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Abstract. We consider an operator I%g) = Lo—(CDU (x), Dyp)inaHilbert space H, where
L is an Ornstein-Uhlenbeck operator, U € W4(H, 1) and p is the invariant measure as-
sociated with L. We show that K is essentially self-adjoint in the space L?(H, v) where v
is the “Gibbs’ measure v(dx) = Z 1e 2Y®dx. An application to Stochastic quantization
isgiven.

1. Introduction

We are concerned with the following operator in a separable Hilbert space (norm
| - |, inner product (-, -)):

Ko =Ly — (CY?DU(x), CY?Dy), 1.1)
defined on D(K) = D(L) N C2(H) and where the operator L, defined by
Lo = 3 Tr[CD?%¢] + (Ax, Dy), ¢ € D(L), 12)

is the Ornstein—Uhlenbeck operator, see Section 2 for precise definitions.

Here A and C are linear operatorsin H, and U ais mapping from H into R.
Moreover Dy represents the Fréchet derivative of ¢.

Such operators arise in several applications as the L andau—Ginzburg equations
[3], and in stochastic quantization. An application will be given at the end of this

paper.
Let us formulate our assumptions.

Hypothesis1.1.
(i) A: D(A) Cc H— H issdf-adjoint strictly negative.
(i) C =(—A)~¢for somee € (0, 1).
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(iii) Theoperator Q = 3(—A)~*® isof trace class.

Hence we shall denote by {—«;} the sequence of (negative) eigenvalues of A and
by {ex} the corresponding compl ete orthonormal system. We have a so, by denoting
A = % ak—(l+8)

Qe = ey, k e N.

Moreover we shall denote by o the gaussian measure .47 (0, Q) of mean 0 and
covariance operator Q.
Now we consider the probability measure

v(dx) = Z7t e VD (dx),

where
Z= / e 2V p(dx),
H

under the following assumptions

Hypothesis 1.2.

(i) e~V belongsto LP(H, ) for any p > 1.
(i) U : H— Rbelongsto WE*(H, v). (V)

Our goal isto show that, under Hypotheses1.1 and 1.2, K isessentially self—adjoint
in L2(H, v). In thisway we are able to construct a semigroup ¢’X, + > 0 were K
isthe closure of K. We notice that formally ¢’X | t > OQisthe transition semigroup
corresponding to the differential stochastic equation

dX = (AX — CDU)dt + CY2dW (1), X(0) = x, (1.3)

where W isacylindrical Wiener process taking valuesin H. We notice that under
assumptions above we are not able to find even aweak solution of equation (1.3).

The problem of self-adjointness of the operator K has been studied by several
authors under different assumptions using the Dirichlet forms theory, see e.g [17],
[1], [16], and references therein. The existence of a self-adjoint extension K of
K follows from the closability of the Dirichlet form naturally associated with K.
Then the main problem consistsin proving that K isthe closure of K (Unigueness
problem).

Our approach is different. We show that the operator K is symmetric, and that
the image of A — K isdense on L2(H, v) for A > 0. Thiswill imply, by the Lu-
mer-Phillips theorem, see [18], that K isclosable and its closure K is self-adjoint
(We will denote by D(K) its domain).

1 Spaces W2*(H, v) areintroduced in the next section. Moreover if H and K are Hilbert
spaces we denote by C,(H; K) the Banach space of all uniformly continuous and bounded
mappings from H into K, endowed with the sup norm || - ||o. Moreover, for any k € N,
CF(H; K) will represent the Banach space of all mappings from H into K, that are uni-
formly continuous and bounded together with their Fréchet derivatives of order less or equal
to k endowed with their natural norm || - ||. If K = Rweset C,(H; K) = C,(H) and
CK(H; K) = CKH)
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The main toolsin order to prove density of (A — 1°<)(L2(H, v)) are an approx-
imation of U by smooth functions and an a priori estimate on Wx*(H, v). This
estimate is similar to one proved in the papers[17] and [16].

We can also show, see Remark 3.4 below, that the set & 4 (H) of al functions ¢
of theform

n
¢(x) =Re Zakei<x’hk>,
k=1

wheren € N, h1, ..., h, € D(A) and a1, a», ...,a, € C,isacorefor K.

We notice that our assumptions are close to that of [16], but our method seems
to be simpler and can be applied to non gradient Dirichlet operator, by replacing
symmetry with dissipativity, see Remark 3.5.

Asin [16] we give finally an application to Stochastic Quantization in dimen-
sions 2.

Stochastic Quantization has been studied by severa authors see [15], [5], [2],
[24], [20Q]. In particular in [15], atransition semigroup for equation (1.3) was built
by giving ameaning to Girsanov formulafor ¢ < 1/10.

2. Preliminary results

We first introduce the Ornstein—Uhlenbeck semigroup R;, ¢ > 0, as afamily of
bounded operatorsin C,(H):

Rip(x) = /H e(y)N (e x, 0)(dy), ¢ € Cy(H), (21)

where

0i=0(1-¢*), 120, 2.2)

and ./ (e'4x, Q;) is the gaussian measure on H of mean ¢4 x and covariance
operator Q,.

Proposition 2.1. Foranyg € Cp(H)andanyt > 0, h € H, R,¢ isdifferentiable
in the direction €124 and we have

(DR, CY2h) = / (ADh, 072y x + )40, 00y, (23)
H

where
A1) = V2 (—A)Y2(L — 247124 1 > 0. (2.4)

Moreover )
ICY2DR,p(x)| <172 |pllo, t > 0. (2.5)

Proof . (2.3) follows easily from the Cameron-Martin formula, seee.g. [11]. Let us

check (2.5). Since

1/2 —oyt
Olk e

(1— e—2uny1j2

At)e, = V2
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we have
a}i-/ze—otkt 12
||A(t)||=l§l€11€‘/§mif .
Now the conclusion follows integrating with respect to . O

Thesemigroup R; isnot strongly continuousin C, (H ). However onecan define
its infinitesimal generator L, see [6], as the unique linear operator L : D(L) C
Cy(H) — Cp(H) whose resolvent is given by

+o00
R\, L)p(x) = / €7MR1(/)(.X)dl‘, x € H, p € Cp(H).
0

The following result is a consegquence of (2.5).

Proposition 2.2. For any ¢ € D(L) we havethat CY2D¢ € C,(H; H) and

ICY2Dp )| < V& (lplo+ ILello), x € H. (2.6)

Proof. Let ¢ € D(L) andset f = ¢ — Lg. Then from (2.5) it follows that

ICY2DRG., L) f0)] < V7 I f o,

that yields the conclusion. O

Let us also recall the following identity, see e.g. [13]
1 1/21y,,12
Lopdv=—= |C“Dgp|“dv, ¢ € D(L). 2.7)
H 2 H

We now define the Sobolev space Wé’z(H, V).

Forany k € N, andforany ¢ € Cl}(H), we denote by Dy ¢ the derivative of ¢
on the direction ¢;, and we set x; = (x, ¢). Thefollowing identity iswell known,
seeeg. [13],

1
f Droyrdp = —/ eDyyrdp + — f xeoyrdp, @, ¥ € Cp(H), (2.8)
H H A JH

and so we obtain the result,

LemmaZ23. Letg, ¢ € C,}(H). Then for any k € N the following identity holds

1
/Dkgmpdv:—/ <pD;aﬁdv+2f DiyUpy¥rdv + — f xreyrdv.  (2.9)
H H H M Ju

Moreover Dy isclosablein L2(H, v); we shall still denote by Dy its closure.
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We can finally define the Sobolev space Wé’z(H , v) by setting
WE2(H, v) = {go € L3(H,v): Dip e LA(H,v) VieN,

0]

Zai‘s/ D) Pv(dx) < +oc).
—ry H

1=
We conclude this section with aresult needed | ater.

Lemma2.4. Let B : R — R be Lipschitz continuous (), ¢ € Ci(H) and p > 1.
Then B o g € WEP(H, v).

Proof.Let{B,} c C1(R)beuniformly convergentto s andsuchthat sup, cn Il 81 lILip
< |IBlILip- Then B, o ¢ — B o ¢ uniformly and

/H ICY2Dp, o g2y = /H DB ICY2Dg(x) 2av < 112 llg 12

Thus, by astandard argument, we have o ¢ € Wé”’ (H,v). O

Proposition 2.5. Let p > 1,andletg € Wé’p(H, v). Thenfor any constant « > 0
we have min{gp, «} € Wé”’(H, V).

Proof. Let {¢,} be a sequence in C,}(H) convergent to ¢ in Wé’p(H, v). Then

¥, = min{g,, «}, n € N belongs to Wé’p(H, v) by Lemma 2.4. Therefore we
have ¥, — min{p, k}in L?(H, v), and moreover

ICY2D Yl Lrcrvy < ICY2D @yl Lo a0y < SUP ICY2 Dl Lrcr.vy < 400.
N

ne

The same argument as before implies the conclusion. O

3. Themain result

Hereyve assumethat Hypotheses 1.1 and 1.2 hold. We are concerned with the oper-
ator K defined by (1.1). By (2.7) it followsimmediately that for any ¢, ¢ € D(K)
we have

/I%(piﬁdvz—%/(CDgo, Dy)dv. (3.1)
H H

Therefore K is symmetric and consequently closablein L2(H, v).

Wenow introduce an approximating problem. Let {U,, } beasequencein C,°(H)
convergent to U in Wé"‘(H, v). Such a sequence can be easily constructed by
setting

Up(x) = Sl/n[Vn (x)],

2 @) —B»)
IBllLip = SUP, yer EHE
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where §; is an auxiliary strong Feller Ornstein—Uhlenbeck semigroup, see [11,
(9.50)], (3) and
U) if U@ <n,
Vu(x) = [

‘Zg;‘n if |U®x)| > n,

and recalling Proposition 2.5.
We define
K, = Lo — (CDU,, Dp), ¢ € D(L). 3.2

Thenitiseasy to check, by asimplefixed point argument taking into account Prop-

osition 2.2, that the resolvent set of K,, contains the half line (0, +o0), and (since

DU, isregular) that K,, isthe infinitesimal generator of the transition semigroup
corresponding to the differential stochastic equation

[ dXa(t, x) = (AX, (1, X) = DUn(Xu (1, )))dt +~/C dW (1),

(3.3)

X,(0,x) = x.

Consequently
+00
R, Ky) f (x) :/ e ME(f(Xa(t, x))dt, f € Cyp(H), (34)
0

Letnow f € C2(H) and let ¢, be the solution to
ron — Knn = f. (35)
Itiseasy to seethat ¢, € D(L) N C2(H), and
rpn — Ky + (CY2(DU — DU,), CY2Dg,) = f. (36)

In oroder to prove that K is essentialy self—adjoint we will show that the image of
A—K isdensein L2(H, v). For thisweneed an estimateof |CY2Dg,|inL4(H, v).
Thisis provided by the following result.

Proposition 3.1. Let f € C,f(H). Then the solution ¢, to (3.5) belongs to D(K)
andthereisapositiveconstant « dependingonlyony, | f|lec, and | CY2DU || 4y
such that

/ (CDgy, Dpy)%dv < k. (3.7)
H

Proof. We proceed in severa steps.
Sep 1. For any ¢, ¥ € D(K) we have.

f Kyg ydv = — = /(CD(p, D¢>du+/ (CDg, D(U — Up))dv. (3.8)
H 2 Ju H

3 We can choose S,¢(x) = [, 9(e22 " x + y)A"(0, Q(L — 2 ))(dy)
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The simple verification is |eft to the reader.
Step 2. For any ¢ € D(K) we have

1 2 2
/ (KyDg, CD@)dv = —= f Tr [(C D?%p)?]dv
H 2 Ju
+/ (D%¢ CDg, C(DU — DUy))dv.  (3.9)
H

We have in fact, taking into account (3.8),

o
/(Kanp, CDg)dv = E ozi_S/ K. D;p D;pdv
H , H

i=1

1 X
— _E Zai_gf (CDD;gp, DD;gp)dv
i—1 H

o0
+ Zai_g fH<CDDl~<p, DU — Uy))Djgdv,
i=1

and the conclusion follows.

Sep 3. For any ¢ € D(K) we have
2/ (Kn)?dv +/ (D%p - CDg, CDU,)dv +2/ Kn¢(Dgp, CDU,)dv
H H H
—i—/ (qu) -CDg, C(DU — DUn))dv—Z/ K,po(Dp, C(DU — DU,))dv
H H
_2/ (CD(% D(U - Un)) (CD(,D, DUn>dV
H
1
= / Tr [(Cngo)Z]dv—/ (ACDg, Dg)dv. (3.10)
2 Jy H
In fact, setting in (3.8) ¥ = K, ¢ wefind
1
/ (Kng)?dv = —= f (CDy, Dan)dV+/ (CD¢, D(U — Up))Knedv
H 2 Jy H
1 1
=-3 / (CDg,[D, Ky]p)dv — - / (CDg, CK,p)dv
2 Jy 2 Ju
+f (CDp, D(U — Up))K, pdv
H
Now, taking into account (3.9) and (3.10), wefind
1 1
/ (Kn(p)zdv = —= / (CDp, AD@)dv + = / (CDg, D{{CDU, Dgp)})dv

1 1
== /(qu) CDU, Dg)dv + = f Tr [(C D?%¢)?]dv
2 Ju 4 Ju
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1
=3 / (D%¢ CDg, C(DU — DU,))dv
H

+/ (CDp, DU — DU,) K, pdv (311
H
Setting in (3.8) ¥ = (CDU, Dg) wefind

/ (CDg, D{{(CDU, Dg)})dv
H

—2/ Kn@(CDU, Dp)dv + 2/ (CDg, D(U — Up))(CDU,, Dg)dv.
H H

By substituting thisin (3.11) the conclusion follows.

Sep 4. For any ¢ € D(K) we have
/ (CDg. Dy)2dv = —2 / Ku¢ @ (CDg, Dg)dv
H H
—2/ © (D2<p -CDg, CDg)dv
H

+2/ (CDgp, DU — DU,){C Dy, Dp)pdv. (3.12)
H

Setting in (3.8) ¥ = ¢(C Dy, Dy¢) wefind

1
/H Ko ¢ (CDg, Dp)dv = ~5 /H<CD<p, D(p{C Do, Dp)))dv
+ (CDg, DU — DU,)p{CDgy, Dy),

that yields (3.12).
Now it is easy to see that
1
l@nlloo < Y I flloos (3.13)
and
I Kn@nlloo < 211 flloo- (3.14)
Sep 5. We have

2
ICY2Dgull 21 = 5 1Fllso [VZE +ICY2DW = Uiz |- (315)

Wefirst note that, multiplying (3.5) by ¢, and integrating, we have

)‘/ (pfdv—/ Ko §0ndV=/ Sfondv.
H H H
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Taking into account (3.8), (3.13), and (3.14), it follows

1
; f (CDgy. CDgy)dv < / Fondv + / (CDgn, DU — Up))gndv
H H H

IA

1 1
SN2+ ||f||oofH|cl/zD¢n||01/2D(U—Un)|dv

1 2 1 172 2 \Y?
ZIFIZ+ 5 1l (/H|c 12D, | dv)

1/2
x </ |cY?DU - Un)|2dv) ,
H

IA

that yields the conclusion.
Sep 6. We have

1/2 1/2
< (/ Tr[(CD2<p)2]dv> (/ (Cu, u) (Cv, v)dv> )
H H

/ (D% - Cu, Cv)dv
H

Sep 7. Conclusion.

We now estimate |, (C Dg,, Dg,)? dv starting from (3.12), that we write in
the form

/ (CDoy, Dgﬂn)z dv=A1+ A2+ Asz. (3.16)
H

By (3.15) it follows
2
Ars s I£1% / |ICY2 Dy, dv
H
4
= S 171%[V2h +IC2DW = U] B1D)

Moreover, taking into account (3.15) we find

1 1/2 1/2
A2 < 2 IfI (/ Tr[(CD2¢n>2]dv) (/ |c1/21><on|4dv) . (318)
H H

and

Az < ||f||oo/ |ICY2Dg, }IDU — DU, |dv
H

1/4 3/4
I £ lloo ( / |D<U—Un>|4dv> ( f |Cl/20¢n|4dv> . (319
H H

=<
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Substituting (3.17), (3.18) and (3.19) in (3.16), we find

4
/H CH2Dgy v < 5 111 [ V2 +1CY2DW — Uz |

1 2 2 2 172 1/2 4 172
+= 1% (/HTr [(CD?¢y) ]dv) (/H|c /2Dg,| dv) (3.20)

2 1/4 3/4
+ 1 Nl ( / |D(U — Un>|4dv) ( / |cl/ZDwn|4dv) :
H H

Consequently, there exists a constant x; > 0 depending on A, | f|leo, and
||C1/2DU||L4(H’U), but not on n, such that

/ |ICY2 Dy, [*dv < k1 (1+/ Tr[(Cngon)z]dv). (3.21)
H H

Now we estimate the second hand side.
By (3.10), using the Holder inequality, we find

% / Tt [(CD%p)?1dv < 4 f 12,
H

1/2
+<f Tr [(CD2<p,,)2]dv> (/ |C1/2D(pn|2|C1/2DUn|2dv>
H H

1201 flloo / CY2 D, | CH2DU, |dv
H

1/2
+ </ Tr [(CD2<p,,)2]dv> (/ |CY2Dg,1?|CY?D(U — U,,)|2dv>
H H

4] flloo / CY2Dg, |CY2D(U — Uy)ldv
H

1/2

1/2

+2f |ICY2 Dy, 2|CY?DU,|CY2D(U — U,)|dv.
H
Using the Holder inequality we find

5 [ Trienentar < aisi
H

1 1 1
2 4 4
+</ Tr[(CD2<p,,)2]dv) (/ |C1/2D<pn|4dv) (/ |C1/2DUn|4dv)
H H H

1
2 2
+201 flloo ( f |cl/20wn|2dv) ( f |c1/ZDUn|2dv)
H H

1 1
2 4
+</ Tr[(Cngan)z]dv) (/ |ICY2Dg, [*dv / |C1/2D(U—Un)|4dv)
H H H
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1 1
2 2
+4| £l oo ( f |cl/ZDgon|2dv> (f |Cl/ZD<U—Un>|2dv>
H H

1
2
+2</ |C1/2Dg0n|4dv> (/ |C1/2DUn|4dv-/ |C1/2D(U—Un)|4dv>
H H H

Therefore there exists k2 > 0 depending only on A and || || .o Such that

P

/ Tr [(CD?¢,)?]dv
H

12 1/4
§K2[1+< / Tr [(CD%n)Z]dv) ( / |cl/ZD<pn|4dv)
H H

1/2
+<f |C1/2D<pn|4dv> } (3.22)
H

xzf |CY2Dg,|* dv, yzf |ICY2Dg,|* dv,
H H
we find by (3.21) and (3.22)

y <k1(L4x), x < ko4 yY2 4 x12y4),

Setting

This gives the conclusion. O

Now we are ready to prove

Theorem 3.2. Assume that Hypotheses 1.1 and 1.2 holds. Then K is essentially
self-adjoint in L2(H, v). Moreover, denoting by K its closure, we have

/ Koyrdv = —} / (CDg, DY) dv. ¢, ¥ € D(K). (3.23)
H 2 Ju

Proof. Since K is symmetric, it is sufficient to show that the image of 1 — K is
densein L2(H, v), see[18].

Let f € CZ(H) and let ¢, be the solution of (3.5). By the Holder inequality,
we have

2
[ / (CY2(DU - DU,), c1/2D¢n>|2dv}
H

5[ |C1/2(DU—DUn)|4dU/ |ICY2 D, [*dv
H H
Taking into account Proposition 3.1 we obtain

lim / (CY?(DU — DU,), CY?Dy,)|?dv = 0,
H

n—o00

so that .

Ao — Kon — f
in L2(H, v) and, since C2(H) isdensein L2(H, v), it followsthat K is essentially
self-adjoint. The last statement follows from (3.1). O
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Remark 3.3. By (3.23) for any ¢ € L%(H, v) we have

t
f |e’<f<p|2du+/ ds/ |cl/2De’<f¢|2du=/ lo|?dv. (3.24)
H 0 H H

Using (3.24) it is not difficult to show

lim eK’(p:/ @dv in L2(H, v).
H

—0o0
Thus the measure v is strongly mixing.

Remark 3.4. Let K betheclosureof K. Then obviously D(L) N Cg(H) isacore
for K. Since &4(H) C D(Lp) N CZ(H)(*) and is densein D(L>), endowed with
the graph norm, then it is not difficult to show that & 4 (H) isacorefor K.

Remark 3.5. Let F € L*(H, v; H) and consider the operator
N = Lo — (F(x), Dp), ¢ € C{(H) N D(L). (3.25)
Assume that there exists a Borel measure v on H such that

(] 1
/N(p(pd\):—— / |ICY2Dy|?dv. (3.26)
H 2 Ju

Then all previous considerations can be repeated and we can conclude that N is
clossble on L2(H, v) and its closure is m—dissipative.

4. Application to stochastic quantization

Let S bethe square [0, 27]2. Let us consider the differential stochastic equation

dX =3 (A —=DX +oX")dt +dW (),
(4.1)

X(0) = x,

wheren isodd, o > 0, and W is the cylindrical Wiener process on L2(S), W (z)
isdefined as

W) E) =Y enE)mn.

heZ7?

where {n;,} isasequence of gaussian random variables ./"(0, 1) mutually indepen-
dent and {e;,} is the complete orthonormal system in L2(S) defined by

1 .
en(§) = 5 8 p=(hy,hp) € 7% £ €S.

Moreover A isthe redlization of the Laplace operator with 2z —periodic boundary
conditions.

4 Here we denote by D(L,) the domain of Ornstein-Uhlenbeck operator in L2(H, 1)
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Equation (4.1) describes agradient system having formally the Gibbs invariant
probability measure:

v(dx) = 7 tem1 Jsx"HOE 00 C)(d),

where C = (1 — A)~L. Notice that this definition is not meaningful since

TrC:Z =

2 =
Pt 14 |A

+00

Equation (4.1) takesin account an interacting field. The corresponding freefield is
described by

dZ =3 (A —DZdt +dW (1),
(4.2)
Z(0, x) = x,
so that .
Z(t,x) = 2Dy +/ 2 (A=D1=9) gy,
0
Since

EZ(t, 0% = Tr[C(L— e D] = o0,

then Z(r) does not live in L2(S). However it lives in H~1(S) defined as the
completion of L2(S) with respect to the inner product

() -1= Y A+ A Hx, e)(y, en).
hez?

We havein fact
E|Z(r,0)2; = Tr[C?(1— D)) < 400,

as easily checked.

Now we interpret equation (4.1) as an equation in H~1(S). For this we set
Wa(r) = C~Y2W (1) so that W1 is a cylindrical Wiener process in H~1(S) and
replace the Gibbs measure by

v(dx)=Z texp (i/ Cx"Ey ds) A0, C)(dx), (4.3
n-—+ 1 S

where: x"t1(¢) : isthe Wick product that we recall below and Z isthe normaliza-

tion constant. In thisway (4.1) is replaced by

(4.4)

dX =3 (A= DX +0C: X" )dt + CY2awi (o),
X(0) = x.

We notice that the factor C infrontto: X" : is necessary to make (4.4) a gradient
system (having (4.3) as invariant measure).
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Wefix now n € N and recall the definition of the Wick monomial of order 7:
X" i= Gux) HXS) > H7XS).

where G, (x) is the limit in L2(H=X(S), u, H1(S)) of the functions G,y (x)
defined as

1
Gu N (X)(&) = Vnlp} H, - D xenen® |,

N h=n

where H,, denotes the Hermite polynomial of order n (see[10]) and

1 1

2

N = G2 2 TT R
@02 £ T+ 1h

Moreover, setting

1
Uy(x) = 1 SGn+l(x)(§)d§,

we havethat U, € Wé’p(H‘l(S),u) foral p > 1, and DU, (x) = G,(x). Also
if n isapositive odd integer

e PUn ™ isin LY(HTL(S), )

for al p > 1. For aproof of these results we refer to Simon [22]; see also [10].

Findly fix o > 0 and a positive odd integer n. Then consider the following
linear operator in H = H=1(S):

Ko =3Tr[CD%)] - 3 (C™x, Dg)_1— § (CGu(x), Dg)_1.

Setting A = —% cLu= —% Uy, we can apply Theorem 3.2 and conclude that
K isessentially selfadjoint on L2(H, v).
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