, V]
j=1
<mV" L, V+Cmm—1)4+mm—1) 0 ®)OV"L < C, — V" 10

with some constants C,,, and apply Theorem 4.12. Therest of the proof isthesameas

above. Namely, we may assumethat V > 1 (otherwisewereplace V by V +1). Let

5i(s) = sup 8;(s/0)r~ Y25 > 1.Then3;(s) < max(s—1/4 SUps; (1), Sup sj(z))
1<t<s t 7>./5

— 0ass — 4oo. Inaddition, §;(©) < §;(V¥i@)V% if ® > 1. Hence there

exist constants C'; such that

Aj+|Bj| < Cj+ KV + K;5;(v¥iev*ie. (5.11)

Let €; be defined analogously to ¢; in (5.6) with Ej inplaceof §;. Let R € N
be fixed. The sets {V24® < R} are contained in the sets {©® < R}, hence have
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compact cIosuresQR Thefunctions A ; and B; arecontinuousontheset {® < R},
hence also on Q. Therefore, by our ch0|ce of ¢, we obtain supg [A + |B; |]
C”+ K €;(R)R. Together with (5.10) thisyieldsthat A; and B; are u-integrable.
Indeed for afixed j, wetake abounded conti nuousfunctlon Gr Wh|ch agreeswith
Bjon Qg and ismajorized by C;/ + K ;€;(R)R outside Qg. By (5.10) and Cheby-
shev's inequality, Ru, (X\S2r) < Maq, for al n. Hence Ru(X\Qr) < Maq,.
By (5.11), for some constants N; and K, we have

Aj+|Bjl < N;+ K;v¥ie.

Therefore,

/ Grdin = Nj + K Mag, +[C) + K& (R)RIa (X\&r) < N,

where N; " isindependent of » and R. Hence, by the weak convergence of i, to w,
the mtegral of Gg with respect to u is estimated by N’ Letting R — o0, we
obtain the integrability of B; with respect to . The same istruefor A;. Finally,
the equality L} zu =0 |SJust|f|ed as in the previous theorem. If thefunctlons
V"© are lower semicontinuous on the space {® < oo} (say, V is continuous on
this space), then (5.9) follows from (5.10) by the weak convergence of ., to 1 and
the boundedness of V ontheset {(® < 1}. O

Theorem 5.3. Let X, {g,}, and X be the same asin Example 4.8. Assume, in ad-
dition, that the embedding Xo C X iscompact. Let B, : Xo — R be continuous
on all ballsin X with respect to the topology of X and satisfy the estimates

|Ba(0)| < Cu + Kulxlg', V€ Xo. (5.12)
Assume that
o0
Y Guln () By (x) < C = 0(Ix]0) (5.13)
n=1

onthelinear span of thee,’s, where ¢ is a nonnegative bounded Borel function on
[0, 4+00) such that [Iim o(t) = 4o0. Then there exists a probability measure . on
—00

Xo satisfying equation (3.1) with respect to .7 4;° (X, {I,}) such that

/Q(leo)u(dx) = C+an, /IXI [1+o(x]0)] u(dx) < o0, VmeN.
X n=1

Proof. Let V(x) = 2 gnln(x)? = |x|3. We have

n

>[92 V@) + Bj(0)d, V] <23 q; +2C — 20(xlo).  x € Ey.
j=1 j=1
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Let®(x) = 20(|x]o). Thefunctions B,, and V are bounded and continuouson com-
o

pact sets {© < ¢}, which are balls in Xo. In addition, A, = 1and " [9,,V|? <
i=1

]=
4(supg;)V. Now we can use Theorem 5.2 with 8(r) = (Jt| +1)~tands, =0. O
J

Remark 5.4. Let k, = [|Bnll 1, L€t A be the collection of continuous linear
functionals/ on X suchthat Y 2 ; «,1l(en)| < oo. Thenit followsthat 1 satisfies
(3.1) also with respect to #%;°(Xo, A). In particular, u satisfies (3.1) also with
respect to 7 %;°(X) if X* C A. Thisisthe case, e.g., if sup,[C, + K, + dy]
oo. Then u satisfies (3.1) even with respect to 7 %,°(Xo). Indeed, sup, k, <
oo and Y00, [I(en)|?/qn < oo for every I € X§. Hence Y02 1 kyll(en)] <

1/2 1/2 . . .
(Z;:":lx,?q,,) (Zfﬁzl Il(en)lz/qn) < oo. Itisworth noting that if X = RS,

where S is a countable set, then X* is the space of al finite sequences, hence
FC0(X) = FC;° (X, {ln}), wherel, arethe natural coordinate functions.

A

Corollary 5.5. Assume that in Theorem 5.3 one has o(t) = k2 and that k >
2\ supg,. Then
n

/e><p(,\|x|5) du < oo. (5.14)
X

Moreover, for existence of u it suffices to replace the power estimates on B, by
|B1(x)| < Cy+ Ky exp(dy|x]o)- 1f o(t) = kt>+3, wherek, § > 0, thenit isenough
to have the estimates | B, (x)| < Cy, + K, exp(dy |x[3).

Remark 5.6. Theglobal polynomial bound onthe B,,’scan bedropped if thereexist
acontinuously embedded Hilbert space X such that Xo C X and the embedding
is compact and amapping B: X3 — X1 which is continuous (with respect to the
norm of X1) and bounded on ballsin the Hilbert space X, such that B, = (l,,, B).
In this case, there exists a probability measure i on Xg such that equation (3.1) is
satisfied with respect tothe cIassCS(X 1). The proof isthe same asabovetaking into
account that, for any ¢ € CS(X 1), thefunction )77 ; aezn ¢ is bounded continuous

on X1, since |32 | < const |e,|3 = const 2.

We observe that the result in Theorem 5.3 could be equivalently reformulated
in terms of asingle Hilbert space Z = X asfollows.

Theorem 5.7. Let Z be a separable Hilbert space with an orthonormal basis {7,,}
andlet B,: Z — R be continuous on ballswith respect to the weak topology. Let
P,, be the orthogonal projection onto the linear span E, of n1, ... , n,. SUuppose
that there exist constants C, C,,, K,,, d,, and a locally bounded nonnegative Borel
function ¢ on [0, +00) such that . ”T o(R) =+ocandforalln e N

—> 400

Sup (Bl(an)nl + .. 4 By (Pux)ng, an> <C—-o0(R), (515)
|Pux|, >R z
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|Bp(x)| < Cp + Kaulx|%. (5.16)

o
Ifz, > 0and " 2 < oo, then there exists a probability measure u on Z such that
n=1

Z/ (1702 f + Buidy, fldiu =0, YV feFEC(Z, {m). (5.17)

n= 1Z
1302, 1IBy ||L2( ) < oo, then (5.17) istruefor all f € 7%,°(Z).

Proof. This theorem follows from Theorem 5.3 by considering the natural em-
bedding of Z into Z W|th the weak topology and setting ¢, = tn, ey = tyny,
In(x) =1, (x nn)Z’Bn—t 1B Thenl,(ex) = 8, and

Y ailix)Bi(x) =Y (x,n),Bi(x).  Vx € E,.
i=1 i=1

In addition, 92 f + B, = 1202 f + By,d,,, S0 that we are in the situation of

Theorem 5.3. O

Thisresult isan extension of [ 15, Remark 5.4], whereit was assumed that B, =

(B, n,), for someBorel mapping B on Z, andtheestimate lim  sup (B(x), x)
R—+00 |x|>R

= —oo wasrequired instead of (5.15). However, that estimate was used in theform
of (5.15) and the existence of B was never used. Moreover, the reasoning in [15]
was exactly the same asthe one above. We have not been ableto prove the statement
of [15, Theorem 5.2] for B merely continuous.

Let us apply our existence result to the situation in Example 4.6.

Theorem 5.8. Let X = RS, let S be a countable set, and let X be the weighted
Banach space of sequences such that

1/
o = (3 ashul®) ™

ses

wherea > 2. Qupposethat J and ¢ satisfy the same conditions asin Example 4.6.
Let B = (By);es be a collection of continuous functionson (X, | - |o) satisfying
(4.5) and (5.12). Then there exists a probability measure © on Xg such that (3.1)
is satisfied with respect to .7 6,°(X).

Proof. We may assumethat S = N. Asin the proof of Theorem 5.3, wefind prob-
ability measures s, on the n-dimensional linear subspacesR” ¢ RN satisfying the
eliptic equations L} i, = 0, where

Ly (xa, ..., xp)

=AY (1, )+ D Bi(xa . x. 0,0, )0, Y (X1 LX),
i=1
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It follows from Example 4.6 that

Sup |XJ|p,l,L,l(dx) < 00, VpeNl

n,j

We can find g, > Osuchthat > 2, g, < oo and lim g,/g, = 0. Therefore, by
n—>oo

o
considering the function ¥ := > g,|x,|% and using that supf W du, < oo, we
n=1 n

see that the sequence {u,} is uni_formly tight on Xg. Let ustake for /,, the natural
coordinate functions on RS. Now the same reasoning as in Theorem 5.3 completes
the proof. |

Itis clear from the above proofsthat by [16] our results extend to the case of a
non-constant diffusion term. Let us give the exact formulation.

Theorem 5.4. Let X, {¢,} and X bethe same asin Theorem5.3. Let B, and A;;
be functionson X which are continuous on ballsin X g with respect to the topology
of X and satisfy the estimates

|B,(x)| < C,, + K,,|x|g", Vx € Xg, Vn e N, sup |Apj(x)] < oo.
x,n,j
Assume that (A;; £, )i, j<n iS nonnegative definite for all n € N, where E,, isthe
linear span of ey, ... , e,. Uppose, furthermore, that

[e¢)
> Guln(x)Bu(x) < € — o(Ix|0)
n=1
on the linear span of the ¢,’s, where o is a nonnegative function on [0, +o0) such
that tlim o(t) = +o0. Then there exists a probability measure u on X satisfying
— 00

equation (4.13) with respect to 7 6,°(Xo, {lx})-

The proof isthe same asin Theorem 5.3 taking into account Example 4.14.
6. The symmetric case

In this section, we discuss the so-called symmetric (Gibbsian) case, i.e, the sit-
uation where the functions B, are logarithmic derivatives of the measure . that
satisfies (3.1), so that every term in (3.2) vanishes separately. If 7" = 7 4°(X)
and B, € L?(u), then thisis equivalent to the symmetry of L on FEC;°(X) (see
[15] and Proposition 8.6 below).

Let (E, &) and (Y, ) be two measurable spaces and let u be a measure on
A =: &R F suchthat theprojectionof |u|to Y isv. Werecall that measures > on
thesets E x {y}, y € Y, equipped with thetrace o -fields generated by %4, arecalled
regular conditional measuresif thesets E x {y} belongto £ ® # (i.e., # containsall
singlepoint setsinY), for every B € £ ® # thefunction u”(B) = u”(BNE x{y})
is v-measurable and

w(B) = / 1 (B) v(dy).

Y
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It iswell known that regular conditional measures exist under very broad assump-
tions(e.g., if E and Y are Souslin spaces with their Borel o -fields).

Therelation of Gibbs measuresto elliptic equationsis seen from the following
simple example. Suppose that 1 is a probability measure on R? with a smooth
positive density f. It iseasily seen that the projections of 1 on thefirst and second
coordinate axis have densities f1(x) = [ f(x,y)dy and fa(y) = [ f(x,y)dx,
respectively. Hencethe conditional measures u* onthelines{x} x R! havedensities
() = f(x,y)/f1(x) and similarly for the conditional measures ¥ on thelines
R x {y}. Suppose wewant to reconstruct . from . and 1. Of course, in our triv-
ia example one can find f1 knowing f* and £, but we shall discuss an approach
which works aso in infinite dimensions. Namely, we can find the partial logarith-
mic derivatives B1(x, y) = 0y f¥(x)/f¥(x) and B2(x, y) = 9y f* (y)/f* (). From
the above expressions we find that (81, 82) = V f/f. Therefore, we have to find a
probability measure . with the givenlogarithmic gradient 8. One can show that this
is equivalent to finding a probability measure p such that it satisfies the equation
L7 pH = 0 (the equation is verified through integration by parts) and, in addition,
Ly,g withdomain C3° issymmetric on L?(w). Thus, theinitial problemisreplaced
by the following two problems: solving an elliptic equation and distinguishing its
symmetric solutions. The situation is similar in infinite dimensions. This is why
the method of Lyapunov functions comes naturally into play. In some examples
Lyapunov functions can be used directly without involving the elliptic equation,
but the equation ishel pful in order to find appropriate Lyapunov functions. We shall
see thisin the examples below.

We shall first discuss relations between the integration by parts formula and
existence of differentiable conditional measures. The next lemma s a straightfor-
ward modification of aresult in [50], where it was proved for globally integrable
logarithmic derivatives. Later special cases of that result were derived in the con-
text of “the integration by parts characterization of Gibbs measures’ (cf. [46]). For
the reader’s convenience and due to some additional technicalities we include a
complete proof.

Lemma6.l. Let X = R"” x Y, where (Y, %) is a measurable space, let 1 be a
signed measure of finite total variation on 4 = Z4(R") ® % with regular condi-
tional measures u” on R” x {y}, and let v be the projection of || to Y. Suppose
that 27" is a class of bounded %-measurable functions that satisfies the following
conditions:
(i) forevery v € # and y € Y, the function x — v (x, y) is continuously
differentiable and V, v is bounded;
(i) (x,y) > ¥v(x+v,y) € Xandy oy € A whenever v € A4, v € R",
g € CPMRY), p(0) =0,and Y192 € A" if Yy and ¥ arein #;
(iii) theclass " separates the measureson 4.
Let 8: X — R" bea u-measurable mapping such that, for every v € # and
v e R", onehas v |8| € L1(w) and

/(Vx’ﬁ, v)dp = —fw, v)dp. (6.1)
X X
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Then, for v-a.e. y, u” admitsa density /¥ on thefibre R” x {y} such that

freWpi®Y and B(x,y) = Ve 0)/f(x) w-ae (62

Proof. We can find a sequence of measurable sets A; € X suchthat (J72; A; has
full measure and there exist functions ¢; € " with ¢; > 0 on A;. Indeed, let
Ho={y e A:0=<y <1}. By [30, Theorem 1V.11.6], there is a sequence
@ € A osuchthat, forevery ¢ € # o, onehasy < sup; ¢; n-ae Thentheunion
of thesets Aj = {¢; > 0} hasfull measure. Indeed, if sup; ¢; = 0 on apositive
measure set A, then for every ¢ € %o, onehasg = 0 p-ae. on A, hencethe same
istruefor every ¢ € ¢, which easily follows by taking compositions with smooth
compactly supported functions vanishing at the origin. Thus, the measure |4 and
the zero measure are not separated by 2#°, which is a contradiction. Moreover, we
may assumethat ¢ ; = 1 on A;. To this end, one can replace every function ¢; be
the sequence of functions 6 o ¢;, where 6, Cgo(Rl), 0<6r <1,0,(t) =0if
t<0ort>k+Lland6(t) = 1if k=1 < < k. Thenthesets {6 o p; = 1} cover
the set {¢; > 0}. Let us consider the measure

Ij=@jH.

Let Bj = B+ Vig;/p;. Note that (6.1) holds for v = Yy if Y1, Yo € A,
Hence we obtain from (6.1) that

/(vxw, v du; = —/W,-,v)duj
X X

for every v € " and every v € R”. In addition, |8;] € Ll(u.,), since |Ble; €
LY(w). Let v € R be afixed vector and let ¢+ € RL. Then we have

/[w o y) — ] du;

X
t

= - / / Y(x + sv, y)(ﬂj(x, y), v(x)) dujds (6.3)
0 X
for all bounded ¢ € ", whichisproved asfollows. Both sides of (6.3) are continu-
oudly differentiablein ¢ and vanishat r = 0. It followsby (6.1) that their derivatives
coincide, since (x, y) — ¥ (x +tv, y) € A by our hypothesis. The left-hand side
of (6.3) equals the integral of ¢ with respect to the measure (1), — u;, where
(i ;); istheimage of 1 ; under the shift (x, y) — (x +tv, y). Theright-hand side
of (6.3) istheintegral of ¢ against the measure

ol = fot<(ﬁj, v)uj>sds.

Hence, by our assumption on %", we have

() —pj =0} (6.4)
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Thisimpliesthat (6.3) holds for all bounded #-measurable functions . We set
Wi =g, ie wi(B)= /YM‘}"’(B) v(dy).

Now (6.4) yieldsthe absol ute continuity of the measures Mf for v-ae. y. Indeed, let

p beaprobability density onR" with supportintheunitbal U, p.(r) = ¢ ™" p(t/¢),

Ve = pedx, e € (0,1), and let

e (B) = /uﬁ * Ve (B) v(dy).
Y

Then, for every bounded Borel function g, one has

/g(x,y) drm =/ / /g(xH:z, Y)p(2) dz w(dx) v(dy)

X Y Rex{y} R?

=[/g(X+8z,y)p(z)duA,~ dz. (6.5)
R X

It follows from (6.4) and (6.5) that

(/gduj—/gdﬂfs
X X

- )//g [d()) = d(p)e:] p(2) d|
U X

&
= )///g(x +52,9)(Bj, 2)dujds P(Z)dz‘ < esuplgl 18l L1, re):
U 0 X

since |(B;, z)| < |B;| onthe support of p. Therefore,

liej = el < 2618110, -
Clearly, every measure i, with ¢ > 0 has absolutely continuous conditional mea-
suresonR” x {y}. Hence, for v-a.e. y, the conditional measurep% admitsadensity

qjy. (x) with respect to Lebesgue measure. Thus, we obtain from (6.4) that there
exists a measurable set Yp of full v-measure such that, for every i = 1,... ,n,
every rationa ¢, and every y € Yp, one hasfor a.e. x

t
aj+te) —aj 0 = [ [).e0a] o+ sends.
0

Therefore, for every y € Yo, we obtain q; e WHi®R") and qu;(x)/q;(x) =
Bj(x,y).
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Recall that ¢; u* = M}V. for v-a.e. y. Since the union of the sets A ; hasfull -
measure, theset (R" x {y})ﬁ(U?"=1 A;) hasfull n”-measurefor v-a.e. y. Therefore,
for v-ae. y, the measure ¥ admitsadensity f” suchthat ¢, (x, y) ¥ (x) = q;’(x)
for every j and ae. x. In addition, Vy¢; = 0 u-ae. on A;, since the derivative of
any differentiablefunction F onR” vanishesalmost everywhereontheset { F = 1}.
Hencewe obtain aset Y; of full v-measuresuch that, foreveryi = 1, ... , n, every
rational 7, and every y € Y1, onehasfor ae. x

t

Pt = 00 = [[6en o+ senas
0

whichimpliesthat /> € W-H(R") and V, f¥(x)/f* (x) = B(x, y) p-ae. O

Corollary 6.2. Let u beasin Lemma 6.1 and let f be a u-measurable function
such that, for every y € Y, thefunctionx — f(x, y) isin Wllo’cl(R”). Suppose that
IV f1, fIBl € L*(w). Then

/(fo, v)du:—/f(v,ﬁ)du, Vv e R (6.6)
X X

The sameistrueifinstead of x — f(x,y) € Wllo’cl(R”), one has that the usual
partial derivatives dy, f (x, y) exist for every x.

Proof. It suffices to prove (6.6) for every v = ¢;, where {¢;} is the standard basis
inR". By Lemma 6.1 and our integrability assumptions, it is enough to show that,
foral p, g € WhX(R") suchthat p, pd,, g, gd., p € LX(R"), one has

loc

/Beigpdx = —/gax,.pdx. (6.7)

X X

Wemay assumethati = 1. Itisknownthat thefunctions p and g admit versions, de-
noted by thesameletters, suchthatr — p(t, x2, ..., x,)andt — g(t, x2, ..., X,)
arelocally absolutely continuous and their partial derivatives represent the general -
ized partial derivativesd,, p and d,, g. Therefore, by Fubini’stheorem, (6.7) reduces
to the one dimensional case. If g is bounded, then the desired relation follows by
the integration by parts formula, since there exist a; — —oo and b; — +oo such
that pg(b;j) — 0, pg(b;) — 0. The case of unbounded g follows by considering
the compositions 0 (g), where§; C,;X’(Rl),ej(z) =rif|t] < j, 0;(@) = jsignt
if 1] > j+ 1, andsup|f’| < 2. A judtification in the case where g is differen-
tiable everywhere, but is not locally absolutely continuous can be found in [19,
Theorem 2.6]. |

Remark 6.3. (i) Itisclear from the above proof that the separation assumption (iii)
on " can be weakened; e.g., it would be enough to replace it by the following
condition:
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(iii") there exists a measurable set Q C X of full measure with respect to all
shifts (i), generated by the vectors v as above such that .#~ separates the measures
on the set Q.

In particular, thisis the case when Q2 has full «-measure and is mapped by the
shifts (x, y) — (x + v, y) into itself.

(if) Therequirement poyr € ¢ foral v € # andg € Cgo(Rl) withp(0) =0
in condition (ii) can be replaced by the following assumption:

there exist functions y; € " such that the sets {y; = 1} cover R” x Y up to
a u-measure zero set.

Finaly, note that if 7" is alinear space of bounded functions such that it is
stable under compositions with C°-functions vanishing at 0, then vr1yr2 € 7 for
al Y1, Yo e A

Note that the class of Lipschitzian functions with bounded supports on a sepa-
rable Banach space X separatesthe Borel measureson Xg. If Xg isreflexive, then
Xo has nontrivial Lipschitzian continuously Fréchet differentiable functions with
bounded supports (see, e.g., [29, Ch. |, 2.1 and 3.1]). It isreadily seen that in this
case, the class C&(X 0) Separates the Borel measures on Xg. Therefore, we get the
following application of Lemma6.1.

Example 6.4. Let u beasigned measure on alocally convex space X of finitetotal
variation. Let (Xo, || - |lo) be acontinuously embedded separable Banach space of
full u-measure. Let h € Xo. Suppose that there exists a u-measurable function
such that 8 is u-integrableon al || - ||o-bounded sets and

f O dpt = — / VB du (68)
Xo

Xo

for every function v from the class Lipg(Xo) of al Lipschitzian functions with
bounded supports on Xo. Let X = Rz ® Y, where Y isaclosed linear subspace.
Then i hasregular conditional measures ;> ontheline y + Rz, y € Y, that have
locally absolutely continuous densities £ with (fy(;))’/fy(;) = B(y+th).If Xg
is reflexive, then the same is true for Cé(Xo) in place of Lipo(Xp). Finaly, if Xg
is Hilbert, then C3(Xo) can be replaced by CS°(Xo).

Let us observe that one can take even smaller classes of test functions in the
above example. Namely, thereisacompactly embedded separablereflexive Banach
space X1 C X of full u-measure. Thenthe cla$Cé(X1) separatesthe Borel mea-
sures on X1 and can be used in the above example in place of Lipg(Xo). If Xo
is Hilbert, then one can choose for X1 also a Hilbert space. This enables us to
weaken the integrability assumption on 8 by requiring the integrability of 8 only
on compact setsin Xo.

Remark 6.5. It is often of interest to know that the conditional distributions have
strictly positive continuous densities. Sufficient conditionsfor thiscan be expressed
in terms of logarithmic derivatives. Let i be alocally finite nonnegative measure
on R1 with alocally absolutely continuous density o. Then o > 0 if and only if
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BH* = o'/o islocally integrable with respect to Lebesgue measure. The necessi-
ty is obvious, and the sufficiency is readily verified by showing the continuity of
loge. If uisalocaly finite measure on R" with adensity o € Wﬁ;j(R”), then a
sufficient condition for the existence of a positive continuous modification of ¢ is
thelocal integrability of |8#|? = |Vo/0|?, where p > n, with respect to Lebesgue
measure. Another sufficient condition is the following: every point x has a neigh-
borhood U such that exp(e|g#|) is u-integrable on U for some e > 0 (see [13,
Proposition 2.18], where the proof is given in the global case but works locally as
well). Although, the latter condition is stronger than the previous one, its advantage
isthat it isexpressed entirely intermsof . without reference to L ebesgue measure.

We now proceed to analogues of the existence results from the previous sec-
tion in the symmetric case. The method of proof is exactly the same. The ideato
construct measures with given logarithmic derivatives by the method of Lyapunov
functions employing the dissipativity condition is already in [38], [39]. Later the
same method was used and further developed in [14], [15], [5], [6]. The first ap-
plication of this method to construct Gibbs measures has been given in [5], [6].
We shall see below how the reasoning in [15] enables one to obtain even stronger
results on the existence of Gibbs measures.

Werecall that {I,,} € X* isaseparating sequence, {e,,} C X, andl,,(ex) = Suk-

Theorem 6.6. Let X, g = {g,} € {* and Xo bethesame asin Theorem5.3 and let
B,: Xo — R becontinuouson ballsin X with respect to the topology of X such
that (5.13) issatisfied. Assume, in addition, that there exist continuously differentia-
ble functions G,, on E,, := linear span of {e, ...e,} suchthat B; = 9,,G, on E,
for every i < n. Then there exists a probability measure i« on Xg such that, for
every n, the function B,, isthe logarithmic derivative of .« along e,, with respect to
Lipo(Xo). If (5.12) isfulfilled, then 1 is differentiable along every e, with respect
to ZE°(X).

Proof. Let
o0
H:= {x € Xo: vl = l(0)? < oo}.
n=1
For any differentiable function vy on E,;, we set

DHW=3e1W€i+"'+3en1ﬁ€n-

Inthegradient case, the measures ., on E,, constructed in the proof of Theorem 5.3
are given by the following explicit densities f,, with respect to the L ebesgue mea-
sures on E,, associated with the norm of H: f, = z, exp(G,), where z,, is the
normalization constant. The integrability of f, is obvious, since by (5.13) there
existstp > 0 such that for every x in the unit sphere of E,,, one has

d
dt

by the equivalence of thenorms| - [pand | - |,, whence f, (tx) < const.|t|~,
t > tp. Looking at f;, in polar coordinates, it is clear that it is integrable. Let us

1 c 1 )
Ga(tx) = Z(D, Gulrx), 1), < — = Zo(tlxlo) < T” forall ¢ > 1o
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observe that we may assumethat X = R*°. Indeed, X can beinjected into R* by
means of the sequence {/,,} separating the pointsin X. The ballsfrom X are com-
pact in R* and the topology of X on them coincides with the one from R*° (i.e.,
the one generated by the functionals/,,). Assuming that X = R°°, we can choose
a bigger reflexive separable Banach space X1 D Xo such that both embeddings
Xo — X1 and X1 — X are compact (see, e.g., the proof in [10, Theorem 3.6.5]).
In fact, every completely metrizable locally convex space X has such a property
(but not an arbitrary locally convex space; thisisthe point to consider theinjection
into R*). Then w,, — n weakly alsoon X1. Since D, f/f, = (B1, ... , By), we
obtain by the integration by parts formulafor every v € Cé(X 1) andi < nthat

The sameistruefor u in place of u,, since | B;| is bounded and continuous on the
support of v (whichis compact in X) and u,, — 1 weakly on X ;. It now follows
by Example 6.4 and Corollary 6.2 that

[ suvan=— [vsiau (69)
X

X

for every Borel function  such that d,,v exists and 9,,v, ¥ B; € LY(w). In
particular, thisistrueif ¥ € Lipo(Xp). As shown above, |x|g € L?(u) for al
p € [1, 00). Therefore, in the case where |B,| is maorized by C,, + K,,|x|‘é",
one has B, € L1(u), hence B, is the logarithmic derivative also with respect to
F%;°(X) (and with respect to 7 %;° (Xo)). ]

Asinthe non symmetric case, the aboveresult can bereformulated intermsof a
single Hilbert space. We only givetheformulation, sinceitsrelation to Theorem 6.6
isthe same as the relation of Theorem 5.7 to Theorem 5.3.

Theorem 6.7. Let Z, B, E, and 1, be the same as in Theorem 5.7, but instead
of condition (5.16) we shall assume that there exist continuously differentiable
functions G,, on E, such that, letting e, = t,u,, one hasfor all n

Bi = 9,,Gy, Vi <n, Vx € E,. (6.10)

Then there exists a probability measure ¢« on Z such that B, is the logarithmic

derivative of i along t,e, = t2u, with respect to Lipo(Z). If, in addition, (5.16)

holdstrue, then B, isthelogarithmic derivativeof i along t,e,, = tnzun with respect

to ZE°(2).

Remark 6.8. Condition Rlim 0(R) = +oo required in Theorem 6.6 and Theo-
—+00

rem 6.7 to ensure the differentiability of n with respect to Lipo(Xo) and Lipo(Z),
respectively, can be replaced by the weaker condition

o
liminf o(R) >C+ Y gn (6.11)

n=1
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whereg, = t,? in the case of Theorem 6.7, provided that, for every n, the mapping
(B1,...,By) on E, isthelogarithmic gradient of some probability measure 1,

on E, with respect to the inner product (u, v), = Z t_z(u ui),(v,u;), on E,.

Indeed, only for this purpose the existence of the funct|ons G,, was used, whereas
the argument showing tightness remains valid by Example 4.8.

Remark 6.9. (i) We observethat the above resultsimprove[6, Theorem 2.3], where
more restrictive assumptions were made about B,,. First, we do not require any
bound on the growth of B,,. Secondly, in [6, Theorem 2.3], it isrequired that there

exist continuous logarithmic gradients 8, = ) bl e,, on E, such that for each m
m=1
and & > O there exists N with | B, — b}, o P,| < e(1+ |x|}) for al x € Xo and
n > N. Clearly, this implies the weak continuity on ballsin Xg, since the func-
tions b? o P, are continuous cylindrical and converge uniformly on balls in Xo.
In addition, this yields that the restriction of (B, ..., B,) to E, is acontinuous
logarithmic gradient (with respect to the H-norm as in Remark 6.8). To see this,
we observe that if {F;} is a sequence of continuously differentiable functions on
R™ such that the gradients V F; converge uniformly on every ball to a continuous
mapping ¥, then there exists G € C1(R") suchthat ¥ = VG. Indeed, in this case
the sequence f (x) = Fj(x) — F;(0) converges uniformly on every ball (by the
unn‘orm convergence of VF and the convergence at the origin), hence we can take
=lim F

(i) It should be noted that Theorem 6.7 as well as its predecessor [6, Theo-
rem 2.3] can be deduced also from the constructionsin [38], [39], although they are
not formal corollaries of the corresponding results for two reasons. First there are
some extra technical assumptions used in [38], [39]. But these were only used for
the finite dimensional estimates, and were removed in [15], [16]. Second, in [38],
[39] global assumptions on B were imposed a priori. As mentioned in the above
introduction they were only removed in therecent work [6] by considering test func-
tions with bounded support (as CS(X o) above). This step was essential to include
applications to Gibbs measures. Nevertheless, both here and in [6, Theorem 2.3],
the method of proof of existenceisin spirit of that in [38], [39].

Remark 6.10. It is clear from Remark 4.11 that if in the situation of Theorem 6.6
condition (5.12) is satisfied, then one can choose aseparable Hilbert space H € X
and a separable Hilbert space Y © X such that the natural embeddings H — Xo,
H — Y, Xo — Y arecontinuousand dense, andthereexistsamapping: ¥ — Y
such that g is the logarithmic gradient of n with respect to H and #%,°(Y),
1Bl, € L2(w), and (I, B) = B,. Thisiswell-known, but we repeat the construc-
tion for the convenience of the reader. L et

o0
H = [x: |x|i = Z:ln(x)2 < oo},
n=1
o
Y = {x: |x|§ = Z:cnln(x)2 < oo},
n=1
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o0
where ¢, = 2" min(q,,, ||Bn||222(ﬂ)), and B(x) = 3 By(x)en. Then {e,} isan
n=1

orthonormal basisin H and j, (I,) = ey, since ln(e;) = S8,x. Hence (I,, B) =
Bn = ﬁéfl'

Here is an analogue of Theorem 5.8 for the symmetric case. Its proof isanao-
gousto the proof of Theorem 6.6.

Theorem 6.11. Let X, Xo, J, and g be the same asin Example 4.6 and let B =
(Bx)nes be a collection of functions on X that are continuous on balls in Xg
with respect to the topology from X and satisfy (4.5). Suppose that S is a union
of increasing finite sets Si, k € N, and that there exist continuously differentiable
functions G, on RS such that B; = d,,Gx on RS for all i € S;. Then there
exists a probability measure . on Xg such that, for every n, the function B, isthe
logarithmic derivative of . along e, with respect to Lipo(Xo).

Let us consider aclass of Gibbs distributions that fits the above framework and
which hasbeen analyzedindetail in[5], [6]. However, aswe shall seein some cases
we can relax the assumptions made there. Let usconsider aclassical spin systemon
the lattice Z¢ with the configuration space RS, S = Z¢, having the formal energy
functional

E() =Y Valta)+ Y W jCtn, X)),
nes n,jes
where W, j(xn, x;) = Wy j(xj,x,) and W, , = 0. We shall assume that the
functions V,, and W, ; are continuously differentiable and satisfy the following
estimates:

|Wn,j(xny xj)| = Jn,j(l+ |xn|a + |xj|a)» (612)
10, Wa,j (s X1 < T j (L el oy 170, (6.13)
xnax,, Vailxy) < C — M|xn|av (614)

where J, ; > 0,C, M > 0.

Example 6.12. Let (6.12), (6.13), and (6.14) be satisfied, wherea > 2 and J =
(Jn, j)n, jes isasymmetric matrix such that there existsafamily of positive numbers

ses neS
Then there exists a probability measure p concentrated on the space

1/
Xo = {x: |x]o = (an|xn|a < oo) }
nes

such that u is differentiable aong the standard unit vectors e, € RS with respect
tothe class Lipo(Xo) and

ﬂétl (x) = 8xn Vi (xn) + Z 8)(,1 Wn,j(xn’ xj)~
jes
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In particular, the regular conditional measures of . on the lines Rle, + y, y €
I, := {x: x, = 0}, have continuoudly differentiable densities p(x,|x5) with

Ox, P(xnlxy)/ pCxnlxy) = Bl (X), x = (xn, Xx),

Poal) = c(x) @B Va (ko) + 3 Waj(ins x) . (6.15)
jes

where c(x{) isanormalization constant.

Proof. The functions

B,(x) = 8)(,1 Vi (x) + Z axn Wn,j (Xn, xj)
JES

are continuous on ballsin X, since the corresponding series converges uniformly

on every ball in Xg by (6.13) and our assumption on J. There exists ¢ > 0 such

that M = 3\ + . Note that by the inequality z < 1 + z%*/a for z > 0 one has

Jn 121 < [xa]® /e + |x;1%, and consequently [x,| + |xa|® + |xa| |x;|%7 <

14 20x,|* + |x;|*. Hence, by theestimate 3~ ;g J,; < A, we obtain

XnBuy(x) < C = Gh+&)xa|” + D i (L4 20xal + |x;1%)
JjES

< Cth— Gt elal®+ ) Jnjlxl,
jes

i.e, (45) holds. Let Sy = {s € S: |s| <k}, k € N. It follows from what was said
in Remark 6.9 that the restrictions of (B;);cs, to RSk are gradients of continuously
differentiable functions. Therefore, Theorem 6.11 applies. Note that the seriesin
(6.15) converges uniformly on ballsin Xq by (6.13). O

We observe that Example 6.12 improves Theorem 3.1 from [6], where stronger
assumptions were made on V,, and the matrix J.

7. Applicationsto SPDEs

Let us apply the above results to the elliptic equations associated with invariant
measures for diffusion processes generated by certain stochastic partial differential
equations. We shall consider some generalizations or modifications of stochastic
Burgers and Navier—Stokes equations. The same techniques apply to reaction-dif-
fusion equations. We shall show how to get the existence of a probability measure
solving our €liptic equation by the above method of Lyapunov functions. In or-
der to construct suitable finite dimensional subspaces, we employ usual Galerkin
approximations used by many authors in related problems (see, e.g., [49]).
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We shall first consider the elliptic equation for invariant measures of the diffu-
sion governed by the following SPDE of the Burgers type:

du(z,x):ﬁdWQ(t,x)+[,7fu(z,x)—w(u(z,x))axu(t,x) + f(x)] dr (7.2

with zero boundary conditions on [0, 1], where J# is a self-adjoint operator on
X = L2(0, 1) with domain D(#) C Hoz’l(o, 1) such that its eigenfunctions 7,
(with eigenvalues 1,,) arein Hg’l(o, 1) and form an orthonormal basisin L2(0, 1).
Suppose that thereis A > 0 such that

/u%u dx < —k/(u’)zdx, Yu € span{n,}. (7.2)

Here (and below) u’ denotes derivative with respect to x € (0, 1). We assume that
f € L*°(0, 1), that v isalocally bounded Borel function and that WtQ isa“Wiener
process with covariance Q” in L2(0, 1) or also a cylindrical Wiener process. It is
well knownthat inthecase # = A, ¥ (x) = x, thereexistsaprocessu in L2(0, 1)
satisfying (7.1) (in the sense of “mild solutions”) and having an invariant probabil -
ity measure  (see[24], [25], [27]). However, we make no assumptions concerning
the solvability of (7.1). All our assumptions will be specified later. We emphasize
that we consider only the elliptic equations for measures and hence deal with the
so called infinitesimal invariance of measures, which enables us to weaken the
assumptions on the coefficients. By using the results from [48] one can construct
Markov processes which satisfy in a certain sense the corresponding stochastic
equations. This as well as the exact connection of measures satisfying our ellip-
tic equations and invariant measures of SPDEs will be a subject of a forthcoming
paper.

Let us take for Xo the Sobolev space Hoz’l(o, 1) of functions u with u’ ¢
L?(0,1) and u(0) = u(1) = 0. Thisis a Hilbert space with the norm lullxq =
llu’ || 2, compactly embedded into L2(0, 1). Let usset u,, = (u, ,)2, where (-, -)»
istheinner product in L2(0, 1), and

By (u) = hntn — (Y @', 0a) o + (fs 10)2
= ity + (W), 1), + (foi)2.  Vu € Xo, (7.3)
where f € L*°(0, 1) and
V(y) = /Oy V(s)ds
with some locally bounded Borel function .

o
Finally, suppose that > oz,f < oo0. We are going to apply Theorem 5.2 to the

n=1

'S} 00
Lasp =D andf o+ Badye
n=1 n=1

operator

on 7€, (X, {I,}), where [, (u) = uy.
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Thisoperator arisesif we consider the process W2 (¢) = Z a wy (1), where

{wn (1)} is a sequence of independent standard real Wiener proc&ss&e i.e, On, =
oznn,, Thisis the so called time white noise case, i.e., W2(r) is aWiener process
in L2(0, 1) unlike the case of a space-time white noise discussed below, where
o, = 1.

Proposition 7.1. Let|¥(y)| < c1+c2|y|?, whered < 6andlety, € L>(0, 1) for
all n. Then there exists a probability measure ;. on X which satisfies the equation
L}Z,B/L = Owith respect to 7 6,°(X, {l,}), wherel, (u) = u,. In addition,

/ Ix11%, die < oo, / lx|13 dp < o0, Vm € N. (7.4)

Proof. We shall apply Theorem 5.2. Let A, (x) = a2/2, e, = 1y, V(u) = ||ull3,
and ®(u) = ||u/||§. We observe that B, is continuous on any ball S in Xg with
respect to the topology from X = L2(0, 1). Indeed, u > u,, iscontinuous. Now |et

u* — u in X be such that u* € S. Then the functions u* converge to u uniformly,

whence the claim follows. It remains to note that for all u € span{n,} and any
¢ € (0, A), onehas

00 00 1
Z B,(wu, = Z)Lnu,% +/ fudx
n=1 n=1 0

! N2 ! 1 2 2
<k [ @hPdet | fude < 115 G- o)l
0 0 €

Indeed, letting G be any primitive of xv (x), we obtain

e¢]

1
Z(t/f(u)u’, nn)z(u,nn)zzfo V(u)u'udx

n=1
1
= /0 [Gw)] dx = G(u(D)) — G(u(0)) =

for eachu € Xg and, by (7.2), we have for all u € span{n,}

o0 1
anuﬁ < —A/ (u’)zdx.
n=1 0

For every n € N, we obtain

L,V @) = Zazaz V() + Y Bjdy; Vu)

j=1

= 220‘? +23 wjul + 2(y ' u), + 2(f, 1)z

j=1 j=1

o
<2) af =2, u)2+2(f, w2 < Cle) — (h — )l|ul%,,
j=1
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hence (5.1) holds. Since

X 2
/uedx - fbﬂ(x)(/ 2uu’dr> dx < &u|3|lu’)|3, u € Xo,
0

it follows that
! ! 6, .4d/6 2d/6
/OI‘I’(M)IdXSCH-Cz/O lul? dx < crteallull < crcdCull, 157

Hence (5.7) holds with d, = max(£, 1) and 8, (r) = r—*, wheres = (1 —d/6) >
0. Clearly, (5.8) aso holds with §(r) = r~1. Now the claim follows by Theo-
rem>5.2. O

Itisclear that the same reasoning applies also to the elliptic operator associated
with the equation

du(t,x)=ﬁdWQ(t,x)+[a§u(t,x)—w(u(t,x))axu(t,x)+P(u(t, -),x)]dt,
(7.5)

wherethe additional nonlinear term P (u, x) hasthefollowing properties. (u, x) +—
P (u, x) iscontinuous on C[0, 1] x [0, 1] and

1
P(u, x)u(x) < c1 4 czlu(x)|?, f|P(u,x)|dx5c1+c3|u|’zp
0

for somec1, co,c3 € R, o < 1,and p € [1, 6). Now the functions B,, take the
form

B, () = —n’u, + (Y@, ), + (P, -). )y u € Xo. (7.6)

Clearly, these functions are till continuous on the ballsin Xq with the topology
induced by X. We consider the same Lyapunov function V (1) = ||u||§; a minor
changein the proof concernstheterm P (u, x). Asin Proposition 7.1 we apply The-
orem 5.2 to obtain aprobability measure u which satisfiestheequation L} e =0
with respect to 7€ ;° (X, {l,}).

Let us now consider the elliptic equation associated with the space-time white
noise W1 (1), i.e,

Wl(t) = Z Wy ()N,
n=1

wheren, (x) = v/2sinnx (werecall that {~/2 sinnx} isacomplete orthonormal
systemin L2(0, 1)). Thus, we consider the operator

o0

L gy = Z[agj(/) + Bja,,].<p]
=1
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on Z%,°(X, {I.}), where the B,’s are given by (7.3). However, in this case we
assumethat Lu = u”,i.e., A, = —n?, and that

V()| < c1+calyl,

where c1, ¢ € RY, and ¢ < 1. We have to modify the arguments in the previ-
ous example in order to obtain a convergent series of 8,3” V. To this end, we shall

o
consider the following Lyapunov function: V (1) = Zln‘3/ 2u2. Letting
n=

n

Lop = Z[a,’f/_go + By, 0]
j=1

on thelinear span E, of thevectorsny, ... , n,, we obtain

n n
LoV =2) j~¥2-23  j2j %25

j=1 Jj=1

+23 2 T (Waw ) + (fnzus )

j=1
Since {v/2cosmnx} = {n—ln;,} is an orthonormal system, we obtain

o n
LV <2)  j73% =23 jY2u% 4 2(ca + callull2) lull2 + 21 fll2llull2.
j=1 j=1

Applying Theorem 5.1 (or Theorem 5.2) with © (1) = Z RE 2 , wearrive a the

following assertion.

Proposition 7.2. There exists a probability measure 1« on the space
Xo = H02’1/4[O, 1] = { Zjl/zuz - oo}

which satisfies the equation L7 p 1« = 0 with respect to the class 7 %° (Xo, {l,}).

Clearly, thesameistruefor thefractional SobolevclassHoz”[O, N withr < 1/2

in place of H02’1/4[O, 1].
Suppose now that functions A;; on Xo satisfy the following conditions:

1) A;; is continuous on balls in Xq with respect to the topology of X and, for
every n, the restrictions of the matrix-valued mapping (A; ,)” to the linear
span of n1, ..., n, iSnonnegative symmetric,
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2) there exist constants Cy, C», C;; such that

o
Al < G+ llulk), Y i %A@ < C1+ Callully,,
j=1

wherey < 2 (or, if y = 2, thesameistruefor every ¢ > 0 and some C2(¢) in
place of C1 and C2).

Suppose that W is a continuous function on RY such that |Wo(s)| < C3 + Cals|¥,
wherea < 1. Let

By(u) = —nPu, — (W', nn), + (Yo), 1), + (f. 1n)2.

Then there exists a probability measure u on Xo suchthat L% . = Owith respect
totheclass 7 6;°(X, {1,,}), where

00 00
La gy = Z Ai‘,a,]ia,,_,.cp + Z By, 0y, .
i,j=1 n=1

In fact, the mapping u — Wg o u can be replaced by any mapping G on Xo which
is continuous on ballsin Xq with respect to the topology of L2(0, 1) and satisfies
the estimate |G (1) (s)| < C3 + Calu(s)|“.

The functions A;; can be given, e.g., by the expression

1
Ajj(u) =/O o (x, u)?n; ()0 (x) dx

with somefunctiono on [0, 1] x Xg, which correspondsto anon constant diffusion
coefficient if we deal with an SPDE.

Let D be a bounded region with smooth boundary 9D in R and let f: R® x
D — R?. Weshall now consider theelliptic equation associated with the following
SPDE of the Navier-Stokes type:

du(t, x) = V2dW2(r, x) + [ Hut, x) — (u(t, x) - Vu(t, x)
+F(x,u(t,x))+Vp(t,x)]dt 7.7)

with the incompressibility condition
divu =0

and the boundary condition u(¢,x) = 0, (t,x) € [0, T] x aD. We assume that
W,Q isaWiener processin L2(D, R?) (the exact conditions on the corresponding
elliptic operator are given below). In case of the classical Navier—Stokes equation,
onehas.# = A and F = 0. Weshall actually deal withthe projection of (7.7) tothe
space of divergence free fields, hence we do not take the pressure p into account.
It is well known that in the case # = A, at least for d = 2, under reasonable
assumptionson F and Q, thereexistsaprocessu in L2(D, R?) satisfying (7.7) and
having an invariant probability measure n (see [23], [27], [31], [33], [49]). In the
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cased = 3 adtationary solution to the classical stochastic Navier—Stokes equation
has been constructed in [32]. The corresponding marginals should be related (or
even coincide) with the (infinitesimally) invariant measures constructed by us. This
will be the subject of further study. It should also be noted that in the classical case
A# = A and F = 0 the existence of invariant measures was first proved in [49]
(see Appendix Il dueto M.I. Vishik and A.l. Komech) in any dimension by argu-
ments very close in the spirit to the ones employed below. In this particular case,
the solutions to our élliptic equation constructed bel ow coincide with the invariant
measures constructed in [49, Appendix 11, §9].
Let
Xo={u= @t ... u") e HY'(D,R?) : divu =0}

with norm

d
%y = D IVl 122y
j=1
and let X bethe closure of Xgin L2(D, R?) equipped with the inner product from
L%(D,RY).
In fact, we shall consider the following more general equation:

d
du(t, x) = V2dW2(t, x) + [qu(t, x) =Y djult, x) + F(x, u, .))] dr,
j=1
(7.8)

where F: D x Xo — R¢ is a uniformly bounded mapping and .# is a linear
operator from X to L2(D, R?) with adomain D(#’) densein X. In addition, we
shall assume that the domains of »# and »#* contain an orthonormal basis {»,,} of
X suchthat i, € XoN L®(D, RY). Suppose that for some A > 0 one has

(Hu,u)y < =Mlulky  Yu € span{n,).

where (-, -)2 istheinner product in L%(D,RY). Finally, we assume that for al n
thefunctionsu +— (F( -, u), Un)g are continuous on ballsin X with respect to the
topology induced by L2(D, R?).

From now on, we take for F the mapping F(x,u) = Fo(x,u(x)), where
Fo: D x R — R is a bounded Borel mapping continuous in the second ar-

gument.
Let
d .
Bu(u) = (u, #*n)2+ Y @ju,un)z2+ (F(-,u),ma),  u € Xo.
j=1

We observethat B, is continuous on any ball S in X with respect to the topology
from X (i.e., from L2(D, Rd)): Indeed, if uy — uin X and u; € S, then, for each
i =1,...,d,the sequence {u}} is bounded in H;*(D), henceu € HS (D, RY)
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and kILrEo djul = d;u’ inthe weak topology of L2(D). Then it follows by the em-
bedding theorem that lim ul = ul in L24/@=-2 (D) (resp. indl LP(D), p > 1,
—00
if d = 2). Henceklim uln, = u'n, in L*(D,RY) for every j = 1,...,d. This
— 00

yields that klim (9jux, u,{nn)z = (d;u, u’n,)». For every u e span{,}, we have
—> 00

53 Wt nn)z_z(u'a,u we=—3 [ widvudx =o

n=1j=1

In addition, for every u € span{n,}, one has

o
D @ A )20, )2 = (Hu,w)z < =)k, (7.9
n=1

Therefore, (5.1) obviously holds. Clearly, (5.7) isfulfilled with © (1) = ||u ||§(0 and
V) = ||ul%,- (5.8) holdswith §(r) = r~1.
Now, Theorem 5.2 applies to the corresponding elliptic equation: Let

e’} 00
LA,B(p = Zasas % + Z Bnaﬂnw

be defined on 7 €;° (X, {I,}), where [, (u) = (u, M)z, and Y o2 1a < 0.

Proposition 7.3. Under the above conditions, there exists a probability measure
1 on Xo which satisfies the equation Lf\,g“ = Owithrespect to 7 6,° (X, {In}).

o o
Thisresult correspondstotheprocess W€ (1) = Z apwy, (Hn,, where Y a <
n=1
oo and {w, (¢)} is a sequence of independent standard real Wiener processes, i.e.,

to the time white noise in the corresponding SPDE.

Asin the case of the Burgers equation, the same reasoning applies to the fol-
lowing more general situation. Suppose that functions A;; on Xg are continuous
on ballsin Xg with respect to the topology of X and, for every n, the restriction of
the matrix-valued mapping (Aij);fj tothelinear span of 51, ... , n, iSnonnegative
symmetric. Assume that there exist constants C1, C2, C;; such that

o0
4| < Cij(L+llulk). D Ajjw) < Cr+ Callully,.
j=1

where y < 2 (or, if y = 2, the same istrue for every ¢ > 0 and some Caz(¢) in
place of C1 and C»). Let

o0 o0
Lapy = Z AijOn; Oy + Z By dy, ¢
i,j=1 n=1
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with
d

Bu(u) = (u, A*n)2 — Y _(@ju u/ )2 + ($o(), na)y + (F). 1),
j=1

where ¥p: R? — R isa continuous mapping such that |Wo(x)| < C3 + Calx|*
witha < 2d/(d — 2) and (‘l/o(x),x) < C3+ Cylx|* withk < 2.

For concrete examples of # one can take # = A or amore general nonde-
generate second order €elliptic operator with smooth coefficients.

In asimilar manner one can study the reaction-diffusion equation
dut, x) = [02u(t, x) + F(u(t, ) | dt + V24w (),

where W/ (1) is the space-time white noise process, i.e.,

W) =" wa(t)m,

n=1

where w,, are independent standard Wiener processes and 77, (x) = v/2sinmnx as
in the example considered in Proposition 7.2. Invariant measures for this equation
are considered, e.g., in [20], [27], [34], [35], [44], [47], [51]. The corresponding
eliptic operator is given by

)
Ligp = Z[ai,,(p + Bnann§0],
n=1

where the functions B, (1) = —n?u, + (F o u, n,)2 are defined on C[0, 1] or on
a suitable L?. In order to apply our results, it suffices to assume that F is con-
tinuous, has at most polynomia growth at infinity and that F(x)x < C + ¢|x|?
with a sufficiently small ¢ > 0. One can explicitly find invariant measures for the
above reaction-diffusion equation. For example, let F(x) = IT'(x), where IT isa
continuously differentiable function on R such that IT(x) < C + ¢|x|2and & > 0
is sufficiently small. Indeed, let v be the centered Gaussian measure on L2(0, 1)
corresponding to F = 0, i.e., tothefunctions B, (u) = A, u,. It isreadily seen that

o0
v isthe distribution of the Gaussian random vector ¥ (w) = 3 A, |~Y2&, (w) .
=

n=
where &, are independent standard Gaussian random variables. The measure v is
in fact concentrated on the space E = C[0, 1] of continuous functions (or on a
smaller subspace of HAlder continuous functions). Hence the function

1
o(u) = epro H(u(x)) dx
is continuous on the space E with its natural norm and

ar)ng(u) —

1
o) /O I (u(x)) 1 (x) dx = (F (), 1) -
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Due to the estimate

1 1
/H(u(x))dx§C+8/ lu(x)|? dx,
0 0

the function ¢ is v-integrable, provided that ¢ is sufficiently small. Since 9,,0
is bounded on balls in E, we obtain by the integration by parts formula that the
measure u = ¢ v isdifferentiable along n,, with respect to Lipo(E) and

Iy, 0(u)
") =By )+ "Q(—M) = B, (u).

Moreover, if we have the estimate |IT'(x)| < C + exp(e|x|2) and & > O is suffi-
ciently small, then the function 9,, 0/ is v-integrable, hence B, isthelogarithmic
derivative of x along n, with respect to the classes C}(X), C}(E), in particu-
lar, with respect to 7 %;°(X). Of course, we can take a more general mapping
for F. The same proof as above applies to the mapping F: E — L?(0, 1), where
(F(u),nn), = 9y, TI(u), provided that IT is a Borel function on E differentiable
along all vectors i, and

M) < C + elul2, IF@)ll2 < C + exp(ellull)

for asufficiently small ¢ > 0. The smallness of ¢ in these examplesis determined
by the v-integrability of thefunction exp(e||u|| %) (theexistenceof such ¢ isensured
by Fernique'stheorem). Certainly, we could assume just aswell the v-integrability
of exp IT. The above explicit expressionfor u wasobtained in [35], [34], [51] under
stronger assumptionson IT. It should be noted that, according to [11], every proba-
bility measureoon X = L2(0, 1) suchthatu, € L2(10), | Foull 20,1 € L?(1o)
and L’;y o = O with respect to the class 7 6,°(X, {I,,}), is absolutely continuous
with respect to the Gaussian measure v.
In the case of the reaction-diffusion equation

du(t, x) = [afu(t,x) + F(x.u, -))]dt + 20 (x, u(t, ) dW! (1)

with a non-constant diffusion coefficient o, invariant measures are not absolutely
continuouswith respect to Gaussian measuresand do not admit explicit expressions.
If o does not depend on x, then the corresponding operator is given by

o]

La gy = Z[Gzagnfﬂ + Budy, ),
n=1
where B, (u) = —n%u, + (F (-, u), na),. If o depends on x, then

o0 o0
Lapy = Z Aijon; 0y, + Z By, 9y, ¢,
i,j=1 n=1

1
WhereAl-j(u):f a(x,u)zm(X)nj(x)dx-
0
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The existence of solutionsto the associated elliptic equation is obtained by our
method under thefollowing conditions. Let E = L”[0, 1] withsome p € [2, o0) be
equippedwiththenorm ||u|| g = ||u||L». Assumethat F and o are Borel real-valued
functionson [0, 1] x E such that

1
2 2 2
IFC wlzllullz < c1+ ellull, f o(x,u)*dx < c2+ e2llully,
0

o0
ande1, s2 > Oaresuchthat e; 4 2e2 3 j4~2 < 2, where § € (0, 1) is such that

j=1
we have the embedding
o
Xo = {u: |u|(2) = Zj‘szﬁ < oo} c LP[0, 1].
j=1

By the Sobolev embedding theorem, it sufficesto take § sufficiently closeto 1.
Finally, suppose that, for al » and j, the functions u +— fol F(x, u)n,(x)dx
and u — fol o (x, u)n, (x)n;(x) dx are continuous on E.

Proposition 7.4. Under the above conditions, there exists a probability measure
1 on E such that LijM = Owithrespect to 7 6,°(E, {I,}).

Proof. Let us consider the Lyapunov function similar to the one considered in
the case of the space-time white noise Burgers equation (see Proposition 7.2):

o0

V() = Y j®~2u5. Inthe case when o does not depend on x, the elliptic opera-
=1

tors L, on E, are given by

Lag@) =) o?)d] o) + ) Bj)dy, 9.

=1 j=1

In order to apply the same techniques as above, it suffices to observe that

> S (F@.ny) 2 = IF G zlullz

and Y 32, j%u;o,, V() = 2ulf. In the case when o may depend on x,

the reasoning is similar, although the first term in the expression for L, becomes
1

i j<n Aij )y, 0y 0. Now it remainsto usethe estimate | A;j (u)| < / o (x, u)?
e 0

dx. O

Clearly, theaboveassumptionson F and o arefulfilledif F(x, u) = Fo(x, u(x))
and o (x, u) = oo(x, u(x)), where Fy and og are uniformly bounded Borel func-
tions continuousin the second argument. We remark that our assumptionson F and
o areweaker than those in [47] where both functions were uniformly bounded and
uniformly Lipschitzian. The condition of the linear growth of F' can be replaced by
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apolynomial bound provided that some extra coercivity condition isimposed. In
the case of abounded o, resultsin this direction (concerning existence of the pro-
cesses and their invariant measures) have been obtained in [20]. Finally, note that
in the above results the functions B,, do not correspond to any Xo-valued drift B,
i.e., they aretypical for application of the technique developed in this paper.

8. Regularity

A difficult problem isto prove the existence of logarithmic derivativesfor solutions
of the elliptic equation (3.1). Considerable progress has been achieved in the finite
dimensional case, but ininfinitedimensionsonly afew special resulsare known (cf.
[1], [212], [15]). Yet another specia result will be proved below, but now we give a
sufficient condition which ensures that the measure . constructed in Theorem 5.3
has alogarithmic gradient (cf. [38], [39], [14], [15]).

In this section, we assume as above that {/,,} is a point separating sequence of
continuous linear functionalson X and {e,,} C X issuchthat /,,(ex) = 8uk.

Theorem 8.1. Let u be a probability measure that satisfies (3.1) with respect to
the class 7657 (X, {I,}). Suppose that (B1, ..., By) = VGu(l1,... ,1y) + Dy,
where G, is a continuoudly differentiable function on R”, D,, is a Borel mapping
with valuesin R", and

s&;p | Dill 2,0 iy < 00 (8.1)

Supposethat B, € L?(u) for every n. Then . is differentiable along each e, and

185 L2y < I1Bull 2y + Stljp I Dicll L2, RE)- (8.2)

Proof. Let P,x = l1(x)er + --- + I,(x)e, and let |IE, stand for the conditional
expectation with respect to the measure . and the o -field o, generated by P,,. Set
Sy = Bie1 + --- + Bye,. We denote by u,, the image of n under the projection
P,. It isreadily seen (see the proof of [15, Proposition 3.3]), that the measure .,
solvesthe elliptic equation L i1, = O with

Lof =) [92.f + 3; fEqB;]
j=1

and has the logarithmic gradient 8" on E,, E,, being equipped with the H-norm.
We shall identify (E,, | - |,,) with R”. Let us show that

B" = E,S, + Ay,

where

/ |Anl2 dpn < NEx D72, gy < I1DnllZ2, gy (83
E,
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By our hypothesis,

IE, S, = Z IE;Bjei = VG, ... ,1Iy) + E,Dy.
j=1
As shown in [15, Theorem 3.1], 8" is the orthogonal projection of IE, S, to the
closure I" of {D,, ¢, ¢ € CS°(E,)} inthe Hilbert space L?(u,, E,). We observe
that VG, (1, ... ,1l,) € T (see[45] or [21]). Therefore, we get (8.3). Let now
v e F65° (X, {l;}) andlet n € N befixed. For any m > n such that v depends
only onl; with j < m, one has

/aenwdﬂm = _/w(ﬂm’en)H diim
E,

Em

= _/w(IEmSm»en)H dﬂm_/w(Amaen)H ditm
En Ep

< W”LZ(MJ f IE s B |2 i + 1112, f | Aml2 di

En En

< Wllz2qunlBallr2eu + 11220,y SUP | Dkl 12¢ RE)-
k

It followsthat gL, existsand its L?(1)-norm is majorized by the right-hand side of
(8.2) (see, eg., [15, Lemmal1.4] or [9, Proposition 2.6.1]). O

Remark 8.2. It follows from (8.2) that the measure u is differentiable along al
directions i in the Hilbert space

o
Ho={x: vl =D ety ?).
=1

where ¢, = [|By |17, + 1. Moreover, |8/ 12, < Ihf%,.

Theorem 8.1 applies to the situation of Example 4.6 provided the additional
condition (8.1) is satisfied. However, in that specific case, more can be shown:
namely, any solution p of (3.1) isits symmetric solution, i.e., the g, ’s exist and
B, = By. In the probabilistic interpretation, this means that any invariant proba-
bility for the diffusion generated by the Gibbs measure is Gibbsian with respect to
the same specifications.

Theorem 8.3. Suppose that in the situation of Theorem 8.1 one has the following
stronger condition:

nanc]o || IEn Dn ”LZ(;,L,R") - O (84)

Then 8 = B, u-ae.
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Proof. Lete > 0befixed and let uschoose kg € N suchthat for all kK > kg one has

k
/ IExPcB — VGi|? du = f > IED, [Pdp < 2, (8.5)
n=1

which is possible by (8.4), and set
Rii=(BL, ... B1Y).
Keeping k > ko fixed, for every ¢ € Cgo(R"), one has from the eliptic equation
that
/(IEkPkB — IEx Ry, V), di = /(PkB — R, V), du = 0. (8.6)

We observe that the projection u; of u under P, has the logarithmic gradient
Bk = IEx R, on Ey (where as before Ey is equipped with the H-norm and we
identify Ej with R¥). There exist two functions 1, ¥» € C5°(R*) such that

g2

/ B = VY5 dux +/ VG = Valfy duk < -
Then
/ |BH* — VG — (Vi1 — Vl/fz)lf, duy < €% (8.7)
Taking into account (8.6) with ¢ = ¥r1 — ¥r2, (8.5), and (8.7), we obtain
2
”IEkPkB - :3#]{ ”LZ(V.,H)
= (IEkPkB — ﬂuk, VI/f)LZ(,LL,H)
+ (IEx Px B — B**, IEx Px B — B+ — VI/f)LZ(,L,H)
= (ExPB — ", IE P B — B — VI//)LZ(H,,H)
= (Ex B — B, VG — B — VI/I)LZ(M’H)
+ (IEx Py B — B**, IEx Py B — VG2, 1)
< NEx Pk B — B\l 204 iy IVGr — B = V¥l L2, )
+ 1Bk Pic B = B"* Nl 12, 1) Bk P B—V G|l 12, 1)
< 2¢||I€x Pk B—B"* |l 12,1, 1y
Therefore,

/|IEkB,- — BBl P dp = / IExB; — B4 dp < 462,
By the martingal e convergence theorem, letting & tend to infinity we obtain
/ |Bi — BliPdp < 4¢?,

whence B; = B, =0 p-ae, sincee > 0wasarbitrary. O
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Corollary 8.4. Suppose that in the situation of Theorem 8.1, there exists a non-
negative function ® asin Theorem 4.1 such that

1D l? < £ ®, (88
where IimOo em = 0.Then B, = B, p-ae
Example 8.5. Condition (8.8) isfulfilled in the situation of Example 4.6 with

By(x) =y, Va () + Y O, Waj (X, X))
J#n

provided that W,, ; = W; n, 0y, Vi (X)X, < c1 — klx,|%, and
185, Vi Con)| < ca(L+ 160 1%), 18, Wi,y x0)| < i (L4 2|78+ 11970,
where the numbers ¢, ; satisfy the following additional condition: ¢, ; < gnq;.

The following result on regularity of solutions can be informally interpreted in
terms of the time-reversal of the corresponding diffusions. Its finite dimensional
versionisexactly this: if 1 solvesédliptic equation (3.1) on R" with B p-square-in-
tegrable, then there exists a Markovian semigroup (7;),>o With invariant measure
wandgenerator Lg f = Af + (B, V f); moreover, thereisadiffusion & with tran-
sition semigroup (7;);>o. The drift term can bewrittenas 8 + §, where 8 = Vp/p
and § is orthogonal in L2(u, R") to the gradients of smooth compactly supported
functions. Clearly, u also solvesequation (3.1) withthe“dual” drift B= B—35.The
diffusionwithgenerator L f = Af+(B, V f) isthetime-reversal of £; inanalytic
terms, Ly is the generator of the dual semigroup. It is now obviousthat g can be
found from the equality B + B = 28. Inthe next proposition, we do not assumein
advancethat theadjoint operator hasthestructure Lz f = A f +(B V f) withsome
B, but this antici pated formulais, of course, implicitly behind our calculations.

Proposition 8.6. Let 1« bea probability measureon X andlet B, € L2(u),n € N.
Suppose that . satisfies equation (3.1) with respect to 7" = F€°(X, {1,}). As-

sume also that /; € L?%(u) for some j. Then p is differentiable along ej with
Be; e L%(n) preC|ser when /; belongs to the domain of the adjoint operator for

Lpf=) (02 f+Bude,f)  withD(Lp) = FCX (X, {I}).
n=1

In addition,

p— Lili+B; (8.9)
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Proof. We first look at the case X = R” in more detail. Let L3 = 0 with
|IB| € L?(w)and Ly f = Af + (B, Vf), f € C5°(R"); note that in the case of a
globally u-integrable drift B, there is no difference between the classes Cg° (R")
and C°(R") for the interpretation of (3.1). We recall that, as shown in [15], u has
adensity p € WHH(R") and that 8 := Vp/p € L?(u, R"). Let us verify that the
operator Lz f = Af + (B, v, where B = 2 — B, coincideson C;°(R") with
theadjoint to L on L?(). Indeed, let f, g € C°(R™). Weknow that B — B = §,
where § is orthogonal to every V¢, ¢ € Cg°(R"), in L?(u, R™). Then B= B —34.
Integrating by parts, we obtain

/Lgfgdu=/LBngdx
—_ f (V£ Ve du - f (V /. Vp)gdx + f (B.V f)gdyu

—/(Vf, Vg) du+/(8, Vigdu.

In asimilar manne,
[asran=- [1.01au- [6.Vorsdu
In order to conclude that
[ arsan= [ Lz san. (8.10)

it remains to note that [ (8, V(fg)) du = 0. Clearly, (8.10) holds true also for all
f, g € C3(R"). Assume now that x; € L?(u) (which is not always the case, of
course). Thenweset Lyx; := Lgx; = Ej and observe that (8.10) holds true also
for x; in place of g. Actualy, this follows from the above calculations, but is also
adirect consequence of (8.10) with g(x) = ¢(x;), where ¢ € Cg"(Rl) is such
that ¢(r) = ¢t on [—r, r] with r so large that the support of f is contained in the
centered ball of radius r. Since Ej = 2(B,ej) — Bj € L?(1), (8.10) is valid for
al f € C;°(R") and g = x, and thefunctional f — [ Lp f x;du iscontinuous
with respect to the L2(x) norm on C;°(R™), which is equivalent to the inclusion
Xj € D(L ).

The above calculation enables us to reduce the general caseto that of R”. Sup-
posefirst that B.; existsandisin L2(u). Let f € Z%5°(X, {I,}); we observe that
equation (3.1) is satisfied also with respect to /%"O(X {1,}) due to the integra-
bility of the B,,’s. We may assume that f depends only only,..., L, withn > j.
In fact, everything reducesto the case X = R*°, since we can take the embedding
(In)52 4 X — R*™. Therefore, weassumefurther onthat the/,’ sarethe coordinate
functions on R* and ¢, is the standard n-th “unit” vector in R*°. The necessity
part could be proved directly by the same calculations as above if we knew the
differentiability of © along ey, ... , e,, and not only along e;. However, it is easy
to overcome this difficulty by considering the image w,, of u under the projection
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Pyx = (x1,...,x,) toR". Let [E, g denote the conditional expectation of g with
respect to the measure . and the o -field generated by P,,. We know that 1, satisfies
the elliptic equation on R with drift coefficient D" := (IE, By, ... , IE,B,) and
that it has g;" as u,-square integrable partial logarithmic derivatives. Moreover,
asiseasily verified (see [15]), one has

EBL, (x) = B (Pax)  p-ae. (8.12)

According to the finite dimensional case and (8.11), we have by the definition of
the conditional expectation

n
/LBflj dy = /[Z 02 11+ 8, fIEu Bil; | dian

X Rre =1

=ff(2ﬁéj" — IE\Bj) dpun =/f<2ﬂg, — B))dy.
R~ X

Therefore, Ll; = 28;. — B;, where Lp is considered on #%;°(X, {,}) (or
on the smaller domain 76 5°(X, {I,}), which makes no difference in the present
situation). Conversely, assumethat L7;/; exists. We have to verify the equality

1 1
/%-fdﬂ=—§/f(L}§lj+Bj)du= —E/(L3f1j+fBj)d,u (8.12)
X

X X

for smooth cylindrical f. Wemay assumeagainthat f(x) = ¥ (x1, ... , x,), where
¥ € C;°(R") andn > j. Employing the same notation as above and making use
of (8.11), werewrite (8.12) as

n

/86_/fdu,, - -% /(1,- S 102 f + 0, fIEnBi] + fIE,,Bj> dun.  (8.13)

Rn Rn i=1

Note that the right-hand side of (8.13) equals

1
—5 [ (rees €+ 18 ) diws =~ [ 182 du.
Rn

Rn
which is exactly the left-hand side of (8.13). ]

Many results in this paper admit extensions to the manifold case. Thisis done
in[18].
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