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Abstract. We prove an abstract large deviation result for a sequence of random elements of
a vector space satisfying an “abstract exponential martingale condition”. The framework nat-
urally generates non-convex rate functions. We apply the result to solutions of Itô stochastic
equations in Rd driven by Brownian motion and a Poisson random measure.

1. Introduction

In many large deviation problems, the object under study is a sequence {Yn} of
random elememts of a topological vector space E and convexity considerations
play an important role. Let

φn(ξ) = log E exp〈Yn, ξ〉, ξ ∈ E∗,

where E∗ is the dual space of E. It is well known that if

φ(ξ) = lim
n
n−1φn(nξ) (1.1)

exists for all ξ ∈ E∗ and satisfies a suitable differentiability condition, and

{L(Yn)} is exponentially tight, (1.2)

then {L(Yn)} satisfies the large deviation principle with rate function

φ∗(y) = sup
ξ∈E∗

[〈y, ξ〉 − φ(ξ)], y ∈ E. (1.3)

This elegant result is essentially due to Gärtner [Ga] when E = Rd ; see also El-
lis [E] (in this case, (1.2) is superfluous). For arbitrary E results of this type have
been obtained by Baldi [Ba], Bryc [Br], Dawson and Gärtner [Da-G], Dembo and
Zeitouni [De-Z], O’Brien-Sun [OB-S] and de Acosta [deA1], [deA2]. The infinite
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dimensional result may be applied, for example, to prove a large deviation principle
for Lévy processes [deA1].

Of course, the function φ∗ defined in (1.3) is convex. It obviously follows that
the result cannot be applied – at least, not directly – to situations in which the rate
function is not convex. Such situations exist in abundance.

In the present paper we introduce an abstract scheme which generalizes the pre-
viously described result to a non-convex framework. The main idea is to postulate
the existence of suitable functions n : E × E∗ → R such that for all ξ ∈ E∗

E exp[〈Yn, ξ〉 −n(Yn, ξ)] = 1 (1.4)

and for all x ∈ E, ξ ∈ E∗

(x, ξ) = lim
n
n−1n(x, nξ)

exists. For reasons that will become clear in Section 4, (1.4) might be thought of
as an “abstract exponential martingale condition”. In Theorems 2.1 and 2.2 we
prove that under suitable regularity conditions on  and a suitable form of (1.2),
{L(Yn)} satisfies the large deviation principle with rate function ∗(y, y), where
for y, z ∈ E,

∗(y, z) = sup
ξ∈E∗

[〈z, ξ〉 −(y, ξ)]. (1.5)

This rate function is generated by convex conjugation, but because of the depen-
dence of  on its first variable it is in general not convex. Thus (1.5) provides a
natural way of generating non-convex rate functions in a vector space context.

As an illustration of our scheme we consider the large deviation principle for
diffusions. For simplicity, let Xxn = {Xxn(t), t ∈ [0, 1]} be the solution of the
stochastic equation in R

Xxn(t) = x +
∫ t

0
b(Xxn(s))ds + n−1/2

∫ t

0
σ(Xxn(s))dB(s),

where B is standard Brownian motion, b, σ are bounded and uniformly Lipschitz
with |σ | ≥ c > 0 and x ∈ R. Then according to the classical Freidlin-Wentzell
theorem [W-F], {L(Xxn)} satisfies the large deviation principle in C[0, 1] with rate
function

I x(f ) =



1
2

∫ 1
0 (f

′(s)− b(f (s)))2σ−2(f (s))ds if f (0) = x and
f is absolutely continous

∞ otherwise.

Our abstract large deviation principle (Theorems 2.1 and 2.2) applies to this sit-
uation. Let M[0, 1] be the space of finite signed measures on [0,1]. In this case
condition (1.4) is

E exp

[∫
Xxn dλ−xn(Xxn, λ)

]
= 1

where
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xn(f, λ) = λ([0, 1])x +
∫ 1

0
Gn(f (s), λ([s, 1]))ds

x(f, λ) = λ([0, 1])x +
∫ 1

0
G(f (s), λ([s, 1]))ds, f ∈ C[0, 1], λ ∈ M[0, 1]

and

Gn(y, α) = b(y)α + (2n)−1σ 2(y)α2,

G(y, α) = b(y)α + 1

2
σ 2(y)α2 y, α ∈ R.

The rate function I x is obtained in our scheme by the variation formula

I x(f ) = (x)∗(f, f ) = sup
λ∈M[0,1]

[∫
f dλ−x(f, λ)

]
, f ∈ C[0, 1].

More generally, we present in Theorem 3.1 an application of the abstract large
deviation principle to a sequence of Markov processes in Rd which are defined
as solutions of Itô stochastic equations driven by Brownian motion and a Poisson
random measure (for a precise statement of the considerable breadth of the class
of Markov processes defined in this way, see Cinlar-Jacod [C-J]). In the Markov
context, some closely related results were obtained originally by Wentzell [W]
and more recently, in an improved form, by Dupuis-Ellis [Du-E]; in the semimar-
tingale context, a closely related result was obtained by Liptser-Pukhalskii [L-P].
Because of the different frameworks and assumptions, it is not immediately clear
how Theorem 3.1 compares with these results. However, we wish to emphasize
two aspects of our work which are different from those papers and, it appears to
us, deserve mention: (i) the assumptions in Theorem 3.1 are explicit boundedness,
Lipschitz and integrability conditions on the data of the stochastic equations and
not on latent objects, such as rate functions; (ii) no non-degeneracy assumptions
are made in Theorem 3.1. We also indicate in Theorem 9.1 how the methods of
the present paper apply to a somewhat more general class of Markov processes,
which includes those considered in [W] and [Du-E]; the lower bound in this result
requires, however, a non-degeneracy assumption.

A very recent contribution to the study of large deviations for Markov processes
is Feng and Kurtz [F-K], where a nonlinear semigroup and exponential martingale
problem approach is developed.

The paper is organized as follows. In Section 2 we prove the abstract large de-
viation result. The vector space and measurability assumptions are formulated so
as to apply toD([0, 1],Rd) endowed with the uniform norm; also, for greater flex-
ibility, the exponential tightness assumption does not involve {Yn} but an auxiliary
sequence {Zn} which is superexponentially close in probability to {Yn}.

Sections 3–9 are devoted to the application to Itô stochastic equations. In Section
3 we describe the equations and state the large deviation theorem for the solution
processes, {Xxn}. In Section 4 we establish the “abstract exponential martingale
condition”. In Section 5 we introduce a suitable time discretization {Zxn} of {Xxn}
and show that it is exponentially tight in (D(T ,Rd), ‖·‖∞) and superexponentially
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close to {Xxn}. In Section 6 we identify the rate function–given in the abstract frame-
work by the variational formula (1.5) – as a classical integral expression and prove
the compactness of the level sets. In Section 7 we show that under a non-degener-
acy (uniform ellipticity) assumption on the diffusion coefficient of the stochastic
equations, the subdifferentiability assumption in Theorem 2.2 holds. In Section 8
we show that the solutions of the stochastic equations perturbed by an indepen-
dent Brownian motion with small variance–which renders the diffusion coefficient
non-degenerate–are superexponentially close in probability to the solutions of the
corresponding original equations. Finally, in Section 9 the items in Sections 4–8
are assembled and Theorem 3.1 is proved.

2. An abstract non-convex large deviation result

We will consider the following objects:

• E is a Hausdorff topological vector space and V is a fundamental system of open
symmetric neighborhoods of 0.

• E is a σ -algebra of subsets of E such that
(i) E contains the class of compact sets.

(ii) E contains V.
(iii) (E,E) is a measurable vector space; that is, the map (x, y)→ x+y is (E×

E,E⊗ E)/(E,E) -measurable and the map (λ, x)→ λx is (R×E,B(R)×
E)/(E,E)-measurable; here B(R) is the Borel σ -algebra of R.

• F is a subspace of the dual space E∗ such that 〈·, ξ〉 is E-measurable for all
ξ ∈ F .

• For a function  : E × F → R, we define for x, y ∈ E

∗(x, y) = sup
ξ∈F

[〈y, ξ〉 −(x, ξ)],

note that if (x, 0) = 0 for all x ∈ E, then ∗ ≥ 0.
• {an}n∈N is a positive sequence with limn an = ∞.

In general,E may be smaller than the Borel σ -algebra of E. The framework will
be applied in Sections 3–9 to the following setting: E = D([0, 1],Rd) endowed
with the uniform norm ‖ · ‖∞,V is the class of open balls with center at 0, E is
the σ -algebra generated by the evaluation mappings, and F = M([0, 1],Rd), the
space of Rd -valued vector measures on ([0, 1],B([0, 1]). We have previously used
this setting in de Acosta [deA1].

In Theorems 2.1 and 2.2 we prove large deviation upper and lower bounds,
respectively, for {LPn(Yn)}, where for each n ∈ N, Yn is an E-valued random vec-
tor satisfying the key assumption (4) of Theorem 2.1. For greater flexibility in the
applications, it is not convenient to assume that {LPn(Yn)} is exponentially tight,
which may fail to be true; we suppose instead that there exists a sequence {Zn} of
E-valued random vectors such that {Yn} and {Zn} are superexponentially close in
probability and {LPn(Zn)} is exponentially tight.
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Theorem 2.1. (upper bounds) Let n, : E × F → R be such that

(1) for all ξ ∈ F,n(·, ξ) is E-measurable.
(2) for all ξ ∈ F,(·, ξ) isE-measurable, continuous and satisfies(x, 0) =

0 for all x ∈ E.
(3) for all ξ ∈ F ,

bn(ξ)
%= sup
x∈E

|a−1
n n(x, anξ)−(x, ξ)| → 0 as n→ ∞.

For each n ∈ N, let Yn, Zn be E-valued, E-random vectors defined on
(&n,An,Pn), and assume

(4) for all n ∈ N, ξ ∈ F ,

En exp[〈Yn, ξ〉 −n(Yn, ξ)] = 1.

(5) {LPn(Zn)} is exponentially tight.
(6) for every V ∈ V.

lim
n
a−1
n log Pn{Yn − Zn ∈ V c} = −∞.

Assume furthermore that for all a ≥ 0,
(7) the level set La = {x ∈ E : ∗(x, x) ≤ a} is compact.

Then for all A ∈ E,

lim
n

sup a−1
n log Pn{Yn ∈ A} ≤ − inf

x∈Ā
∗(x, x).

Proof . Let K be a compact subset of E. We claim:

lim
n

sup a−1
n log Pn{Zn ∈ K} ≤ − inf

x∈K
∗(x, x). (2.1)

For, assume that infx∈K∗(x, x) <∞ and let ε > 0. For ξ ∈ F , let

V (ξ) = {x ∈ E : 〈x, ξ〉 −(x, ξ) > inf
y∈K

∗(y, y)− ε}.

Then V (ξ) is open, V (ξ) ∈ E and

K ⊂ {x ∈ E : ∗(x, x) > inf
y∈K

∗(y, y)− ε} =
⋃
ξ

V (ξ).

By compactness, there exists ξ1, . . . , ξk ∈ F such that

K ⊂
k⋃
i=1

V (ξi).

Let V ∈ V be such that

K + V ⊂
k⋃
i=1

V (ξi).
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Then

{Zn ∈ K} ⊂ {Yn ∈ K + V } ∪ {Yn − Zn ∈ V c}

⊂ {Yn ∈
k⋃
i=1

V (ξi)} ∪ {Yn − Zn ∈ V c}

and therefore

Pn{Zn ∈ K} ≤ 2 max{Pn{Yn ∈
k⋃
i=1

V (ξi)},Pn{Yn − Zn ∈ V c}}. (2.2)

Now, letting b = infx∈K∗(x, x)− ε, we have

Pn{Yn ∈
k⋃
i=1

V (ξi)} ≤
k∑
i=1

Pn{〈Yn, ξi〉 −(Yn, ξi) > b}

≤ e−anb
k∑
i=1

En exp[〈Yn, anξi〉 − an(Yn, ξi)]

≤ e−anb · k · max
i

{En exp[〈Yn, anξi〉
−n(Yn, anξi)] · exp(anbn(ξi))}. (2.3)

Letting n→ ∞, by assumptions (3), (4), and (6), and (2.2), (2.3), we obtain

lim
n

sup a−1
n log Pn{Zn ∈ K} ≤ −b = − inf

x∈K
∗(x, x)+ ε.

Since ε is arbitrary, claim (2.1) follows when infx∈K∗(x, x) < ∞. If infx∈K∗
(x, x) = ∞, the argument is similar; we omit it.

Next, let A ∈ E and let a > 0. By assumption (5), there exists a compact set
Ka ⊂ E such that

lim
n

sup a−1
n log Pn{Zn ∈ Kca} ≤ −a. (2.4)

We have, for V ∈ V,

{Yn ∈ A} ⊂ {Yn ∈ A,Zn ∈ Ka, Yn − Zn ∈ V } ∪ {Zn ∈ Kca} ∪ {Yn − Zn ∈ V c}
⊂ {Zn ∈ A+ V ∩Ka} ∪ {Zn ∈ Kca} ∪ {Yn − Zn ∈ V c}.

and

Pn{Yn ∈ A} ≤ 3 max{Pn{Zn ∈ A+ V ∩Ka},Pn{Zn ∈ Kca},Pn{Yn −Zn ∈ V c}}.
(2.5)

Letting n→ ∞, by assumption (6), (2.1), (2.4) and (2.5), we have

lim sup a−1
n log Pn{Yn ∈ A} ≤ max{− inf{∗(x, x) : x ∈ A+ V ∩Ka},−a}

≤ max{− inf{∗(x, x) : x ∈ A+ V },−a}.
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Since a is arbitrary, we have obtained: for all V ∈ V,

lim sup a−1
n log Pn{Yn ∈ A} ≤ − inf{∗(x, x) : x ∈ A+ V }.

Now {A+ V : V ∈ V} is a directed decreasing family of closed sets with inter-
section Ā. Using assumption (7), by a well-known property of good rate functions
(see e.g. [De-Z], p.119) we have

sup
V∈V

inf{∗(x, x) : x ∈ A+ V } = inf{∗(x, x) : x ∈ Ā} ��

We will need the following definition in Theorem 2.2. A fucntion φ : F → R
is E-Gâteaux differentiable at ξ ∈ F if there exists a point ∇φ(ξ) ∈ E such that
for all η ∈ F ,

〈∇φ(ξ), η〉 = lim
t→0

t−1[φ(ξ + tη)− φ(ξ)].
We shall use the notation

∂∗(x, y) %= ∂(∗(x, ·))(y) ⊂ F
for the subdifferential of the convex function ∗(x, ·) at y ∈ E (for the definition
of subdifferential, see e.g. [A-E], [E-T]). We emphasize that condition (10) below is
a uniqueness assumption; no assertion is made about existence. This condition can
often be verified easily using Gronwall’s lemma. Condition (11), on the other hand,
is in general more difficult to verify; in the application to stochastic equations, the
verification requires proving Proposition 7.1. (It is not difficult to show, however,
that in the case of the classical Friedlin-Wentzell Theorem – as in the Introduction–
the verification is very simple). If  does not depend on x and E is a Banach
space, then condition (11) follows from the Brondsted-Rockafellar theorem (see
e.g. [A-E]). It would be interesting to find useful assumptions on  in the general
abstract framework of Theorem 2.2 under which condition (11) is automatically
true.

Theorem 2.2. (lower bounds) Let E, E, F be as described before Theorem 2.1, and
assume furthermore that F separates points in E.

Let n,, {Yn}, {Zn} satisfy conditions (1)–(7) of Theorem 2.1, and assume
furthermore

(8) For all x ∈ E,(x, ·) is convex and E-Gâteaux differentiable.

(9) For all ξ ∈ F, ̄(ξ) %= supx∈E |(x, ξ)| <∞.
(10) For all ξ ∈ F , the equation x = ∇(x, ξ) has at most one solution in E.
(11) For all x0 ∈ E such that ∗(x0, x0) < ∞, for every neighborhood W of x0

and for every ε > 0, there exists x1 ∈ W such that ∂∗(x1, x1) �= φ and

∗(x1, x1) < 
∗(x0, x0)+ ε.

Then for every A ∈ E,

lim
n

inf a−1
n log Pn{Yn ∈ A} ≥ − inf

x∈A◦
∗(x, x).
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Proof . Let A ∈ E, x0 ∈ A◦, and assume w.l.o.g. that ∗(x0, x0) < ∞. Let
x1 ∈ A◦ be as in condition (11), and let ξ ∈ ∂∗(x1, x1),

W = {x ∈ E : 〈x, ξ〉 −(x, ξ) < ∗(x0, x0)+ ε}.

ThenW ∈ E and W is open. Let V = W ∩ A. Then

sup
y∈V

[〈y, anξ〉 −n(y, anξ)] ≤ an
(
bn(ξ)+ sup

y∈V
[〈y, ξ〉 −(y, ξ)]

)

≤ an(bn(ξ)+∗(x0, x0)+ ε).

It follows that

Pn{Yn ∈ A} ≥ Pn{Yn ∈ V }
≥ inf
y∈V

exp[−(〈y, anξ〉 −n(y, anξ))] ·

·
∫
IV (Yn) exp[〈Yn, anξ〉 −n(Yn, anξ)]dPn

≥ exp[−an(bn(ξ)+∗(x0, x0)+ ε)] ·
·
∫
IV (Yn) exp[〈Yn, anξ〉 −n(Yn, anξ)]dPn

and hence

lim
n

inf a−1
n log Pn{Yn ∈ A} ≥ −(∗(x0, x0)+ ε)

+ lim
n

inf a−1
n log

∫
IV (Yn) exp[〈Yn, anξ〉 −n(Yn, anξ)]dPn.

Therefore in order to complete the proof it is enough to show that

lim
n

inf
∫
IV (Yn) exp[〈Yn, anξ〉 −n(Yn, anξ)]dPn = 1,

or, on account of condition (4),

lim
n

sup Pn,ξ {Yn ∈ V c} = 0, (2.6)

where dPn,ξ = exp[〈Yn, anξ〉 −n(Yn, anξ)]dPn.
For y ∈ E, η ∈ F , let

n,ξ (y, η) = n(y, anξ + η)−n(y, anξ)
ξ (y, η) = (x, ξ + η)−(x, ξ);

it is not difficult to prove that for y, z ∈ E,

∗
ξ (y, z) = ∗(y, z)− (〈z, ξ〉 −(y, ξ)).
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It is easily shown that n,ξ and ξ satisfy (1)–(3) and

En,ξ exp[〈Yn, η〉 −n,ξ (Yn, η)] = 1 for all η ∈ F. (2.7)

We claim now that for every compact set K ⊂ E,

lim
n

sup a−1
n log Pn,ξ {Zn ∈ K} ≤ − inf

x∈K
∗
ξ (x, x). (2.8)

In order to prove this, we show first

lim
n
a−1
n log Pn,ξ {Yn − Zn ∈ V c1 } = −∞ for all V1 ∈ V, (2.9)

{LPn,ξ (Zn)} is exponentially tight. (2.10)

For,

Pn,ξ {Yn − Zn ∈ V c1 } =
∫
IV c1
(Yn − Zn) exp[〈Yn, anξ〉 −n(Yn, anξ)]dPn

≤ (Pn{Yn − Zn ∈ V c1 })1/2

×
(∫

exp[〈Yn, 2anξ〉 − 2n(Y, anξ)]dPn

)1/2

≤ (Pn{Yn − Zn ∈ V c1 })1/2

× exp
(an

2
[̄(2ξ)+ 2̄(ξ)+ bn(2ξ)+ 2bn(ξ)]

)
(2.11)

by a simple estimate, taking into account (4) and (9). Using (6), (2.11) implies (2.9).
(2.10) is proved similarly using (5).

Now (2.8) follows from (2.1), (2.7), (2.9) and (2.10). We claim next that there
exists V1 ∈ V such that

x1 /∈ V c + V1. (2.12)

For, choosing V1 ∈ V such that x1 + V1 + V1 ⊂ V , it easily follows that (x1 +
V1) ∩ (V c + V1) = φ, which implies (2.12). Now let K1 be a compact subset of E
such that

lim
n

sup a−1
n log Pn,ξ {Zn ∈ Kc1} ≤ −1.

We have

{Yn ∈ V c} ⊂ {Yn ∈ V c, Yn − Zn ∈ V1, Zn ∈ K1} ∪ {Yn − Zn ∈ V c1 } ∪ {Zn ∈ Kc1}
⊂ {Zn ∈ K2} ∪ {Yn − Zn ∈ V c1 } ∪ {Zn ∈ Kc1},

where K2 = V c + V1 ∩K1. Therefore by (2.8),

lim
n

sup a−1
n log Pn,ξ {Yn ∈ V c} ≤ max{lim

n
sup a−1

n log Pn,ξ {Zn ∈ K2},−1},
≤ max{− inf

x∈K2
∗
ξ (x, x),−1}.
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In order to prove (2.6), and hence to complete the proof of the theorem, it suffices
to show

3
%= inf
x∈K2

∗
ξ (x, x) > 0. (2.13)

Suppose 3 = 0.By the compactness ofK2 and the lower semicontinuity of∗
ξ ,

there exists x2 ∈ K2 such that ∗
ξ (x2, x2) = 0, that is,

∗(x2, x2)− [〈x2, ξ〉 −(x2, ξ)] = 0.

It follows that for all η ∈ F, t > 0, by assumption (8),

〈x2, ξ + tη〉 −(x2, ξ + tη) ≤ 〈x2, ξ〉 −(x2, ξ),

〈x2, η〉 ≤ lim
t↓0
t−1 [(x2, ξ + tη)−(x2, ξ)] = 〈∇(x2, ξ), η〉.

Therefore 〈x2, η〉 = 〈∇(x2, ξ), η〉 for all η ∈ F , and since F separates points in
E, we have x2 = ∇(x2, ξ).On the other hand, by (8) and well known convex anal-
ysis arguments, ξ ∈ ∂∗(x1, x1) implies x1 ∈ ∂(x1, ξ), hence x1 = ∇(x1, ξ).

Now by assumption (10) we must have x1 = x2. But this is impossible on account
of (2.12) and x2 ∈ V c + V1. This establishes (2.13). �

3. Statement of the application to stochastic equations

We will consider the following conditions.

b : Rd → Rd is bounded and uniformly Lipschitz. (3.1)

σ : Rd → Rd×d is bounded and uniformly Lipschitz. (3.2)

Let (U,U) be a measurable space, ν a σ -finite measure on (U,U). We endow
Rd × U with σ -algebra B(Rd) ⊗ U. Let g : Rd × U → Rd be a measurable
function such that

(i) there exists a measurable function ḡ : U → R+ such that

sup
y∈Rd

‖g(y, u)‖ ≤ ḡ(u), u ∈ U.

(ii) for all u ∈ U, g(·, u) is continuous.

We assume:
There exists C > 0 such that for all y, z ∈ Rd∫

U

‖g(y, u)− g(z, u)‖2ν(du) ≤ C‖y − z‖2. (3.3)
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For all a > 0,
∫
U

(ḡ(u))2 exp(aḡ(u))ν(du) <∞. (3.4)

For every r > 0, there exists γ = γ (r) > 0 such that

sup{
∫
U

(q(y, z, u))2 exp[γ q(y, z, u)]ν(du) : ‖y‖, ‖z‖ ≤ r, y �= z} <∞, (3.5)

where q(y, z, u) = (‖y − z‖)−1‖g(y, u)− g(z, u)‖.
Let (&,F, {Ft }t≥0, P) be a probability space with a filtration satisfying the

usual conditions. Let m be Lebesgue measure on R+. We assume that a standard
Rd -valued Brownian motion B and a sequence {Nn} of stationary Poisson random
measures on (R+ ×U,B(Rd)⊗U)with mean measures {m⊗ (nν)}, respectively,
are defined on& (see [I-W]). Assume that (3.1)–(3.3) hold. For eachn ∈ N, x ∈ Rd ,
let Xxn be the strong solution of the Itô stochastic equation

Xxn(t) = x +
∫ t

0
b(Xxn(s))ds + n−1/2

∫ t

0
σ(Xxn(s))dB(s)

+n−1
∫

[0,t]×U
g(Xxn(s−), u)Ñn(ds × du), (3.6)

where Ñn = Nn − m ⊗ (nν) is the compensated random measure; the process
{Xxn(t) : t ≥ 0} exists, is unique and has sample paths inD([0,∞),Rd) by [I-W],
Th. 9.1, Ch. IV (see also [G]). Let T = [0, 1] and let D be the σ -algebra of subsets
of D(T ,Rd) generated by the evaluations πt (f ) = f (t), t ∈ T , f ∈ D(T ,Rd).
Theorem 3.1. Let µxn = L({Xxn(t) : t ∈ T }). Assume that conditions (3.1)–(3.5)
hold. Then {µxn}n∈N satisfies the large deviation principle on D(T ,Rd), endowed
with the uniform norm ‖ · ‖∞ and the σ -algebra D, with the good rate function

I x(f ) =
{∫

T
G∗(f (s), f ′(s))ds if f (0) = x and f is absolutely continuous

∞ otherwise,

where
G∗(y, z) = sup

α∈Rd
[〈z, α〉 −G(y, α)], y, z ∈ Rd

and

G(y, α) = 〈b(y), α〉+1

2
〈σ(y)(σ (y))′α, α〉+

∫
U

ϕ(〈g(y, u), α〉)ν(du), α ∈ Rd ,

where ϕ(t) = et − 1 − t, t ∈ R.
More specifically, under conditions (3.1)–(3.4) the upper bound holds:

f or all A ∈ D, lim sup
n

n−1 logµxn(A) ≤ − inf
f∈Ā

I x(f ),

and under conditions (3.1)–(3.5) the lower bound holds:

f or all A ∈ D, lim inf
n

n−1 logµxn(A) ≥ − inf
f∈A0

I x(f ).
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4. Exponential martingales

Proposition 4.1. Let b, σ , g, ν,Xxn be as in Section 3. Then for every f ∈ C2(Rd)
such that

C1 =sup{‖∇f (g)‖ : y ∈ Rd}<∞, C2 =sup{|Dijf (y)| : i, j ≤ d, y ∈ Rd}<∞,

exp[f (Xxn(t))− f (x)−
∫ t

0
hn(X

x
n(s))ds], t ≥ 0

is an {Ft }-local martingale, where for y ∈ Rd ,

hn(y) = 〈b(y),∇f (y)〉 + 1

2n

d∑
i,j=1

(σ (y)(σ (y))′)ij (Dif (y)Djf (y)+Dijf (y))

+
∫
U

(exp[f (y + 1

n
g(y, u))− f (y)]−1−〈1

n
g(y, u),∇f (y)〉)(nν)(du).

Proof . We first show that the integral in the definition of hn(y) exists and is a
bounded continuous function on Rd . We have for y, z ∈ Rd

exp[f (y + z)− f (y)] − 1 − 〈z,∇f (y)〉
= e−f (y)[h(y + z)− h(y)− 〈z,∇h(y)〉], where h(y) = exp[f (y)],

= e−f (y) 1
2

d∑
i,j=1

Dijh(ȳ)zizj , where ȳ = y + θz, θ ∈ (0, 1)

= e−f (y) 1
2

d∑
i,j=1

ef (ȳ)(Dijf (ȳ)+Dif (ȳ)Djf (ȳ))zizj .

Therefore by the assumptions on f , for a suitable constant C > 0

| exp[f (y + 1

n
g(y, u))− f (y)] − 1 − 〈1

n
g(y, u),∇f (y)〉|

≤ exp(C1
1

n
‖g(y, u)‖) · C‖1

n
g(y, u)‖2

and the claim follows from (3.4). Next, by Itô’s formula (see [I-W], p. 66) applied
to h, we have:

exp[f (Xxn(t))] −
∫ t

0
exp[f (Xxn(s))] · hn(Xxn(s))ds, t ≥ 0 (4.1)

is an {Ft }-local martingale. Since infs≤t exp[f (Xxn(s))] > 0 for each t ≥ 0, by
[E-K], p. 66, we have from (4.1):

exp[f (Xxn(t))] exp[−
∫ t

0
exp[−f (Xxn(s))](exp[f (Xxn(s))] ·hn(Xxn(s)))ds], t ≥ 0

is an {Ft }-local martingale, and the conclusion follows. �
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Proposition 4.2. For n ∈ N, y, α ∈ Rd , let

Gn(y, α) = 〈b(y), α〉 + 1

2n
〈σ(y)(σ (y))′α, α〉 +

∫
U

ϕ(〈1

n
g(y, u), α〉)(nν)(du),

where ϕ is as in Theorem 3.1. Then for each n ∈ N, α ∈ Rd ,

M(α)
n (t)

%= exp[〈Xxn(t)− x, α〉 −
∫ t

0
Gn(X

x
n(s), α)ds], t ≥ 0

is an {Ft } L2-martingale. In particular, for all t ≥ 0

EM(α)
n (t) = 1.

Proof . Applying Proposition 4.1 to f (y) = 〈y, α〉,we obtain:M(α)
n (t), t ≥ 0 is an

{Ft } local martingale. Let τk ↑ ∞ a.s. be a localizing sequence of stopping times.
Let t ≥ 0, and let τ ≤ t be a stopping time. By the optional sampling theorem.

EM(α)
n (τ ∧ τk) = EM(α)

n (0) = 1.

SinceM(α)
n (t) ≥ 0 andM(α)

n (τ ∧ τk)→ M
(α)
n (τ ) a.s., by Fatou’s lemma

EM(α)
n (τ ) ≤ lim inf

k
EM(α)

n (τ ∧ τk) = 1. (4.2)

Now

E(M(α)
n (τ ))2 = E exp[〈Xxn(τ)− x, 2α〉 −

∫ τ

0
Gn(X

x
n(s), 2α)ds

+
∫ τ

0
Gn(X

x
n(s), 2α)− 2

∫ τ

0
Gn(X

x
n(s), α)ds]. (4.3)

Since 0 ≤ ϕ(v) ≤ ϕ(|v|) ≤ 1
2 |v|2 exp(|v|) for v ∈ R, we have by (3.1), (3.2) and

(3.4): there exists a constant C > 0 such that for all y, α ∈ Rd

|Gn(y, α)| ≤ Hn(‖α‖), (4.4)

where for a > 0, Hn(a) = Ca + C
2na

2 + a2

2n

∫
U
(ḡ(u))2 exp(n−1aḡ(u))ν(du). By

(4.3) and (4.4) and since τ ≤ t, it follows that for some constant C′ > 0.

E(M(α)
n (τ ))2 ≤ C′EM(2α)

n (τ ) = C′.

Then for all t ≥ 0,

{M(α)
n (τ ) : τ ≤ t} is uniformly integrable.

By a standard argument (see e.g. [J-S], p. 12),M(α)
n (t), t ≥ 0 is an L2-martingale.

�
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Lemma 4.3. For all 3 > 0

E exp(3‖Xxn‖∞) <∞,
where ‖Xxn‖∞ = supt∈T ‖Xxn(t)‖.

Proof . For a > 0, let τa = inf{t ≥ 0 : ‖Xxn(t)‖ > a}. Let {α1, . . . , αd} be a basis
of Rd . Then for some constant c > 0, all y ∈ Rd ,

‖y‖ ≤ c sup
j≤d

|〈y, αj 〉|.

Therefore if S = {αj : j ≤ d} ∪ {−αj : j ≤ d}, we have for h ≥ 0

P{‖Xxn(τa ∧ 1)‖ > h} ≤ (2d) sup
α∈S

P{〈Xxn(τa ∧ 1), α〉 > h/c}. (4.5)

As in the proof of Proposition 4.2, given β ∈ Rd , for some constantC′ independent
of a, we have

E exp〈Xxn(τa ∧ 1), β〉 ≤ C′EM(β)
n (τa ∧ 1) = C′. (4.6)

Therefore for all 3 > 0, a > 0 we have by (4.5) and (4.6) with β = c3α

P{‖Xxn‖∞ > a} ≤ P{‖Xxn(τa ∧ 1)‖ > a}
≤ (2d) sup

α∈S
(e−3aE exp〈Xxn(τa ∧ 1), c3α〉)

≤ (2d)C′e−3a.

This implies the conclusion. �

We shall denote byM(T,Rd) the space of vector measures defined on the Borel
σ -algebra of T , with values in Rd . For f ∈ D(T ,Rd), λ ∈ M(T,Rd), we write

〈f, λ〉 %=
∫
T

〈f, dλ〉.

Let {X(t), t ≥ 0} be the canonical process and {Gt , t ≥ 0} the canonical fil-
tration on D([0,∞),Rd). Let Pxn = LP({Xxn(t) : t ≥ 0}). Then it is well known
that

(D([0,∞),Rd), {X(t), t ≥ 0}, {Gt , t ≥ 0}, {Pxn , x ∈ Rd}) (4.7)

is a Markov process. In the next proposition and elsewhere in the paper, we will
use the notation

Xxn = {Xxn(t), t ∈ T }, P xn = LP(X
x
n);

this abuse of notation should cause no confusion, since it will be clear from the
context when Pxn is a measure on (D(T ,Rd),D).
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Proposition 4.4. Assume that (3.1)–(3.4) hold. Forf ∈ D(T ,Rd), λ ∈ M(T,Rd),
let

xn(f, λ) = 〈x, λ(T )〉 +
∫
T

Gn(f (s), λ([s, 1]))ds.

Then
E exp[〈Xxn, λ〉 −xn(Xxn, λ)] = 1. (4.8)

Proof . What we must prove is: for all x ∈ Rd , λ ∈ M(T,Rd),

Exn exp[〈X, λ〉 −xn(X, λ)] = 1, (4.9)

where X = {X(t) : t ∈ T }.
(1) We show first that (4.9) holds for any λ ∈ M(T,Rd) of the form λ =∑k
j=1 αj δtj , where 0 = t0 < t1 < . . . < tk ≤ 1 and αj ∈ Rd , j = 1, . . . , k.

We prove the claim by induction. If k = 1, then λ = α1δt1 and by the fact that
Gn(y, 0) = 0 for all y ∈ Rd and Proposition 4.2, we have

Exn exp[〈X, λ〉−xn(X, λ)] = Exn exp[〈X(t1)−x, α1〉−
∫ t1

0
Gn(X(s), α1)ds] = 1.

(4.10)

Let k ∈ N. Assume now that (4.9) holds for all λk ∈ M(T,Rd) of the form
λk = ∑k

j=1 αj δtj , with {tj } as above and let λ = ∑k+1
j=1 αj δtj . By the Markov

property, conditioning on Gtk in the second step,

Exn exp[〈X, λ〉 −xn(X, λ)] = Exn exp[
k+1∑
j=1

〈X(tj ), αj 〉 − 〈x,
k+1∑
j=1

αj 〉

−
k+1∑
j=1

∫
[tj−1,tj )

Gn(X(s),

k+1∑
i=j
αi)ds]

= Exn(exp[〈X, λk〉 −xn(X, λk)] ·H(X(tk)),
where for y ∈ Rd

H(y) = Eyn exp

[
〈X(tk+1 − tk)− y, αk+1〉 −

∫ tk+1−tk

0
Gn(X(s), αk+1) ds

]
.

But H(y) = 1 for all y ∈ Rd by (4.10). Using now the inductive hypothesis, we
conclude that (4.9) holds for λ, proving the claim.

(2) Let λ ∈ M(T,Rd). As in [deA1], Lemma A.2, define λk ∈ M(T,Rd) by

λk =
k∑
j=0

akj δj/k,

where ak0 = λ({0}), akj = λ(( j−1
k
,
j
k
)), 1 ≤ j ≤ k. Then for all f ∈ D(T ,Rd),
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lim
k

∫
〈f, dλk〉 =

∫
〈f, dλ〉. (4.11)

Let ‖ · ‖v be the total variation norm onM(T,Rd). Then for all k,

‖λk‖v ≤ ‖λ({0})‖ +
k∑
j=1

‖λ((j − 1

k
,
j

k
])‖

≤ |λ|({0})+
k∑
j=1

|λ|((j − 1

k
,
j

k
])

= |λ|([0, 1]),

= ‖λ‖v (4.12)

where |λ| is the total variation measure associated to λ. Now for all s ∈ T ,

‖λk([s, 1])− λ([s, 1])‖ = ‖λ([ [sk]

k
, 1])− λ([s, 1])‖

≤ |λ|[ [sk]

k
, s)

→ 0. (4.13)

By (4.4), (4.12), (4.13) and the dominated convergence theorem, it follows that

xn(f, λk) = 〈x, λk(T )〉 +
∫
T

Gn(f (s), λk([s, 1])ds

→ xn(f, λ). (4.14)

By (4.4) and (4.12)

exp[〈X, λk〉 −xn(X, λk)] ≤ exp[‖λ‖v‖X‖∞ +Hn(‖λ‖v)]. (4.15)

Finally by Lemma 4.3, (4.11), (4.14), (4.15), part (1) of this proof and the dominated
convergence theorem, we have

Exn exp[〈X, λ〉 −xn(X, λ)] = lim
k
Exn exp[〈X, λk)−xn(X, λk)]

= 1.

This completes the proof. �

5. Exponential tightness, discretization and superexponential approximation

Let {X(t), t ≥ 0}, {Gt , t ≥ 0}, {Pxn , x ∈ Rd} be as in (4.7).

Lemma 5.1. Let q be a seminorm on Rd . Then for all t ≥ 0, s > 0, a > 0,

sup
x∈Rd

P xn {sup
h≤s
q(X(t + h)−X(t)) > a} ≤ 2 sup

h≤s
sup
x∈Rd

P xn {q(X(h)− x) > a
2
}.
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Proof . By the Markov property,

Pxn {sup
h≤s
q(X(t + h)−X(t)) > a} = ExnExn [I (sup

h≤s
q(X(t + h)−X(t)) > a)|Gt ]

= ExnPX(t)n (A(X(t))),

where A(y) = {f ∈ D([0,∞),Rd) : suph≤s q(f (h)− y) > a}. Therefore

sup
x∈Rd

Pxn{sup
h≤s
q(X(t + h)−X(t)) > a} ≤ sup

y∈Rd
P
y
n (A(y)). (5.1)

Let Bk = {(j/2k)s : 0 ≤ j ≤ 2k}. For fixed y ∈ Rd , let

τ = inf{u ∈ Bk : q(X(u)− y) > a},
Ak(y) =

⋃
u∈Bk

{τ = u} = { sup
u∈Bk

q(X(u)− y) > a}.

For u ∈ Bk

P
y
n {τ = u} ≤ Pyn ({τ = u} ∩ {q(X(s)− y) > a

2
}

+Pyn ({τ = u} ∩ {q(X(s)−X(u)) > a
2
}. (5.2)

By the Markov property,

P
y
n ({τ = u} ∩ {q(X(s)−X(u)) > a

2
}) = EynI {τ = u}PX(u)n (B(s − u,X(u)),

where B(h, z) = {f ∈ D([0,∞),Rd) : q(f (h)− z) > a
2 }. Therefore

P
y
n ({τ = u}∩{q(X(s)−X(u)) > a

2
} ≤ sup

h≤s
sup
z∈Rd

P zn (B(h, z)) ·Pyn {τ = u}. (5.3)

By (5.2) and (5.3)

P
y
n (Ak(y)) =

∑
u∈Bk

P
y
n {τ = u}

≤ Pyn {q(X(s)− y) > a
2
} + sup

h≤s
sup
z∈Rd

P zn (B(h, z))

≤ 2 sup
h≤s

sup
z∈Rd

P zn (B(h, z)). (5.4)

By the right-continuity of paths, Ak(y) ↑ A(y), and therefore Pyn (Ak(y)) ↑
P
y
n (A(y)). The conclusion follows now from (5.1) and (5.4). �
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For y, α ∈ Rd , let G(y, α) be as in Theorem 3.1, Gn(y, α) as in Proposition
4.2. Then for all n ∈ N,

1

n
Gn(y, nα) = G(y, α). (5.5)

Let Ḡ(α) = supy∈Rd |G(y, α)|. By (3.1), (3.2) and (3.4) and the elementary
inequality previous to (4.4), for all α ∈ Rd

Ḡ(α) <∞.
Lemma 5.2. For all α ∈ Rd , s > 0,

lim sup
n

1

n
log sup

h≤s
sup
x∈Rd

Exn exp〈X(h)− x, nα〉 ≤ sḠ(α).

Proof . By (4.10) and (5.5), for all x ∈ Rd , h ≤ s, n ∈ N

Exn exp〈X(h)− x, nα〉 = Exn(exp[〈X(h)− x, nα〉 −
∫ h

0
Gn(X(t), nα)dt]

· exp[n
∫ h

0
G(X(t), α)dt])

≤ exp(nsḠ(α))

and the conclusion follows. �

Proposition 5.3. For x ∈ Rd , t ≥ 0, let Zxn(t) = Xxn( [nt]
n
), and let Zxn = {Zxn(t) :

t ∈ T }. Then for every ε > 0,

lim
n

1

n
log P{||Xxn − Zxn ||∞ > ε} = −∞.

Proof . Let Zn(t) = X( [nt]
n
). By Lemma 5.1,

P{||Xxn − Zxn ||∞ > ε} = Pxn {||X − Zn||∞ > ε}
≤ Pxn { sup

1≤k≤n
sup
h≤1/n

||X(k − 1

n
+ h)−X(k − 1

n
)|| > ε}

≤
n∑
k=1

Pxn { sup
h≤1/n

||X(k − 1

n
+ h)−X(k − 1

n
)|| > ε}

≤ 2n sup
h≤1/n

sup
y∈Rd

P
y
n {||X(h)− y|| > ε/2}. (5.6)

Proceeding as in the proof of Lemma 4.3,

P
y
n {||X(h)− y|| > ε/2} ≤ (2d) sup

α∈S
P
y
n {〈X(h)− y, α〉 > ε

2c
}. (5.7)
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By (5.6) and (5.7), for all a > 0

P{||Xxn − Zxn ||∞ > ε} ≤ 4dn sup
α∈S

sup
h≤1/n

sup
y∈Rd

P
y
n {〈X(h)− y, α〉 > ε

2c }
≤ 4dn sup

α∈S
sup
h≤1/n

sup
y∈Rd

exp(−n( ε2c )a)E
y
nexp〈X(h)−y,naα〉.

By Lemma 5.2,

lim sup
n

1

n
log P{||Xxn − Zxn ||∞ > ε} ≤ −( ε

2c
)a.

But a is arbitrary. �

Proposition 5.4. Let {Zxn} be as in Proposition 5.3. Then

{LP(Z
x
n), n ∈ N} is exponentially tight in (D(T ,Rd), || · ||∞).

Proof . Following [deA1], proof of Lemma 4.1, it suffices to show: for every ε >
0, a > 0, there exist r > 0, m ∈ N such that

lim sup
n

1

n
log P{d(Zxn,Hm(Cr + x)) > ε} ≤ −a, (5.8)

where Cr = {y ∈ Rd : q(y) ≤ r}, q(y) = supj≤d |〈y, αj 〉|, with {αj } as in the
proof of Lemma 4.3, and for A ⊂ Rd ,

Hm(A)={f ∈ D(T ,Rd) :f =
m−1∑
j=0

xj I[j/m, j+1
m
)
+xmI{1} : xj ∈ A, j = 0, . . . , m}.

Now, with Zn as in the proof of Proposition 5.3,

P{d(Zxn,Hm(Cr + x)) > ε} = Pxn {d(Zn − x,Hm(Cr)) > ε}
≤ Pxn {Zn − x /∈ Hn(Cr)}

+Pxn {Zn − x ∈ Hn(Cr), d(Zn−x,Hm(Cr))>ε}.
(5.9)

Recalling that

Zn(t) = X( [nt]
n
) =

n−1∑
j=0

X(j/n)I[j/n, j+1
n
)
(t)+X(1)I{1}(t),

we have by Lemma 5.1

Pxn {Zn − x /∈ Hn(Cr)} = Pxn {sup
j≤n
q(X(j/n)− x) > r}

≤ 2 sup
h≤1

sup
y∈Rd

P
y
n {q(X(h)− y) > r/2}. (5.10)
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Let S be as in the proof of Lemma 4.3. Then

P
y
n {q(X(h)− y) > r/2} ≤ 4d sup

α∈S
P
y
n {〈X(h)− y, α〉 > r/2}. (5.11)

Proceeding as in the proof of Proposition 5.3 and using (5.10), (5.11) and Lemma
5.2, we have

lim sup
n

1

n
logPxn {Zn − x /∈ Hn(Cr)} ≤ − r

2
+ sup
α∈S
Ḡ(α). (5.12)

Next, for n ≥ m, as in [deA1], pp. 90-91, and using Lemma 5.1,

Pxn {Zn − x ∈ Hn(Cr), d(Zn − x,Hm(Cr)) > ε}

≤ Pxn { sup
0≤i≤m−1

sup
1≤j≤ n

m
+1
q(X(

[ni
m

] + j
n

)−X( [
ni
m

]

n
)) > ε}

≤
m−1∑
i=0

Pxn { sup
1≤j≤ n

m
+1
q(X(

[ni
m

] + j
n

)−X( [
ni
m

]

n
)) > ε}

≤ 2m sup
h≤2/m

sup
y∈Rd

P
y
n {q(X(h)− y) > ε/2}

≤ 4md exp(−n(ε/2)3) sup
α∈S

sup
h≤2/m

sup
y∈Rd

E
y
nexp〈X(h)− y, n3α〉.

By Lemma 5.2,

lim sup
n

1

n
logPxn {Zn − x ∈ Hn(Cr), d(Zn − x,Hm(Cr)) > ε}

≤ −(ε/2)3+ 2

m
sup
α∈S
Ḡ(3α). (5.13)

By (5.9), (5.12) and (5.13), we have

lim sup
n

1

n
log P{d(Zxn,Hm(Cr + x)) > ε}

≤ max{− r
2

+ sup
α∈S
Ḡ(α),−( ε

2
)3+ 2

m
sup
α∈S
Ḡ(3α)}.

It is clear that for suitable choices of 3, r andm the right hand side of this inequality
is no greater than (−a). This establishes (5.8), completing the proof. �

6. Identification of the rate function and compactness of the level sets

Theorem 6.1. Let G be as in Theorem 3.1, and for f ∈ D(T ,Rd), λ ∈ M(T,Rd),
x ∈ Rd , let

x(f, λ) = 〈x, λ(T )〉 +
∫
T

G(f (s), λ([s, 1]))ds.
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For, f, h ∈ D(T ,Rd), let

(x)∗(f, h) = sup
λ∈M(T,Rd )

[
∫

〈h, dλ〉 −x(f, λ)].

Then

(x)∗(f, f ) =


∫
T
G∗(f (s), f ′(s))ds if f (0) = x and

f is absolutely continuous
∞ otherwise,

where

G∗(y, z) = sup
α∈Rd

[〈z, α〉 −G(y, α)], y, z ∈ Rd .

Proof . (1) Suppose f (0) = x, f is absolutely continuous. Then

(x)∗(f, f ) ≤
∫
T

G∗(f (s), f ′(s))ds.

For, let λ ∈ M(T,Rd). Then∫
〈f, dλ〉 −x(f, λ) =

∫
T

〈
∫ s

0
f ′(u)du+ x, dλ(s)〉 − [〈x, λ(T )〉

+
∫
T

G(f (s), λ([s, 1]))ds]

=
∫
T

[〈f ′(s), λ([s, 1])〉 −G(f (s), λ([s, 1]))]ds

≤
∫
T

G∗(f (s), f ′(s))ds.

(2) Suppose (x)∗(f, f ) <∞. Then f (0) = x and f is absolutely continuous.
For, let α ∈ Rd . Taking λ = αδ0, we have using G(y, 0) = 0 for all y ∈ Rd :∫

T

〈f, d(αδ0)〉 ≤ x(f, αδ0)+ (x)∗(f, f ),
〈f (0)− x, α〉 ≤ (x)∗(f, f )

for all α ∈ Rd , which implies f (0) = x. Next, let ρ > 0, αj ∈ Rd with ||αj || ≤
1, k ∈ N,

0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk < tk ≤ 1.

Taking λ = ∑k
j=1 ραj (δtj − δsj ), we have

ρ

k∑
j=1

〈f (tj )−f (sj ), αj 〉 =
∫
T

〈f, dλ〉 ≤
k∑
j=1

∫ tj

sj

G(f (s), ραj )ds+(x)∗(f, f ).
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Let A(ρ) = sup{|G(y, α)| : ||y|| ≤ ||f ||∞, ||α|| ≤ ρ}. Then

k∑
j=1

||f (tj )− f (sj )|| ≤ ρ−1A(ρ)

k∑
j=1

(tj − sj )+ ρ−1(x)∗(f, f )

and the absolute continuity of f follows.
(3) Suppose f (0) = x and f is absolutely continuous. Then∫

T

G∗(f (s), f ′(s))ds ≤ (x)∗(f, f ). (6.1)

For, let {Dk} be an increasing sequence of finite subsets of Rd such that 0 ∈ D1
and ∪kDk is dense. For y, z ∈ Rd , let

Lk(y, z) = sup
α∈Dk

[〈z, α〉 −G(y, α)].

Then for all y, z ∈ Rd , 0 ≤ Lk(y, z) ↑ G∗(y, z), and therefore∫
T

Lk(f (s), f
′(s))ds ↑

∫
T

G∗(f (s), f ′(s))ds. (6.2)

Define now Fn : T → R2 by

Fn(s) =
2n∑
j=1

(f (
j − 1

2n
), 2n[f (

j

2n
)− f (j − 1

2n
)])I[ j−1

2n ,j/2
n)
(s).

Then arguing as in [deA3], p. 154, we have

Fn(s)→ (f (s), f ′(s)) a.e. [m],

where m is Lebesgue measure, and consequently

Lk(f (s), f
′(s)) = lim

n
Lk(Fn(s)) a.e. [m],

By Fatou’s lemma, for each k ∈ N∫
T

Lk(f (s), f
′(s))ds ≤ lim inf

n

∫
T

Lk(Fn(s))ds.

Taking into account (6.2), it follows that in order to prove (6.1) it is enough to show:
for all k ∈ N,

lim inf
n

∫
T

Lk(Fn(s))ds ≤ (x)∗(f, f ). (6.3)

By the definitions of Lk and Fn, for suitable choices of α(n)j ∈ Dk(j = 1, . . . , 2n)
we have
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∫
T

Lk(Fn(s))ds = 1

2n

2n∑
j=1

(〈2n(f ( j
2n
)− f (j − 1

2n
)), α

(n)
j 〉 −G(f (j/n), α(n)j )).

Given ε > 0, by the uniform continuity of f and the uniform continuity ofG(·, α)
on compact sets for each α ∈ Dk , for all sufficiently large n we have for s ∈
[ j−1

2n , j/2
n], 1 ≤ j ≤ 2n,

G(f (s), α
(n)
j ) ≤ G(f (j/2n), α(n)j )+ ε

and therefore∫
[ j−1

2n ,j/2
n]
G(f (s), α

(n)
j )ds ≤ 1

2n
[G(f (j/2n), α(n)j )+ ε].

Taking now

λn =
2n∑
j=1

α
(n)
j (δj/2n − δ j−1

2n
),

for all sufficiently large n we have

∫
T

Lk(Fn(s))ds ≤
∫
T

〈f, dλn〉 −
∫
T

G(f (s), λn([s, 1]))ds + ε

≤ (x)∗(f, f )+ ε,

proving (6.3) and hence (6.2). Now (1)–(3) yield the result. �

Proposition 6.2. For a ≥ 0, let

La = {f ∈ D(T ,Rd) : (x)∗(f, f ) ≤ a}.

Then La is compact for the uniform norm.

Proof . Since x(·, λ) is continuous on (D(T ,Rd), || · ||∞), it follows that (x)∗
is lower semicontinuous for || · ||∞, being the supremum of continuous functions.
Therefore La is || · ||∞-closed. It remains to show that La is || · ||∞-relatively
compact. By the Arzela’-Ascoli theorem, it is enough to show: (i) La is uniform-
ly bounded, (ii) La is uniformly equicontinuous. We will prove (ii); the proof of
(i) is similar. Let ρ > 0. Arguing as in the proof of Theorem 6.1, we have: for
f ∈ La, s, t ∈ T ,

||f (t)− f (s)|| ≤ ρ−1A(ρ)|t − s| + ρ−1a,

and (ii) follows. �
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7. Some analytic considerations

Proposition 7.1. Assume that b, σ, g, ν satisfy assumptions (3.1)–(3.4), and, fur-
thermore: there exists a > 0 such that for all y, α ∈ Rd ,

〈σ(y)(σ (y))′α, α〉 ≥ a||α||2. (7.1)

Let x be as in Theorem 6.1, and assume (x)∗(f0, f0) < ∞. Then for every
ε > 0 there exists f1 ∈ D(T ,Rd) such that

(i) ||f1 − f0|| < ε.
(ii) (x)∗(f1, f1) ≤ (x)∗(f0, f0)+ ε.

(iii) ∂(x)∗(f1, f1) �= φ.

The proof of Proposition 7.1 requires several lemmas. When writing ∇G(y, α)
below, differentiation is taken with respect to the second variable. Throughout the
section it is assumed that (7.1) and (3.1)–(3.4) hold.

Lemma 7.2. For every r > 0, there exists D(r) > 0 such that

||∇G(y, α)− ∇G(z, α)|| ≤ D(r)||y − z||
f or y, z ∈ Rd , ||α|| ≤ r.

Proof . We have, for y, z, α ∈ Rd .

∇G(y, α)− ∇G(z, α) = [b(y)− b(z)] + [σ(y)(σ (y))′ − σ(z)(σ (z))′]α
+
∫
U

(g(y, u)[exp(〈g(y, u), α〉)− 1]

−g(z, u)[exp(〈g(z, u), α〉 − 1])ν(du). (7.2)

By assumptions (3.1) and (3.2), there exists a constant C > 0 such that for all
y, z, α ∈ Rd ,

||b(y)−b(z)|| ≤ C||y−z||, ||[σ(y)(σ (y))′−σ(z)(σ (z))′]α|| ≤ C||α|| ||y−z||.
(7.3)

Next, by a simple estimate

||g(y, u)[exp(〈g(y, u), α〉)− 1] − g(z, u)[exp(〈g(z, u), α〉)− 1]||
≤ ||g(y, u)− g(z, u)||[(e||α||ḡ(u) − 1)+ ||α||ḡ(u)e||α||ḡ(u)]
≤ ||g(y, u)− g(z, u)|| · 2||α||ḡ(u)exp(||α||ḡ(u)),

since es − 1 ≤ ses for s ≥ 0. Now by (3.3) and (3.4),∫
U

||g(y, u)[exp(〈g(y, u), α〉)− 1] − g(z, u)[exp(〈g(z, u), α〉 − 1]||ν(du)

≤
(∫
U

||g(y, u)−g(z, u)||2ν(du)
)1/2(∫

U

(2||α||ḡ(u) exp(||α||ḡ(u))2ν(du)
)1/2

≤ 2C||α||
(∫
U

(ḡ(u))2 exp(2||α||ḡ(u))
)1/2

||y − z||. (7.4)

The conclusion follows from (7.2)–(7.4). �
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Lemma 7.3. There exists a function ρ : Rd × Rd → Rd such that

(i) For all y ∈ Rd , ρ(y, ·) ∈ C1(Rd ,Rd).
(ii) For all y ∈ Rd , ρ(y, ·) is a bijection of Rd .

(iii) For all y ∈ Rd the derivative of ρ(y, ·) is everywhere an injective linear
map.

(iv) For all y ∈ Rd , z ∈ Rd ,

∇G(y, ρ(y, z)) = z.
(v) For every r > 0,

M(r)
%= sup{||ρ(y, z)|| : y ∈ Rd , ||z|| ≤ r} <∞.

(vi) For every r > 0, there exists L(r) > 0 such that for all y, y′ ∈ Rd , ||z||,
||z′|| ≤ r ,

||ρ(y, z)− ρ(y′, z′)|| ≤ L(r)[||y − y′|| + ||z− z′||].

Proof . Since ϕ(t) = et − 1 − t ≥ 0 for all t ∈ R, we have

G(y, α) = 〈b(y), α〉 + 〈σ(y)(σ (y))′α, α〉 + h(y, α), y, α ∈ Rd , (7.5)

where h(y, ·) is a non-negative convex function for each y ∈ Rd . It follows from
(7.1) and (7.5) that G(y, ·) is strictly convex, or, equivalently,

G(y, β) > G(y, α)+ 〈β − α,∇G(y, α)〉 for β �= α. (7.6)

For fixed y ∈ Rd ,∇G(y, ·) : Rd → Rd satisfies

(1) ∇G(y, ·) ∈ C1(Rd ,Rd).
(2) ∇G(y, ·) is a bijection of Rd .
(3) the derivative of ∇G(y, ·) is everywhere an injective linear map.

For, (1) follows easily form (3.4). To prove (2), we observe that by (7.1) and (7.5),
for every z ∈ Rd

0 ≤ G∗(y, z) = sup
α∈Rd

[〈z, α〉 −G(y, α)] <∞

and the supremum is attained, say at α0. Then z = ∇G(y, α0). If ∇G(y, α0) =
∇G(y, α1) with α1 �= α0, then by (7.6)

G(y, α1) > G(y, α0)+ 〈α1 − α0,∇G(y, α0)〉
G(y, α0) > G(y, α1)+ 〈α0 − α1,∇G(y, α0)〉

and adding the inequalities we obtain a contradiction. This proves (2).
A simple computation shows that for all α, β ∈ Rd ,

〈D2G(y, α)β, β〉 ≥ 2a||β||2, (7.7)



508 A. de Acosta

establishing (3). We define

ρ(y, ·) %=(∇G(y, ·))−1. (7.8)

Then by (7.7), the properties (1)–(3) and the inverse function theorem, ρ(y, ·)
satisfies (i)–(iv). Next, by the mean value theorem (see e.g. [L], p. 103), for any
α, β ∈ Rd

∇G(y, β)− ∇G(y, α) =
[∫ 1

0
D2G(y, α + t (β − α))dt

]
(β − α)

and therefore by (7.7)

||∇G(y, β)− ∇G(y, α)|| ||β − α||
≥ 〈∇G(y, β)− ∇G(y, α), β − α〉
≥
∫ 1

0
〈D2G(y, α + t (β − α))(β − α), β − α〉dt

≥ 2a||β − α||2,
which implies: for all α, β, y ∈ Rd

‖β − α‖ ≤ (2a)−1‖∇G(y, β)− ∇G(y, α)‖. (7.9)

Since ∇G(y, 0) = b(y), we have ρ(y, b(y)) = 0. Therefore for all y, z ∈ Rd ,

‖ρ(y, z)‖ = ‖ρ(y, z)− ρ(y, b(y))‖
≤ (2a)−1‖∇G(y, ρ(y, z))− ∇G(y, ρ(y, b(y))‖
≤ (2a)−1‖z− b(y)‖

and (v) follows. Finally, for y, y′ ∈ Rd , ‖z‖, ‖z′‖ ≤ r , by (7.9), (v) and Lemma
7.2

‖ρ(y, z)− ρ(y′, z′)‖ ≤ (2a)−1‖∇G(y, ρ(y, z))− ∇G(y, ρ(y′, z′))‖
≤ (2a)−1 [‖z−z′‖+‖∇G(y′, ρ(y′, z′)− ∇G(y, ρ(y′, z′)‖]
≤ (2a)−1 [‖z− z′‖ +D(M(r))‖y − y′‖]
≤ L(r) [‖z− z′‖ + ‖y − y′‖] ,

where L(r) = (2a)−1 max{1,D(M(r))}. ��
Lemma 7.4. For all f ∈ D(T ,Rd),x(f, ·) is D(T ,Rd)-Gâteaux differentiable
and in fact for λ ∈ M(T,Rd),

∇x(f, λ) = fλ,
where

fλ(t) = x +
∫ t

0
∇G(f (s), λ([s, 1]))ds, t ∈ T .
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Proof . For t ∈ R, λ1 ∈ M(T,Rd)

x(f, λ+ tλ1) = 〈x, (λ+ tλ1)(T )〉 +
∫
T

G(f (s), (λ+ tλ1)([s, 1]))ds.

Then

d

dt
x(f, λ+ tλ1)|t=0 = 〈x, λ1(T )〉 +

∫
T

〈∇G(f (s), λ([s, 1])), λ1([s, 1])〉ds.

By integration by parts (see, e.g. [deA1], Lemma A.4)∫
T

〈∇G(f (s), λ([s, 1])), λ1([s, 1])〉ds =
∫
T

〈
∫ t

0
∇G(f (s), λ([s, 1]))ds, dλ1(t)〉

and therefore for all λ1 ∈ M(T,Rd),

d

dt
x(f, λ+ tλ1)|t=0 =

∫
T

〈fλ(t), dλ1(t)〉
= 〈fλ, λ1〉. ��

Lemma 7.5. Let h ∈ D(T ,Rd), and assume that h is of bounded variation. Let

f (t) = x +
∫ t

0
h(s)ds, t ∈ T .

Then there exists λ ∈ M(T,Rd) such that

∇G(f (s), λ((s, 1])) = h(s), s ∈ [0, 1)

and consequently

f = ∇x(f, λ).
Proof . Let ρ : Rd × Rd → Rd be as in Lemma 7.3 and define

ψ(s) = ρ(f (s), h(s)) s ∈ T .
Since h is bounded, by Lemma 7.3 there exists C > 0 such that

‖ψ(s)− ψ(s′)‖ ≤ C[‖f (s)− f (s′)‖ + ‖h(s)− h(s′)‖] s, s′ ∈ T .
It follows that ψ is right-continuous and of bounded variation. For 0 ≤ a < b ≤ 1,
define

λ((a, b]) = ψ1(b)− ψ1(a),

where ψ1(s) = −ψ(s) for s ∈ [0, 1), ψ1(1) = 0. Then λ extends uniquely to an
element ofM(T,Rd) (denoted in the same way) and for s ∈ [0, 1) we have

∇G(f (s), λ((s, 1])) = ∇G(f (s), ψ(s)) = h(s). (7.10)
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since λ((s, 1]) = λ(([s, 1])) except possibly on a countable subset of T , from (7.10)
and Lemma 7.5 it follows that

∇x(f, λ) = f. ��
In the next lemma we follow the outline of Lemma 6.5.3 of [D-E], but the proof is
self-contained and somewhat simpler on account of (7.1).

Lemma 7.6. Let f : T → R be absolutely continuous and assume∫
T

G∗(f (t), f ′(t))dt <∞.

Then for every ε > 0, there exists h : T → R such that h is absolutely continuous,
h′ ∈ L∞(T ,m), h(0) = f (0) and

(i) ‖h− f ‖∞ < ε,
(ii)

∫
G∗(h(t), h′(t))dt ≤ ∫

G∗(f (t), f ′(t))dt + ε.
Proof . For 3 > 0, let E3 = {t ∈ T : ‖f ′(t))‖ ≤ 3}. Define

ϕ3(t) =
∫ t

0
(IE3(s)+

‖f ′(s)‖
3

IEc3
(s))ds.

Then ϕ3(0) = 0, ϕ3(1) ≥ 1 and ϕ3 is continuous and strictly increasing on T . Let

ψ3
%=ϕ−1

3 : [0, ϕ3(1)] → [0, 1] and we define

h3(v) = f (ψ3(v)), v ∈ T .
LetM = {v ∈ T : ψ3 is differentiable at v and f is differentiable at ψ3(v)}. Then
m(M) = 1. In fact, it is easily verified that

ψ3(t) =
∫ t

0
[IE3(ψ3(v))+ (

‖f ′(ψ3(v))‖
3

)−1IEc3
(ψ3(v))]dv, t ∈ T ,

and ifM1 = {t ∈ T : f is differentiable at t}, then

m({v : f is differentiable at ψ3(v)}) = m(ψ−1
3 (M1))

=
∫
T

IM1(ψ3(v))dv =
∫

[0,ψ3(1)]
IM1(ψ3(ϕ3(t)))ϕ

′
3(t)dt

=
∫

[0,ψ3(1)]
ϕ′
3(t)dt = ϕ3(ψ3(1)) = 1.

It follows that a.e. [m],

h′
3(v) = f ′(ψ3(v)) · ψ ′

3(v)

= f ′(ψ3(v))[IE3(ψ3(v))+
(‖f ′(ψ3(v))‖

3

)−1

IEc3
(ψ3(v))]
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which implies

‖h′
3(v)‖ ≤ 3 a.e. [m]. (7.11)

Next,

sup
t∈T

‖h3(t)− f (t)‖ = sup
t∈T

‖f (ψ3(t))− f (t)‖.

But f is uniformly continuous on T and

sup
t∈T

‖ψ3(t)− t‖ ≤
∫ 1

0

[
1 −

(‖f ′(ψ3(v))‖
3

)−1
]
IEc3
(ψ3(v))dv

≤
∫

[0,ψ3(1)]
IEc3
(t)ϕ′

3(t)dt

≤ 1

3

∫
Ec3

‖f ′(t)‖dt

→ 0 as 3→ ∞.
Therefore

‖h3 − f ‖∞ < ε for sufficiently large 3. (7.12)

Next,

∫
T

G∗(h3(t), h′
3(t))dt =

∫
[0,ψ3(1)]

G∗(h3(ϕ3(s)), h′
3(ϕ3(s)))ϕ

′
3(s)ds. (7.13)

Now

h3(ϕ3(s)) = f (s),

h′
3(ϕ3(s)) = f ′(s)/ϕ′

3(s). (7.14)

By convexity, since ϕ′
3(s) ≥ 1 a.e. [m],

G∗(f (s), f ′(s)(ϕ′
3(s))

−1) ≤ (1 − (ϕ′
3(s))

−1)G∗(f (s), 0)
+(ϕ′

3(s))
−1G∗(f (s), f ′(s)). (7.15)

It follows easily from (7.1) and (7.5) that

C = sup
y∈Rd

G∗(y, 0) = sup
y∈Rd

sup
α∈Rd

[−G(y, α)]

≤ sup
y∈Rd

[−〈b(y), α〉 − a

2
‖α‖2] (7.16)

< ∞.
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By (7.13)–(7.16),∫
T

G∗(h3(t), h′
3(t))dt ≤ C

∫
T

(ϕ′
3(s)− 1)ds +

∫
T

G∗(f (s), f ′(s))ds.

But ∫
T

(ϕ′
3(s)− 1)ds =

∫
T

(‖f ′(s)‖
3

− 1

)
IEc3
(s)ds

≤ 1

3

∫
T

‖f ′(s)‖ds
→ 0 as 3→ ∞.

Therefore ∫
T

G∗(h3(t), h′
3(t))dt ≤

∫
T

G∗(f (s), f ′(s))ds + ε (7.17)

for sufficiently large 3. Choosing h = h3 for 3 large enough, h has the desired
properties by (7.11), (7.12) and (7.17). �
Proof of Proposition 7.1. Assume that (x)∗(f0, f0) < ∞. By Theorem 6.1,
f0(0) = x, f0 is absolutely continuous and

(x)∗(f0, f0) =
∫
T

G∗(f0(s), f
′
0(s))ds.

By Lemma 7.6, given ε > 0 there exists h ∈ D(T ,Rd) such that h(0) = x, h is
absolutely continuous, r = ‖h′‖L∞(T ,m) <∞, ‖h− f0‖∞ < ε/2 and∫

T

G∗(h(s), h′(s))ds ≤
∫
T

G∗(f0(s), f
′
0(s))ds + ε/2.

LetM(r) be as in Lemma 7.3(v). Choose δ > 0 such that

sup{|G(y, α)−G(y′, α)| : ‖y‖, ‖y′‖ ≤ r+‖x‖, ‖y−y′‖< δ, ‖α‖ ≤ M(r)} < ε/4.
Let v ∈ D(T ,Rd) be a function of bounded variation such that ‖v‖∞ ≤ r and
‖v−h′‖L1(T ,m) < min{ε/4M(r), ε/2, δ}. Let f1(t) = x+ ∫ t0 v(s)ds, t ∈ T . Then
‖f1 − h‖∞ < δ and by Lemma 7.3,

G∗(f1(s), v(s)) = 〈v(s), ρ(f1(s), v(s))〉 −G(f1(s), ρ(f1(s), v(s))),

so a.e. [m]

G∗(f1(s), v(s)) ≤ ‖v(s)− h′(s)‖M(r)+G∗(h(s), h′(s))

+[G(h(s), ρ(f1(s), v(s)))−G(f1(s), ρ(f1(s), v(s)))],

which implies∫
T

G∗(f1(s), f
′
1(s))ds ≤ M(r)‖v − h′‖L1(T ,m) +

∫
T

G∗(h(s), h′(s))ds + ε/4

≤
∫
T

G∗(h(s), h′(s))ds + ε/2.
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It follows that ‖f1 − f0‖∞ < ε and∫
T

G∗(f1(s), f
′
1(s))ds ≤

∫
T

G∗(f0(s), f
′
0(s))+ ε.

By Lemma 7.5, there exists λ ∈ M(T,Rd) such that

f1 = ∇x(f1, λ),

and by elementary facts from convex analysis, this implies λ ∈ ∂(x)∗(f1, f1).�

8. Superexponential approximation

Let b, σ, g, ν be as in Section 3, satisfying (3.1)–(3.5). For fixed x ∈ Rd , in this
section we will write Xn = Xxn to simplify the notation, where Xxn is as in Section

3. For a > 0, n ∈ N, let X(a)n be the strong solution of the Itô stochastic equation

X(a)n (t) = x +
∫ t

0
b(X(a)n (s))ds + n−1/2

(∫ t

0
σ(Xxn(s))dB(s)+ aW(t)

)

+n−1
∫

[0,t]×U
g(X(a)n (s−), u)Ñn(ds × du), (8.1)

where {W(t) : t ≥ 0} is a standard Rd -valued Brownian motion independent of
{{B(t), t ≥ 0}, Nn}.
Proposition 8.1. For every δ > 0,

lim
a↓0

lim
n

sup
1

n
log P{‖X(a)n −Xn‖∞ > δ} = −∞.

For the proof of Proposition 8.1 we need several lemmas.

Lemma 8.2.

(1) limr→∞ lim supn n
−1 log P{‖Xn‖∞ > r} = −∞.

(2) limr→∞ lim supn n
−1 log sup0<a≤1 P{‖X(a)n ‖∞ > r} = −∞.

Proof . Proceeding as in the proof of Lemma 4.3, let τr = inf{t ≥ 0 : ‖Xn(t)‖ > r}.
Then

P{‖Xn‖∞ > r} ≤ e−nr (2d) sup
α∈S

E exp[〈Xn(τr ∧ 1), nα〉]. (8.2)

Now

E exp[〈Xn(τr ∧ 1), nα〉] ≤ E exp[〈Xn(τr ∧ 1)− x, nα〉

−
∫ τr∧1

0
Gn(Xn(s), nα)ds]

· exp[ sup
y∈Rd

|Gn(y, nα)|]

≤ exp(An), (8.3)
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where A < ∞, by Proposition 4.2, the inequality previous to (4.4) and assump-
tion (3.4). The first statement follows from (8.2) and (8.3). Statement (2) is proved
similarly. �

Lemma 8.3. Let 3 ≥ 1, f3(y) = 3 log(1 + ‖y‖2), y ∈ Rd . Then

(1) For all y ∈ Rd , 1 ≤ i, j ≤ d

‖∇f3(y)‖ ≤ 23‖y‖
1 + ‖y‖2

, |Dijf (y)| ≤ 23

1 + ‖y‖2
.

(2) For all y, z ∈ Rd

0 ≤ exp[f3(y+‖y‖z)−f3(y)]−1−〈‖y‖z,∇f3(y)〉 ≤ 1632d‖z‖2 exp(23‖z‖).

Proof . Simple calculations yield (1). Let h3(y) = exp[f3(y)], y ∈ Rd . Then h is
convex, and therefore

exp[f3(y + ‖y‖z)− f3(y)] − 1 − 〈‖y‖z,∇f3(y)〉
= exp[−f3(y)](h3(y + ‖y‖z)− h3(y)− 〈‖y‖z,∇h3(y)〉) ≥ 0. (8.4)

Next, for 0 ≤ θ ≤ 1,

f3(y + θ‖y‖z)− f3(y) ≤ f3(y(1 + θ‖z‖))− f3(y)
= 〈θ‖z‖y,∇f3(y + θ ′‖z‖y)〉, θ ′ ∈ (0, θ)
≤ ‖z‖‖y‖‖∇f3(y(1 + θ ′‖z‖))‖
≤ ‖z‖‖y(1 + θ ′‖z‖)‖‖∇f3(y(1 + θ ′‖z‖))‖
≤ 23‖z‖. (8.5)

Suppose ‖z‖ ≤ 1/2. Then by (8.4) and Taylor’s formula,

exp[f3(y + ‖y‖z)− f3(y)] − 1 − 〈‖y‖z,∇f3(y)〉

= exp[−f3(y)]

1

2
‖y‖2

∑
i,j

exp[f3(ȳ)](Dijf3(ȳ)+Dif3(ȳ)Djf3(ȳ))zizj

 ,

(8.6)

where ȳ = y + θ‖y‖z, θ ∈ (0, 1). By (1)

|Dijf3(ȳ)| ≤ 23

1 + |‖y‖ − ‖y‖‖z‖|2 ≤ 23

1 + (‖y‖2/4)
,

|Dif (ȳ)Djf (ȳ)| ≤ 432‖ȳ‖2

(1 + ‖ȳ‖2)2
≤ 432

1 + (‖y‖2/4)
.
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Therefore by (8.5) and (8.6),

exp[f3(y + ‖y‖z)− f3(y)] − 1 − 〈‖y‖z,∇f3(y)〉

≤ exp[f3(y + θ‖y‖z)− f3(y)]
(

1

2
‖y‖2 · 832

1 + (‖y‖2/4)
· d‖z‖2

)

≤ 1632d‖z‖2 exp(23‖z‖).
On the other hand, if ‖z‖ > 1/2, by (1) and (8.5)

exp[f3(y + ‖y‖z)− f3(y)] − 1 − 〈‖y‖z,∇f3(y)〉
≤ exp(23‖z‖)− 1 + 23‖z‖
≤ 2 exp(23‖z‖)
≤ 8‖z‖2 exp(23‖z‖). ��

Proof of Proposition 8.1. Let

Z(a)n (t) = a−1(X(a)n (t)−Xn(t)), t ∈ T .
By (3.6) and (8.1), we have

Z(a)n (t) =
∫ t

0
b(a)n (s)ds + n−1/2

[∫ t

0
σ (a)n (s)dB(s)+W(t)

]

+n−1
∫

[0,t]×U
g(a)n (s, u)Ñn(ds × du),

where

b(a)n (s) = a−1[b(X(a)n (s))−b(Xn(s))], σ (a)n (s) = a−1[σ(X(a)n (s))−σ(Xn(s))],

g(a)n (s, u) = a−1[g(X(a)n (s), u)− g(Xn(s), u)].
For n ∈ N, a > 0, v, w ∈ Rd , u ∈ U , set y = a−1(v − w),

I (n, a, v,w, u) = exp[f3(y + 1

na
(g(v, u)− g(w, u)))− f3(y)]

−1 − 〈 1

na
(g(v, u)− g(w, u)),∇f3(y)〉,

h(a)n (v,w) = 〈a−1(b(v)− b(w)),∇f3(y)〉

+ 1

2n

d∑
i,j=1

(a−2[(σ (v)− σ(w))(σ (v)− σ(w))′]ij + δij )

× (Dijf3(y)+Dif3(y)Djf3(y))
+
∫
U

I (n, a, v,w, u)(nν)du),
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where f3 is as in Lemma 8.3. Arguing as in Proposition 4.1, we have: the integral in
the definition of h(a)n (v,w) exists and is a bounded continuous function of (v,w).
Again following the proof of Proposition 4.1, we obtain:

M(a)
n (t)

%= exp[f3(Z
(a)
n (t))−

∫ t

0
h(a)n (X

(a)
n (s),Xn(s))ds], t ≥ 0

is an {Ft }-positive local martingale, hence an {Ft } -supermartingale.
Let δ > 0, τa = inf{t ≥ 0 : ‖Z(a)n (t)‖ > δ/a}. Then for a > 0, r > 0,

P{‖X(a)n −Xn‖∞ > δ} ≤ P{‖X(a)n ‖∞ > r} + P{‖Xn‖∞ > r}
+P{‖X(a)n ‖∞ ≤ r, ‖Xn‖∞ ≤ r, ‖Z(a)n (τa ∧ 1)‖ > δ/a}.

(8.7)

Let ϕ3(p) = 3 log(1 + p2), p ∈ R. Then

P{‖X(a)n ‖∞ ≤ r, ‖Xn‖∞ ≤ r, ‖Z(a)n (τa ∧ 1)‖ > δ/a}
≤ exp[−ϕ3(δ/a)]E(exp[f3(Z

(a)
n (τa ∧ 1))] · I (‖X(a)n ‖∞ ≤ r, ‖Xn‖∞ ≤ r))

= exp[−ϕ3(δ/a)]E(M(a)
n (τa ∧ 1) exp

[∫ τa∧1

0
h(a)n (X

(a)
n (s),Xn(s))ds

]

×I (‖X(a)n ‖∞ ≤ r, ‖Xn‖∞ ≤ r)). (8.8)

Take now 3 = nγ/2 ≥ 1, where γ = γ (r) > 0 is as in (3.5). By (3.1) and
Lemma 8.3(1), for v,w ∈ Rd , a > 0

|〈a−1(b(υ)− b(w)),∇f3(y)〉| ≤ C‖a−1(v − w)‖‖∇f3(a−1(v − w))‖
≤ 23C = (γC)n. (8.9)

By (3.2) and Lemma 8.3(1), for υ,w ∈ Rd , a > 0

1

2n

d∑
i,j=1

(a−2[(σ (v)− σ(w))(σ (v)− σ(w))′]ij + δij )

×(Dijf3(y)+Dif3(y)Djf3(y))

≤ C

2n

d∑
i,j=1

‖a−1(v − w)‖2(|Dijf3(a−1(v − w))|

+ |Dif3(a−1(v − w))Djf3(a−1(v − w))|)
≤ C

n
· 832 · d = (2γ 2Cd)n. (8.10)

For v �= w, letting z = (n‖v − w‖)−1(g(v, u)− g(w, u)), we have

I (n, a, v,w, u) = exp[f3(y + ‖y‖z)− f3(y)] − 1 − 〈‖y‖z,∇f3(y)〉
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and by Lemma 8.3(2), with q as in (3.5),

0 ≤ I (n, a, v,w, u) ≤ 1632dn−2(q(v,w, u))2exp[23n−1q(v,w, u)]. (8.11)

Then by (3.5) and (8.11),

C(r) = sup{
∫
U

I (n, a, v,w, u)ν(du) : n ∈ N, a > 0, ‖v‖ ≤ r, ‖w‖ ≤ r} <∞.
(8.12)

By (8.9), (8.10) and (8.12): for all n ≥ 2/γ ,

sup{|h(a)n (v,w)| : a > 0, ‖v‖ ≤ r, ‖w‖ ≤ r} ≤ C′(r)n, (8.13)

where C′(r) is a positive constant depending only on r. Now by (8.8) and (8.13),
and taking into account thatM(a)

n (0) ≡ 1, we have

P{‖X(a)n ‖∞ ≤ r, ‖Xn‖∞ ≤ r, ‖Z(a)n (τa ∧ 1)‖ > δ/a} ≤ exp[−ϕ3(δ/a)] · C′(r)n.
(8.14)

By (8.7) and (8.14), for all δ > 0, a > 0, r > 0,

lim sup
n

1

n
log P{‖X(a)n −Xn‖∞ > δ}

≤ max{−γ (r)
2

log(1 + (δ/a)2), lim sup
n

1

n
log P{‖Xn‖∞ > r},

lim sup
n

1

n
log sup

0<p≤1
P{‖X(p)n ‖∞ > r}}.

The result follows now by first letting a → 0 and then r → ∞, using Lemma 8.2.
�

9. Proof of Theorem 3.1

(1) Upper bounds. We apply Theroem 2.1 with an = n,E = D(T ,Rd) endowed
with ‖ · ‖∞,E = D, F = M(T,Rd), Yn = Xxn, Zn = Zxn (defined in Section 5),
n = xn, = x .

The properties of E are easily verified, taking V to be the set of all open balls
with center at 0. The E-measurability of 〈·, λ〉 for λ ∈ M(T,Rd) is proved in [de
A1], Corollary A.3.

Condition (3) of Theorem 2.1 is trivially verified, since for all n ∈ N by (5.5)

1

n
xn(f, nλ) = x(f, λ) f ∈ E, λ ∈ F.

Condition (4) is proved in Proposition 4.4. Condition (5) is proved in Proposition
5.4 and condition (6) in Proposition 5.3. Condition (7) is proved in Proposition 6.2.
Applying Theorem 2.1 and taking into account Theorem 6.1, the upper bound in
Theorem 3.1 follows.
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(2) Lower bounds. For fixed x ∈ Rd , a > 0, let X(a)n be the strong solution of
equation (8.1). Then by Proposition 4.4, for all n ∈ N, λ ∈ M(T,Rd),

E exp[〈X(a)n , λ〉 −(a)n (X(a)n , λ)] = 1,

where

(a)n (f, λ) = 〈x, λ(T )〉 +
∫
T

G(a)n (f (s), λ([s, 1]))ds

and

G(a)n (y, α) = 〈b(y), α〉 + 1

2n
〈(σ (y)(σ (y))′ + a2I )α, α〉

+
∫
U

ϕ(〈n−1g(y, u), α〉)(nν)(du).

Let

(a)(f, λ) = 〈x, λ(T )〉 +
∫
T

G(a)(f (s), λ([s, 1]))ds,

where

G(a)(y, α) = 〈b(y), α〉 + 1

2
〈(σ (y)(σ (y))′ + a2I )α, α〉

+
∫
U

ϕ(〈g(y, u), α〉)ν(du).

Then the convexity of(a)(f, ·) follows from that ofG(a)(y, ·) and the E-Gâteaux
differentiability of(a)(f, ·) is proved in Lemma 7.4, so condition (8) holds. Con-
dition (9) is easily verified using (3.4). Conditions (3)–(7) are verified as in the
proof of the upper bound. To verify condition (10): Let λ ∈ M(T,Rd, and assume
that f = ∇(a)(f, λ), h = ∇(a)(h, λ). By Lemmas 7.2 and 7.4, for t ∈ T

‖f (t)− h(t)‖ = ‖
∫ t

0

[
∇G(a)(f (s), λ([s, 1])− ∇G(a)(h(s), λ([s, 1]))

]
ds‖

≤ D(r)
∫ t

0
‖f (s)− h(s)‖ds,

where r = sup{‖f ‖∞, ‖h‖∞, ‖λ‖v} Now Gronwall’s lemma implies ‖f (t) −
h(t)‖ = 0 for all t ∈ T , that is, f = h. Condition (11) is proved in Proposi-
tion (7.1). Applying Theorem 2.2, the lower bound holds for {LP(X

(a)
n )} with rate

function ((a))∗(f, f ). For all y, α ∈ Rd ,

G(a)(y, α) ↓ G(y, α)

and it easily follows that for all f ∈ E, λ ∈ F ,

(a)(f, λ) ↓ ∗(f, λ). (9.1)
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Let A ∈ D, f0 ∈ A0, δ > 0 such that Bδ(f0) ⊂ A. Then

P{X(a)n ∈ Bδ/2(f0)} ≤ P{Xxn ∈ A} + P{‖X(a)n −Xxn‖∞ ≥ δ/2}
and by the previous discussion,

max (lim inf
n

1

n
log P{Xxn ∈ A}, lim sup

n

1

n
log P{‖X(a)n −Xxn‖∞ ≥ δ/2})

≥ −((a))∗(f0, f0). (9.2)

By (9.1), for all f ∈ E
lim
a↓0
((a))∗(f, f ) = sup

a>0
((a))∗(f, f ) = sup

a>0
sup
λ∈F

[〈f, λ〉 −(a)(f, λ)]

= sup
λ∈F

sup
a>0

[〈f, λ〉 −(a)(f, λ)]

= sup
λ∈F

[〈f, λ〉 −x(f, λ)]

= (x)∗(f, f ). (9.3)

Letting a ↓ 0 in (9.2) and using Proposition 8.1 and (9.3), we obtain

lim inf
n

1

n
log P{Xxn ∈ A} ≥ −(x)∗(f0, f0).

This completes the proof of the lower bound and hence of Theorem 3.1. �
In the next result we show the methods of this paper apply to a somewhat more

general class of Markov processes. The upper bound is obtained under rather mild
conditions; for the lower bound, we require Lipschitz and non-degeneracy assump-
tions. The latter assumption – condition (4) of Theorem 9.1 – is needed in order to
carry through the arguments in Section 7, proving an analogue of Proposition 7.1
and thereby verifying condition (11) of Theorem 2.2. Since it is not clear to us how
to appoximate superexponentially a Markov process satisfying (1)–(3), (5), (6), and
(9.4) of Theorem 9.1 by Markov processes satisfying those assumptions and (4),
the statement of Theorem 9.1 contains (4) as a hypothesis. In the case in which the
processes are solutions of stochastic equations, we have shown in Section 8 that
such a superexponential approximation is possible.

For each n ∈ N, x ∈ Rd , letPxn be a probability measure onD([0,∞),Rd) en-
dowed with the σ -algebra D([0,∞),Rd) generated by the evaluations. Let {X(t) :
t ≥ 0}, {Gt : t ≥ 0} be as in Section 4. We assume that for each n ∈ N,

(D([0,∞),Rd), {X(t) : t ≥ 0}, {Gt : t ≥ 0}, {Pxn : x ∈ Rd})
is a Markov process.

Theorem 9.1. Let Gn,G : Rd × Rd → R. We consider the following conditions:

(1) Gn(·, α) is measurable for all α ∈ Rd .
(2) For all r > 0, limnsup‖α‖≤rsupy∈Rd | 1

n
Gn(y, nα)−G(y, α)| = 0.
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(3) G(y, 0) = 0 for all y ∈ Rd ,G(·, α) is continuous for all α ∈ Rd and for
all r > 0,

sup
‖α‖≤r

sup
y∈Rd

|G(y, α)| <∞.

(4) For all y ∈ Rd ,G(y, ·) ∈ C2(Rd) and there exists c > 0 such that for all
β ∈ Rd

inf{〈D2G(y, α)β, β〉 : y ∈ Rd , α ∈ Rd} ≥ c‖β‖2.

(5) For all r > 0, there exists D(r) > 0 such that for ‖α‖ ≤ r, y, z ∈ Rd ,

‖∇G(y, α)− ∇G(z, α)‖ ≤ D(r)‖y − z‖.

(6) sup{‖∇G(y, 0)‖ : y ∈ Rd} <∞.
LetQxn = LPxn

({X(t) : t ∈ T }). Suppose that Gn,G satisfy assumptions
(1)–(6) and, furthermore, for all x, α ∈ Rd , n ∈ N,

exp[〈X(t)− x, α〉 −
∫ t

0
Gn(X(s), α)ds], t ≥ 0 (9.4)

is {Gt }-martingale under Pxn . Then {Qxn} satisfies the large deviation prin-
ciple on D(T ,Rd), endowed with the uniform norm ‖ · ‖∞ and the σ -al-
gebra D, with the rate function

I x(f ) =
{∫

T
G∗(f (s), f ′(s))ds if f (0) = x and

f is absolutely continuous
∞ otherwise.

More specifically, the upper bound holds under assumptions (1)–(3) and (9.4), and
the lower bound under assumptions (1)–(6) and (9.4).

We omit the proof; it is not difficult to carry it out by arguing as in the proof of
the upper bound and the first part of the proof of the lower bound in Theorem 3.1
and retracing the relevant items in Sections 4–7.

Note added in proof. We very recently relaxed Condition (11) of Theorem 2.2 to a
continuity condition not involving subdifferentials. This result will appear elsewhere.
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