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Abstract. We introduce and study a new concept of a weak elliptic equation for measures on
infinite dimensional spaces. This concept allows one to consider equations whose coefficients
are not globally integrable. By using a suitably extended Lyapunov function technique, we
derive a priori estimates for the solutions of such equations and prove new existence results.
As an application, we consider stochastic Burgers, reaction-diffusion, and Navier-Stokes
equations and investigate the elliptic equations for the corresponding invariant measures.
Our general theorems yield a priori estimates and existence results for such elliptic equa-
tions. We also obtain moment estimates for Gibbs distributions and prove an existence result
applicable to a wide class of models.

1. Introduction

In this work we consider weak elliptic equations for measures on infinite dimen-
sional spaces that can be formally written as L∗A,Bµ = 0 in the sense that∫

LA,Bψ dµ = 0, ∀ψ ∈K, (1.1)

where K is a certain class of test functions on X and LA,B is formally given by

LA,Bψ =
∞∑
i,j=1

Aij ∂ei ∂ej ψ +
∞∑
j=1

Bj∂ej ψ (1.2)

with some µ-measurable functions Aij and Bj and vectors ej ∈ X. In fact, A and
B are regarded merely as collections A := {Aij }i,j∈N and {Bj }j∈N, respectively.
In many cases, however, A is an operator-valued function and B is a vector field.
Typical examples of such a situation are elliptic equations for invariant measures
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of diffusion processes and integration by parts formulas for measures. In the finite
dimensional case, a natural choice of K is the class C∞0 (R

n) of smooth compactly
supported functions (in this case the series becomes a finite sum). In infinite di-
mensions, there are many natural possibilities to choose K; for example, one can
take the class of smooth cylindrical functions or smooth functions ψ of bounded
support possessing bounded partial derivatives ∂ej ψ and ∂ej ∂ej ψ . Moreover, the
interpretations of (1.1) and (1.2) may be different. Our definition is this: if, say
Aij = δij , then (1.1) and (1.2) are interpreted as

∞∑
n=1

∫
X

[
∂2
en
ψ + Bn∂enψ

]
dµ = 0, ∀ψ ∈K. (1.3)

We show that under certain technical conditions, it is possible to obtain a pri-
ori estimates for solutions of such equations and prove existence results for them.
Particular emphasis is given to applications. More precisely, we consider elliptic
operators of type (1.2) corresponding to stochastic partial differential equations
such as Burgers, Navier–Stokes, and reaction-diffusion equations. We obtain new
existence results and also improve results obtained in [38], [39], [5], [6]. As com-
pared to [5], [6], we prove existence results (in particular, for Gibbs measure) under
partly weaker assumptions. An advantage of the method employed in this paper is
that it is universal enough to apply to all these cases. Furthermore, from a more
technical point of view it does not require constructing scales of Hilbert spaces, and
the verification of the various conditions in concrete examples becomes more direct
and elementary. In addition, our method extends to the manifold case (see [18]).

A typical feature of the above mentioned examples of applications is that the
drift term B is only defined on a µ-measure zero set. For example, in the case of
the stochastic Burgers equation, the measure µ is defined on the Sobolev space
H

2,1
0 of functions u such that u(0) = u(1) = 0 and u, u′ ∈ L2(0, 1), whereas
B is heuristically given by the expression B(u) = u′′ − ψ(u)u′ + f . Howev-
er, there are well-defined “coordinate functions” Bn of this non-existing drift B:
Bn(u) = −(u′, η′n)2 −

(
ψ(u)u′, ηn

)
2 + (f, ηn)2, where {ηn} is an orthormal basis

in L2(0, 1) such that ηn ∈ H 2,1
0 . The situation is similar in the cases of the sto-

chastic Navier–Stokes equation, stochastic reaction-diffusion equation, and Gibbs
measures. Nevertheless, even in the case where the functions Bn are really com-
ponents of a well-defined mapping B, we obtain new results. In many cases, these
results enable us to find a mapping B defined µ-a.e. and taking values in an ap-
propriate enlargement of the original space X such that the Bn’s become indeed
the coordinates of B. For example, in the above considered case of the stochastic
Burgers equation, B can be regarded as a mapping to a suitable negative Sobolev
space.

We want to emphasize that although one of our motivations is the study of
invariant measures of infinite dimensional diffusion processes, we do not discuss
the processes themselves in this paper. We even never assume the existence of the
processes associated with the elliptic operators in question. However, it is known
(see, e.g., [48]) that, under very broad assumptions, once we have a probability
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measure µ that solves (1.1), one can construct a diffusion process with generator
LA,B having µ as an invariant (or sub-invariant) measure.

The organization of this paper is as follows: after introducing some notation
and definitions in Sections 2 and 3, we prove some a priori estimates (in Section 4)
which are of their own interest and which are necessary for the subsequent exis-
tence proofs given in Section 5. Section 6 is devoted to the special symmetric case.
In particular, Gibbs measures are considered here. In Section 7 we present other
applications. The question of regularity of invariant measures (discussed previously
in [1], [12], [15]) is addressed in Section 8. More precisely, we give conditions
ensuring that an invariant measure has partial logarithmic derivatives. Some results
in this paper have been announced in [17].

2. Notation

Throughout, X is a locally convex space with Borel σ -algebra B(X) and topo-
logical dual X∗. Let M(X) denote the set of all signed measures on B(X) with
finite total variation. Given a family of linear functionals � ⊂ X∗, we denote by
FC∞b (X,�) the class of all functions f on X of the form

f (x) = ψ(
l1(x), . . . , ln(x)

)
, where ψ ∈ C∞b (Rn), li ∈ �.

If � = X∗, then we write FC∞b (X) instead of FC∞b (X,X
∗). In particular, we

shall deal below with the classes FC∞b (X, {ln}) corresponding to countable sets
{ln} ⊂ X∗. Replacing C∞b (R

n) by C∞0 (R
n) we obtain the classes FC∞0 (X, {ln})

and FC∞0 (X) (these classes are not linear spaces).
Given a Banach space X, we denote by Ck0 (X), k ∈ N, the class of all func-

tions f with bounded supports such that f has k bounded and continuous Fréchet
derivatives.

Definition 2.1. We say that a measure µ ∈M(X) is differentiable (in the sense of
Fomin) along a vector h ∈ X with respect to a certain class K of bounded Borel
functions if every f ∈ K has a bounded (or just µ-integrable) partial derivative
∂hf and there exists a µ-measurable function βµh such that, for all f ∈ K, one
has fβµh ∈ L1(µ) and ∫

X

∂hf dµ = −
∫
X

f β
µ
h dµ. (2.1)

The function βµh is called the partial logarithmic derivative of µ along h with
respect to K.

The above definition gives a kind of “local” partial logarithmic derivatives. If
K =FC∞b (X) and βµh ∈ L1(µ), then we arrive at the usual Fomin differentiabil-
ity (see, e.g., [9]). An advantage of our more general definition is that it enables us
to consider logarithmic derivatives with very weak integrability properties, which
is convenient, e.g., in the study of Gibbs measures. Below we consider concrete
examples; we only observe here that if K = K1

c(X) is the class of all bounded
Borel functions f onX with compact supports such that the partial derivatives ∂hf
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exist and are bounded, then one can consider logarithmic derivatives βµh that are
µ-integrable only on compact sets.

Let H ⊂ X be a separable Hilbert space (fixed for the rest of this section)
continuously and densely embedded into X. This embedding generates a standard
embedding j

H
: X∗ → H defined by means of the Riesz representation as follows:

(j
H
(l), h)

H
= 〈l, h〉, ∀ l ∈ X∗, h ∈ H.

A typical example is X = R
∞ (the space of all sequences with the topology of

pointwise convergence) and H = l2. Then X∗ = R
∞
0 is the space of finite se-

quences and j
H
(l) is represented by l itself.

Definition 2.2. A µ-measurable mapping βµ : X→ X is called logarithmic gra-
dient of µ associated to H with respect to a fixed class K if, for every l ∈ X∗, the
measure µ is differentiable along h = j

H
(l) with respect to K and 〈l, βµ〉 = βµh

µ-a.e.

Logarithmic gradients were introduced in [2], where the case of globally integ-
rable βµh was considered. Gibbs distributions and invariant measures of diffusion
processes provide important examples which motivate the study of local logarith-
mic gradients. The logarithmic gradient may not exist even if µ is differentiable
along all directions inH (see examples in [15], [9]). This is one of the reasons why
it is useful to consider “generalized logarithmic gradients” of the form (Bn)

∞
n=1,

where Bn = βµen , for a given sequence {en} in H . This was already done in [15,
Section 6] and was essential for the main result obtained there. We shall see below
that under broad assumptions, it is possible to enlarge the space X with a measure
µ differentiable along a dense linear subspace such that the logarithmic derivative
exists on the enlargement. Henceforth, however, we shall not necessarily assume
that we are additionally given such an embedded Hilbert space H .

3. Weak elliptic equations for measures

Let B = (Bn) be a sequence of Borel functions on X and let {en} be a sequence
in X. Suppose we are given a certain class K of Borel functions on X such that
the partial derivatives ∂eiψ and ∂ej ∂eiψ exist for all ψ ∈K and i, j ∈ N and are
bounded.

Definition 3.1. We shall say that µ ∈M(X) satisfies the weak elliptic equation

L∗Bµ = 0 (3.1)

with respect to the class K if, for every ψ ∈K, one has Bn∂enψ ∈ L1(µ) for all
n and

∞∑
n=1

∫
X

[
∂2
en
ψ + Bn∂enψ

]
dµ = 0, ∀ψ ∈K. (3.2)
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In this case, we say that LA,B = LB is heuristically given by

LBψ =
∞∑
j=1

[
∂2
ej
ψ + Bj∂ej ψ

]
. (3.3)

However, no assumptions about convergence of the series in (3.3) are made.

Remark 3.2. The above definition depends on the choice of {en} in an essential
way (e.g., K already depends on {en}). For simplicity, we nevertheless only use
the terminology “with respect to K” without mentioning {en} explicitly.

As in the symmetric case (i.e., Bn = βµen and the latter exists) already noticed
in [5], [6], this definition enables one to consider equation (3.1) without global
integrability assumptions on Bn made in our previous work [14], [15], [12]. Note
that also here the functions Bn may not correspond to any “drift” B on X.

Let {ln} be a sequence in X∗ such that ln(en) = 1 and ln(em) = 0 for all n and
m �= n. Given a Borel mapping B : X → X, we set Bn = 〈ln, B〉. Then we can

consider the operator LB =
∞∑
n=1

[
∂2
en
+Bn∂en

]
and (3.1) becomes the characteristic

equation for the invariant measures of the diffusion with the drift B/2 (and Wiener
process associated with {en}) provided it exists. In order to make sense of LB it
suffices to assume that Bn ∈ L1(µ) and take for K the class FC∞b (X, {ln}), on
which LB is defined by its natural expression.

However, there is a lot of examples (some of which are discussed below) where
LB is not defined on K (hence (3.3) has no sense) and (3.1) in itself really only is
a symbolic expression for (3.2).

Let us observe that equation (3.1) is trivially satisfied if the βµen ’s exist with
respect to the class K, ∂enψ ∈K for all ψ ∈K and n ∈ N, and Bn = βµen µ-a.e.
Indeed, then every term in the series in (3.2) vanishes separately. In particular, large
classes of Gibbs measures satisfy weak elliptic equations with respect to suitably
chosen classes of test functions (see [3], [4], [5], [6]).

4. Some a priori estimates

Our next goal is to establish some a priori estimates for the solutions of (3.1). In the
subsequent theorem we extend the Lyapunov functions technique to our situation.
Our reasoning uses a modification of standard arguments going back to Hasminskii
(see, e.g., [37]) and used also by many other authors studying stochastic differential
equations (see, e.g., [8], [14], [15], [16], [22], [26], [38], [39], [40], [41], [42], [43],
[52], [53]). LetB := (Bn), K, and {en} be as defined at the beginning of Section 3.

Theorem 4.1. Let µ be a probability measure on X satisfying equation (3.1) with
respect to K. Suppose that V is a nonnegative Borel function onX such that ∂2

en
V ,

n ∈ N, exist and ϕ ◦ V ∈ K for every ϕ ∈ C∞0 (R1). Let $ be a nonnegative
Borel function on X that is µ-integrable on the sets {V ≤ c}, c ∈ [0,∞) (e.g.,
let $ = χ ◦ V , where χ is a nonnegative locally bounded Borel function on R

1).
Assume, in addition, that LBV ≤ C −$ µ-a.e. in the following sense: there exist
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µ-measurable functions λi such that on the sets {V ≤ c}, c ∈ [0,+∞), the series
∞∑
n=1
λn converges in L1(µ) and one has

∂2
en
V (x)+ Bn(x)∂enV (x) ≤ λn(x) and

∞∑
n=1

λn(x) ≤ C −$(x) µ-a.e.,

(4.1)

where C > 0. Then ∫
X

$dµ ≤ C. (4.2)

Finally, the hypothesis that $ ≥ 0 can be replaced by the following one: $ =
$1 +$2, where $1 ≥ 0 and $2 ∈ L1(µ).

Proof. Certainly, (4.2) follows trivially by integrating the estimate LVB ≤ C −$
and making use of the equality

∫
LVB dµ = 0. However, due to the above in-

terpretation of both relations, some justification is needed. By our hypothesis, we
have (3.2) with ψ = ϕ ◦ V for every ϕ ∈ C∞0 (R1). Then the same is true for
every ϕ ∈ C∞(R1) such that ϕ = const outside some interval, since ϕ − const ∈
C∞0 (R

1) and (3.2) is trivially true for ψ = const . Now let us fix an even function
ζ ∈ C∞(R1) such that ζ(t) = t if |t | ≤ 1, ζ(t) = 2 if t ≥ 3, 0 ≤ ζ ′(t) ≤ 1 and
ζ ′′(t) ≤ 0 if t ≥ 0. For j ∈ N set ζj (t) = jζ(t/j) if t ≥ 0 and ζj (t) = ζj (−t)
if t ≤ 0. Clearly, 0 ≤ ζ ′j (t) ≤ 1 and ζ ′′j (t) ≤ 0 if t ≥ 0. In addition, ζj (t) = t if
t ∈ [0, j ] and ζj (t) = 2j if t ≥ 3j . Hence, (3.2) is satisfied for ψ = ζj ◦ V . We
observe that

∂2
en
(ζj ◦ V )+ Bn∂en(ζj ◦ V ) = ζ ′j ◦ V

[
∂2
en
V + Bn∂enV

]+ ζ ′′j ◦ V (∂enV )2
≤ ζ ′j ◦ V

[
∂2
en
V + Bn∂enV

] ≤ (ζ ′j ◦ V )λn.
Integrating with respect to µ and making use of (3.2) we arrive at the estimate∫

X

(ζ ′j ◦ V )$dµ ≤ C
∫
X

ζ ′j ◦ V dµ ≤ C.

Now the desired estimate follows by Fatou’s lemma, since ζ ′j ◦V ≥ 0 and lim
j→∞

ζ ′j ◦
V = 1 µ-a.e. The case where$ = $1+$2, where$1 ≥ 0 and$2 isµ-integrable,
is proved similarly. ��

Remark 4.2. Suppose that the functions λn in the above theorem can be written as
λn = un − wn, where un and wn are nonnegative functions, integrable on the sets

{V ≤ r}. Then the L1(µ)-convergence of the series
∞∑
n=1
λn on the sets {V ≤ r}
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follows from the integrability of the series
∞∑
n=1
un on the sets {V ≤ r}. Indeed, let

ζr be the function introduced in the proof of Theorem 4.1. Then, as we have seen,

∂2
en
(ζr ◦ V )+ Bn∂en(ζr ◦ V ) ≤ (ζ ′r ◦ V )λn = (ζ ′r ◦ V )un − (ζ ′r ◦ V )wn.

By the above estimate and (3.2) it follows that

∞∑
n=1

∫
{V≤r}

wn µ(dx) ≤
∞∑
n=1

∫
X

(ζ ′r ◦ V )wn µ(dx) ≤
∞∑
n=1

∫
X

(ζ ′r ◦ V )un µ(dx)

≤
∞∑
n=1

∫
{V≤3r}

un µ(dx) <∞,

since 0 ≤ ζ ′r ≤ 1, ζ ′r ◦ V = 1 on {V ≤ r}, and ζ ′r ◦ V = 0 on {V > 3r} .

Remark 4.3. The assumption that the functions in K and the functions V and $
in Theorem 4.1 are Borel can be replaced (as is obvious from the proof) by the
assumption that those functions are µ-measurable. We required the Borel measur-
ability just in order to make the initial setting independent of µ. The condition that
V and functions from K have partial derivatives along en everywhere serves the
same purpose. It is obvious from the above proof that we only need those derivatives
µ-a.e. Finally, one can assume that the functions V and$ take values in [0,+∞],
but are finite on a linear subspace of full µ-measure containing the sequence {en}.
The same concerns all the results below. In typical applications, functions ϕ ∈K,
V , and $ are defined on a proper linear subspace X1 of the initial space X with
µ(X1) = 1 such that the hypotheses of Theorem 4.1 are fulfilled on this smaller
subspace (in particular, {en} ⊂ X1 and the functions in question are differentiable
along en). We shall use this simple observation below.

In the symmetric case, i.e., when Bn is the logarithmic derivative of µ along en
with respect to K, our hypotheses on V can be modified under assumptions which
are weaker in many cases.

Theorem 4.4. Let µ be a probability measure on X and let Bn be the logarithmic
derivative of µ along en with respect to K and let U and V be µ-measurable
nonnegative functions such that (i) ∂2

en
V and ∂enU exist µ-a.e. and ∂enU∂enV ≥ 0

µ-a.e., (ii) for every ϕ ∈ C∞0 (R1), one has ϕ(U)∂enV ∈K, ϕ(U)∂2
en
V ∈ L1(µ).

Finally, suppose that (4.1) holds, where the series
∞∑
n=1
λn converges in L1(µ) on

the sets {U ≤ c}, c ≥ 0. Then one has (4.2).

Proof. Let ϕ ∈ C∞0 (R1). Since ϕ(U)∂enV ∈K, one has

∂en

[
ϕ(U)∂enV

]
= ϕ(U)∂2

en
V + ∂enUϕ′(U)∂enV ,
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where both terms on the right are µ-integrable, since their sum is bounded and
∂2
en
V ϕ(U) ∈ L1(µ). If ϕ is such that ϕ(U) ≥ 0 and ϕ′(U) ≤ 0, we obtain∫ [

∂2
en
V + Bn∂enV

]
ϕ(U) dµ = −

∫
ϕ′(U)∂enV ∂enU dµ ≥ 0.

Hence
∫
λnϕ(U) dµ ≥ 0, consequently

C

∫
ϕ(U) dµ ≥

∫
ϕ(U)$dµ.

Taking ϕn ∈ C∞0 (R1) such that 0 ≤ ϕn ≤ 1, ϕ′n ≤ 0 on [0,+∞), ϕn = 1 on
[−n, n], we arrive at (4.2) by Fatou’s theorem. ��

Example 4.5. Let µ be a probability measure on X satisfying equation (3.1) with
respect to K. Suppose that V is a nonnegative Borel function onX such that ∂enV ,
∂2
en
V exist for all n ∈ N and ϕ ◦ V ∈ K for every ϕ ∈ C∞0 (R1). Assume, in

addition, that LBV ≤ C − kV α µ-a.e. in the same sense as in the above theorem
for some α ≥ 0, k > 0. Then ∫

X

V α dµ ≤ C
k
. (4.3)

Let us consider an example which extends a result from [5], [6], where the spe-
cial symmetric case was considered and more restrictive assumptions on Bi were
used. Relations of this example to the results in [38], [39], [15] will be commented
below.

If J = (Js,t )s, t∈S is an infinite symmetric matrix with nonnegative entries Js,t
indexed by a countable set S and q = (qs), s ∈ S, are positive numbers such that∑
s∈S
qs < ∞, then we write Jq ≤ Cq with C ∈ [0,∞) if

∑
s∈S
qsJs,t ≤ Cqt for

every t ∈ S. We denote by l1(q) the weighted l1-space of all families x = (xs)s∈S
such that

‖x‖l1(q) =
∑
s∈S
qs |xs | <∞.

We observe that the condition Jq ≤ Cq is satisfied if Jt,s = bt,sct,s , where
bt,uqu ≤ C1qt and

∑
u∈S
ct,u ≤ C2 for all t, u ∈ S. In particular, the latter condition

is fulfilled if S = Z
d and Jn,j = a(n− j), where a is an even nonnegative function

such that a(n) ≤ const. q2
n and qjqn−j ≤ const. qn for all n, j ∈ Z

d . For example,
the latter holds if qn ∼ |n|−r , r > d , and a(n) ≤ const.|n|−2r .

We shall assume throughout that J induces a bounded operator on l1(q), i.e.,
one has

∑
s,t∈S

qtJt,s |xs | ≤ λ
∑
t∈S
qt |xt | for all x ∈ l1(q) and some λ ≥ 0. The min-

imal possible λ is the operator norm ‖J‖L(l1(q)). Clearly, the condition Jq ≤ Cq
implies ‖J‖L(l1(q)) ≤ C.
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As an example of suitable J and q let us take the integer lattice S = Z
d in R

d

and for n ∈ Z
d set qn = (|n| + 1)−r , where r > d , so that

∑
n∈S
qn < ∞. Let the

following condition employed in [6] be satisfied:

‖J‖p = sup
n∈Zd

∑
j∈Zd

(1+ |j |)2pJ 2
n,j+n <∞, ∀p ∈ N. (4.4)

Then ‖J‖L(l1(q)) <∞. Indeed, even

∑
j∈S
Jn,j qj ≤ C1

(|n/2| + 1
)−r + ∑

|j |<|n|/2
Jn,j qj

≤ C1
(|n/2| + 1

)−r + C2
(|n/2| + 1

)−r
≤ C3qn,

since Jn,j ≤ ‖J‖r (1+ |n− j |)−r .

Example 4.6. LetX = R
S and letX0 be the weighted Banach space of sequences

such that

|x|0 =
(∑
s∈S
qs |xs |α

)1/α
<∞,

where α ≥ 2 and q = (qs)s∈S ∈ l1. Suppose that for J = (Js,t )s,t∈S as above

‖J‖L(l1(q)) ≤ λ,
∑
t∈S
Js,t ≤ λ.

Assume that B = (Bs)s∈S is a collection of Borel functions on X0 with

xsBs(x) ≤ c − (λ+ ε)|xs |α +
∑
t∈S
Js,t |xt |α (4.5)

for some positive c, ε. Suppose that µ is a probability measure on R
S such that

µ(X0) = 1 and that the Bi’s are µ-integrable on all balls in X0. If (3.1) is satisfied
with respect to C2

0 (X0), where es , s ∈ S, are the standard unit vectors so that the
s-th coordinate of es is 1 and all other coordinates are zero, then one has

∫
X

|xs |α dµ ≤ c + 1

ε
, ∀ s ∈ S, (4.6)

∫
|x|α0 µ(dx) ≤

c + 1

ε

∑
s∈S
qs. (4.7)
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Proof. We observe that
∑
t∈S
Js,t |xt |α < ∞ if x ∈ X0, since ‖J‖L(l1(q)) < ∞. We

shall apply Theorem 4.1 to the function V (x) = ∑
s∈S
qsx

2
s , which is possible by

our hypothesis that α ≥ 2. It should be noted that in order to apply the theorem
cited, we can either refer to Remark 4.3 or simply restrict everything to the space
X0 (equipped with the topology from R

S in order to make | · |0-balls compact).
We have

∂esV (x) = 2qsxs, ∂2
es
V (x) = 2qs.

Let
λs(x) := 2qs + 2qs

(
c − (λ+ ε)|xs |α +

∑
t∈S
Js,t |xt |α

)
.

By our hypothesis, ∂2
es
V + Bs∂esV ≤ λs . For every x ∈ X0, because

(|xs |α)s∈S ∈
l1(q), we have that ∑

s,t∈S
qsJs,t |xt |α ≤ λ

∑
s∈S
qs |xs |α.

Therefore, ∑
s∈S
λs(x) ≤ 2(c + 1)

∑
s∈S
qs − 2ε

∑
s∈S
qs |xs |α.

By Theorem 4.1, we obtain the estimate∫
X

∑
s∈S
qs |xs |α µ(dx) ≤ c + 1

ε

∑
s∈S
qs.

In particular, letting

ξs =
∫
X

|xs |α µ(dx), s ∈ S

we have ξ := (ξs) ∈ l1(q). Let us fix s ∈ S, δ > 0 and consider the function

Vδ(x) = x2
s + δ

∑
t �=s
qtx

2
t , x ∈ X0.

Then

∂2
es
Vδ + Bs∂esVδ ≤ 2qs

(
1+ c − (λ+ ε)|xs |α +

∑
t∈S
Js,t |xt |α

)
= λs,

and for all t ∈ S \ {s}

∂2
et
Vδ + Bt∂et Vδ ≤ 2δqt

(
1+ c − (λ+ ε)|xt |α +

∑
u∈S
Jt,u|xu|α

)
= λt .

By Theorem 4.1, we arrive at the estimate

(λ+ ε)ξs ≤ 1+ δ
∑
t �=s
qt + c+

∑
t∈S
Js,t ξt + δ

∑
t �=s
qt

(
c− (λ+ ε)ξt +

∑
u∈S
Jt,uξu

)
.
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Letting δ→ 0 we have

ξs ≤ 1+ c
λ+ ε +

1

λ+ ε
∑
t∈S
Js,t ξt ,

Denoting the element (k, k, . . . ) ∈ l1(q) by k, the above estimate means that

ξ ≤ (1+ c)(λ+ ε)−1 + (λ+ ε)−1Jξ.

Therefore, for every m ∈ N, one has

ξ ≤ 1+ c
λ+ ε

m−1∑
k=0

(λ+ ε)−kJ k(1)+ (λ+ ε)−mJmξ.

Noting that ‖J‖l1(q) ≤ λ and that (λ+ε)−kJ k(1) ≤ λk(λ+ε)−k , since
∑
t∈S
Js,t ≤ λ,

we arrive at the estimate ξ ≤ 1+ c
λ+ ε

∞∑
k=0

λk(λ+ ε)−k = (1+ c)/ε. ��

Remark 4.7. By considering the functions Vm(x) =
( ∞∑
s=1
qsx

2
s

)m
in the previous

example, one obtains by induction that∫ ( ∞∑
s=1

qsx
2
s

)m
µ(dx) <∞, ∀m ∈ N. (4.8)

A typical situation to which Example 4.6 applies is the case of a Gibbs mea-
sure µ on R

S with the conditional distributions µ( · |xcs ) given by continuously
differentiable densities p(xs |xcs ) such that

Bs(x) = ∂xsp(xs |xcs )
p(xs |xcs )

, x = (xs, xcs ),

provided that the functions Bs satisfy (4.5) and are locally bounded on X0 and
µ(X0) = 1. Indeed, in this case µ satisfies (3.1) with respect to C2

0 (X0). We refer
to [5], [6] for specific examples.

Assume that {ln} is a sequence of continuous linear functionals onX separating
the points in X and that {en} ⊂ X is such that li (ej ) = δij for all i, j .

Example 4.8. Suppose that {qn} ∈ l1 is a sequence of positive numbers such that

X0 =
{
x : |x|20 =

∞∑
n=1
qnln(x)

2 < ∞
}

is a separable Hilbert space continuously

embedded into X. Let µ be a probability measure on X0 such that (3.1) is satisfied
with respect to C2

0 (X0) and let Bn be µ-measurable functions that are µ-integrable
on balls in X0. Assume that

∞∑
n=1

qnln(x)Bn(x) ≤ C − 8(|x|0) (4.9)
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in the same sense as in Theorem 4.1, i.e., there exist functions ζn which are µ-in-

tegrable on balls in X0 such that the series
∞∑
n=1
ζn converges in L1(µ) on balls in

X0 and one has

qnln(x)Bn(x) ≤ ζn(x) and
∞∑
n=1

ζn(x) ≤ C − 8(|x|0) µ-a.e., (4.10)

where 8 is a nonnegative locally bounded function on R
1+ with

lim inf
t→+∞ 8(t) > C +

∞∑
n=1

qn + ε

for some ε > 0. Then

∫
X

|x|p0 µ(dx) ≤
K

(
p, 8, C, ε,

∑∞
n=1 qn

)
ε − p supn qn

(4.11)

for all p ∈ [0, ε/ supn qn). In particular, if, in addition, lim
t→∞ 8(t) = +∞, then

∫
X

|x|m0 µ(dx) <∞, ∀m ∈ N. (4.12)

Proof. Let Vm(x) = |x|2m0 , m ≥ 1, andQ =
∞∑
n=1
qn. Then

∂2
en
Vm + Bn∂enVm = 2mqnVm−1 + 4m(m− 1)q2

nl
2
nVm−2 + 2mqnBnlnVm−1

≤ λn := 2mqnVm−1 + 4m(m− 1)q2
nl

2
nVm−2 + 2mζnVm−1.

The series
∞∑
n=1
λn converges in L1(µ) on every ball in X0 and

∞∑
n=1

λn ≤ 2mQVm−1 + 4m(m− 1) sup
n
qnVm−1 + 2mVm−1

(
C − 8(|x|0)

)

= 2mVm−1

(
Q+ (2m− 2) sup

n
qn + C − 8(|x|0)

)
.

Let us takem := 1+p/2. There exists R > 0 such that 8(t) ≥ C+
∞∑
n=1
qn+ ε for

all t ≥ R. Then for ε′ := ε − p supn qn one has

Q+ (2m− 2) sup
n
qn + C − 8(|x|0) = Q+ p sup

n
qn + C − 8(|x|0) ≤ −ε′
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if |x|0 ≥ R. Therefore,

∞∑
n=1

λn ≤ 2mR2m−2(Q+2(m−1) sup
n
qn+C

)−2mε′Vm−1 = 2mM−2mε′Vm−1,

where M = M(m,Q,C, sup
n
qn, R) > 0. Hence

∫
Vm−1 dµ ≤ M/ε′. It remains

to note that 2m− 2 = p. ��
In a standard way, one also gets exponential moment estimates in the situation

of Example 4.8 when making an appropriate choice of a Lyapunov function:

Example 4.9. Consider the situation of Example 4.8 and assume that lim
t→+∞ 8(t) =

+∞. Let V (x) = u(|x|20), where u ∈ C2(R1) is an increasing function such that
for some δ > 0 one has

(2 sup
n
qn)t

2u′′(t2) ≤ (1− δ)u′(t2)8(t).

Then ∫
u′(|x|20)8(|x|0) dµ <∞.

For example, in order to obtain the integrability of exp
(|x|m0 )

, it suffices to take
u(t) = exp(tm/2) and to require the estimate 8(t) ≥ Ktm with K sufficiently

large. If one needs the integrability of exp
(

exp
(|x|20)), then a suitable function is

u(t) = exp(exp t) and a sufficient estimate is 8(t) ≥ Kt2 exp(t2) with K large
enough.

Proof. We have ∂enV = 2qnlnu′(|x|20), ∂2
en
V = 2qnu′(|x|20) + 4q2

n(ln)
2u′′(|x|20),

and

∂2
en
V + Bn(x)∂enV (x) =

(
2qn + 2qnln(x)Bn(x)

)
u′(|x|20)+ 4q2

nln(x)
2u′′(|x|20)

≤ (
2qn + 2ζn(x)

)
u′(|x|20)+ 4q2

nln(x)
2u′′(|x|20),

where ζn is as in (4.10). By our hypothesis,

∞∑
n=1

((
2qn + 2ζn(x)

)
u′(|x|20)+ 4q2

nl
2
nu
′′(|x|20)

)

≤
(

2Q+ 2C − 28(|x|0)
)
u′(|x|20)+ 4 sup

n
qnu

′′(|x|20)|x|20

≤
(

2Q+ 2C − 2δ8(|x|0)
)
u′(|x|20) ≤ Ĉ − δ8(|x|0)u′(|x|20),

for some Ĉ > 0, where we used that lim
t→+∞ 8(t) = +∞ and that x �→ 8(|x|0)

u′(|x|20) is bounded on balls in X0. ��
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Example 4.10. Suppose that in Example 4.8 one has8(t) = kt2 with k > 2λ sup
n
qn.

Then ∫
X

exp
(
λ|x|20

)
µ(dx) <∞.

In particular, this is the case in Example 4.6, provided α > 2.

Remark 4.11. We recall that in the above results the functions Bn need not be
globally µ-integrable. However, if Bn in Example 4.6 or Example 4.8 satisfies the
estimate |Bn(x)| ≤ Cn + Kn|x|dn0 , the integrability of all powers of | · |0 yields
that Bn is in all Lp(µ). Therefore, in the situation of Example 4.6, the mapping
B = (Bn) µ-a.e. takes values in the weighted Hilbert space

Y =
{
x ∈ R

S :
∑
n∈S
cnx

2
n <∞

}
, where cn > 0 and

∑
n∈S
cn‖Bn‖2

L2(µ)
<∞.

In a similar manner, one can construct a suitable Hilbert space Y in Example 4.8
such that X0 is contained in Y and the functions Bn coincide ν-a.e. with the coor-
dinates of a mapping B : X0 → Y .

The above results extend to the case of a non-constant diffusion term. Let us
give the precise formulations.

Let Aij , Bj : X → R
1, i, j ∈ N, be Borel functions. We shall now define

solutions to the elliptic equation

L∗A,Bµ = 0, (4.13)

where LA,B is heuristically given by LA,Bψ =
∑∞
i,j=1Aij ∂ei ∂ej ψ +

∞∑
n=1
Bn∂enψ .

We say that a Radon measure µ satisfies equation (4.13) with respect to the class
K and the sequence {en} ⊂ X if

∞∑
j=1

∫
X

( ∞∑
i=1

Aij ∂ei ∂ej ψ + Bj∂ej ψ
)
dµ = 0, ∀ψ ∈K, (4.14)

where, for every j , the series
∞∑
i=1
Aij ∂ei ∂ej ψ converges µ-a.e. and the existence

of the above integrals is assumed in advance. We think, of course, of cases where
the matrix (Aij ) is positive definite. However, this is only used in the following
section. Let us give an analogue of Theorem 4.1 in this more general setting; the
proof is the same as above, and we do not repeat it.

Theorem 4.12. Let µ be a probability measure on X satisfying equation (4.13)
with respect to K. Suppose that V is a nonnegative Borel function on X such
that ∂enV , ∂en∂ej V , n, j ∈ N, exist and ϕ ◦ V ∈ K for every ϕ ∈ C∞0 (R1). As-

sume that, for every c ∈ [0,∞), the series
∞∑
i=1
Aij ∂ei V I{V≤c} converges µ-a.e. to



Elliptic equations for measures on infinite dimensional spaces and applications 459

a function from L1(µ) for every j and the series
∞∑
j=1

∞∑
i=1
Aij ∂ei V I{V≤c} converges

in L1(µ) to a nonnegative function. Let $ be a nonnegative Borel function on X
that is µ-integrable on the sets {V ≤ c}, c ∈ [0,∞) (e.g., let $ = χ ◦ V , where
χ is a nonnegative locally bounded Borel function on R

1). Finally, assume that
LA,BV ≤ C−$ µ-a.e. in the following sense: there existµ-measurable functions

λn such that the series
∞∑
n=1
λn converges in L1(µ) on the sets {V ≤ c}, c ∈ [0,∞),

and one has

∞∑
j=1

Anj (x)∂en∂ej V (x)+ Bn(x)∂enV (x) ≤ λn(x) and

∞∑
n=1

λn(x) ≤ C −$(x) µ-a.e.,

where C ∈ [0,∞). Then ∫
X

$dµ ≤ C.

Remark 4.13. As a consequence of Theorem 4.12 it is clear that Examples 4.5 to
4.10 above have their obvious generalizations to the case of non-constant diffusion
coefficients.

Here is e.g. an analogue of Example 4.8.

Example 4.14. Let {qn} andX0 be the same as in Example 4.8. Letµ be a probabil-
ity measure onX0 and let Bn, Aij be µ-measurable functions that are µ-integrable
on balls in X0. Suppose that

sup
x

∞∑
i,j=1

A2
ij (x)qiqj <∞ and sup

x

∞∑
n=1

qn|Ann(x)| <∞. (4.15)

Assume furthermore that µ satisfies (4.13) with respect to C2
0 (X0) including all

the integrability assumptions. Suppose that
∞∑
n=1
qnln(x)Bn(x) ≤ C−8(|x|0) in the

same sense as in Example 4.8, where 8 is a nonnegative function on [0,+∞) such
that lim

t→∞ 8(t) = +∞. Then

∫
X

|x|m0 µ(dx) <∞, ∀m ∈ N. (4.16)

Clearly, (4.15) is fulfilled if supx,i,j |Aij (x)| <∞.
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Note that the first condition in (4.15) is used in the proof to obtain the following
estimate:

∞∑
i,j=1

|Aijqiqj li lj | ≤
( ∞∑
i=1

qil
2
i

)1/2 ∞∑
j=1

( ∞∑
i=1

A2
ij qi

)1/2
qj |lj |

≤
( ∞∑
i,j=1

A2
ij qiqj

)1/2 ∞∑
i=1

qil
2
i ≤ const.

∞∑
i=1

qil
2
i .

5. Existence results

We now turn to the existence results. The next two theorems are proved by the
same method as in [15, Theorem 5.2]. However, global integrability assumptions
on the coefficients of the drift are replaced by local ones. In order to make this
paper self-contained we give complete proofs.

In this section, {ln} is a sequence of continuous linear functionals separating
the points in X and {en} ⊂ X is such that ln(ek) = δnk . We shall start with the
existence results for equation (4.13) in the special case where Aij = 0 if i �= j

and Ann = An, i.e., we are concerned with the operator LA,B heuristically given

by LA,B =
∞∑
n=1
(An∂

2
en
+Bn∂en). We note, however, that in the theorems below we

deal with classes of cylindrical functions, on which LA,B makes sense as a finite
sum.

We recall that a functionG : X→ [0,+∞] on a topological space X is called
compact if the sets {G ≤ c}, c ∈ R

1, are compact.

Theorem 5.1. Suppose that $ : X → [0,+∞] is compact and is finite on the
finite dimensional spaces En spanned by e1, . . . , en. Let An ≥ 0 and Bn be func-
tions on X which are continuous on the sets {$ ≤ c}, c ∈ R

1, as well as on the
subspaces Ej . Assume that there exists C ∈ (0,+∞) and a nonnegative function
V on X such that, for every n, the restriction of V to En is compact and twice
continuously differentiable and one has

n∑
j=1

[
Aj(x)∂

2
ej
V (x)+ ∂ej V (x)Bj (x)

] ≤ C −$(x), x ∈ En. (5.1)

Finally, let us assume that

An(x)+ |Bn(x)| ≤ Cn + δn
(
$(x)

)
$(x), x ∈ {$ < +∞}, (5.2)

where δn is a nonnegative bounded Borel function on [0,+∞)with lim
r→+∞ δn(r) = 0

and Cn ∈ (0,+∞). Then there exists a probability measure µ on X such that
L∗A,Bµ = 0 with respect to the class FC∞b (X, {ln}). In addition,∫

X

$(x)µ(dx) ≤ C. (5.3)
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Proof. Let En be equipped with the inner product making e1, . . . , en an orthonor-
mal basis. Then the sets

{
x ∈ En : $(x) ≤ c} are compact in En. Hence $(x)→

+∞ and V (x) → +∞ as |x|En → +∞. According to [16, Corollary 1.3], there
exists a probability measureµn onEn such thatL∗nµn = 0 with respect toC∞0 (En),
where

Lnψ(x) =
n∑
j=1

[
Aj(x)∂

2
ej
ψ(x)+ ∂ej ψ(x)Bj (x)

]
, ψ ∈ C∞0 (En).

Clearly, we also have L∗nµn = 0 with respect to the class C2
0 (En). The functions

Aj∂
2
ej
V and Bj∂ej V are bounded on the compact sets {$ ≤ c} ∩ En. According

to (5.1) the function$ is bounded on balls in En. Since ϕ ◦ V ∈ C2
0 (En) for every

ϕ ∈ C∞0 (R1), it follows from (5.1) and Theorem 4.12 that∫
En

$(x)µn(dx) ≤ C. (5.4)

Let Kn = supr δn(r). By (5.2) we obtain∫
En

[
Aj(x)+ |Bj (x)|

]
µn(dx) ≤ Cj + CKj , ∀ n, j ∈ N. (5.5)

In particular, we conclude that L∗nµn = 0 with respect to C∞b (En) = FC∞b
(En, {lj }nj=1). We shall consider µn as a measure on X (i.e., we extend µn to X
setting µn(X\En) = 0). Since the sets {$ ≤ c} are compact, the sequence {µn}
is uniformly tight. This yields (since compact sets in X are metrizable because
the sequence {ln} is separating) that there is a subsequence µni which converges
weakly to some Radon probability measureµ onX. We may assume that the whole
sequence {µn} converges weakly to µ. It is readily seen that the measure µ is con-
centrated on the union of the compact sets {$ ≤ m}, m ∈ N. We observe that we
have not used so far that δn in (5.2) tends to zero at infinity. Note that, for every
function ψ of the form ψ(x) = ψ0

(
l1(x), . . . , lm(x)

)
, ψ0 ∈ C∞b (Rm), and every

n ≥ m, we have∫
X

LA,Bψ dµn =
∫
X

m∑
j=1

[
Aj(x)∂

2
ej
ψ(x)+ ∂ej ψ(x)Bj (x)

]
µn(dx)

=
∫
X

n∑
j=1

[
Aj(x)∂

2
ej
ψ(x)+ ∂ej ψ(x)Bj (x)

]
µn(dx) = 0.

Let us show that (5.3) holds and L∗A,Bµ = 0 with respect to FC∞b (X, {ln}). Clear-
ly, it suffices to show that, for everyψ ∈FC∞b (X, {ln}) and every fixed j , one has
Aj , Bj ∈ L1(µ) and

lim
n→∞

∫
En

Aj (x)ψ(x)µn(dx) =
∫
X

Aj (x)ψ(x)µ(dx),
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lim
n→∞

∫
En

Bj (x)ψ(x)µn(dx) =
∫
X

Bj (x)ψ(x)µ(dx).

We verify the second equality, with the first one can proceed completely analo-
gously. Let R > 0 and BR = {$ ≤ R}. Define

εj (R) := R−1 sup
t∈[0,R]

tδj (t). (5.6)

Then εj is a nonnegative function on [0,+∞) such that

lim
R→+∞

εj (R) = 0 and sup
t∈[0,R]

δj (t)t ≤ εj (R)R.

Hence supBR |Bj | ≤ Cj + εj (R)R. By (5.4) we have

µn(X\BR) ≤ CR−1.

By the weak convergence and compactness of BR we have

µ(X\BR) ≤ lim inf
n→∞ µn(X\BR), ∀R ≥ 0,

and since $ is lower semicontinuous∫
X

$(x)µ(dx) ≤ lim inf
n→∞

∫
X

$(x)µn(dx) ≤ C, µ(X\BR) ≤ CR−1.

By (5.2) we obtain that Aj , Bj ∈ L1(µ). Since Bj is continuous on the compact
set BR , there is a continuous function GR on X such that GR = Bj on BR and
|GR| ≤ Cj + εj (R)R. By the weak convergence we have

lim
n→∞

∫
En

GR(x)ψ(x)µn(dx) =
∫
X

GR(x)ψ(x)µ(dx).

By the above estimates and the equality GR = Bj on BR we obtain∫
En

|GR(x)ψ(x)− Bj (x)ψ(x)|µn(dx)

≤ [
Cj + εj (R)R

]
sup |ψ |µn(X\BR)

+ sup |ψ |
∫

X\BR

[
Cj + δj

(
$(x)

)
$(x)

]
µn(dx)

≤ C
[
CjR

−1 + εj (R)+ CjR−1 + sup
t≥R

δj (t)
]

sup |ψ |.

The right-hand side of this estimate goes to zero as R → +∞. The same is true
for µ in place of µn, which completes the proof. ��
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We shall also employ the following modification of Theorem 5.1 proved by a
similar method.

Theorem 5.2. Suppose that in the situation of Theorem 5.1 condition (5.2) is
replaced by the following conditions:

An(x)+ |Bn(x)| ≤ Cn +KnV (x)dn
(

1+ δn
(
$(x)

)
$(x)

)
, x ∈ {$ < +∞},

(5.7)

n∑
j=1

Aj(x)|∂ej V (x)|2 ≤ C + δ
(
$(x)

)
$(x)V (x), x ∈ En, (5.8)

where Cn,Kn, dn ≥ 0, δn and δ are nonnegative bounded Borel functions with
lim

r→+∞ δn(r) = lim
r→+∞ δ(r) = 0. Assume, in addition, that V is bounded on the sets

{$ ≤ c}, c ∈ [0,+∞). Then there exists a probability measure µ on X such that
An, Bn ∈ L1(µ), L∗A,Bµ = 0 with respect to the class FC∞b (X, {ln}), and (5.3)
holds. Moreover, if V is continuous on the set {$ < ∞} (or, more generally, the
functions Vm$ are lower semicontinuous), then∫

X

V m[1+$] dµ <∞, ∀m ∈ N. (5.9)

Proof. The same reasoning as in Theorem 5.1 applies except for the justification
of the equality L∗A,Bµ = 0, which is deduced from the estimates

sup
n

∫
En

V (x)m$(x)µn(dx) = Mm <∞, m ∈ N. (5.10)

In order to prove these estimates, we consider the functions Vm := Vm, find that

LnVm=
n∑
j=1

[
m(m−1)AjV

m−2|∂ej V |2+mVm−1Aj(x)∂
2
ej
V +mVm−1Bj∂ej V

]

≤ mVm−1LnV +Cm(m−1)+m(m−1)(δ ◦$)$Vm−1 ≤ Ĉm − Vm−1$

with some constants Ĉm and apply Theorem 4.12. The rest of the proof is the same as
above. Namely, we may assume that V ≥ 1 (otherwise we replace V by V +1). Let

δ̃j (s) = sup
1≤t≤s

δj (s/t)t
−1/2, s ≥ 1. Then δ̃j (s) ≤ max

(
s−1/4 sup

t
δj (t), sup

z≥√s
δj (z)

)
→ 0 as s → +∞. In addition, δj ($) ≤ δ̃j (V 2dj$)V dj if $ ≥ 1. Hence there
exist constants C′j such that

Aj + |Bj | ≤ C′j +KjV dj +Kj δ̃j (V 2dj$)V 2dj$. (5.11)

Let ε̃j be defined analogously to εj in (5.6) with δ̃j in place of δj . Let R ∈ N

be fixed. The sets {V 2dj$ ≤ R} are contained in the sets {$ ≤ R}, hence have
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compact closures B̃R . The functionsAj andBj are continuous on the set {$ ≤ R},
hence also on B̃R . Therefore, by our choice of ε̃j , we obtain supB̃R

[
Aj + |Bj |

] ≤
C′′j +Kj ε̃j (R)R. Together with (5.10) this yields that Aj and Bj are µ-integrable.
Indeed, for a fixed j , we take a bounded continuous functionGR which agrees with
Bj on B̃R and is majorized by C′′j +Kj ε̃j (R)R outside B̃R . By (5.10) and Cheby-

shev’s inequality, Rµn(X\B̃R) ≤ M2dj for all n. Hence Rµ(X\B̃R) ≤ M2dj .
By (5.11), for some constants Nj and K ′j , we have

Aj + |Bj | ≤ Nj +K ′jV 2dj$.

Therefore,∫
En

GR dµn ≤ Nj +K ′jM2dj + [C′′j +Kj ε̃j (R)R]µn(X\B̃R) ≤ N ′j ,

where N ′j is independent of n and R. Hence, by the weak convergence of µn to µ,
the integral of GR with respect to µ is estimated by N ′j . Letting R → ∞, we
obtain the integrability of Bj with respect to µ. The same is true for Aj . Finally,
the equality L∗A,Bµ = 0 is justified as in the previous theorem. If the functions
Vm$ are lower semicontinuous on the space {$ < ∞} (say, V is continuous on
this space), then (5.9) follows from (5.10) by the weak convergence of µn to µ and
the boundedness of V on the set {$ ≤ 1}. ��
Theorem 5.3. Let X, {qn}, and X0 be the same as in Example 4.8. Assume, in ad-
dition, that the embedding X0 ⊂ X is compact. Let Bn : X0 → R

1 be continuous
on all balls in X0 with respect to the topology of X and satisfy the estimates

|Bn(x)| ≤ Cn +Kn|x|dn0 , ∀ x ∈ X0. (5.12)

Assume that

∞∑
n=1

qnln(x)Bn(x) ≤ C − 8(|x|0) (5.13)

on the linear span of the en’s, where 8 is a nonnegative bounded Borel function on
[0,+∞) such that lim

t→∞ 8(t) = +∞. Then there exists a probability measure µ on

X0 satisfying equation (3.1) with respect to FC∞b (X, {ln}) such that

∫
X

8(|x|0) µ(dx) ≤ C +
∞∑
n=1

qn,

∫
X

|x|m0
[
1+ 8(|x|0)

]
µ(dx) <∞, ∀m ∈ N.

Proof. Let V (x) =
∞∑
n=1
qnln(x)

2 = |x|20. We have

n∑
j=1

[
∂2
ej
V (x)+ Bj (x)∂ej V (x)

] ≤ 2
n∑
j=1

qj + 2C − 28(|x|0), x ∈ En.
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Let$(x) = 28(|x|0). The functionsBn andV are bounded and continuous on com-

pact sets {$ ≤ c}, which are balls in X0. In addition, An = 1 and
∞∑
j=1
|∂ej V |2 ≤

4(sup
j

qj )V . Now we can use Theorem 5.2 with δ(t) = (|t |+ 1)−1 and δn = 0. ��

Remark 5.4. Let κn = ‖Bn‖L1(µ). Let � be the collection of continuous linear
functionals l onX0 such that

∑∞
n=1 κn|l(en)| <∞. Then it follows that µ satisfies

(3.1) also with respect to FC∞b (X0,�). In particular, µ satisfies (3.1) also with
respect to FC∞b (X) if X∗ ⊂ �. This is the case, e.g., if supn[Cn + Kn + dn] <
∞. Then µ satisfies (3.1) even with respect to FC∞b (X0). Indeed, supn κn <
∞ and

∑∞
n=1 |l(en)|2/qn < ∞ for every l ∈ X∗0 . Hence

∑∞
n=1 κn|l(en)| ≤(∑∞

n=1 κ
2
nqn

)1/2(∑∞
n=1 |l(en)|2/qn

)1/2
< ∞. It is worth noting that if X = R

S ,

where S is a countable set, then X∗ is the space of all finite sequences, hence
FC∞b (X) =FC∞b (X, {ln}), where ln are the natural coordinate functions.

Corollary 5.5. Assume that in Theorem 5.3 one has 8(t) = kt2 and that k >
2λ sup

n
qn. Then

∫
X

exp
(
λ|x|20

)
dµ <∞. (5.14)

Moreover, for existence of µ it suffices to replace the power estimates on Bn by
|Bn(x)| ≤ Cn+Kn exp

(
dn|x|0

)
. If 8(t) = kt2+δ , where k, δ > 0, then it is enough

to have the estimates |Bn(x)| ≤ Cn +Kn exp
(
dn|x|20

)
.

Remark 5.6. The global polynomial bound on theBn’s can be dropped if there exist
a continuously embedded Hilbert space X1 such that X0 ⊂ X1 and the embedding
is compact and a mapping B : X1 → X1 which is continuous (with respect to the
norm of X1) and bounded on balls in the Hilbert space X1 such that Bn = 〈ln, B〉.
In this case, there exists a probability measure µ on X0 such that equation (3.1) is
satisfied with respect to the classC2

0 (X1). The proof is the same as above taking into
account that, for any ϕ ∈ C2

0 (X1), the function
∑∞
n=1 ∂

2
en
ϕ is bounded continuous

on X1, since |∂2
en
ϕ| ≤ const |en|20 = const q2

n .

We observe that the result in Theorem 5.3 could be equivalently reformulated
in terms of a single Hilbert space Z = X0 as follows.

Theorem 5.7. Let Z be a separable Hilbert space with an orthonormal basis {ηn}
and let Bn : Z→ R

1 be continuous on balls with respect to the weak topology. Let
Pn be the orthogonal projection onto the linear span En of η1, . . . , ηn. Suppose
that there exist constants C, Cn, Kn, dn and a locally bounded nonnegative Borel
function 8 on [0,+∞) such that lim

R→+∞
8(R) = +∞ and for all n ∈ N

sup
|Pnx|Z≥R

(
B1(Pnx)η1 + . . .+ Bn(Pnx)ηn, Pnx

)
Z
≤ C − 8(R), (5.15)
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|Bn(x)| ≤ Cn +Kn|x|dnZ . (5.16)

If tn > 0 and
∞∑
n=1
t2n <∞, then there exists a probability measure µ on Z such that

∞∑
n=1

∫
Z

[
t2n∂

2
ηn
f + Bn∂ηnf

]
dµ = 0, ∀ f ∈FC∞b (Z, {ηn}). (5.17)

If
∑∞
n=1 ‖Bn‖2

L2(µ)
<∞, then (5.17) is true for all f ∈FC∞b (Z).

Proof. This theorem follows from Theorem 5.3 by considering the natural em-
bedding of Z into Z with the weak topology and setting qn = t2n , en = tnηn,
ln(x) = t−1

n (x, ηn)Z , B̂n = t−1
n Bn. Then ln(ek) = δnk and

n∑
i=1

qili(x)B̂i(x) =
n∑
i=1

(x, ηi)ZBi(x), ∀ x ∈ En.

In addition, ∂2
en
f + B̂n∂en = t2n∂

2
ηn
f + Bn∂ηn , so that we are in the situation of

Theorem 5.3. ��
This result is an extension of [15, Remark 5.4], where it was assumed thatBn =

(B, ηn)Z for some Borel mappingB onZ, and the estimate lim
R→+∞

sup
|x|>R

(
B(x), x

)
Z

= −∞was required instead of (5.15). However, that estimate was used in the form
of (5.15) and the existence of B was never used. Moreover, the reasoning in [15]
was exactly the same as the one above. We have not been able to prove the statement
of [15, Theorem 5.2] for B merely continuous.

Let us apply our existence result to the situation in Example 4.6.

Theorem 5.8. Let X = R
S , let S be a countable set, and let X0 be the weighted

Banach space of sequences such that

|x|0 =
(∑
s∈S
qs |xs |α

)1/α
,

where α ≥ 2. Suppose that J and q satisfy the same conditions as in Example 4.6.
Let B = (Bs)s∈S be a collection of continuous functions on (X0, | · |0) satisfying
(4.5) and (5.12). Then there exists a probability measure µ on X0 such that (3.1)
is satisfied with respect to FC∞b (X).

Proof. We may assume that S = N. As in the proof of Theorem 5.3, we find prob-
ability measuresµn on the n-dimensional linear subspaces R

n ⊂ R
N satisfying the

elliptic equations L∗nµn = 0, where

Lnψ(x1, . . . , xn)

= Hψ(x1, . . . , xn)+
n∑
i=1

Bi(x1, . . . , xn, 0, 0, . . . )∂xiψ(x1, . . . , xn).
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It follows from Example 4.6 that

sup
n,j

∫
|xj |p µn(dx) <∞, ∀p ∈ N.

We can find q̃n > 0 such that
∑∞
n=1 q̃n < ∞ and lim

n→∞ qn/q̃n = 0. Therefore, by

considering the function I :=
∞∑
n=1
q̃n|xn|α and using that sup

n

∫
I dµn <∞, we

see that the sequence {µn} is uniformly tight on X0. Let us take for ln the natural
coordinate functions on R

S . Now the same reasoning as in Theorem 5.3 completes
the proof. ��

It is clear from the above proofs that by [16] our results extend to the case of a
non-constant diffusion term. Let us give the exact formulation.

Theorem 5.4. Let X, {qn} and X0 be the same as in Theorem 5.3. Let Bn and Aij
be functions onX0 which are continuous on balls inX0 with respect to the topology
of X and satisfy the estimates

|Bn(x)| ≤ Cn +Kn|x|dn0 , ∀x ∈ X0, ∀ n ∈ N, sup
x,n,j

|Anj (x)| <∞.

Assume that (Aij |En)i,j≤n is nonnegative definite for all n ∈ N, where En is the
linear span of e1, . . . , en. Suppose, furthermore, that

∞∑
n=1

qnln(x)Bn(x) ≤ C − 8(|x|0)

on the linear span of the en’s, where 8 is a nonnegative function on [0,+∞) such
that lim

t→∞ 8(t) = +∞. Then there exists a probability measure µ on X0 satisfying

equation (4.13) with respect to FC∞b (X0, {ln}).
The proof is the same as in Theorem 5.3 taking into account Example 4.14.

6. The symmetric case

In this section, we discuss the so-called symmetric (Gibbsian) case, i.e., the sit-
uation where the functions Bn are logarithmic derivatives of the measure µ that
satisfies (3.1), so that every term in (3.2) vanishes separately. If K = FC∞b (X)
and Bn ∈ L2(µ), then this is equivalent to the symmetry of LB on FC∞b (X) (see
[15] and Proposition 8.6 below).

Let (E,E) and (Y,F) be two measurable spaces and let µ be a measure on
B =: E⊗F such that the projection of |µ| to Y is ν. We recall that measuresµy on
the setsE×{y}, y ∈ Y , equipped with the trace σ -fields generated by B, are called
regular conditional measures if the setsE×{y} belong toE⊗F (i.e.,F contains all
single point sets in Y ), for everyB ∈ E⊗F the functionµy(B) = µy(B∩E×{y})
is ν-measurable and

µ(B) =
∫
Y

µy(B) ν(dy).
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It is well known that regular conditional measures exist under very broad assump-
tions (e.g., if E and Y are Souslin spaces with their Borel σ -fields).

The relation of Gibbs measures to elliptic equations is seen from the following
simple example. Suppose that µ is a probability measure on R

2 with a smooth
positive density f . It is easily seen that the projections of µ on the first and second
coordinate axis have densities f1(x) =

∫
f (x, y) dy and f2(y) =

∫
f (x, y) dx,

respectively. Hence the conditional measuresµx on the lines {x}×R
1 have densities

f x(y) = f (x, y)/f1(x) and similarly for the conditional measures µy on the lines
R

1×{y}. Suppose we want to reconstructµ fromµx andµy . Of course, in our triv-
ial example one can find f1 knowing f x and f y , but we shall discuss an approach
which works also in infinite dimensions. Namely, we can find the partial logarith-
mic derivatives β1(x, y) = ∂xf y(x)/f y(x) and β2(x, y) = ∂yf x(y)/f x(y). From
the above expressions we find that (β1, β2) = ∇f/f . Therefore, we have to find a
probability measureµwith the given logarithmic gradient β. One can show that this
is equivalent to finding a probability measure µ such that it satisfies the equation
L∗I,βµ = 0 (the equation is verified through integration by parts) and, in addition,

LI,β with domainC∞0 is symmetric onL2(µ). Thus, the initial problem is replaced
by the following two problems: solving an elliptic equation and distinguishing its
symmetric solutions. The situation is similar in infinite dimensions. This is why
the method of Lyapunov functions comes naturally into play. In some examples
Lyapunov functions can be used directly without involving the elliptic equation,
but the equation is helpful in order to find appropriate Lyapunov functions. We shall
see this in the examples below.

We shall first discuss relations between the integration by parts formula and
existence of differentiable conditional measures. The next lemma is a straightfor-
ward modification of a result in [50], where it was proved for globally integrable
logarithmic derivatives. Later special cases of that result were derived in the con-
text of “the integration by parts characterization of Gibbs measures” (cf. [46]). For
the reader’s convenience and due to some additional technicalities we include a
complete proof.

Lemma 6.1. Let X = R
n × Y , where (Y,F) is a measurable space, let µ be a

signed measure of finite total variation on B = B(Rn) ⊗F with regular condi-
tional measures µy on R

n × {y}, and let ν be the projection of |µ| to Y . Suppose
that K is a class of bounded B-measurable functions that satisfies the following
conditions:
(i) for every ψ ∈ K and y ∈ Y , the function x �→ ψ(x, y) is continuously

differentiable and ∇xψ is bounded;
(ii) (x, y) �→ ψ(x + v, y) ∈ K and ϕ ◦ ψ ∈ K whenever ψ ∈ K, v ∈ R

n,
ϕ ∈ C∞0 (R1), ϕ(0) = 0, and ψ1ψ2 ∈K if ψ1 and ψ2 are in K;

(iii) the class K separates the measures on B.
Let β : X→ R

n be a µ-measurable mapping such that, for every ψ ∈K and
v ∈ R

n, one has ψ |β| ∈ L1(µ) and∫
X

(∇xψ, v) dµ = −
∫
X

ψ(β, v) dµ. (6.1)
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Then, for ν-a.e. y, µy admits a density f y on the fibre R
n × {y} such that

f y ∈ W 1,1
loc (R

n) and β(x, y) = ∇xf y(x)/f y(x) µy-a.e. (6.2)

Proof. We can find a sequence of measurable sets Aj ⊂ X such that
⋃∞
j=1Aj has

full measure and there exist functions ϕj ∈ K with ϕj > 0 on Aj . Indeed, let
K0 = {ψ ∈ K : 0 ≤ ψ ≤ 1}. By [30, Theorem IV.11.6], there is a sequence
ϕj ∈K0 such that, for everyψ ∈K0, one hasψ ≤ supj ϕj µ-a.e. Then the union
of the sets Aj = {ϕj > 0} has full measure. Indeed, if supj ϕj = 0 on a positive
measure setA, then for every ϕ ∈K0, one has ϕ = 0 µ-a.e. onA, hence the same
is true for every ϕ ∈K, which easily follows by taking compositions with smooth
compactly supported functions vanishing at the origin. Thus, the measure µ|A and
the zero measure are not separated by K, which is a contradiction. Moreover, we
may assume that ϕj = 1 on Aj . To this end, one can replace every function ϕj be
the sequence of functions θk ◦ ϕj , where θk ∈ C∞0 (R1), 0 ≤ θk ≤ 1, θk(t) = 0 if
t ≤ 0 or t ≥ k+ 1 and θk(t) = 1 if k−1 ≤ t ≤ k. Then the sets {θk ◦ϕj = 1} cover
the set {ϕj > 0}. Let us consider the measure

µj = ϕj µ.
Let βj = β + ∇xϕj /ϕj . Note that (6.1) holds for ψ = ψ1ψ2 if ψ1, ψ2 ∈ K.
Hence we obtain from (6.1) that∫

X

(∇xψ, v) dµj = −
∫
X

ψ(βj , v) dµj

for every ψ ∈ K and every v ∈ R
n. In addition, |βj | ∈ L1(µj ), since |β|ϕj ∈

L1(µ). Let v ∈ R
n be a fixed vector and let t ∈ R

1. Then we have∫
X

[
ψ(x + tv, y)− ψ(x, y)] dµj

= −
t∫

0

∫
X

ψ(x + sv, y)(βj (x, y), v(x)) dµj ds (6.3)

for all boundedψ ∈K, which is proved as follows. Both sides of (6.3) are continu-
ously differentiable in t and vanish at t = 0. It follows by (6.1) that their derivatives
coincide, since (x, y) �→ ψ(x + tv, y) ∈K by our hypothesis. The left-hand side
of (6.3) equals the integral of ψ with respect to the measure (µj )t − µj , where
(µj )t is the image of µj under the shift (x, y) �→ (x + tv, y). The right-hand side
of (6.3) is the integral of ψ against the measure

σ tj :=
∫ t

0

(
(βj , v)µj

)
s
ds.

Hence, by our assumption on K, we have

(µj )t − µj = σ tj . (6.4)
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This implies that (6.3) holds for all bounded B-measurable functions ψ . We set

µ
y
j = ϕjµy, i.e. µj (B) =

∫
Y

µ
y
j (B) ν(dy).

Now (6.4) yields the absolute continuity of the measuresµyj for ν-a.e. y. Indeed, let
p be a probability density on R

n with support in the unit ballU ,pε(t) = ε−np(t/ε),
γε = pε dx, ε ∈ (0, 1), and let

πε(B) =
∫
Y

µ
y
j ∗ γε(B) ν(dy).

Then, for every bounded Borel function g, one has∫
X

g(x, y) dπε =
∫
Y

∫
Rn×{y}

∫
Rn

g(x + εz, y)p(z) dz µyj (dx) ν(dy)

=
∫
Rn

∫
X

g(x + εz, y)p(z) dµj dz. (6.5)

It follows from (6.4) and (6.5) that∣∣∣∫
X

g dµj −
∫
X

g dπε

∣∣∣
=

∣∣∣∫
U

∫
X

g
[
d(µj )− d(µj )εz

]
p(z) dz

∣∣∣

=
∣∣∣∫
U

ε∫
0

∫
X

g(x + sz, y)(βj , z) dµj ds p(z) dz
∣∣∣ ≤ ε sup |g| ‖βj‖L1(µj ,R

n),

since |(βj , z)| ≤ |βj | on the support of p. Therefore,

‖µj − πε‖ ≤ 2ε‖βj‖L1(µj ,R
n).

Clearly, every measure πε with ε > 0 has absolutely continuous conditional mea-
sures on R

n×{y}. Hence, for ν-a.e. y, the conditional measureµyj admits a density

q
y
j (x) with respect to Lebesgue measure. Thus, we obtain from (6.4) that there

exists a measurable set Y0 of full ν-measure such that, for every i = 1, . . . , n,
every rational t , and every y ∈ Y0, one has for a.e. x

q
y
j (x + tei)− qyj (x) =

t∫
0

[
(βj , ei) q

y
j

]
(x + sei) ds.

Therefore, for every y ∈ Y0, we obtain qyj ∈ W 1,1
loc (R

n) and ∇xqyj (x)/qyj (x) =
βj (x, y).
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Recall that ϕj µy = µyj for ν-a.e. y. Since the union of the sets Aj has full µ-
measure, the set (Rn×{y})∩(⋃∞

j=1Aj) has fullµy-measure for ν-a.e. y. Therefore,

for ν-a.e. y, the measure µy admits a density f y such that ϕj (x, y)f y(x) = qyj (x)
for every j and a.e. x. In addition, ∇xϕj = 0 µ-a.e. on Aj , since the derivative of
any differentiable functionF on R

n vanishes almost everywhere on the set {F = 1}.
Hence we obtain a set Y1 of full ν-measure such that, for every i = 1, . . . , n, every
rational t , and every y ∈ Y1, one has for a.e. x

f y(x + tei)− f y(x) =
t∫

0

[
(β, ei) f

y
]
(x + sei) ds,

which implies that f y ∈ W 1,1
loc (R

n) and ∇xf y(x)/f y(x) = β(x, y) µy-a.e. ��
Corollary 6.2. Let µ be as in Lemma 6.1 and let f be a µ-measurable function
such that, for every y ∈ Y , the function x �→ f (x, y) is inW 1,1

loc (R
n). Suppose that

|∇xf |, f |β| ∈ L1(µ). Then∫
X

(∇xf, v) dµ = −
∫
X

f (v, β) dµ, ∀ v ∈ R
n. (6.6)

The same is true if instead of x �→ f (x, y) ∈ W 1,1
loc (R

n), one has that the usual
partial derivatives ∂xi f (x, y) exist for every x.

Proof. It suffices to prove (6.6) for every v = ei , where {ei} is the standard basis
in R

n. By Lemma 6.1 and our integrability assumptions, it is enough to show that,
for all p, g ∈ W 1,1

loc (R
n) such that p, p∂ei g, g∂eip ∈ L1(Rn), one has∫

X

∂ei g p dx = −
∫
X

g∂xip dx. (6.7)

We may assume that i = 1. It is known that the functionsp and g admit versions, de-
noted by the same letters, such that t �→ p(t, x2, . . . , xn) and t �→ g(t, x2, . . . , xn)

are locally absolutely continuous and their partial derivatives represent the general-
ized partial derivatives ∂e1p and ∂e1g. Therefore, by Fubini’s theorem, (6.7) reduces
to the one dimensional case. If g is bounded, then the desired relation follows by
the integration by parts formula, since there exist aj →−∞ and bj →+∞ such
that pg(bj )→ 0, pg(bj )→ 0. The case of unbounded g follows by considering
the compositions θj (g), where θj ∈ C∞b (R1), θj (t) = t if |t | ≤ j , θj (t) = jsign t
if |t | ≥ j + 1, and sup |θ ′j | ≤ 2. A justification in the case where g is differen-
tiable everywhere, but is not locally absolutely continuous can be found in [19,
Theorem 2.6]. ��
Remark 6.3. (i) It is clear from the above proof that the separation assumption (iii)
on K can be weakened; e.g., it would be enough to replace it by the following
condition:
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(iii′) there exists a measurable set B ⊂ X of full measure with respect to all
shifts (µ)t generated by the vectors v as above such that K separates the measures
on the set B.

In particular, this is the case when B has full µ-measure and is mapped by the
shifts (x, y) �→ (x + v, y) into itself.

(ii) The requirement ϕ◦ψ ∈K for allψ ∈K and ϕ ∈ C∞0 (R1)with ϕ(0) = 0
in condition (ii) can be replaced by the following assumption:

there exist functions ψj ∈K such that the sets {ψj = 1} cover R
n × Y up to

a µ-measure zero set.
Finally, note that if K is a linear space of bounded functions such that it is

stable under compositions with C∞0 -functions vanishing at 0, then ψ1ψ2 ∈K for
all ψ1, ψ2 ∈K.

Note that the class of Lipschitzian functions with bounded supports on a sepa-
rable Banach spaceX0 separates the Borel measures onX0. IfX0 is reflexive, then
X0 has nontrivial Lipschitzian continuously Fréchet differentiable functions with
bounded supports (see, e.g., [29, Ch. I, 2.1 and 3.1]). It is readily seen that in this
case, the class C1

0(X0) separates the Borel measures on X0. Therefore, we get the
following application of Lemma 6.1.

Example 6.4. Letµ be a signed measure on a locally convex spaceX of finite total
variation. Let (X0, ‖ · ‖0) be a continuously embedded separable Banach space of
full µ-measure. Let h ∈ X0. Suppose that there exists a µ-measurable function β
such that β is µ-integrable on all ‖ · ‖0-bounded sets and∫

X0

∂hψ dµ = −
∫
X0

ψβ dµ (6.8)

for every function ψ from the class Lip0(X0) of all Lipschitzian functions with
bounded supports on X0. Let X = R

1h⊗ Y , where Y is a closed linear subspace.
Then µ has regular conditional measures µy on the line y +R

1h, y ∈ Y , that have
locally absolutely continuous densities f y with

(
f y(t)

)′
/f y(t) = β(y+ th). IfX0

is reflexive, then the same is true for C1
0(X0) in place of Lip0(X0). Finally, if X0

is Hilbert, then C1
0(X0) can be replaced by C∞0 (X0).

Let us observe that one can take even smaller classes of test functions in the
above example. Namely, there is a compactly embedded separable reflexive Banach
spaceX1 ⊂ X0 of full µ-measure. Then the class C1

0(X1) separates the Borel mea-
sures on X1 and can be used in the above example in place of Lip0(X0). If X0
is Hilbert, then one can choose for X1 also a Hilbert space. This enables us to
weaken the integrability assumption on β by requiring the integrability of β only
on compact sets in X0.

Remark 6.5. It is often of interest to know that the conditional distributions have
strictly positive continuous densities. Sufficient conditions for this can be expressed
in terms of logarithmic derivatives. Let µ be a locally finite nonnegative measure
on R

1 with a locally absolutely continuous density 8. Then 8 > 0 if and only if
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βµ := 8′/8 is locally integrable with respect to Lebesgue measure. The necessi-
ty is obvious, and the sufficiency is readily verified by showing the continuity of
log 8. If µ is a locally finite measure on R

n with a density 8 ∈ W 1,1
loc (R

n), then a
sufficient condition for the existence of a positive continuous modification of 8 is
the local integrability of |βµ|p = |∇8/8|p, where p > n, with respect to Lebesgue
measure. Another sufficient condition is the following: every point x has a neigh-
borhood U such that exp

(
ε|βµ|) is µ-integrable on U for some ε > 0 (see [13,

Proposition 2.18], where the proof is given in the global case but works locally as
well). Although, the latter condition is stronger than the previous one, its advantage
is that it is expressed entirely in terms ofµwithout reference to Lebesgue measure.

We now proceed to analogues of the existence results from the previous sec-
tion in the symmetric case. The method of proof is exactly the same. The idea to
construct measures with given logarithmic derivatives by the method of Lyapunov
functions employing the dissipativity condition is already in [38], [39]. Later the
same method was used and further developed in [14], [15], [5], [6]. The first ap-
plication of this method to construct Gibbs measures has been given in [5], [6].
We shall see below how the reasoning in [15] enables one to obtain even stronger
results on the existence of Gibbs measures.

We recall that {ln} ⊂ X∗ is a separating sequence, {en} ⊂ X, and ln(ek) = δnk .
Theorem 6.6. LetX, q = {qn} ∈ l1 andX0 be the same as in Theorem 5.3 and let
Bn : X0 → R

1 be continuous on balls inX0 with respect to the topology ofX such
that (5.13) is satisfied. Assume, in addition, that there exist continuously differentia-
ble functions Gn on En := linear span of {e1, . . . en} such that Bi = ∂eiGn on En
for every i ≤ n. Then there exists a probability measure µ on X0 such that, for
every n, the function Bn is the logarithmic derivative of µ along en with respect to
Lip0(X0). If (5.12) is fulfilled, then µ is differentiable along every en with respect
to FC∞b (X).

Proof. Let

H :=
{
x ∈ X0 : |x|2

H
=

∞∑
n=1

ln(x)
2 <∞

}
.

For any differentiable function ψ on En, we set

D
H
ψ = ∂e1ψ ei + · · · + ∂enψ en.

In the gradient case, the measuresµn onEn constructed in the proof of Theorem 5.3
are given by the following explicit densities fn with respect to the Lebesgue mea-
sures on En associated with the norm of H : fn = zn exp(Gn), where zn is the
normalization constant. The integrability of fn is obvious, since by (5.13) there
exists t0 > 0 such that for every x in the unit sphere of En, one has

d

dt
Gn(tx) = 1

t

(
D
H
Gn(tx), tx

)
H
≤ C
t
− 1

t
8(t |x|0) ≤ −2n

t
for all t ≥ t0

by the equivalence of the norms | · |0 and | · |
H

, whence fn(tx) ≤ const.|t |−2n,
t ≥ t0. Looking at fn in polar coordinates, it is clear that it is integrable. Let us
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observe that we may assume that X = R
∞. Indeed, X can be injected into R

∞ by
means of the sequence {ln} separating the points in X. The balls from X0 are com-
pact in R

∞ and the topology of X on them coincides with the one from R
∞ (i.e.,

the one generated by the functionals ln). Assuming that X = R
∞, we can choose

a bigger reflexive separable Banach space X1 ⊃ X0 such that both embeddings
X0 → X1 and X1 → X are compact (see, e.g., the proof in [10, Theorem 3.6.5]).
In fact, every completely metrizable locally convex space X has such a property
(but not an arbitrary locally convex space; this is the point to consider the injection
into R

∞). Then µn→ µ weakly also onX1. SinceD
H
fn/fn = (B1, . . . , Bn), we

obtain by the integration by parts formula for every ψ ∈ C1
0(X1) and i ≤ n that∫

X1

∂eiψ dµn = −
∫
X1

ψ Bi dµn.

The same is true for µ in place of µn, since |Bi | is bounded and continuous on the
support of ψ (which is compact in X) and µn → µ weakly on X1. It now follows
by Example 6.4 and Corollary 6.2 that∫

X

∂eiψ dµ = −
∫
X

ψ Bi dµ (6.9)

for every Borel function ψ such that ∂eiψ exists and ∂eiψ, ψBi ∈ L1(µ). In
particular, this is true if ψ ∈ Lip0(X0). As shown above, |x|0 ∈ Lp(µ) for all
p ∈ [1,∞). Therefore, in the case where |Bn| is majorized by Cn + Kn|x|dn0 ,
one has Bn ∈ L1(µ), hence Bn is the logarithmic derivative also with respect to
FC∞b (X) (and with respect to FC∞b (X0)). ��

As in the non symmetric case, the above result can be reformulated in terms of a
single Hilbert space. We only give the formulation, since its relation to Theorem 6.6
is the same as the relation of Theorem 5.7 to Theorem 5.3.

Theorem 6.7. Let Z, Bn, En and tn be the same as in Theorem 5.7, but instead
of condition (5.16) we shall assume that there exist continuously differentiable
functions Gn on En such that, letting en = tnun, one has for all n

Bi = ∂eiGn, ∀ i ≤ n, ∀ x ∈ En. (6.10)

Then there exists a probability measure µ on Z such that Bn is the logarithmic
derivative of µ along tnen = t2nun with respect to Lip0(Z). If, in addition, (5.16)
holds true, thenBn is the logarithmic derivative ofµ along tnen = t2nun with respect
to FC∞b (Z).

Remark 6.8. Condition lim
R→+∞

8(R) = +∞ required in Theorem 6.6 and Theo-

rem 6.7 to ensure the differentiability of µ with respect to Lip0(X0) and Lip0(Z),
respectively, can be replaced by the weaker condition

lim inf
R→+∞

8(R) > C +
∞∑
n=1

qn, (6.11)
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where qn = t2n in the case of Theorem 6.7, provided that, for every n, the mapping
(B1, . . . , Bn) on En is the logarithmic gradient of some probability measure µn

on En with respect to the inner product (u, v)
H
=

n∑
i=1
t−2
i (u, ui)E (v, ui)E on En.

Indeed, only for this purpose the existence of the functions Gn was used, whereas
the argument showing tightness remains valid by Example 4.8.

Remark 6.9. (i) We observe that the above results improve [6, Theorem 2.3], where
more restrictive assumptions were made about Bn. First, we do not require any
bound on the growth of Bn. Secondly, in [6, Theorem 2.3], it is required that there

exist continuous logarithmic gradients βn =
n∑
m=1

bnmem on En such that for eachm

and ε > 0 there exists N with |Bm − bnm ◦ Pn| ≤ ε(1 + |x|M0 ) for all x ∈ X0 and
n ≥ N . Clearly, this implies the weak continuity on balls in X0, since the func-
tions bnm ◦ Pn are continuous cylindrical and converge uniformly on balls in X0.
In addition, this yields that the restriction of (B1, . . . , Bn) to En is a continuous
logarithmic gradient (with respect to the H -norm as in Remark 6.8). To see this,
we observe that if {Fj } is a sequence of continuously differentiable functions on
R
n such that the gradients ∇Fj converge uniformly on every ball to a continuous

mapping I, then there existsG ∈ C1(Rn) such that I = ∇G. Indeed, in this case
the sequence F̂j (x) = Fj (x) − Fj (0) converges uniformly on every ball (by the
uniform convergence of∇F̂j and the convergence at the origin), hence we can take
G = lim F̂j .

(ii) It should be noted that Theorem 6.7 as well as its predecessor [6, Theo-
rem 2.3] can be deduced also from the constructions in [38], [39], although they are
not formal corollaries of the corresponding results for two reasons. First there are
some extra technical assumptions used in [38], [39]. But these were only used for
the finite dimensional estimates, and were removed in [15], [16]. Second, in [38],
[39] global assumptions on B were imposed a priori. As mentioned in the above
introduction they were only removed in the recent work [6] by considering test func-
tions with bounded support (as C2

0 (X0) above). This step was essential to include
applications to Gibbs measures. Nevertheless, both here and in [6, Theorem 2.3],
the method of proof of existence is in spirit of that in [38], [39].

Remark 6.10. It is clear from Remark 4.11 that if in the situation of Theorem 6.6
condition (5.12) is satisfied, then one can choose a separable Hilbert spaceH ⊂ X0
and a separable Hilbert space Y ⊃ X0 such that the natural embeddings H → X0,
H → Y ,X0 → Y are continuous and dense, and there exists a mappingβ : Y → Y

such that β is the logarithmic gradient of µ with respect to H and FC∞b (Y ),
|β|

Y
∈ L2(µ), and 〈ln, B〉 = Bn. This is well-known, but we repeat the construc-

tion for the convenience of the reader. Let

H =
{
x : |x|2

H
=

∞∑
n=1

ln(x)
2 <∞

}
,

Y =
{
x : |x|2

Y
=

∞∑
n=1

cnln(x)
2 <∞

}
,
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where cn = 2−n min
(
qn, ‖Bn‖−2

L2(µ)

)
, and B(x) =

∞∑
n=1
Bn(x)en. Then {en} is an

orthonormal basis in H and j
H
(ln) = en, since ln(ek) = δnk . Hence 〈ln, B〉 =

Bn = βµen .
Here is an analogue of Theorem 5.8 for the symmetric case. Its proof is analo-

gous to the proof of Theorem 6.6.

Theorem 6.11. Let X, X0, J , and q be the same as in Example 4.6 and let B =
(Bn)n∈S be a collection of functions on X0 that are continuous on balls in X0
with respect to the topology from X and satisfy (4.5). Suppose that S is a union
of increasing finite sets Sk , k ∈ N, and that there exist continuously differentiable
functions Gk on R

Sk such that Bi = ∂xiGk on R
Sk for all i ∈ Sk . Then there

exists a probability measure µ on X0 such that, for every n, the function Bn is the
logarithmic derivative of µ along en with respect to Lip0(X0).

Let us consider a class of Gibbs distributions that fits the above framework and
which has been analyzed in detail in [5], [6]. However, as we shall see in some cases
we can relax the assumptions made there. Let us consider a classical spin system on
the lattice Z

d with the configuration space R
S , S = Z

d , having the formal energy
functional

E(x) =
∑
n∈S
Vn(xn)+

∑
n,j∈S

Wn,j (xn, xj ),

where Wn,j (xn, xj ) = Wn,j (xj , xn) and Wn,n = 0. We shall assume that the
functions Vn and Wn,j are continuously differentiable and satisfy the following
estimates:

|Wn,j (xn, xj )| ≤ Jn,j (1+ |xn|α + |xj |α), (6.12)

|∂xnWn,j (xn, xj )| ≤ Jn,j (1+ |xn|α−1 + |xj |α−1), (6.13)

xn∂xnVn(xn) ≤ C −M|xn|α, (6.14)

where Jn,j ≥ 0, C,M > 0.

Example 6.12. Let (6.12), (6.13), and (6.14) be satisfied, where α ≥ 2 and J =
(Jn,j )n,j∈S is a symmetric matrix such that there exists a family of positive numbers
q = (qs)s∈S such that

∑
s∈S
qs < ∞ and ‖J‖L(l1(q)) ≤ λ < M/3,

∑
n∈S
Jn,j ≤ λ.

Then there exists a probability measure µ concentrated on the space

X0 =
{
x : |x|0 =

(∑
n∈S
qn|xn|α <∞

)1/α}

such that µ is differentiable along the standard unit vectors en ∈ R
S with respect

to the class Lip0(X0) and

βµen(x) = ∂xnVn(xn)+
∑
j∈S
∂xnWn,j (xn, xj ).
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In particular, the regular conditional measures of µ on the lines R
1en + y, y ∈

Sn := {x : xn = 0}, have continuously differentiable densities p(xn|xcn) with

∂xnp(xn|xcn)/p(xn|xcn) = βµen(x), x = (xn, xcn),

i.e.,

p(xn|xcn) = c(xcn) exp
[
Vn(xn)+

∑
j∈S
Wn,j (xn, xj )

]
, (6.15)

where c(xcn) is a normalization constant.

Proof. The functions

Bn(x) = ∂xnVn(xn)+
∑
j∈S
∂xnWn,j (xn, xj )

are continuous on balls in X0, since the corresponding series converges uniformly
on every ball in X0 by (6.13) and our assumption on J . There exists ε > 0 such
that M = 3λ + ε. Note that by the inequality z ≤ 1 + zα/α for z ≥ 0 one has
|xn| |xj |α−1 ≤ |xn|α/α + |xj |α , and consequently |xn| + |xn|α + |xn| |xj |α−1 ≤
1+ 2|xn|α + |xj |α . Hence, by the estimate

∑
j∈S Jn,j ≤ λ, we obtain

xnBn(x) ≤ C − (3λ+ ε)|xn|α +
∑
j∈S
Jn,j (1+ 2|xn|α + |xj |α)

≤ C + λ− (λ+ ε)|xn|α +
∑
j∈S
Jn,j |xj |α,

i.e., (4.5) holds. Let Sk = {s ∈ S : |s| ≤ k}, k ∈ N. It follows from what was said
in Remark 6.9 that the restrictions of (Bi)i∈Sk to R

Sk are gradients of continuously
differentiable functions. Therefore, Theorem 6.11 applies. Note that the series in
(6.15) converges uniformly on balls in X0 by (6.13). ��

We observe that Example 6.12 improves Theorem 3.1 from [6], where stronger
assumptions were made on Vn and the matrix J .

7. Applications to SPDEs

Let us apply the above results to the elliptic equations associated with invariant
measures for diffusion processes generated by certain stochastic partial differential
equations. We shall consider some generalizations or modifications of stochastic
Burgers and Navier–Stokes equations. The same techniques apply to reaction-dif-
fusion equations. We shall show how to get the existence of a probability measure
solving our elliptic equation by the above method of Lyapunov functions. In or-
der to construct suitable finite dimensional subspaces, we employ usual Galerkin
approximations used by many authors in related problems (see, e.g., [49]).
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We shall first consider the elliptic equation for invariant measures of the diffu-
sion governed by the following SPDE of the Burgers type:

du(t, x)=
√

2dWQ(t, x)+
[
Hu(t, x)−ψ(

u(t, x)
)
∂xu(t, x)+ f (x)

]
dt (7.1)

with zero boundary conditions on [0, 1], where H is a self-adjoint operator on
X = L2(0, 1) with domain D(H) ⊂ H

2,1
0 (0, 1) such that its eigenfunctions ηn

(with eigenvalues λn) are inH 2,1
0 (0, 1) and form an orthonormal basis in L2(0, 1).

Suppose that there is λ > 0 such that∫
uHu dx ≤ −λ

∫
(u′)2 dx, ∀ u ∈ span {ηn}. (7.2)

Here (and below) u′ denotes derivative with respect to x ∈ (0, 1). We assume that
f ∈ L∞(0, 1), thatψ is a locally bounded Borel function and thatWQ

t is a “Wiener
process with covariance Q” in L2(0, 1) or also a cylindrical Wiener process. It is
well known that in the case H = H,ψ(x) = x, there exists a process u in L2(0, 1)
satisfying (7.1) (in the sense of “mild solutions”) and having an invariant probabil-
ity measureµ (see [24], [25], [27]). However, we make no assumptions concerning
the solvability of (7.1). All our assumptions will be specified later. We emphasize
that we consider only the elliptic equations for measures and hence deal with the
so called infinitesimal invariance of measures, which enables us to weaken the
assumptions on the coefficients. By using the results from [48] one can construct
Markov processes which satisfy in a certain sense the corresponding stochastic
equations. This as well as the exact connection of measures satisfying our ellip-
tic equations and invariant measures of SPDEs will be a subject of a forthcoming
paper.

Let us take for X0 the Sobolev space H 2,1
0 (0, 1) of functions u with u′ ∈

L2(0, 1) and u(0) = u(1) = 0. This is a Hilbert space with the norm ‖u‖X0 :=
‖u′‖2, compactly embedded into L2(0, 1). Let us set un = (u, ηn)2, where ( · , · )2
is the inner product in L2(0, 1), and

Bn(u) = λnun −
(
ψ(u)u′, ηn

)
2 + (f, ηn)2

= λnun +
(
I(u), η′n

)
2 + (f, ηn)2, ∀ u ∈ X0, (7.3)

where f ∈ L∞(0, 1) and

I(y) =
∫ y

0
ψ(s) ds

with some locally bounded Borel function ψ .

Finally, suppose that
∞∑
n=1
α2
n < ∞. We are going to apply Theorem 5.2 to the

operator

LA,Bϕ =
∞∑
n=1

α2
n∂

2
ηn
ϕ +

∞∑
n=1

Bn∂ηnϕ

on FC∞b (X, {ln}), where ln(u) = un.
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This operator arises if we consider the processWQ(t) =
∞∑
n=1
αnwn(t)ηn, where

{wn(t)} is a sequence of independent standard real Wiener processes, i.e., Qηn =
α2
nηn. This is the so called time white noise case, i.e., WQ(t) is a Wiener process

in L2(0, 1) unlike the case of a space–time white noise discussed below, where
αn = 1.

Proposition 7.1. Let |I(y)| ≤ c1+c2|y|d , where d < 6 and let η′n ∈ L∞(0, 1) for
all n. Then there exists a probability measure µ on X0 which satisfies the equation
L∗A,Bµ = 0 with respect to FC∞b (X, {ln}), where ln(u) = un. In addition,∫

‖x‖2
X0
dµ <∞,

∫
‖x‖m2 dµ <∞, ∀m ∈ N. (7.4)

Proof. We shall apply Theorem 5.2. Let An(x) = α2
n/2, en = ηn, V (u) = ‖u‖2

2,
and $(u) = ‖u′‖2

2. We observe that Bn is continuous on any ball S in X0 with
respect to the topology fromX = L2(0, 1). Indeed, u �→ un is continuous. Now let
uk → u in X be such that uk ∈ S. Then the functions uk converge to u uniformly,
whence the claim follows. It remains to note that for all u ∈ span {ηn} and any
ε ∈ (0, λ), one has

∞∑
n=1

Bn(u)un =
∞∑
n=1

λnu
2
n +

∫ 1

0
f u dx

≤ −λ
∫ 1

0
(u′)2 dx +

∫ 1

0
f u dx ≤ 1

4ε
‖f ‖2

2 − (λ− ε)‖u‖2
X0
.

Indeed, letting G be any primitive of xψ(x), we obtain
∞∑
n=1

(
ψ(u)u′, ηn

)
2(u, ηn)2 =

∫ 1

0
ψ(u)u′u dx

=
∫ 1

0
[G(u)]′ dx = G(

u(1)
)−G(

u(0)
) = 0

for each u ∈ X0 and, by (7.2), we have for all u ∈ span {ηn}
∞∑
n=1

λnu
2
n ≤ −λ

∫ 1

0
(u′)2 dx.

For every n ∈ N, we obtain

LnV (u) =
n∑
j=1

α2
j ∂

2
ηj
V (u)+

n∑
j=1

Bj∂ηj V (u)

= 2
n∑
j=1

α2
j + 2

n∑
j=1

λju
2
j + 2

(
ψ(u)u′, u

)
2 + 2(f, u)2

≤ 2
∞∑
j=1

α2
j − 2λ(u′, u′)2 + 2(f, u)2 ≤ C(ε)− (λ− ε)‖u‖2

X0
,
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hence (5.1) holds. Since∫
u6 dx =

∫
u2(x)

(∫ x

0
2uu′ dt

)2

dx ≤ 4‖u‖4
2‖u′‖2

2, u ∈ X0,

it follows that∫ 1

0
|I(u)| dx ≤ c1+c2

∫ 1

0
|u|d dx ≤ c1+c2‖u‖d6 ≤ c1+c24d/6‖u‖4d/6

2 ‖u′‖2d/6
2 .

Hence (5.7) holds with dn = max( d3 , 1) and δn(r) = r−s , where s = (1− d/6) >
0. Clearly, (5.8) also holds with δ(r) = r−1. Now the claim follows by Theo-
rem 5.2. ��

It is clear that the same reasoning applies also to the elliptic operator associated
with the equation

du(t, x)=
√

2dWQ(t, x)+
[
∂2
xu(t, x)−ψ

(
u(t, x)

)
∂xu(t, x)+P

(
u(t, · ), x)] dt,

(7.5)

where the additional nonlinear termP(u, x) has the following properties: (u, x) �→
P(u, x) is continuous on C[0, 1]× [0, 1] and

P(u, x)u(x) ≤ c1 + c2|u(x)|2,
∫ 1

0
|P(u, x)| dx ≤ c1 + c3|u|pLp

for some c1, c2, c3 ∈ R
1, c2 < 1, and p ∈ [1, 6). Now the functions Bn take the

form

Bn(u) = −n2un +
(
I(u), η′n

)
2 +

(
P(u, · ), ηn

)
2, u ∈ X0. (7.6)

Clearly, these functions are still continuous on the balls in X0 with the topology
induced by X. We consider the same Lyapunov function V (u) = ‖u‖2

2; a minor
change in the proof concerns the term P(u, x). As in Proposition 7.1 we apply The-
orem 5.2 to obtain a probability measureµwhich satisfies the equationL∗A,Bµ = 0
with respect to FC∞b (X, {ln}).

Let us now consider the elliptic equation associated with the space-time white
noiseWI(t), i.e.,

WI(t) =
∞∑
n=1

wn(t)ηn,

where ηn(x) =
√

2 sin πnx (we recall that {√2 sin πnx} is a complete orthonormal
system in L2(0, 1)). Thus, we consider the operator

LI,Bϕ =
∞∑
j=1

[
∂2
ηj
ϕ + Bj∂ηj ϕ

]
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on FC∞b (X, {ln}), where the Bn’s are given by (7.3). However, in this case we
assume that Lu = u′′, i.e., λn = −n2, and that

|I(y)| ≤ c1 + c2|y|,

where c1, c2 ∈ R
1, and c2 < 1. We have to modify the arguments in the previ-

ous example in order to obtain a convergent series of ∂2
ηn
V . To this end, we shall

consider the following Lyapunov function: V (u) =
∞∑
n=1
n−3/2u2

n. Letting

Lnϕ =
n∑
j=1

[
∂2
ηj
ϕ + Bj∂ηj ϕ

]

on the linear span En of the vectors η1, . . . , ηn, we obtain

LnV (u) = 2
n∑
j=1

j−3/2 − 2
n∑
j=1

j2j−3/2u2
j

+2
n∑
j=1

j−3/2
[(
I(u), η′j

)
2uj + (f, ηj )2uj

]
.

Since {√2 cosπnx} = {n−1η′n} is an orthonormal system, we obtain

LnV (u) ≤ 2
∞∑
j=1

j−3/2 − 2
n∑
j=1

j1/2u2
j + 2

(
c1 + c2‖u‖2

)‖u‖2 + 2‖f ‖2‖u‖2.

Applying Theorem 5.1 (or Theorem 5.2) with$(u) =
∞∑
j=1
j1/2u2

j , we arrive at the

following assertion.

Proposition 7.2. There exists a probability measure µ on the space

X0 = H 2,1/4
0 [0, 1] =

{
u :

∞∑
j=1

j1/2u2
j <∞

}

which satisfies the equation L∗I,Bµ = 0 with respect to the class FC∞b (X0, {ln}).

Clearly, the same is true for the fractional Sobolev classH 2,r
0 [0, 1] with r < 1/2

in place of H 2,1/4
0 [0, 1].

Suppose now that functions Aij on X0 satisfy the following conditions:

1) Aij is continuous on balls in X0 with respect to the topology of X and, for
every n, the restrictions of the matrix-valued mapping (Aij )ni,j to the linear
span of η1, . . . , ηn is nonnegative symmetric,
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2) there exist constants C1, C2, Cij such that

|Aij (u)| ≤ Cij (1+ ‖u‖γX0
),

∞∑
j=1

j−3/2Ajj (u) ≤ C1 + C2‖u‖γX0
,

where γ < 2 (or, if γ = 2, the same is true for every ε > 0 and some C2(ε) in
place of C1 and C2).

Suppose that I0 is a continuous function on R
1 such that |I0(s)| ≤ C3 + C4|s|α ,

where α < 1. Let

Bn(u) = −n2un −
(
ψ(u)u′, ηn

)
2 +

(
I0(u), ηn

)
2 + (f, ηn)2,

Then there exists a probability measure µ onX0 such that L∗A,Bµ = 0 with respect
to the class FC∞b (X, {ln}), where

LA,Bϕ :=
∞∑
i,j=1

Aij ∂ηi ∂ηj ϕ +
∞∑
n=1

Bn∂ηnϕ.

In fact, the mapping u �→ I0 ◦ u can be replaced by any mapping G on X0 which
is continuous on balls in X0 with respect to the topology of L2(0, 1) and satisfies
the estimate |G(u)(s)| ≤ C3 + C4|u(s)|α .

The functions Aij can be given, e.g., by the expression

Aij (u) =
∫ 1

0
σ(x, u)2ηi(x)ηj (x) dx

with some function σ on [0, 1]×X0, which corresponds to a non constant diffusion
coefficient if we deal with an SPDE.

Let D be a bounded region with smooth boundary ∂D in R
d and let f : R

1 ×
D→ R

d . We shall now consider the elliptic equation associated with the following
SPDE of the Navier–Stokes type:

du(t, x) =
√

2dWQ(t, x)+
[
Hu(t, x)− (

u(t, x) · ∇)
u(t, x)

+F (
x, u(t, x)

)+ ∇p(t, x)] dt (7.7)

with the incompressibility condition

div u = 0

and the boundary condition u(t, x) = 0, (t, x) ∈ [0, T ] × ∂D. We assume that
W
Q
t is a Wiener process in L2(D,Rd) (the exact conditions on the corresponding

elliptic operator are given below). In case of the classical Navier–Stokes equation,
one hasH = H andF = 0. We shall actually deal with the projection of (7.7) to the
space of divergence free fields, hence we do not take the pressure p into account.
It is well known that in the case H = H, at least for d = 2, under reasonable
assumptions on F andQ, there exists a process u inL2(D,Rd) satisfying (7.7) and
having an invariant probability measure µ (see [23], [27], [31], [33], [49]). In the
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case d = 3 a stationary solution to the classical stochastic Navier–Stokes equation
has been constructed in [32]. The corresponding marginals should be related (or
even coincide) with the (infinitesimally) invariant measures constructed by us. This
will be the subject of further study. It should also be noted that in the classical case
H = H and F = 0 the existence of invariant measures was first proved in [49]
(see Appendix II due to M.I. Vishik and A.I. Komech) in any dimension by argu-
ments very close in the spirit to the ones employed below. In this particular case,
the solutions to our elliptic equation constructed below coincide with the invariant
measures constructed in [49, Appendix II, §9].

Let
X0 =

{
u = (u1, . . . , ud) ∈ H 2,1

0 (D,Rd) : div u = 0
}

with norm

‖u‖2
X0
=

d∑
j=1

‖∇uj‖2
L2(D,Rd )

,

and let X be the closure of X0 in L2(D,Rd) equipped with the inner product from
L2(D,Rd).

In fact, we shall consider the following more general equation:

du(t, x) =
√

2dWQ(t, x)+
[
Hu(t, x)−

d∑
j=1

uj∂ju(t, x)+ F
(
x, u(t, · ))] dt,

(7.8)

where F : D × X0 → R
d is a uniformly bounded mapping and H is a linear

operator from X to L2(D,Rd) with a domain D(H) dense in X. In addition, we
shall assume that the domains of H and H∗ contain an orthonormal basis {ηn} of
X such that ηn ∈ X0 ∩ L∞(D,Rd). Suppose that for some λ > 0 one has

(Hu, u)2 ≤ −λ‖u‖2
X0
, ∀ u ∈ span {ηn}.

where ( · , · )2 is the inner product in L2(D,Rd). Finally, we assume that for all n
the functions u �→ (

F( · , u), ηn
)

2 are continuous on balls inX0 with respect to the
topology induced by L2(D,Rd).

From now on, we take for F the mapping F(x, u) = F0
(
x, u(x)

)
, where

F0 : D × R
d → R

d is a bounded Borel mapping continuous in the second ar-
gument.

Let

Bn(u) = (u,H∗ηn)2 +
d∑
j=1

(∂ju, u
jηn)2 +

(
F( · , u), ηn

)
2, u ∈ X0.

We observe that Bn is continuous on any ball S in X0 with respect to the topology
from X (i.e., from L2(D,Rd)). Indeed, if uk → u in X and uk ∈ S, then, for each
i = 1, . . . , d, the sequence {uik} is bounded in H 2,1

0 (D), hence u ∈ H 2,1
0 (D,Rd)
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and lim
k→∞

∂ju
i
k = ∂jui in the weak topology of L2(D). Then it follows by the em-

bedding theorem that lim
k→∞

u
j
k = uj in L2d/(d−2)(D) (resp. in all Lp(D), p ≥ 1,

if d = 2). Hence lim
k→∞

u
j
kηn = ujηn in L2(D,Rd) for every j = 1, . . . , d. This

yields that lim
k→∞

(∂juk, u
j
kηn)2 = (∂ju, ujηn)2. For every u ∈ span {ηn}, we have

∞∑
n=1

d∑
j=1

(uj ∂ju, ηn)2(u, ηn)2 =
d∑
j=1

(uj ∂ju, u)2 = −1

2

∫
D

|u|2div u dx = 0.

In addition, for every u ∈ span {ηn}, one has

∞∑
n=1

(u,H∗ηn)2(u, ηn)2 = (Hu, u)2 ≤ −λ‖u‖2
X0
. (7.9)

Therefore, (5.1) obviously holds. Clearly, (5.7) is fulfilled with$(u) = ‖u‖2
X0

and

V (u) = ‖u‖2
X0

. (5.8) holds with δ(r) = r−1.
Now, Theorem 5.2 applies to the corresponding elliptic equation: Let

LA,Bϕ =
∞∑
n=1

α2
n∂

2
ηn
ϕ +

∞∑
n=1

Bn∂ηnϕ

be defined on FC∞b (X, {ln}), where ln(u) = (u, ηn)2, and
∑∞
n=1 α

2
n <∞.

Proposition 7.3. Under the above conditions, there exists a probability measure
µ on X0 which satisfies the equation L∗A,Bµ = 0 with respect to FC∞b (X, {ln}).

This result corresponds to the processWQ(t) =
∞∑
n=1
αnwn(t)ηn, where

∞∑
n=1
α2
n <

∞ and {wn(t)} is a sequence of independent standard real Wiener processes, i.e.,
to the time white noise in the corresponding SPDE.

As in the case of the Burgers equation, the same reasoning applies to the fol-
lowing more general situation. Suppose that functions Aij on X0 are continuous
on balls in X0 with respect to the topology of X and, for every n, the restriction of
the matrix-valued mapping (Aij )ni,j to the linear span of η1, . . . , ηn is nonnegative
symmetric. Assume that there exist constants C1, C2, Cij such that

|Aij (u)| ≤ Cij (1+ ‖u‖γX0
),

∞∑
j=1

Ajj (u) ≤ C1 + C2‖u‖γX0
,

where γ < 2 (or, if γ = 2, the same is true for every ε > 0 and some C2(ε) in
place of C1 and C2). Let

LA,Bϕ =
∞∑
i,j=1

Aij ∂ηi ∂ηj ϕ +
∞∑
n=1

Bn∂ηnϕ
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with

Bn(u) = (u,H∗ηn)2 −
d∑
j=1

(∂ju, u
jηn)2 +

(
I0(u), ηn

)
2 +

(
F(u), ηn

)
2,

where I0 : R
d → R

d is a continuous mapping such that |I0(x)| ≤ C3 + C4|x|α
with α < 2d/(d − 2) and

(
I0(x), x

) ≤ C3 + C4|x|κ with κ < 2.
For concrete examples of H one can take H = H or a more general nonde-

generate second order elliptic operator with smooth coefficients.

In a similar manner one can study the reaction-diffusion equation

du(t, x) =
[
∂2
xu(t, x)+ F

(
u(t, x)

)]
dt +

√
2dWI (t),

whereWI(t) is the space-time white noise process, i.e.,

WI(t) =
∞∑
n=1

wn(t)ηn,

where wn are independent standard Wiener processes and ηn(x) =
√

2 sin πnx as
in the example considered in Proposition 7.2. Invariant measures for this equation
are considered, e.g., in [20], [27], [34], [35], [44], [47], [51]. The corresponding
elliptic operator is given by

LI,Bϕ =
∞∑
n=1

[
∂2
ηn
ϕ + Bn∂ηnϕ

]
,

where the functions Bn(u) = −n2un + (F ◦ u, ηn)2 are defined on C[0, 1] or on
a suitable Lp. In order to apply our results, it suffices to assume that F is con-
tinuous, has at most polynomial growth at infinity and that F(x)x ≤ C + ε|x|2
with a sufficiently small ε > 0. One can explicitly find invariant measures for the
above reaction-diffusion equation. For example, let F(x) = S′(x), where S is a
continuously differentiable function on R

1 such thatS(x) ≤ C + ε|x|2 and ε > 0
is sufficiently small. Indeed, let ν be the centered Gaussian measure on L2(0, 1)
corresponding to F = 0, i.e., to the functions Bn(u) = λnun. It is readily seen that

ν is the distribution of the Gaussian random vector Y (w) =
∞∑
n=1
|λn|−1/2ξn(w)ηn,

where ξn are independent standard Gaussian random variables. The measure ν is
in fact concentrated on the space E = C[0, 1] of continuous functions (or on a
smaller subspace of Hölder continuous functions). Hence the function

8(u) = exp
∫ 1

0
S

(
u(x)

)
dx

is continuous on the space E with its natural norm and

∂ηn8(u)

8(u)
=

∫ 1

0
S′

(
u(x)

)
ηn(x) dx =

(
F(u), ηn

)
2.
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Due to the estimate ∫ 1

0
S

(
u(x)

)
dx ≤ C + ε

∫ 1

0
|u(x)|2 dx,

the function 8 is ν-integrable, provided that ε is sufficiently small. Since ∂ηn8
is bounded on balls in E, we obtain by the integration by parts formula that the
measure µ = 8 ν is differentiable along ηn with respect to Lip0(E) and

βµηn(u) = βνηn(u)+
∂ηn8(u)

8(u)
= Bn(u).

Moreover, if we have the estimate |S′(x)| ≤ C + exp
(
ε|x|2) and ε > 0 is suffi-

ciently small, then the function ∂ηn8/8 is ν-integrable, hence Bn is the logarithmic
derivative of µ along ηn with respect to the classes C1

b(X), C
1
b(E), in particu-

lar, with respect to FC∞b (X). Of course, we can take a more general mapping
for F . The same proof as above applies to the mapping F : E → L2(0, 1), where(
F(u), ηn

)
2 = ∂ηnS(u), provided that S is a Borel function on E differentiable

along all vectors ηn and

S(u) ≤ C + ε‖u‖2
E, ‖F(u)‖2 ≤ C + exp

(
ε‖u‖2

E

)
for a sufficiently small ε > 0. The smallness of ε in these examples is determined
by the ν-integrability of the function exp

(
ε‖u‖2

E

)
(the existence of such ε is ensured

by Fernique’s theorem). Certainly, we could assume just as well the ν-integrability
of expS. The above explicit expression forµwas obtained in [35], [34], [51] under
stronger assumptions onS. It should be noted that, according to [11], every proba-
bility measureµ0 onX = L2(0, 1) such thatun ∈ L2(µ0), ‖F ◦u‖L2(0,1) ∈ L2(µ0)

and L∗I,Bµ0 = 0 with respect to the class FC∞b (X, {ln}), is absolutely continuous
with respect to the Gaussian measure ν.

In the case of the reaction-diffusion equation

du(t, x) =
[
∂2
xu(t, x)+ F

(
x, u(t, · ))] dt +√2σ

(
x, u(t, · )) dWI (t)

with a non-constant diffusion coefficient σ , invariant measures are not absolutely
continuous with respect to Gaussian measures and do not admit explicit expressions.
If σ does not depend on x, then the corresponding operator is given by

LA,Bϕ =
∞∑
n=1

[
σ 2∂2

ηn
ϕ + Bn∂ηnϕ

]
,

where Bn(u) = −n2un +
(
F( · , u), ηn

)
2. If σ depends on x, then

LA,Bϕ =
∞∑
i,j=1

Aij ∂ηi ∂ηj ϕ +
∞∑
n=1

Bn∂ηnϕ,

where Aij (u) =
∫ 1

0
σ(x, u)2ηi(x)ηj (x) dx.
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The existence of solutions to the associated elliptic equation is obtained by our
method under the following conditions. LetE = Lp[0, 1] with somep ∈ [2,∞) be
equipped with the norm ‖u‖E = ‖u‖Lp . Assume thatF and σ are Borel real-valued
functions on [0, 1]× E such that

‖F( · , u)‖2‖u‖2 ≤ c1 + ε1‖u‖2
E,

∫ 1

0
σ(x, u)2 dx ≤ c2 + ε2‖u‖2

E,

and ε1, ε2 > 0 are such that ε1 + 2ε2

∞∑
j=1
jδ−2 < 2, where δ ∈ (0, 1) is such that

we have the embedding

X0 =
{
u : |u|20 =

∞∑
j=1

jδu2
j <∞

}
⊂ Lp[0, 1].

By the Sobolev embedding theorem, it suffices to take δ sufficiently close to 1.
Finally, suppose that, for all n and j , the functions u �→ ∫ 1

0 F(x, u)ηn(x) dx

and u �→ ∫ 1
0 σ(x, u)

2ηn(x)ηj (x) dx are continuous on E.

Proposition 7.4. Under the above conditions, there exists a probability measure
µ on E such that L∗A,Bµ = 0 with respect to FC∞b (E, {ln}).
Proof. Let us consider the Lyapunov function similar to the one considered in
the case of the space-time white noise Burgers equation (see Proposition 7.2):

V (u) =
∞∑
j=1
jδ−2u2

j . In the case when σ does not depend on x, the elliptic opera-

tors Ln on En are given by

Lnϕ(u) =
n∑
j=1

σ 2(u)∂2
ηj
ϕ(u)+

n∑
j=1

Bj (u)∂ηj ϕ(u).

In order to apply the same techniques as above, it suffices to observe that

n∑
j=1

jδ−2(F(u), ηj )2(u, ηj )2 ≤ ‖F(u)‖2‖u‖2

and
∑∞
j=1 j

2uj∂ηj V (u) = 2|u|20. In the case when σ may depend on x,
the reasoning is similar, although the first term in the expression for Ln becomes∑
i,j≤n Aij (u)∂ηi ∂ηj ϕ. Now it remains to use the estimate |Aij (u)| ≤

∫ 1

0
σ(x, u)2

dx. ��
Clearly, the above assumptions onF andσ are fulfilled ifF(x, u) = F0

(
x, u(x)

)
and σ(x, u) = σ0

(
x, u(x)

)
, where F0 and σ0 are uniformly bounded Borel func-

tions continuous in the second argument. We remark that our assumptions onF and
σ are weaker than those in [47] where both functions were uniformly bounded and
uniformly Lipschitzian. The condition of the linear growth of F can be replaced by
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a polynomial bound provided that some extra coercivity condition is imposed. In
the case of a bounded σ , results in this direction (concerning existence of the pro-
cesses and their invariant measures) have been obtained in [20]. Finally, note that
in the above results the functions Bn do not correspond to any X0-valued drift B,
i.e., they are typical for application of the technique developed in this paper.

8. Regularity

A difficult problem is to prove the existence of logarithmic derivatives for solutions
of the elliptic equation (3.1). Considerable progress has been achieved in the finite
dimensional case, but in infinite dimensions only a few special resuls are known (cf.
[1], [12], [15]). Yet another special result will be proved below, but now we give a
sufficient condition which ensures that the measure µ constructed in Theorem 5.3
has a logarithmic gradient (cf. [38], [39], [14], [15]).

In this section, we assume as above that {ln} is a point separating sequence of
continuous linear functionals on X and {en} ⊂ X is such that ln(ek) = δnk .
Theorem 8.1. Let µ be a probability measure that satisfies (3.1) with respect to
the class FC∞0 (X, {ln}). Suppose that (B1, . . . , Bn) = ∇Gn(l1, . . . , ln) + Dn,
where Gn is a continuously differentiable function on R

n, Dn is a Borel mapping
with values in R

n, and

sup
k

‖Dk‖L2(µ,Rk) <∞. (8.1)

Suppose that Bn ∈ L2(µ) for every n. Then µ is differentiable along each en and

‖βµen‖L2(µ) ≤ ‖Bn‖L2(µ) + sup
k

‖Dk‖L2(µ,Rk). (8.2)

Proof. Let Pnx = l1(x)e1 + · · · + ln(x)en and let IEn stand for the conditional
expectation with respect to the measure µ and the σ -field σn generated by Pn. Set
Sn = B1e1 + · · · + Bnen. We denote by µn the image of µ under the projection
Pn. It is readily seen (see the proof of [15, Proposition 3.3]), that the measure µn
solves the elliptic equation L∗nµn = 0 with

Lnf =
n∑
j=1

[
∂2
ej
f + ∂ej f IEnBj

]

and has the logarithmic gradient βn on En, En being equipped with the H -norm.
We shall identify (En, | · |H ) with R

n. Let us show that

βn = IEnSn +�n,
where ∫

En

|�n|2H dµn ≤ ‖IEnDn‖2
L2(µ,Rn)

≤ ‖Dn‖2
L2(µ,Rn)

. (8.3)
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By our hypothesis,

IEnSn =
n∑
j=1

IEjBj ei = ∇Gn(l1, . . . , ln)+ IEnDn.

As shown in [15, Theorem 3.1], βn is the orthogonal projection of IEnSn to the
closure U of

{
D
H
ϕ, ϕ ∈ C∞0 (En)

}
in the Hilbert space L2(µn,En). We observe

that ∇Gn(l1, . . . , ln) ∈ U (see [45] or [21]). Therefore, we get (8.3). Let now
ψ ∈ FC∞0 (X, {li}) and let n ∈ N be fixed. For any m ≥ n such that ψ depends
only on lj with j ≤ m, one has∫
Em

∂enψ dµm = −
∫
Em

ψ(βm, en)H dµm

= −
∫
Em

ψ(IEmSm, en)H dµm −
∫
Em

ψ(�m, en)H dµm

≤ ‖ψ‖L2(µm)

√√√√∫
Em

|IEmBn|2 dµm + ‖ψ‖L2(µm)

√√√√∫
Em

|�m|2H dµm

≤ ‖ψ‖L2(µm)
‖Bn‖L2(µ) + ‖ψ‖L2(µm)

sup
k

‖Dk‖L2(µ,Rk).

It follows that βµen exists and its L2(µ)-norm is majorized by the right-hand side of
(8.2) (see, e.g., [15, Lemma 1.4] or [9, Proposition 2.6.1]). ��
Remark 8.2. It follows from (8.2) that the measure µ is differentiable along all
directions h in the Hilbert space

H0 =
{
x : |x|2H0

:=
∞∑
j=1

cj lj (x)
2
}
,

where cn = ‖Bn‖2
L2(µ)

+ 1. Moreover, ‖βµh ‖2
L2(µ)

≤ |h|2H0
.

Theorem 8.1 applies to the situation of Example 4.6 provided the additional
condition (8.1) is satisfied. However, in that specific case, more can be shown:
namely, any solution µ of (3.1) is its symmetric solution, i.e., the βνen ’s exist and
β
µ
en = Bn. In the probabilistic interpretation, this means that any invariant proba-

bility for the diffusion generated by the Gibbs measure is Gibbsian with respect to
the same specifications.

Theorem 8.3. Suppose that in the situation of Theorem 8.1 one has the following
stronger condition:

lim
n→∞‖IEnDn‖L2(µ,Rn) = 0. (8.4)

Then βµen = Bn µ-a.e.
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Proof. Let ε > 0 be fixed and let us choose k0 ∈ N such that for all k ≥ k0 one has∫
|IEkPkB − ∇Gk|2H dµ =

∫ k∑
n=1

|IEkDn|2 dµ ≤ ε2, (8.5)

which is possible by (8.4), and set

Rk := (βµe1
, . . . , βµek ).

Keeping k ≥ k0 fixed, for every ψ ∈ C∞0 (Rk), one has from the elliptic equation
that ∫

(IEkPkB − IEkRk,∇ψ)H dµ =
∫
(PkB − Rk,∇ψ)H dµ = 0. (8.6)

We observe that the projection µk of µ under Pk has the logarithmic gradient
βµk = IEkRk on Ek (where as before Ek is equipped with the H -norm and we
identify Ek with R

k). There exist two functions ψ1, ψ2 ∈ C∞0 (Rk) such that∫
|βµk − ∇ψ1|2H dµk +

∫
|∇Gk − ∇ψ2|2H dµk <

ε2

2
.

Then ∫
|βµk − ∇Gk − (∇ψ1 − ∇ψ2)|2H dµk ≤ ε2. (8.7)

Taking into account (8.6) with ψ = ψ1 − ψ2, (8.5), and (8.7), we obtain

‖IEkPkB − βµk‖2
L2(µ,H)

= (IEkPkB − βµk ,∇ψ)L2(µ,H)

+ (IEkPkB − βµk , IEkPkB − βµk − ∇ψ)L2(µ,H)

= (IEkPkB − βµk , IEkPkB − βµk − ∇ψ)L2(µ,H)

= (IEkPkB − βµk ,∇Gk − βµk − ∇ψ)L2(µ,H)

+ (IEkPkB − βµk , IEkPkB − ∇Gk)L2(µ,H)

≤ ‖IEkPkB − βµk‖L2(µ,H)‖∇Gk − βµk − ∇ψ‖L2(µ,H)

+ ‖IEkPkB−βµk‖L2(µ,H)‖IEkPkB−∇Gk‖L2(µ,H)

≤ 2ε‖IEkPkB−βµk‖L2(µ,H).

Therefore, ∫
|IEkBi − IEkβ

µ
ei
|2 dµ =

∫
|IEkBi − βµkei |2 dµ < 4ε2.

By the martingale convergence theorem, letting k tend to infinity we obtain∫
|Bi − βµei |2 dµ < 4ε2,

whence Bi = βµei = 0 µ-a.e., since ε > 0 was arbitrary. ��
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Corollary 8.4. Suppose that in the situation of Theorem 8.1, there exists a non-
negative function $ as in Theorem 4.1 such that

|Dm|2 ≤ εm$, (8.8)

where lim
m→∞ εm = 0. Then βµen = Bn µ-a.e.

Example 8.5. Condition (8.8) is fulfilled in the situation of Example 4.6 with

Bn(x) = ∂xnVn(xn)+
∑
j �=n

∂xnWn,j (xn, xj )

provided thatWn,j = Wj,n, ∂xnVn(xn)xn ≤ c1 − k|xn|α, and

|∂xnVn(xn)| ≤ c3(1+ |xn|α), |∂xnWn,j (xj , xn)| ≤ cn,j (1+ |xn|α−1 + |xj |α−1),

where the numbers cn,j satisfy the following additional condition: cn,j ≤ qnqj .

The following result on regularity of solutions can be informally interpreted in
terms of the time-reversal of the corresponding diffusions. Its finite dimensional
version is exactly this: ifµ solves elliptic equation (3.1) on R

n withB µ-square-in-
tegrable, then there exists a Markovian semigroup (Tt )t≥0 with invariant measure
µ and generator LBf = Hf + (B,∇f ); moreover, there is a diffusion ξ with tran-
sition semigroup (Tt )t≥0. The drift term can be written as β+ δ, where β = ∇p/p
and δ is orthogonal in L2(µ,Rn) to the gradients of smooth compactly supported
functions. Clearly,µ also solves equation (3.1) with the “dual” drift B̂ = β−δ. The
diffusion with generatorLB̂f = Hf+(B̂,∇f ) is the time-reversal of ξ ; in analytic
terms, LB̂ is the generator of the dual semigroup. It is now obvious that β can be
found from the equality B + B̂ = 2β. In the next proposition, we do not assume in
advance that the adjoint operator has the structureLB̂f = Hf+(B̂,∇f )with some
B̂, but this anticipated formula is, of course, implicitly behind our calculations.

Proposition 8.6. Letµ be a probability measure onX and letBn ∈ L2(µ), n ∈ N.
Suppose that µ satisfies equation (3.1) with respect to K = FC∞b (X, {ln}). As-
sume also that lj ∈ L2(µ) for some j . Then µ is differentiable along ej with
βej ∈ L2(µ) precisely when lj belongs to the domain of the adjoint operator for

LBf =
∞∑
n=1

(∂2
en
f + Bn∂enf ) with D(LB) =FC∞b (X, {ln}).

In addition,

βµej =
L∗Blj + Bj

2
. (8.9)
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Proof. We first look at the case X = R
n in more detail. Let L∗Bµ = 0 with

|B| ∈ L2(µ) and LBf = Hf + (B,∇f ), f ∈ C∞0 (Rn); note that in the case of a
globally µ-integrable drift B, there is no difference between the classes C∞0 (R

n)

and C∞b (R
n) for the interpretation of (3.1). We recall that, as shown in [15], µ has

a density p ∈ W 1,1(Rn) and that β := ∇p/p ∈ L2(µ,Rn). Let us verify that the
operator LB̂f = Hf + (B̂,∇f ), where B̂ = 2β − B, coincides on C∞b (R

n) with
the adjoint to LB on L2(µ). Indeed, let f, g ∈ C∞0 (Rn). We know that B−β = δ,
where δ is orthogonal to every ∇ζ , ζ ∈ C∞0 (Rn), in L2(µ,Rn). Then B̂ = β − δ.
Integrating by parts, we obtain∫

LBf g dµ =
∫
LBf gp dx

= −
∫
(∇f,∇g) dµ−

∫
(∇f,∇p)g dx +

∫
(B,∇f )g dµ

= −
∫
(∇f,∇g) dµ+

∫
(δ,∇f )g dµ.

In a similar manner,∫
LB̂g f dµ = −

∫
(∇f,∇g) dµ−

∫
(δ,∇g)f dµ.

In order to conclude that ∫
LBf g dµ =

∫
LB̂g f dµ, (8.10)

it remains to note that
∫ (
δ,∇(fg)) dµ = 0. Clearly, (8.10) holds true also for all

f, g ∈ C2
b (R

n). Assume now that xj ∈ L2(µ) (which is not always the case, of
course). Then we set L∗Bxj := LB̂xj = B̂j and observe that (8.10) holds true also
for xj in place of g. Actually, this follows from the above calculations, but is also
a direct consequence of (8.10) with g(x) = ζ(xj ), where ζ ∈ C∞0 (R1) is such
that ζ(t) = t on [−r, r] with r so large that the support of f is contained in the
centered ball of radius r . Since B̂j = 2(β, ej ) − Bj ∈ L2(µ), (8.10) is valid for
all f ∈ C∞b (Rn) and g = xj , and the functional f �→ ∫

LBf xj dµ is continuous
with respect to the L2(µ) norm on C∞b (R

n), which is equivalent to the inclusion
xj ∈ D(L∗B).

The above calculation enables us to reduce the general case to that of R
n. Sup-

pose first that βej exists and is in L2(µ). Let f ∈FC∞b (X, {ln}); we observe that
equation (3.1) is satisfied also with respect to FC∞b (X, {ln}) due to the integra-
bility of the Bn’s. We may assume that f depends only on l1, . . . , ln with n ≥ j .
In fact, everything reduces to the case X = R

∞, since we can take the embedding
(ln)

∞
n=1 : X→ R

∞. Therefore, we assume further on that the ln’s are the coordinate
functions on R

∞ and en is the standard n-th “unit” vector in R
∞. The necessity

part could be proved directly by the same calculations as above if we knew the
differentiability of µ along e1, . . . , en, and not only along ej . However, it is easy
to overcome this difficulty by considering the image µn of µ under the projection
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Pnx = (x1, . . . , xn) to R
n. Let IEng denote the conditional expectation of g with

respect to the measureµ and the σ -field generated by Pn. We know thatµn satisfies
the elliptic equation on R

n with drift coefficient Dn := (IEnB1, . . . , IEnBn) and
that it has βµnej as µn-square integrable partial logarithmic derivatives. Moreover,
as is easily verified (see [15]), one has

IEβµej (x) = βµnej (Pnx) µ-a.e. (8.11)

According to the finite dimensional case and (8.11), we have by the definition of
the conditional expectation

∫
X

LBf lj dµ =
∫
Rn

[ n∑
i=1

∂2
ei
f lj + ∂ei f IEnBilj

]
dµn

=
∫
Rn

f (2βµnej − IEnBj ) dµn =
∫
X

f (2βµej − Bj ) dµ.

Therefore, L∗Blj = 2βµej − Bj , where LB is considered on FC∞b (X, {ln}) (or
on the smaller domain FC∞0 (X, {ln}), which makes no difference in the present
situation). Conversely, assume that L∗Blj exists. We have to verify the equality∫
X

∂ej f dµ = −
1

2

∫
X

f (L∗Blj + Bj ) dµ = −
1

2

∫
X

(LBf lj + fBj ) dµ (8.12)

for smooth cylindrical f . We may assume again that f (x) = ψ(x1, . . . , xn), where
ψ ∈ C∞b (Rn) and n ≥ j . Employing the same notation as above and making use
of (8.11), we rewrite (8.12) as

∫
Rn

∂ej f dµn = −
1

2

∫
Rn

(
lj

n∑
i=1

[∂2
ei
f + ∂ei f IEnBi]+ f IEnBj

)
dµn. (8.13)

Note that the right-hand side of (8.13) equals

−1

2

∫
Rn

(
f (2βµnej − IEnBj )+ f IEnBj

)
dµn = −

∫
Rn

fβµnej dµn,

which is exactly the left-hand side of (8.13). ��
Many results in this paper admit extensions to the manifold case. This is done

in [18].
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