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Abstract. We prove an abstract large deviation result for a sequence of random elements of
avector space satisfying an “ abstract exponential martingalecondition”. Theframework nat-
urally generates non-convex rate functions. We apply the result to solutions of [t6 stochastic
equationsin R¢ driven by Brownian motion and a Poisson random measure.

1. Introduction

In many large deviation problems, the object under study is a sequence {Y,,} of
random elememts of a topological vector space E and convexity considerations
play an important role. Let

¢n(§)=|OQEeXP<Yn,E>, SGE*a
where E* isthe dual space of E. Itiswell known that if
¢(&) = limn~'¢, (n¢) (11)
existsfor al ¢ € E* and satisfies a suitable differentiability condition, and

{ZL(Y,)} isexponentially tight, (1.2
then {Z(Y,,)} satisfies the large deviation principle with rate function

¢*(y) = sup[(y. &) —¢ ()], yeE. (1.3
EcE*

This elegant result is essentially due to Gartner [Ga] when E = RY; see also El-
lis[E] (in this case, (1.2) is superfluous). For arbitrary E results of this type have
been obtained by Baldi [Ba], Bryc [Br], Dawson and Gartner [Da-G], Dembo and
Zeitouni [De-Z], O'Brien-Sun [OB-S] and de Acosta[deAl], [deA2]. Theinfinite
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dimensional result may be applied, for example, to prove alarge deviation principle
for Lévy processes [deAl].

Of course, the function ¢* defined in (1.3) is convex. It obviously follows that
the result cannot be applied — at least, not directly —to situations in which the rate
function is not convex. Such situations exist in abundance.

Inthe present paper weintroduce an abstract schemewhich generalizesthe pre-
viously described result to a non-convex framework. The main ideaisto postulate
the existence of suitable functions ®,, : E x E* — R suchthat forall & € E*

EEXp[(Yn,E)—an(Yn,E)] =1 (1-4)
andforadl x € E, & € E*

D(x,€) = Iir[nn_lcbn(x, ng)

exists. For reasons that will become clear in Section 4, (1.4) might be thought of
as an “abstract exponential martingale condition”. In Theorems 2.1 and 2.2 we
prove that under suitable regularity conditions on ® and a suitable form of (1.2),
{£(Y,)} sdtisfies the large deviation principle with rate function ®*(y, y), where
fory,z e E,

EcE*
This rate function is generated by convex conjugation, but because of the depen-
dence of ® on itsfirst variable it isin general not convex. Thus (1.5) provides a
natural way of generating non-convex rate functionsin a vector space context.
As anillustration of our scheme we consider the large deviation principle for
diffusions. For simplicity, let X;; = {X}(z),t € [0, 1]} be the solution of the
stochastic equation in R

t t
XX(t) = x +/ b(XZE(s))ds +n—1/2/ o (XX (s))dB(s),
0 0

where B is standard Brownian motion, b, o are bounded and uniformly Lipschitz
with |o| > ¢ > 0and x € R. Then according to the classical Freidlin-Wentzell
theorem [W-F], { Z(X;))} satisfiesthe large deviation principlein C[0, 1] with rate
function

. L) — b(f(s))20~2(f(s))ds if £(0) = x and
I'(f) = f isabsolutely continous
o0 otherwise.

Our abstract large deviation principle (Theorems 2.1 and 2.2) applies to this sit-
uation. Let M[0, 1] be the space of finite signed measures on [0,1]. In this case
condition (1.4) is

E@(p[/X,jdA—d)ﬁ(X,ﬁ,A)] =1

where
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1
O (f. ) = A([0, Wyx + /0 G (£ (). A(ls, 1]))ds

1
O (f. ) = ([0, Wyx + / G(f (). A([s. )ds,  f € C[0,1]. % € M[0, 1]
0

and
Ga(y, @) = b(y)a + (2n)Lo?(y)a?,
Gy, @) =b(y)a+ %Uz(y)ot2 y,a €R.

The rate function 7* is obtained in our scheme by the variation formula

I'(f) = (@)*(f, f) = sup [/fd?» — O(f, )»)] . feC[01].
reM[0,1]

More generally, we present in Theorem 3.1 an application of the abstract large
deviation principle to a sequence of Markov processes in R¢ which are defined
as solutions of 1td stochastic equations driven by Brownian motion and a Poisson
random measure (for a precise statement of the considerable breadth of the class
of Markov processes defined in this way, see Cinlar-Jacod [C-J]). In the Markov
context, some closely related results were obtained originally by Wentzell [W]
and more recently, in an improved form, by Dupuis-Ellis [Du-E]; in the semimar-
tingale context, a closely related result was obtained by Liptser-Pukhalskii [L-P].
Because of the different frameworks and assumptions, it is not immediately clear
how Theorem 3.1 compares with these results. However, we wish to emphasize
two aspects of our work which are different from those papers and, it appears to
us, deserve mention: (i) the assumptionsin Theorem 3.1 are explicit boundedness,
Lipschitz and integrability conditions on the data of the stochastic equations and
not on latent objects, such as rate functions; (ii) no non-degeneracy assumptions
are made in Theorem 3.1. We also indicate in Theorem 9.1 how the methods of
the present paper apply to a somewhat more general class of Markov processes,
which includes those considered in [W] and [Du-E]; the lower bound in this result
requires, however, a non-degeneracy assumption.

A very recent contribution to the study of large deviationsfor Markov processes
isFeng and Kurtz [F-K], where anonlinear semigroup and exponential martingale
problem approach is devel oped.

The paper is organized as follows. In Section 2 we prove the abstract large de-
viation result. The vector space and measurability assumptions are formulated so
asto apply to D([0, 1], R%) endowed with the uniform norm:; also, for greater flex-
ibility, the exponential tightness assumption does not involve {Y,,} but an auxiliary
sequence {Z,,} which is superexponentially closein probability to {Y,,}.

Sections3-9 aredevoted to the applicationto |t stochastic equations. In Section
3 we describe the equations and state the large deviation theorem for the solution
processes, {X;}. In Section 4 we establish the “abstract exponential martingale
condition”. In Section 5 we introduce a suitable time discretization {Z;} of {X7}
and show that it isexponentially tight in (D (T, R?), || - |l) and superexponentially
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closeto {X;;}. In Section 6 weidentify therate function—given inthe abstract frame-
work by the variational formula (1.5) —asaclassical integral expression and prove
the compactness of the level sets. In Section 7 we show that under a non-degener-
acy (uniform ellipticity) assumption on the diffusion coefficient of the stochastic
equations, the subdifferentiability assumption in Theorem 2.2 holds. In Section 8
we show that the solutions of the stochastic equations perturbed by an indepen-
dent Brownian motion with small variance—which renders the diffusion coefficient
non-degenerate—are superexponentially close in probability to the solutions of the
corresponding original equations. Finally, in Section 9 the items in Sections 4-8
are assembled and Theorem 3.1 is proved.

2. An abstract non-convex large deviation result

We will consider the following objects:

o EisaHausdorff topological vector spaceand 7~ isafundamental system of open
symmetric neighborhoods of 0.
e & isaoc-algebraof subsets of E such that
(i) & containsthe class of compact sets.
(ii) & contains 7.
(il) (E, &) isameasurable vector space; thatis, themap (x, y) — x+yis(E x
E,6® &)/(E, &) -measurableandthemap (A, x) — Axis(Rx E, #(R) x
&)/ (E, &)-measurable; here #(R) isthe Borel o-algebra of R.
e F is a subspace of the dual space E* such that (-, &) is &-measurable for all
EeF.
e For afunction® : E x F — R, wedefineforx,y € E

D" (x, y) = sup[(y, &) — P(x, &)],
EeF

note that if ®(x, 0) = Ofor al x € E, then ®* > 0.
e {a,}neN iSapositive sequence with lim,, a,, = oo.

Ingeneral, & may be smaller thanthe Borel o -algebraof E. Theframework will
be applied in Sections 3-9 to the following setting: E = D([0, 1], RY) endowed
with the uniform norm || - ||, ¥ is the class of open balls with center at 0, & is
the o -algebra generated by the evaluation mappings, and F = M ([0, 1], R¢), the
space of R¢-valued vector measureson ([0, 1], ([0, 1]). We have previously used
this setting in de Acosta [deA1].

In Theorems 2.1 and 2.2 we prove large deviation upper and lower bounds,
respectively, for {Zp, (Y,,)}, wherefor eachn € N, Y, isan E-valued random vec-
tor satisfying the key assumption (4) of Theorem 2.1. For greater flexibility in the
applications, it is not convenient to assume that { ¥p, (Y,,)} is exponentially tight,
which may fail to be true; we suppose instead that there exists a sequence {Z,,} of
E-valued random vectors such that {Y,,} and {Z,,} are superexponentially closein
probability and {Lp, (Z,)} is exponentialy tight.
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Theorem 2.1. (upper bounds) Let &, ® : E x F — R be such that
(1) forall & € F, ®,(-, &) isé&-measurable.
(2) forallé € F, @(-, &) isé-measurable, continuousand satisfies ® (x, 0) =
Oforallx € E.
(3) foral & e F,

bn(g)éwpmn—lq)n(x»an%') —o(x,8)| — 0 asn— oo.

xeE

For eachn € N, let Y,,, Z, be E-valued, &-random vectors defined on
(2, A, Pu), and assume
(4) foralln e N,& € F,

E, exp[<Yn7 &) — @, (Y, é)] =1

(5) {Zp,(Z,)} isexponentially tight.
(6) foreveryV e 7.

lima, *logP,{Y, — Z, € V¢} = —o0.
n

Assume furthermore that for all a > 0,
(7) thelevel set L, = {x € E : ®*(x, x) < a} iScompact.
Thenfor all A € &,

limsupa; tlogP,{Y, € A} < — inf ®*(x, x).
n X€A

Proof . Let K be acompact subset of E. We claim:
Ii;nsupan_llog P,{Z, € K} < —xlg( ®*(x, x). (2.1)
For, assume that inf,cx ®*(x,x) < ocoandlete > 0. For & € F, let
VE)={xeE:(x,§)—0x,8§) > Jenf( D (y, y) — ¢}
Then V(&) isopen, V(&) € & and

K E : o* inf ®* —&} = V().
Clxe (e.x) > inf &*(y.y) —é) sz @
By compactness, there exists &1, . . ., & € F such that

k
K cl|Jveé.
i=1
Let V € ¥ be such that
k

K+vclJveE.

i=1
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Then
{Z, e K}YC{Ype K+ V}IU{Y,—Z, €V}
C{Yn e O VEN VY, — Zy €V}
i=1
and therefore
Pu{Z, € K} < 2max{P,{Y» € LkJ VDY, PulYn — Zy € V3L (22)

i=1

Now, letting b = inf,cx ®*(x, x) — &, we have

k k
PolYu € [ JVE)) <D Pull¥u. &) — @Yo, &) > b}

i=1 i=1

k
< eianb Z En expl(Yy, anéi) — an®(Yy, &)]
i=1
< e_anb k- maX{En eXp[(Yny aﬂél‘)
1

— @, (Y, an&i)] - explan b, (£))}. (2.3)
Letting n — oo, by assumptions (3), (4), and (6), and (2.2), (2.3), we abtain

limsupa, tlogP,{Z, € K} < —b = — inf ®*(x, x) +e&.

n xekK
Since ¢ is arbitrary, claim (2.1) follows when inf,cx ®*(x, x) < oo. If inf,cx ®*
(x, x) = oo, theargument is similar; we omit it.

Next, let A € & and let a > 0. By assumption (5), there exists a compact set
K, C E suchthat

Iir[nsupan_llog Pu{Z, € KS} < —a. (2.4)
We have, for V € v,
(YoeAyC{Y, €A, Z, €Ky, Yy —Z, € VIU{Z, € K} U{Y, — Z, € V}
ClZ, e A+VNKHU{Z, € KSYULY, — Z, € V).
and

Pn{Yn S A} 5 3maX{Pn{Zn S A + V m Ka}, Pn{Zn € K;}a P}’l{Y}’l - Zn € VC}}
(2.5
Letting n — oo, by assumption (6), (2.1), (2.4) and (2.5), we have

limsupa, tlogP,{Y, € A} < max{—inf{®*(x,x):x € A+ V N K}, —a)
< max{—inf{®*(x,x):x € A+ V}, —a).



A general non-convex large deviation result 489

Since a is arbitrary, we have obtained: for all V € 77,
limsupa, tlogP,{Y, € A} < —inf{®*(x,x) :x € A+ V}.

Now {A +V : V e 77} isadirected decreasing family of closed sets with inter-
section A. Using assumption (7), by awell-known property of good rate functions
(seeeg. [De-Z], p.119) we have

sup inf{®*(x,x) :x € A+ V} =inf{®*(x,x) : x € A} O
ver
We will need the following definition in Theorem 2.2. A fucntion¢ : F — R
is E-Géteaux differentiable at £ € F if there existsapoint V¢ (&) € E such that
foralne F,

(Vo (©). ) = lim =g (€ +1m) — ¢ ©)].
We shall use the notation
d0* (x, y) 2 0(®*(x, ))(y) C F

for the subdifferential of the convex function ®*(x, -) at y € E (for the definition
of subdifferential, seee.g. [A-E], [E-T]). We emphasizethat condition (10) below is
auniqueness assumption; no assertion is made about existence. This condition can
often be verified easily using Gronwall’slemma. Condition (11), on the other hand,
isin general more difficult to verify; in the application to stochastic equations, the
verification requires proving Proposition 7.1. (It is not difficult to show, however,
that in the case of the classical Friedlin-Wentzell Theorem —asin the Introduction—
the verification is very simple). If ® does not depend on x and E is a Banach
space, then condition (11) follows from the Brondsted-Rockafellar theorem (see
e.g. [A-E]). It would be interesting to find useful assumptions on @ in the general
abstract framework of Theorem 2.2 under which condition (11) is automatically
true.

Theorem 2.2. (lower bounds) Let E, &, F be asdescribed before Theorem 2.1, and
assume furthermore that F separates pointsin E.

Let @, @, {V,}, {Z,} satisfy conditions (1)—(7) of Theorem 2.1, and assume
furthermore

(8) Forall x € E, ®(x, -) isconvex and E-Gateaux differentiable.

(9) Forall & € F, d(&) 2 sup, ., |®(x, £)| < o.
(20) For all ¢ € F, theequation x = V& (x, &) has at most one solutionin E.
(11) For all xg € E such that ®*(xg, xg) < oo, for every neighborhood W of xg
and for every ¢ > 0, there exists x1 € W such that 9®*(x1, x1) # ¢ and

P*(x1, x1) < ®*(x0, x0) + &.
Then for every A € &,

liminf a, tlogP, (Y, € A} > — inf ®*(x, x).
n xeA°
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Proof. Let A € &,x9 € A°, and assume w.l.0.g. that ®*(xp, xg) < oo. Let
x1 € A° beasin condition (11), and let £ € 3®™*(x1, x1),

W={xecE:(x,&E—dx,§ < D (x0, x0) + €}.

Then W € & and Wisopen.Let V = W N A. Then

Su\e[(yv an) — ©,(y, ax6)] < ay (bn(g) + SUB[()’, &) — @y, E)])
ye ye
< ay (b (&) + P (x0, X0) + €).
It follows that
Pu{Y, € A} = Py{Y, € V}
> inf exp[—((y, an§) — Pu(y, anb))] -
yeV

~ / 1y (¥,) @XP[{Yr. an) — ®y (Y, ay)]dP,
= exp[_an(bn(é) + @*(xo’ xO) + 8)] :
. / Iy (Yy) exp[(Ym an§> - ch(an ané)]dPn
and hence
liminf a;tlogP, (Y, € A} = —(®*(x0, x0) + €)

+I|rl;n|nf an_1|09/ Iy (Yy) exp[<an ank) — @, (Y, ané)]dpw

Therefore in order to complete the proof it is enough to show that

mint [ 1y (7, @0l(Y,.0,8) ~ @, (Y, a,)dP, = L
or, on account of condition (4),

limsup P, ¢{Y, € V°} =0, (2.6)
n

Wherealpn,é = EXP[(Yn, ang) — @, (Y, anS)]dPn-
Forye E,ne F,let

Dy (v, n) = Ou(y, ank +n) — ©u(y, ané)
P:(y,n) =P(x,E+1n) —D(x,8);

it is not difficult to prove that for y, z € E,

P(y,2) =P (3. 2) — (2. §) — P, §)).
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Itiseasily shown that ¢, ¢ and @, satisfy (1)«3) and

Eneexp[(Yn, n) — @pe(Yp,m)] =1 fordlnekF. 2.7
We claim now that for every compact set K C E,
limsupa, *10gP, ¢{Z, € K} < — inf ®f(x,x). (2.8)
n xek

In order to prove this, we show first

lima, logP, ¢{Y, — Z, € V{} = —c0 fordl Vi€ 7, (2.9)
n

{ZPp, . (Zy)} isexponentialy tight. (2.10)
For,

Pn,S{Yn —Zy € Vf} = fIVf(Yn — Zy) &Xp[(Yn, an&) — @, (Y, an§)]dPy,

< (PulYn — Z, € VEHY/?

1/2
X </ exp[<Yn» 2(1115) - ZCD,,(Y, ané)]dpn)
< (PulYy — Z, € VEDY?
x oxp (2[B(28) +2() + bu(26) + 26,6
(2.11)

by asimpleestimate, taking into account (4) and (9). Using (6), (2.11) implies(2.9).
(2.10) is proved similarly using (5).

Now (2.8) follows from (2.1), (2.7), (2.9) and (2.10). We claim next that there
exists V1 € ¥ such that

x1 ¢ VE+ Vg, (2.12)

For, choosing V1 € 7" such that x1 + V1 4+ V1 C V, it easily follows that (x1 +
V1) N (VE + V1) = ¢, which implies (2.12). Now let K1 be a compact subset of E
such that

Iirsnwpa,jllogP,,,g{Z,, €K} < -1

We have

(Yo e VY C Yy eV, Yy —Zy € V1, Zy € K1} U{Y, — Z, € VEYU(Z, € K§)
C{Zy € K2} U{Y, — Z, € V{YU(Z, € K5},

where K> = V¢ + V1 N K1. Therefore by (2.8),

limsupa; tlogP, ¢ (Y, € V) < max{limsupa, tlogP, :{Z, € K2}, -1},
n n

IA

max{— inf <I>§(x,x), -1}
xekKr
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In order to prove (2.6), and hence to complete the proof of the theorem, it suffices
to show

¢2 inf ®F(x,x) > 0, (2.13)
xekKo

Suppose ¢ = 0. By the compactness of K2 and thelower semicontinuity of @F,
there exists xo € K» such that <I>§ (x2,x2) = 0, that is,

P (x2, x2) — [(x2,§) — P(x2,£)] = 0.

It followsthat for al n € F, t > 0, by assumption (8),

(x2,& +1n) — D(x2,& + 1) < (x2,8) — P(x2,§),

(x2, 1) < th—l [®(x2, & + 1) — D(x2, £)] = (VD (x2, £), ).

Therefore (x2, n) = (V®(x2, &), n) foral n € F, and since F separates pointsin
E,wehavexy = V®(x2, £). Ontheother hand, by (8) and well known convex anal-
ysisarguments, £ € 9d*(x1, x1) impliesxy € 3P (x1, &), hencex; = VO (xq, &).
Now by assumption (10) we must have x1 = x». But thisisimpossible on account
of (2.12) and xp € V¢ 4 Vj. Thisestablishes (2.13). O

3. Statement of the application to stochastic equations
We will consider the following conditions.

b : RY - R? isbounded and uniformly Lipschitz. (3.2)

o : R? - R¥*? jsbounded and uniformly Lipschitz. (3.2

Let (U, %) be a measurable space, v a o-finite measure on (U, %). We endow
R¢ x U with o-algebra Z(R?) ® %. Let g : R? x U — R? be a measurable
function such that

(i) there exists ameasurable function g : U — R™ such that

sup lg(y, wll < gw), uel.
yeRd

(i) foralu € U, g(-, u) iscontinuous.

We assume:
Thereexists C > 0 such that for all y, z € R?

fU lig(y, u) — g(z, w)|?v(du) < Clly — z||* (3.3)
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Forala > o,/ (g(u))? explag (u))v(du) < oo. (3.4)
U

For every r > 0, thereexistsy = y(r) > 0 such that

SUD{/U(q(y,L w)? explyq(y, z,w)v(du) : Iyl izl <7y #z} < oo, (35)

whereg(y, z, u) = (|ly — zID g (y. u) — gz, w)|l.

Let (2, 7, {Z}>0, P) be a probability space with afiltration satisfying the
usual conditions. Let m be Lebesgue measure on R*. We assume that a standard
R<-valued Brownian motion B and asequence {N,,} of stationary Poisson random
measureson (R x U, Z(R%) ® ) with mean measures {m @ (nv)}, respectively,
aredefined on Q (see[I-W]). Assumethat (3.1)—(3.3) hold. Foreachn € N, x € R?,
let X;; be the strong solution of the It stochastic equation

t t
X5(t) = x +f b(X¥(s))ds +n_1/2/ o (X (5))dB(s)
0 0
+nt / g(XX (s=), u)Ny(ds x du), (3.6)
[0,6]xU

where N, = N, — m ® (nv) is the compensated random measure; the process
{X;(¢) : t = 0} exists, isunique and has sample pathsin D ([0, co), R4) by [I-W],
Th.9.1, Ch. IV (seedso[G]). Let T = [0, 1] and let & bethe o -algebra of subsets
of D(T, R%) generated by the evaluations ; (f) = f(1),t € T, f € D(T,R%).

Theorem 3.1. Let uf = L{X; (t) : t € T}). Assume that conditions (3.1)—3.5)
hold. Then {u}; },,en satisfies the large deviation principle on D(T, R<), endowed
with the uniformnorm || - | o, and the o-algebra 2, with the good rate function

s _ fT G*(f(s), f/())ds if f(0) =x and f is absolutely continuous
(f) = otherwise,
where
G*(y,2) = swpl(z a) =Gl y.ze R4
aeR
and

1
G(y,a) = (b(y),a)+§(0(y)(0(y))/0t,a)+/U e((g(y, u), a))v(du), «€R?,

wheregp(t) =e' —1—1,t € R.
More specifically, under conditions (3.1)—(3.4) the upper bound holds:

forall A e 2, limsupn~tlogul(A) < —}icmji I°(f),
n €

and under conditions (3.1)—(3.5) the lower bound holds:
forall A e 2, liminf n~tlogu(A) = — inf I*(f).
n feAO
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4. Exponential martingales

Proposition 4.1. Letb, o, g, v, X} beasin Section 3. Then for every f € C?(RY)
such that

C1=sup{|IVf (2l : y € RY} <00, Ca=sup{|D;j f(y)| :i,j <d,y € R} <00,

t
expl f (XX(1)) — f(x) — fo hn(XE(s))ds], 120

isan {,}-local martingale, wherefor y € R?,

1 d
hu(y) = (b(y), V() + o Z (e @ON)ij(Di fWD; f () + Dij f(y)
ij=1
1 1
+ fU(eXp[f(y + ;g(y, u)) — f(y)]—1—<;g(y, u), V() (nv)(du).

Proof . We first show that the integral in the definition of 4, (y) exists and is a
bounded continuous function on R¢. We havefor y, z € R¢

explf(y+2)—fOM]—1—{(z, VL)
= e TONn(y +2) — h(y) — (z, VA())], whereh(y) = exp[f (»)],

d
1 _ -
ze*f(}’)é E Dijh()’)ZiZjv Wherey=y+9z,9 6(07 D
ij=1

N IR ] ] _
=TS Y D) + DifGID; )z
i,j=1

Therefore by the assumptionson f, for a suitable constant C > 0
1 1
| &xpLf (y + —g (v 1)) = fI] = 1= (g (y. 1), VL)

1 1 )
< EXp(Cl;”g(y, u)ll) - CII;g(y, wl

and the claim follows from (3.4). Next, by [t0's formula (see [I-W], p. 66) applied
to i, we have:

t
expLf (X, (1))] —/0 expLf (X ()] - hn(X; (s))ds,  t=0 (41)

isan {Z#,}-local martingale. Since inf <, exp[ f (X} (s))] > Ofor eacht > O, by
[E-K], p. 66, we have from (4.1):

t
explf (X5 (1))] eXIO[—/O exp[—f (X;, (s)](€XpLf (X5 (5)] - hn (X5, ()))ds], 1 = 0

isan {#}-local martingale, and the conclusion follows. O
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Proposition 4.2. Forn e N, y,« € R?, let

1 1
Gn(y,a) = (b(y),a) + 5 (e (o) a, a) +/Uq0(<;g(y,u),a))(nV)(du),

2n
where ¢ isasin Theorem 3.1. Then for eachn € N, « € R?,

t
M (1) 2 expl(XX(1) — x. o) / Gu(XX(s), a)ds], 10
0

isan {#,} L?-martingale. In particular, for all t > 0
EM® 1) = 1.
Proof . Applying Proposition4.1to f(y) = (y, «), weobtain: M,ﬁ"‘)(t),t > Oisan
{Z;} local martingale. Let 7, 1 oo as. bealocalizing sequence of stopping times.
Letr > 0, and let t < r be astopping time. By the optional sampling theorem.
EM®(t A ) = EM®(0) = 1.

Since M\ () > 0and M (t A ) — M* () as., by Fatou'slemma

EM® (1) < liminf EM®(t Ag) =1 (4.2)

Now

E(M@(1))? = Eexp[(X} (1) — x, 20) — /r G (X (s), 2a)ds
0

+ /T Gn(X;(8), 2a) — Z/T Gn(X; (), )ds]. (4.3)
0 0

Since0 < p(v) < @(Jv|) < %|v|2exp(|v|) for v € R, we have by (3.1), (3.2) and
(3.4): there exists a constant C > 0 such that for al y, « € R4

|Gn(y, )| = Hy(lleel]), (4.4)

wherefora > 0, H,(a) = Ca + Zc—naz + ‘én—z fU(g(u))2 exp(n—Lag(u))v(du). By
(4.3) and (4.4) and since t < ¢, it follows that for some constant C’ > 0.

E(M{(1))* < CEM® (1) = C'.
Thenfor al ¢ > 0,
{M® (1) : T <t} isuniformly integrable.

By astandard argument (seee.g. [J-9], p. 12), M,(,“) (1), ¢ > Oisan L2-martingale.
O
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Lemma4.3. Forall¢ >0
E exp(£]|X; lloo) < 00,
where || X} [loo = sup;c7 1 X5 (DIl

Proof . Fora > 0, letz, =inf{t > 0: || X; (¢)|| > a}. Let {1, ..., oq} beabasis
of R?. Then for some constant ¢ > 0, al y € R?,

Iyl = csup|(y, a;)l
j=d

Thereforeif S = {oj : j <d}U{—«a; : j <d}, wehaveforh >0

P{IX; (ta A DIl > h} < (2d) SUpP{(X; (ta A D), @) > h/c}.  (4.5)

aeS

Asinthe proof of Proposition 4.2, given 8 € R?, for some constant C’ independent
of a, we have

Eexp(XX(t, A1), B) < CEMP (z, A1) =C'. (4.6)
Thereforefor al £ > 0, a > 0 we have by (4.5) and (4.6) with 8 = cla

PlIX; lloo > a} < P{IIX;(ta A Dl > a}
< (2d) sup(e " E exp(XF (14 A 1), clar))

aeS

< (2d)C'e .
Thisimplies the conclusion. O
We shall denoteby M (T, R?) the space of vector measures defined on the Borel
o-algebraof T, withvauesinR?. For f € D(T,R%), » € M(T, R%), we write

T /T (o di).

Let {X(¢),t > 0O} be the canonical process and {¥;,t > 0} the canonical fil-
tration on D([0, o00), RY). Let Py = Zp({X;(t) : t = 0}). Thenitiswell known
that

(D([0,00), R, {X (1), 1 = O}, {%,,1 = O}, {P;', x € RY}) (4.7)

isa Markov process. In the next proposition and elsewhere in the paper, we will
use the notation

X; = {X}(). 1 €T, P} = Lp(X});

this abuse of notation should cause no confusion, since it will be clear from the
context when P isameasure on (D(T, RY), 2).



A general non-convex large deviation result 497

Proposition 4.4. Assumethat (3.1)«(3.4) hold.For f € D(T,R%), » € M(T,R%),
let

O(f 1) = (x, (T + fT G (£ (). A(s. 11))ds.
Then
Eexpl(XZ. 1) — &I (X2, )] = 1. 48)

Proof . What we must proveis: for al x e R, A € M(T, R9),

EXexp[(X, ) — @5 (X, M)] =1, (4.9)

where X = {X(¢) :t € T}.

(1) We show first that (4.9) holds for any » € M(T,R?) of the form A =
Z’j‘.zlajs,j,whereo —tp<n<..<n<lada, eRYj=1,... k
We prove the claim by induction. If k = 1, then A = «18;, and by the fact that
G.(y,0) = 0foral y € RY and Proposition 4.2, we have

n
E, exp[(X, 1) =@, (X, M)] = E, exp[(X (t1)—x, al)—/ Gn(X(s),a1)ds] = 1.
0
(4.10)
Let k € N. Assume now that (4.9) holds for al Ay € M(T,R?) of the form

he = Y5_gajéy, with {1;) as above and let 2 = Y47 a6, By the Markov
property, conditioning on ¢, in the second step,

k+1 k+1
Ey exp[(X, 4) — D (X, W] = Ey exp[) (X (1)), o)) = (x, ) aj)
j=1 j=1
k+1 k+1

-y f[ Gu(X(5), Y a;)ds]
j=1"!

=Lt i=j
= E, (exp[({X, Ax) — @, (X, )] - H(X (1)),

wherefor y € R?
) Tey1—1k
H(y) = Ej; exp [(X(tk+1 — ) — Y, py1) — /0 Gn(X(s), atgy1) dS:| .

But H(y) = 1for al y € R? by (4.10). Using now the inductive hypothesis, we
conclude that (4.9) holds for A, proving the claim.
(2) Let . € M(T,R%). Asin[deAl], LemmaA.2, define iy € M(T, RY) by

k
Ak = Z axjdj/k,
j=0

where ago = 2({0), ax; = A((L2, 4)),1 < j < k. Thenforal f € D(T,RY),
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Ii][n/(f, diy) = /(f, dxr). (4.11)
Let || - ||, bethetotal variation norm on M (T, R%). Then for all k,

k . .
-1
A4l < IAAODT+ Y 1A= 2D

j—l

< [AI({OD) +Z|x|(<— —])
j=1
= [2/([0, 1D),
= Al (4.12)

where |A| isthe total variation measure associatedto . Now foral s € T,

Ak (s, 1D — A[s, IDII = IIX([M 1) = A(s. 1D

< m[%,s)

=0 (4.13)

By (4.4), (4.12), (4.13) and the dominated convergence theorem, it follows that

D, (fi ) = (x,)»k(T))+/;Gn(f(S)»?»k([S, 1Dds
— OX(f. ). (4.14)
By (4.4) and (4.12)
expl(X, M) — @, (X, )] < expllIAllv I X lloo + Hu(IA0)]- (4.15)

Finally by Lemma4.3, (4.11), (4.14), (4.15), part (1) of thisproof and the dominated
convergence theorem, we have

E;y &xp[(X, 4) — &, (X, W] = lim E; expl(X, 4) — @5 (X, 2]
=1
This compl etes the proof. O
5. Exponential tightness, discretization and super exponential approximation
Let{X(t),t >0}, {9, t >0}, {P}.x € R} beasin (4.7).
Lemmab.1l. Let gbeaseminormonRY. Thenforallt > 0,s > 0,a > O,

sup Py {supg(X(t +h) — X(1)) > a} < 2sup sup P, {q(X(h) —x) > —}

xeRd h<s h<s xeR4
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Proof . By the Markov property,

Pi{supg(X (1 +h) — X (1)) > a} = EﬁEﬁ[I(;&JPq(X(t +h) =X () > a)|%]

h<s

= EXPXOAX 1)),

n-n

where A(y) = {f € D([0, 00), RY) : sup,—, ¢(f(h) — y) > a}. Therefore

sup Pi{supg(X(t +h) — X (1)) > a} < sup Py (A(y)). (5.1)

xeR4 h<s yeRd

Let By = {(j/2%)s : 0 < j < 2k}, For fixed y € R?, let

t=inf{u € By : q(X(u) — y) > a},
Axy) = | Jlr =u) = (sup g(X@w) — y) > a}.

ueBy ue By
Foru € By
Pir =u) = P (it =) N {g(X () = ) > 3)
+P) (T = u} N {g(X(5) = X () > 5}, (52)
By the Markov property,

Vg _ _ Ay _ gy _ X (u) _
Py({t =u}N{g(X(s) X(u))>2})—EnI{r—u}P,, (B(s —u, X(u)),

where B(h,z) = {f € D([0, 00), RY) : q(f(h) — 2) > %}. Therefore

PY(ft = u}n{g(X(s)— X)) > %} < sup sup P3(B(h,2))- Pl {t = u}. (5.3)

h<s zeRd

By (5.2) and (5.3)

PI(A()) = Y Plit =u)

ue By
< PJ{q(X(s) = y) > =} + sup sup PZ(B(h, 7))
2 h<s z;eRd
< 2sup sup Pi(B(h, z)). (5.4)
h<s z;eR4

By the right-continuity of paths, Ax(y) 1 A(y), and therefore P; (Ax(y)) %
P; (A(y)). The conclusion follows now from (5.1) and (5.4). O
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For y,a € RY, let G(y, @) be asin Theorem 3.1, G, (y, @) asin Proposition
4.2. Thenforal n € N,

1
;Gn(y,na) =G(y,a). (5.5

Let G(a) = sUp,cre|G(y,@)|. By (3.1), (3.2) and (3.4) and the elementary
inequality previousto (4.4), for all & € R?

G(a) < oo.

Lemma5.2. Foralla € RY, s > 0,

Ilmsup Iogsup sup E;; exp(X (h) — x,na) < sG(a).
h<s xeRd

Proof . By (4.10) and (5.5), foral x e R4, h <s,n € N
h
E; exp(X (h) — x, na) = E;; (exp[(X (h) — x, nar) — / G, (X (), na)dt]
0

eqin | " Gx @, wa)
< exp(nsG ()
and the conclusion follows. O
Proposition 5.3. For x € R?, 1 > 0, let Z:(1) = X (1), andlet Z = {Z} (1) :
t € T}. Then for every ¢ > 0,

I|m Iog P{IX;, — Z) ||loo > €} = —00.

Proof . Let Z,(¢) = X([’%’l). By Lemmab.1,

PUIX: — Zylloo > e} = PY{IIX — Zulloo > 8}

N 1 k—1
= P;{ sup sup IIX(—+h) X(—)Il > ¢}
1<k<nh<1/n n

1 k-1
<pr{ sup ||X(—+h> X(—) > &)
1 h<l/n n
<2n sup sup PI{IIX(h) — yll > £/2}. (56)
h=1/nyeRd

Proceeding asin the proof of Lemma4.3,

EHIX () =yl > /2) = QySup B} (X () = 3. ) > %}. .7)
ae
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By (5.6) and (5.7), foral a > 0

P{I1X3 — Z}|loo > €} < 4dnsup sup sup Py {(X(h) — y,a) > £}

aeSh<l/n yeRd
< 4dnsup sup sup exp(—n(£)a)Eyexp(X (h)—y,naa).
oteShfl/nyeRd
By Lemma5.2,
. 1 . . €
limsup —log P{||X; — Z,llec > €} < —(5-)a.
n n 2c
But a isarbitrary. O

Proposition 5.4. Let {Z;} beasin Proposition 5.3. Then
{Zp(Z;), n € N} isexponentially tight in (D(T, R - 1loo)-

Proof . Following [deA1], proof of Lemma4.1, it suffices to show: for every ¢ >
0,a > 0, thereexist r > 0, m € N such that

. 1

limsup —log P{d(Z;, H,(Cy + x)) > &} < —a, (5.8)

n n

where C, = {y € R? : q(y) < r},q(y) = SUp;-4l(y. )|, with {e;} asin the
proof of Lemma4.3, and for A ¢ R?,

m—1
H,(A)={f € D(T, Rd):f:ijI[j/m’M)+xm1{1} x; €A, j=0,...,m)
j=0

Now, with Z,, asin the proof of Proposition 5.3,

Pld(Zy;, Hu(Cr + x)) > e} = Pi{d(Zy, — x, Hn(Cy)) > €}
= P,f{zn - X ¢ Hn(Cr)}
+P{Z, —x € H,(C,),d(Z,—x, Hy, (C,)) > €}.

(5.9)
Recalling that
Zo(t) = x (1 —n_lX' L., ; X1
n() = (7)_20 G/, )0 + XD (0),
2

we have by Lemma5.1
Pi{Zy —x ¢ Hy(Cp)} = P,f{S_qu(X(j/n) —x)>r}
j<n

< 2sup sup Py {g(X(h) —y) >r/2}. (5.10)
h<1yeRd
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Let S beasinthe proof of Lemma4.3. Then

Pi{q(X(h) —y) > r/2} < 4dsup P {(X (h) — y, @) > r/2}. (5.11)

aeS

Proceeding as in the proof of Proposition 5.3 and using (5.10), (5.11) and Lemma
5.2, we have

1 _
limsup =109 P (Z, —x ¢ Hy(C)) < =5 +3upG@).  (512)

n aeS

Next, for n > m, asin[deA1l], pp. 90-91, and using Lemma 5.1,

P;{Zn —x € H,(Cy),d(Z;, — x, Hy(C})) > ¢}
miy i ni

< P;{ sup sup Q(X([m]—])—X(M))>8}
051’5m—11§j§%+1 n n

TN

n n

) > €}

m—1
<Y P sp q(X(
i=0 l<j=5+1

<2m sup sup Py{g(X(h) —y) >¢/2}
h=2/m yeRd

< 4md exp(—n(e/2)¢)sup sup sup E;exp(X (h) — y, nla).
aeS h=<2/m yeRd

By Lemmab.2,

lim Supi log PX{Z, — x € H,(C,),d(Zy — x, Hn(C))) > €}
n n
< —(e/2)t + 2 sup G (£av). (5.13)
m ges
By (5.9), (5.12) and (5.13), we have
lim supl logP{d(Z;, Hu(C; + X)) > €}
n

n

_ 2 _
< max{—~ +supG (@), —(5)e + < supG(ea)).
2 ges 2 m ges

Itisclear that for suitable choicesof ¢, r and m theright hand side of thisinequality
isno greater than (—a). This establishes (5.8), completing the proof. O

6. ldentification of therate function and compactness of the level sets

Theorem 6.1. Let GbeasinTheorem3.1, andfor f € D(T, R%), » € M(T,R%),
x € RY, et

([, M) = (x, M(T)) +[TG(f(S)J»([S, 1)ds.
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For, f,h € D(T,R%), let

@) (fih) =  sup [/ (h, da) — & (f. ).

AeM(T,RY)
Then
[z G*(f(). f'(s)ds if f(0) =x and
(@H*(f, )= f is absolutely continuous
o0 otherwise,
where

G*(y,2) = sup[(z, &) — G(y, a)], v,z eRY.

aeRd

Proof . (1) Suppose f(0) = x, f isabsolutely continuous. Then
(@) (f, ) = /T G*(f(s), f'(s))ds.
For, let . € M(T, R?). Then
[tran—e = [(f Cf@du o+ x, dAs) — [, AT
+ [ G 1]
= [ 17635 ) = 60,205, D)l
< /T G*(f(s), f'(s))ds.

(2) Suppose (O*)*(f, f) < oo.Then f(0) = x and f isabsolutely continuous.
For, let o € RY. Taking » = a8, we have using G (y, 0) = Ofor al y € R?:
fT<f, d(ado)) < @*(f, ado) + (P)*(f. f),
(f(O) —x,a) < (Y)"(f, f)

for al « € R?, which implies £(0) = x. Next, let p > 0,a; € R? with ||| <
1,keN,

O<s1<HH<s2<Phh<---<sp<t <1l

Taking A = Z’;zl paj (8, — 8,), we have

k koo
S F )~ Fs))nap) =/T<f, =Y [ 661 papds @ L 1
j=1 j=17%
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Let A(p) = SUp{|G(y. @) : [[¥]] = I|flloo- llall < p}. Then
k k
ST = f6PI < o7 AP Y (4 =) + o HO)*(f. f)
j=1 j=1

and the absolute continuity of f follows.
(3) Suppose f(0) = x and f isabsolutely continuous. Then

ﬁc%ﬂmfﬁmms@h%ﬁﬂ. (6.1)

For, let { Dy} be an increasing sequence of finite subsets of R? such that 0 € D;
and Uy Dy isdense. For y, z € R?, let

Lk()’, Z) = S-‘Ip[<Zv O{) - G(ya a)]

aeDy

Thenforal y,z € R, 0 < Li(y, z) 1 G*(y, z), and therefore

ﬂ;mmxﬂmw¢ﬁwuthWx (62)
Definenow F, : T — R2 by
=1 AT
FM®=§%f(% ) 2L G) = FESOD 2 ) 5).
i

Then arguing asin [deA3], p. 154, we have

Fu(s) = (f(), f'(s)) ae[m],

where m is Lebesgue measure, and consequently
Li(f(s), f'(s)) = lim Ly (Fu(s))  a.e. [m],
By Fatou'slemma, for each k € N
[ £r1 £6nds <timind [ LG oas

Takinginto account (6.2), it followsthat in order to prove (6.1) it isenough to show:
foral k e N,

lim inf/ Li(F,(s))ds < (®)*(f, f). (6.3)
n T

By the definitions of L; and F},, for suitable choices of oz;") eDy(j=1,...,2"
we have



A general non-convex large deviation result 505

b, ") = G(f(j/m), o).

2" .
_1 nepod
/T Li(Fy(s)ds = o 12:1(<2 (G = 7l >

Given ¢ > 0, by the uniform continuity of f and the uniform continuity of G(-, @)
on compact sets for each o € Dy, for all sufficiently large n we have for s €
[ j/2 1< j <2,

G(f(s),af") < G(f(j/2"), af") + e

and therefore

[ 6o < 21G(7G/2, &) +¢].
(5 .7/2"] 2

Taking now
211

PR DI =

j=1

for al sufficiently large n we have

[ utEonds < [ (dra) = [ Gt nds + e
T T T
< (@)L, f) +e,
proving (6.3) and hence (6.2). Now (1)—(3) yield the result. O

Proposition 6.2. For a > 0, let

Ly ={f € D(T.R) : (®")*(f. f) < a}.
Then L, iscompact for the uniform norm.

Proof . Since ®* (-, A) iscontinuous on (D(T, RY), || - ||oo), it follows that (d*)*
islower semicontinuousfor || - ||~0, being the supremum of continuous functions.
Therefore L, is || - ||co-ClOsed. It remains to show that L, is || - ||co-relatively
compact. By the Arzela -Ascoli theorem, it is enough to show: (i) L, is uniform-
ly bounded, (ii) L, is uniformly equicontinuous. We will prove (ii); the proof of
(i) issimilar. Let p > 0. Arguing as in the proof of Theorem 6.1, we have: for
feLly s, tel,

ILf @) = F@®I < p At — 5|+ p ",

and (ii) follows. O
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7. Some analytic considerations

Proposition 7.1. Assumethat b, o, g, v satisfy assumptions (3.1)—3.4), and, fur-
thermore: there existsa > 0 such that for all y, o« € R?,

(c( () o, a) > alla|*. (7.1

Let ®* be as in Theorem 6.1, and assume (®*)*( fo, fo) < oo. Then for every
e > Othereexists f1 € D(T, R?) such that

(i) Ilfa— foll <e.
@il) (@H*(f1, f1) < (@)*(fo, fo) +e.
(iii) 3(P@)*(f1, f1) # ¢.

The proof of Proposition 7.1 requires several lemmas. Whenwriting VG (y, )
below, differentiation is taken with respect to the second variable. Throughout the
section it is assumed that (7.1) and (3.1)—(3.4) hold.

Lemma7.2. For everyr > 0, there exists D(r) > 0 such that
IVG(y,a) = VG(z, )|l = D)y — zl|
fory,zeR% |la|| <.
Proof . We have, for y, z, & € RY.
VG(y,a) = VG(z,a) = [b(y) = b()] + [0 () (0 (1) — 0 (2)(0(2) ]e
+/U(g(y,u)[e><p(<g(y,u),a)) —1j
—g(z, w)[exp((g(z, u), a) — v (du). (7.2)

By assumptions (3.1) and (3.2), there exists a constant C > 0 such that for all
v,Z,0 € R4,

[1b(»)—=b@)|| < Clly=zll. o (@() =0 )(o) ]l < Cllall|ly—zI|.
(7.3)
Next, by asimple estimate

g (y. w)exp((g(y. u). &) — 1] — g(z. w)[exp({g(z. u), a)) — 1] ||
<118y, u) — gz wI[("*8% — 1) + ||ar]| g () e8]
<18y, u) — g(z. w)| - 2|ler|| g (w)exp(|lex||g (1)),
sincee’ — 1 < se’ for s > 0. Now by (3.3) and (3.4),

/U llg(y, wexp((g(y, u), a)) — 1] — g(z, w)[exp((g(z, u), a) — 1]||v(du)
1/2

1/2
5( /U ||g<y,u>—g<z,u)||2v<du)> ( fU (a|a||g<u)exp<||a||g<u>>2v(du>>

1/2
< 2C||a|| (/;/(é(u))z eXIO(2IIOIII£'(M))) Iy = zll. (7.4)

The conclusion follows from (7.2)—7.4). O
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Lemma 7.3. Thereexistsa function p : R? x RY — R such that
(i) Forall y e R?, p(y,) € CYR?, RY).
(i) Forall y € R4, p(y, -) isabijection of RY,
(iii) For all y € R? the derivative of p(y, -) is everywhere an injective linear

map.
(iv) Forall y e R?, z € R4,

VG(y, p(y,2)) =z.

(v) For everyr > 0,
M(r)2sup{llp(y, 2l 1y € RY, JIzl] < r} < o

(vi) For every r > 0O, there exists L(r) > O such that for all y, y’ € R, ||z||,
'l <r,

o(y,2) —p(y, ) < LO)Ily =yl + Iz = 21

Proof. Sinceg(t) =e' —1—1t > Ofor al r € R, we have

G(y,a) = (b(y), @) + (oM@ a,a) + h(y, @), y,aeR? (7.5

where h(y, -) is a non-negative convex function for each y € R<. It follows from
(7.2) and (7.5) that G(y, -) isstrictly convex, or, equivalently,

G(y,p) > Gy, ) +(B—a, VG(y,a)) forp#a. (7.6)
For fixed y € R?, VG(y, -) : R? — R? satisfies
(1) VG(y,-) € CYR?, RY).
(2) VG(y, -) isabijection of R?.
(3) thederivative of VG (y, -) is everywhere an injective linear map.

For, (1) follows easily form (3.4). To prove (2), we observe that by (7.1) and (7.5),
for every z e R?

0<G*(y,2) = sup[{z,a) — G(y,a)] < o0

aeRd

and the supremum is attained, say at «g. Then z = VG (y, ap). If VG(y, ag) =
VG(y, a1) with a1 # ag, then by (7.6)

G(y,a1) > G(y, @0) + (a1 — ao, VG(y, @0))
G(y,a0) > G(y,a1) + (@0 — a1, VG (y, @0))

and adding the inequalities we obtain a contradiction. This proves (2).
A simple computation shows that for al «, 8 € R?,

(D*’G(y,a)B, B) = 2a||BI?, (7.7)
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establishing (3). We define

p(y. ) EVG(y, N7 (7.8)
Then by (7.7), the properties (1)—<(3) and the inverse function theorem, o(y, -)
satisfies (i)—(iv). Next, by the mean value theorem (see e.g. [L], p. 103), for any
a, B eR?

1
VG(y, p) = VG(y, o) = |:/c.) D*G(y,a+1(B - Ot))dt} (-

and therefore by (7.7)

IIVG(y, B) = VG(y, )l [IB — |
= (VG(,p) —=VG(y,a), p —a)

1
> /0 (D?G(y.a +1(B — ))(B — ), B — a)dr

> 2al|B — al|?,

which implies: for al «, 8, y € R?

1B —ell < 2a) VG, B) — VG(y, ). (7.9
Since VG(y, 0) = b(y), wehave p(y, b(y)) = 0. Thereforefor dl y, z € RY,

lo(y, DIl = llp(y,2) — p(y, b))
< 2a)HVG(y, p(y,2) = VG(y, p(y, b))l
< (2a) Mz = by

and (v) follows. Finaly, for y, y' € R?, |lz|l, 'l < r, by (7.9), (v) and Lemma
7.2

lo(y,2) — p(y', I = Ca) HIVG (Y, p(y,2) = VG, p(y, 2D

< ) Hlz=ZI+IVG R, p('.2) = VG (y, p(y', ]

< a) Hllz =2l + DME) Iy = Y'l]

<L) [llz=2'I+1ly = yll],
where L(r) = (2a) "t max{1, D(M(r))}. O
Lemma7.4. Forall f € D(T,R%), ®*(f,-)is D(T, R?%)-Gateaux differentiable
andin fact for » € M (T, RY),

VOI(f, 1) = fi,

where

t
H@) =x —I—/ VG(f(s), (s, 1])ds, teT.
0
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Proof. Fort € R, A1 € M(T, R%)

DY (f, A+ tA1) = (x, (A + A1) (T)) + /T G(f(s), A +1tr) (s, 1]))ds.
Then

d
S0 (4 )l = (3, 2a(T) + fT (VG(f(s). (L5, 1)), Aa(ls, 1]))ds.

By integration by parts (see, e.g. [deAl], LemmaA.4)
t
/T(VG(f(s),k([s, 1)), 2 (s, 1]))ds=/T(/O VG(f(s), A[s, 1])ds, dra(1))

and thereforefor al 11 € M(T, RY),

d
SO (f, 2+ )l = f (), dra(0)
t T
= (fa, A1). 0

Lemma7.5. Leth € D(T, R%), and assumethat h is of bounded variation. Let

t

(0 =x+/ h(s)ds, teT.
0

Then there exists A € M (T, R?) such that
VG(f(s),A((s, 1)) = h(s), s€[0,1)
and consequently
f=Vor(f, ).
Proof. Let p : R x R — R beasin Lemma 7.3 and define
V(s) =p(f(s),h(s)) seT.
Since i isbounded, by Lemma 7.3 there exists C > 0 such that

W (s) =¥ I < CULFG) = FEDN+ IAG) = hGDIT 5,5" €T.

It followsthat ¢ isright-continuous and of bounded variation. ForO <a < b < 1,
define

A(a, b]) = Y1(b) — Y1(a),

where yr1(s) = —y (s) for s € [0, 1), ¥1(1) = 0. Then A extends uniquely to an
element of M (T, R%) (denoted in the same way) and for s < [0, 1) we have

VG(f(s), (s, 1) = VG(f(s), ¥ (s)) = h(s). (7.10)
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sinceA((s, 1]) = A(([s, 1])) except possibly onacountable subset of 7', from (7.10)
and Lemma 7.5 it follows that

VO (f, 1) = f. O

In the next lemma we follow the outline of Lemma 6.5.3 of [D-E], but the proof is
self-contained and somewhat simpler on account of (7.1).

Lemma7.6. Let f : T — R be absolutely continuous and assume

/TG*(f(t), f()dt < oo.

Thenfor every ¢ > 0, thereexistsh : T — R such that h isabsolutely continuous,
h' € L®(T, m), h(0) = £(0) and

() I1h = flloo <&,
(i) [G*(h(t), W' (@))dt < [ G*(f (), f't))dt + €.

Proof. For¢ > 0,let E; = {t € T : || f'(t))|| < £}. Define

ILf @
£

t
o) = [ e+ L 1 0,

Then ¢, (0) = 0, ¢, (1) > 1 and ¢, is continuous and strictly increasingon T'. Let
Ve éfﬂil : [0, ¢ (1)] — [0, 1] and we define

he() = f(Ye(v)), veT.

Let M ={v e T : ¢y isdifferentiable at v and f isdifferentiable at v, (v)}. Then
m(M) = 1. Infact, itiseasily verified that

[RCA]

) g Wew)ldv, 1 eT,

t
Ve(t) = /o [1E,(Ye(v)) +(
andif M1 ={r € T : f isdifferentiableat ¢}, then

m({v: f is differentiable at v, (v)}) = m(¥; *(M1))

=/ Iy, (Ye(v))dv =/ Ingy (We (00 (1)) (1)dt
T [0.9¢(D]

= / pp(D)dt = @o(Ye(1) = 1.
[0, (D]
It followsthat a.e. [m],
Ry () = ' (We(v)) - Yy (v)
/ -1
= f'We)Eg, e) + (M) Tge(Ye())]
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which implies

IRy < ¢ ae [m]. (7.11)
Next,

Sup [|Ae(t) = f(OIl = sup [l.f (Ye(®)) = fOI.

teT teT

But f isuniformly continuouson T and

1 ’ -1
sup o) — 1] < /0 [1—(W> }IE;(W(v))dv

teT 14

/ g (D@ (1)dt
[0,9¢ (D]

}f ILf/(0)llde
b4 ES

— 0ast — oo.

IA

IA

Therefore
lhe — flloo < € for sufficiently large ¢. (7.12)

Next,

/G*(he(f),h/@(f))dIZ/ G*(he(pe(s)), hy(pe ()@ (s)ds.  (7.13)
T [0,9¢(D)]

Now

he(pe(s)) = f(s5),

Ry (@e(s)) = f'(5)/ @y (s). (7.14)
By convexity, since ¢, (s) > 1ae.[m],

G*(f(5), /) gpsN™H < X — (¢p(s) " HG*(f(5), 0)
+@ () TIGH(f(s), £ (s)). (7.15)
It follows easily from (7.1) and (7.5) that

C=sup G*(y,0) = sup sup[—G(y, )]

yeRd yeR4 acR4

< sup[—(b(y). o) — %nanzl (7.16)
yeR4

< Q.
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By (7.13)~(7.16),

/TG*(hz(t),h/g(t))dt =< C/T(%(S) - 1)dS+/TG*(f(S),f’(S))dS~

But
/
/ (pp(s) — Dds = / <”f I _ 1) Ige(s)ds
T T V4 ¢
1 /
< Zf /() llds
T
— 0ast — oo.
Therefore
/ G (ho (o). W) < / G*(f(5), f/(s))ds +& (7.47)
T T
for sufficiently large ¢. Choosing h = hy for £ large enough, h has the desired
properties by (7.11), (7.12) and (7.17). O

Proof of Proposition 7.1. Assume that (®*)*(fo, fo) < oo. By Theorem 6.1,
fo(0) = x, fp isabsolutely continuous and

(@*)*(fo, fo) =/TG*(fo(S),f6(S))ds.

By Lemma 7.6, given ¢ > O thereexists h € D(T, R?) such that #(0) = x, h is
absolutely continuous, r = |4’ || L (r,m) < 00, [|h — follo < €/2 and

fTG*(h(S),h/(S))dS = /TG*(fo(S), fo(s)ds + /2.
Let M(r) beasin Lemma7.3(v). Choose § > 0 such that

sUp{IG (y, @) =G (', )| Iyl 1Yl < rllxll, ly=y'lIl < 8, llell < M(r)} < e/4.

Let v € D(T, R%) be afunction of bounded variation such that ||v|le < r and
||v—h/||L1(T’m) < min{e/4M(r), /2, §}. Let f1(t) = x+fé v(s)ds,t € T.Then
| f1— hlleo < & and by Lemma7.3,

G*(f1(s), v(s)) = (v(s), p(f1(s), v(5))) — G(f1(5), p(f1(5), v(5))),
soae. [m|
G*(f1(5), v(5)) < [lv(s) =K' ()M (r) + G*(h(s), h'(s))
HG(h(s), p(fi(s), v(5))) — G(f1(s), p(f1(5), v(s)))],
which implies

/T G*(f1(s). FLNds < MW — Bl 17y + /T G*(h(s). W (s))ds + &4

< f G*(h(s), h'(s))ds + &/ 2.
T
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It followsthat || f1 — folleo < € and
/T G*(f1(s), f1(s))ds < fT G*(fo(s). fo(s) + €.
By Lemma 7.5, there exists . € M (T, R?) such that

fi=Vor(f1, ),

and by elementary facts from convex analysis, thisimplies i € 9(®%)*( f1, f1).O
8. Superexponential approximation

Let b, o, g, v be asin Section 3, satisfying (3.1)~«(3.5). For fixed x € R?, in this
section we will write X,, = X to simplify the notation, where X} isasin Section

3.Fora >0,n €N,let X,(Z”) be the strong solution of the Ito stochastic equation
t t
XD =x + / b(X'D(s))ds +n~Y? (/ o (XF(s))dB(s) + aW(t))
0 0
+n~t / g(X D (s=), u)N,,(ds x du), (8.1)
[0,/]xU
where {W(¢) : t > 0} is a standard R?-valued Brownian motion independent of

{{B(1),t = 0}, Np}.
Proposition 8.1. For every s > 0,

L 1
limlimsup=logP{| X'“ — X, |00 > 8} = —00.
al0 n n

For the proof of Proposition 8.1 we need severa lemmas.
Lemma8.2.

() lim,_ o limsup, n~1og P{|| X, [l0o > 7} = —00.
(2) lim,_ o limsup, lrllogs;up(ka51 P{||X,(f‘)||oo >r}=—o0.

Proof . Proceeding asintheproof of Lemma4.3,let ¢, =inf{t > 0: | X, ()| > r}.
Then

Pl Xnlloo > r} < €™ (2d) SUpE exp[{Xy (1 A 1), nat)]. (8.2

aeS

Eexp[(Xy(zr A D), na)] < Eexp[(X,(tr A1) — x, na)

Al
—/ G, (X, (s), na)ds]
0
- exp[ sup |Gy (y, na)l]

yeRd

< exp(An), (8.3)
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where A < oo, by Proposition 4.2, the inequality previous to (4.4) and assump-
tion (3.4). Thefirst statement follows from (8.2) and (8.3). Statement (2) is proved

similarly. O
Lemma8.3. Let ¢ > 1, fi(y) = £log(1+ ||y||?), y € R?. Then
(1) ForalyeRY, 1<i,j<d

20|yl
1+ [yl

20
v i <.
VeI < IDij f(y)] < T+ |2

(2) Forall y,z e RY

0 < expl fe v+l —fe(]=1=(llyllz, V fe(») < 16¢%d|z|1* exp(2¢|z)).

Proof. Simple caculationsyield (1). Let i, (y) = exp[fe(»)], y € R4 Then ki is
convex, and therefore

explfe(y + Iyllz) — fe()] — 1= (lIyliz, V fe ()
=exp[—feW](he(y + lIyllz) — he(y) — (llyllz, Vhe(y))) = 0. (8.4)

Next,for0 <6 < 1,

JeQy +0llyllz) — fe(y) = fe(y@A+011zID)) — fe(y)
= Olzlly, Vfely +6llzlly)), 6" €(0,0)
< Nzl Y fe(y @+ 0 Nz
< llzllly@+6"1zIDIIV fe(yL + 6llzIN
< 2|zl (8.5

Suppose ||z|| < 1/2. Then by (8.4) and Taylor’s formula,
explfe(y + llyllz) — fe] — 1= (lyllz, V fe(»)
= exp[—fe(y)] |::—2L||y||2Zexp[fz(i)](Dijfe(i) + Dife()_’)Djfz(i))ZiZj:| ,
N (8.6)

wherey =y +6llyllz, 6 € (0, 1). By (1)

Dy o) < 2 <

ijJe\y)| = = s

Y T+ [yl = lylllizl2 = 14 dlyli2/4
4¢2||5)? 4¢2

Dif()D;f(yl < 5 - )
IDif DD = 5192 = T3 (b2
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Therefore by (8.5) and (8.6),
explfe(y + Iyllz) — fe(W)] — 1= (lIyllz, V fe(y))

1, 8¢2 5
<explfe(y +0llyllz) — fe(y)] Ellyll 'Wy”Z/@'d”Z”

< 166%d|z||% exp(2¢|z|)).
On the other hand, if |z|| > 1/2, by (1) and (8.5)

expl fe(y + Ivl12) = fe] = 1= (Iyllz, V fe(»))
< exp(2¢]z]l) — 1+ 2¢iz|
< 2exp(2¢]zll)
< 8]1zl|? exp(2¢]iz[). O

Proof of Proposition 8.1. Let
ZO@) =a { XD 1) - X, (1)), teT.
By (3.6) and (8.1), we have

t t
Z,0(0) = f by (s)ds +n~ 2 [ / G,ga)(s)dB(s)—i-W(t)}
0 0
+n_1/ gD (s, u)N,(ds x du),
[0,¢/]xU
where

b (s) = a Hb(X D () —b(Xn(s)], 0, (s) = a o (XD (5)) — 0 (Xn(s))],

8\ (s, u) = a g(X\ P (5), u) — g(Xu(s), w)].

ForneN,a>0,v,weRd,ueU,Setyza_l(v—w),

1
I(n,a,v,w,u) = exp[fi(y + E(g(v, u) —g(w, u)) — fe(y)]

1
1=~ 1) = g(w, 1)), Vfe ().

hD (v, w) = (a1 bw) — bw)), V fo ()

d
+ % ijzz:l(a_z[(ff(v) —o(w)) (o) —ow))1ij +8j)
x (Dij fe(¥) + Di fe(»)Dj fe(»))

+ / I(n,a,v,w,u)(nv)du),
U
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where fy isasin Lemma8.3. Arguing asin Proposition 4.1, we have: theintegral in
the definition of h,({‘) (v, w) exists and is a bounded continuous function of (v, w).
Again following the proof of Proposition 4.1, we obtain:

t
M@ (1) 2 expl (29 (1)) — f R (XD (s), Xy (s))ds], t >0
0

isan {7, }-positive local martingale, hence an {#,} -supermartingale.
Lets > 0,7, = inf{t > 0: |Z“@)|| > §/a}. Thenfora > 0,r > O,

PUIX® = Xylloo > 8} < PUIX P lloo > r} 4+ P{lIXnlloo > 7}

HPUX D loo <7, 1 Xnlloo < 7, 129 (ta AD)|| > 8/a).
(8.7)
Let p¢(p) = £log(1+ p?), p € R. Then
PUIXOllos <7 1 Xnlloo < 7, 1259 (ta A D)) > 8/a)

< expl—@e(8/a) E@XPLfe(Z(ta A - TUXDNloo <7, 1 Xnlloo < 7))
A1
= expl—ge (/) ]E(M (1, A 1) exp [ f R (XD (s), Xy (s))ds}
0

XTI X oo < 7. 1 Xnlloo < 1)) (8.8)

Takenow ¢ = ny/2 > 1, wherey = y(r) > Oisasin (3.5). By (3.1) and
Lemma8.3(1), forv,w e R, a > 0

a~X(b(v) — b(w)), V fe())] < Clla™ (v — w)[|IV fe(atw — w))||
<20C = (yO)n. (8.9

By (3.2) and Lemma8.3(1), for v, w € R%,a > 0

1 d
5 2 @ (0w — o @)@ ®) — o)l +8))

i,j=1
X (Dij fe(y) + Di fe(Y)Dj fe(y))

d
< % Y lla™tw = w)P(Dyj fea™ (v — w))|

i,j=1
+1D; fe(a v — w)Dj fea™ (v — w))))
< Cla2.q= (2y°Cdn. (8.10)
n

For v # w, letting z = (nflv — w|)~1(g(v, u) — g(w, u)), we have

I(n,a,v,w,u) =exp[fe(y + lyllz) — feO)] = 1= (lIyllz, Vfe(»)
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and by Lemma8.3(2), with g asin (3.5),
O<I(m,a,v,w,u) < 1652dn72(q(v, w, u))zexp[Zﬁnflq(v, w,u)]. (8.11)

Then by (3.5) and (8.11),

C(r)= sup{/ I(n,a,v,w,u)v(du) :neN,a >0, ||| <r,|w|] <r} < oo.
U

(8.12)
By (8.9), (8.10) and (8.12): fordl n > 2/y,

sup{|A? (v, w)| s a > 0, |vll <, [lw|| <r} < C'(r)n, (8.13)

where C’(r) is a positive constant depending only on r. Now by (8.8) and (8.13),
and taking into account that M.* (0) = 1, we have

PUIX M Nloo <7, 1 Xnlloo < 7 1Z39(tg AD)|| > 8/a} < expl—ge(8/a)] - C'(r)n.
(8.14)
By (8.7) and (8.14), foral § > 0,a > 0,r > O,

I|msup IogP{||X(“) Xnlloo > 8}

< max{—&log(l—i- (S/a) ), lim sup Iog P{lIXnlloo > 7},

I|msup Iog sup P{||X(P)||oo>r}}
O<p<1

The result follows now by first letting « — 0 and then » — oo, using Lemma8.2.
]

9. Proof of Theorem 3.1

(1) Upper bounds. We apply Theroem 2.1 witha,, = n, E = D(T, R?) endowed
With || - [lee, 6 = 2, F = M(T,R%), Y, = X}, Z, = Z (defined in Section 5),
®, = O, & = P,

The properties of & are easily verified, taking 7 to be the set of all open balls
with center at 0. The &-measurability of (-, A) for A € M(T, R?) is proved in [de
A1], Corollary A.3.

Condition (3) of Theorem 2.1 istrivialy verified, sincefor all n € N by (5.5)

%@f,(f,nx) = ®"(f,A) feE,reF.

Condition (4) is proved in Proposition 4.4. Condition (5) is proved in Proposition
5.4 and condition (6) in Proposition 5.3. Condition (7) is proved in Proposition 6.2.
Applying Theorem 2.1 and taking into account Theorem 6.1, the upper bound in
Theorem 3.1 follows.
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(2) Lower bounds. For fixed x € R?,a > 0, let X,(f) be the strong solution of
equation (8.1). Then by Proposition 4.4, for al n € N, » € M(T, R%),

Eexp[(X®, 1) — @ (X@, 0)] = 1,

n >

where
OW(f, 1) = (x, M(T)) + f GD(f(s), (s, ))ds
T
and
1
G (3. o) = (b(y). o) + o (@M@ + a’la, a)
+ /U o((n"Lg(y, u), @) (nv)(du).
Let
DD (f, 1) = (x, M(T)) + / GO (f(s), M([s, 1))ds,
T
where

1
GD(y,a) = (b(y), &) + SHeMEm) + a’la, a)

+/U<P(<g(y, u), a))v(du).

Then the convexity of ®@ (£, -) followsfrom that of G@(y, -) and the E-Gateaux
differentiability of & (£, -) isproved in Lemma 7.4, so condition (8) holds. Con-
dition (9) is easily verified using (3.4). Conditions (3)—(7) are verified as in the
proof of the upper bound. To verify condition (10): Let A € M (T, RY, and assume
that f = VOWD(f, A1), h = VOD(h, 1). By Lemmas7.2and 7.4, fort € T

t
1/ =l = | /O (VG (£ (5). lls, ) = VG hs), 2(ls, 1) | ds |
t
< D(r)/0 I f(s) — h(s)llds,
where r = sUp{|| flloo, II2llcos IA]lv} Now Gronwall’s lemma implies || f(z) —
h(t)| = Oforalt e T, thatis, f = h. Condition (11) is proved in Proposi-
tion (7.1). Applying Theorem 2.2, the lower bound holds for {g(fp(X,(f'))} withrate

function (®@)*(f, f).Foral y,« € RY,

G9(y,a) | G(y,a)

and it easily followsthat forall f € E, % € F,

D@ (f,2) L O*(f, ). (9.1)
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Let A € 7, fo e A°, 8 > Osuchthat Bs(fo) C A. Then
P{X e Bs/2(fo)} < PIXE € A} +P{IX™ — X2 oo > 8/2)

and by the previous discussion,
max (lim inf 1 logP{X* € A}, lim s;upl logP{II X\ — XX loo > 8/2})
n n n n
> —(®Y*(fo, fo)- (92)
By (9.1),fordl f € E

Iaiirg@(“))*(f, f) = sup(@)*(f, ) = supsup[(f, 1) — D (f, 1]

a>0 a>0AeF
LEF a>0
= sup[(f, A) — D (f, M)]
reEF
= (@) (f. f)- (©3)

Lettinga | 0in(9.2) and using Proposition 8.1 and (9.3), we obtain
P |
liminf = logP{X} € A} > —(®")*(fo. fo).
n n

This completes the proof of the lower bound and hence of Theorem 3.1. a

In the next result we show the methods of this paper apply to asomewhat more
general class of Markov processes. The upper bound is obtained under rather mild
conditions; for the lower bound, we require Lipschitz and non-degeneracy assump-
tions. The latter assumption — condition (4) of Theorem 9.1 —is needed in order to
carry through the argumentsin Section 7, proving an analogue of Proposition 7.1
and thereby verifying condition (11) of Theorem 2.2. Sinceit isnot clear to us how
to appoximate superexponentially aMarkov process satisfying (1)—(3), (5), (6), and
(9.4) of Theorem 9.1 by Markov processes satisfying those assumptions and (4),
the statement of Theorem 9.1 contains (4) as a hypothesis. In the casein which the
processes are solutions of stochastic equations, we have shown in Section 8 that
such a superexponentia approximation is possible.

Foreachn € N, x € R?, letP} beaprobability measure on D([0, c0), R?) en-
dowed with the o -algebra Z ([0, 0o), RY) generated by the evaluations. Let {X (¢) :
t >0}, {9, .t > 0} beasin Section 4. We assume that for eachn € N,

(D([0, 00), RY), (X (1) : 1 = 0}, {%, :t = 0}, {P¥ : x e R}
isaMarkov process.

Theorem 9.1. Let G,,, G : R? x R? — R. We consider the following conditions:

(1) G,(-, o) ismeasurablefor all & € R?.
(2) Forall r > 0, lim,Sup; <, SUp,cra|2Gy(y, na) — G(y. a)| = 0.
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(3) G(y,0) =0foral y e R, G(-, «) is continuous for all « € R? and for
all r > 0,

sup sup |G(y, @)| < oo.
leli<r yerd

(4) Forall y e R4, G(y, ) € C?(R?) and there exists ¢ > 0 such that for all
B e R?

inf{(D*G(y, )8, B) 1 y € R, @ € R} > c|I B2

(5) For all r > 0, thereexists D(r) > O such that for ||| <r, y,z € R,

IVG(y, @) = VG(z, )| = D)y — zl|-

(6) sup{lIVG(y,0) : y € R} < o0,
Let Oy, = Lpx({X(¢) it € T}). Supposethat G, G satisfy assumptions
(1)~(6) and, furthermore, for all x,« € R, n € N,

t

exp[(X () — x, ) —/ G,(X(s),)ds], t=>0 (9.9
0

is{%,}-martingaleunder P, . Then{Q;} satisfiesthelarge deviation prin-
cipleon D(T, R%), endowed with the uniformnorm || - || and the o-al-
gebra £, with the rate function

[ G*(f (), f'(s))ds if f(0) = x and
I'(f) = f is absolutely continuous
00 otherwise.

More specifically, the upper bound holds under assumptions (1)—(3) and (9.4), and
the lower bound under assumptions (1)—(6) and (9.4).

We omit the proof; it is not difficult to carry it out by arguing asin the proof of
the upper bound and the first part of the proof of the lower bound in Theorem 3.1
and retracing the relevant items in Sections 4-7.

Note added in proof. We very recently relaxed Condition (11) of Theorem 2.2 to a
continuity condition not involving subdifferentials. This result will appear elsewhere.

Acknowledgements. It isa pleasure to thank Tom Kurtz for some valuable insights on Mar-
kov processes and for a very useful technical suggestion related to Section 8.
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