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Abstract. We consider an operator K̊ϕ = Lϕ−〈CDU(x),Dϕ〉 in a Hilbert spaceH , where
L is an Ornstein–Uhlenbeck operator, U ∈ W 1,4(H,µ) and µ is the invariant measure as-
sociated with L. We show that K̊ is essentially self-adjoint in the space L2(H, ν) where ν
is the “Gibbs” measure ν(dx) = Z−1e−2U(x)dx. An application to Stochastic quantization
is given.

1. Introduction

We are concerned with the following operator in a separable Hilbert space (norm
| · |, inner product 〈·, ·〉):

K̊ϕ = Lϕ − 〈C1/2DU(x), C1/2Dϕ〉, (1.1)

defined on D(K̊) = D(L) ∩ C2
b (H) and where the operator L, defined by

Lϕ = 1
2 Tr [CD2ϕ] + 〈Ax,Dϕ〉, ϕ ∈ D(L), (1.2)

is the Ornstein–Uhlenbeck operator, see Section 2 for precise definitions.
Here A and C are linear operators in H , and U a is mapping from H into R.

Moreover Dϕ represents the Fréchet derivative of ϕ.
Such operators arise in several applications as the Landau–Ginzburg equations

[3], and in stochastic quantization. An application will be given at the end of this
paper.

Let us formulate our assumptions.

Hypothesis 1.1.
(i) A : D(A) ⊂ H → H is self-adjoint strictly negative.

(ii) C = (−A)−ε for some ε ∈ (0, 1).
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(iii) The operator Q = 1
2 (−A)−(1+ε) is of trace class.

Hence we shall denote by {−αk} the sequence of (negative) eigenvalues of A and
by {ek} the corresponding complete orthonormal system. We have also, by denoting
λk = 1

2α
−(1+ε)
k

Qek = λek, k ∈ N.

Moreover we shall denote by µ the gaussian measure N(0,Q) of mean 0 and
covariance operator Q.

Now we consider the probability measure

ν(dx) = Z−1 e−2U(x) µ(dx),

where

Z =
∫
H

e−2U(x) µ(dx),

under the following assumptions

Hypothesis 1.2.

(i) e−U belongs to Lp(H,µ) for any p ≥ 1.
(ii) U : H → R belongs to W

1,4
C (H, ν). (1)

Our goal is to show that, under Hypotheses 1.1 and 1.2, K̊ is essentially self–adjoint
in L2(H, ν). In this way we are able to construct a semigroup etK, t ≥ 0 were K

is the closure of K̊. We notice that formally etK, t ≥ 0 is the transition semigroup
corresponding to the differential stochastic equation

dX = (AX − CDU)dt + C1/2dW(t), X(0) = x, (1.3)

where W is a cylindrical Wiener process taking values in H. We notice that under
assumptions above we are not able to find even a weak solution of equation (1.3).

The problem of self-adjointness of the operator K̊ has been studied by several
authors under different assumptions using the Dirichlet forms theory, see e.g [17],
[1], [16], and references therein. The existence of a self-adjoint extension K of
K̊ follows from the closability of the Dirichlet form naturally associated with K̊ .
Then the main problem consists in proving that K is the closure of K̊ (Uniqueness
problem).

Our approach is different. We show that the operator K̊ is symmetric, and that
the image of λ − K̊ is dense on L2(H, ν) for λ > 0. This will imply, by the Lu-
mer-Phillips theorem, see [18], that K̊ is closable and its closure K is self-adjoint
(We will denote by D(K) its domain).

1 Spaces W 1,4
C (H, ν) are introduced in the next section. Moreover if H and K are Hilbert

spaces we denote by Cb(H ;K) the Banach space of all uniformly continuous and bounded
mappings from H into K , endowed with the sup norm ‖ · ‖0. Moreover, for any k ∈ N,
Ck

b(H ;K) will represent the Banach space of all mappings from H into K , that are uni-
formly continuous and bounded together with their Fréchet derivatives of order less or equal
to k endowed with their natural norm ‖ · ‖. If K = R we set Cb(H ;K) = Cb(H) and
Ck

b(H ;K) = Ck
b(H)
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The main tools in order to prove density of (λ − K̊)(L2(H, ν)) are an approx-
imation of U by smooth functions and an a priori estimate on W

1,4
C (H, ν). This

estimate is similar to one proved in the papers [17] and [16].
We can also show, see Remark 3.4 below, that the set EA(H) of all functions ϕ

of the form

ϕ(x) = Re
n∑

k=1

ake
i〈x,hk〉,

where n ∈ N, h1, ..., hn ∈ D(A) and a1, a2, . . . , an ∈ C, is a core for K .
We notice that our assumptions are close to that of [16], but our method seems

to be simpler and can be applied to non gradient Dirichlet operator, by replacing
symmetry with dissipativity, see Remark 3.5.

As in [16] we give finally an application to Stochastic Quantization in dimen-
sions 2.

Stochastic Quantization has been studied by several authors see [15], [5], [2],
[14], [20]. In particular in [15], a transition semigroup for equation (1.3) was built
by giving a meaning to Girsanov formula for ε < 1/10.

2. Preliminary results

We first introduce the Ornstein–Uhlenbeck semigroup Rt , t ≥ 0, as a family of
bounded operators in Cb(H):

Rtϕ(x) =
∫
H

ϕ(y)N(etAx,Qt)(dy), ϕ ∈ Cb(H), (2.1)

where
Qt = Q

(
1 − e2tA

)
, t ≥ 0, (2.2)

and N(etAx,Qt) is the gaussian measure on H of mean etAx and covariance
operator Qt .

Proposition 2.1. For any ϕ ∈ Cb(H) and any t > 0, h ∈ H , Rtϕ is differentiable
in the direction C1/2h and we have

〈DRtϕ,C
1/2h〉 =

∫
H

〈&(t)h,Q
−1/2
t y〉ϕ(etAx + y)N(0,Qt )(dy), (2.3)

where
&(t) =

√
2 (−A)1/2(1 − e2tA)−1/2etA, t ≥ 0. (2.4)

Moreover
|C1/2DRtϕ(x)| ≤ t−

1
2 ‖ϕ‖0, t ≥ 0. (2.5)

Proof . (2.3) follows easily from the Cameron-Martin formula, see e.g. [11]. Let us
check (2.5). Since

&(t)ek =
√

2
α

1/2
k e−αkt

(1 − e−2αkt )1/2
ek,
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we have

‖&(t)‖ = sup
k∈N

√
2

α
1/2
k e−αkt

(1 − e−2αkt )1/2
≤ t−1/2.

Now the conclusion follows integrating with respect to µ. ��

The semigroupRt is not strongly continuous inCb(H).However one can define
its infinitesimal generator L, see [6], as the unique linear operator L : D(L) ⊂
Cb(H) → Cb(H) whose resolvent is given by

R(λ,L)ϕ(x) =
∫ +∞

0
e−λtRtϕ(x)dt, x ∈ H, ϕ ∈ Cb(H).

The following result is a consequence of (2.5).

Proposition 2.2. For any ϕ ∈ D(L) we have that C1/2Dϕ ∈ Cb(H ;H) and

|C1/2Dϕ(x)| ≤ √
π (‖ϕ‖0 + ‖Lϕ‖0), x ∈ H. (2.6)

Proof . Let ϕ ∈ D(L) and set f = ϕ − Lϕ. Then from (2.5) it follows that

|C1/2DR(λ,L)f (x)| ≤ √
π ‖f ‖0,

that yields the conclusion. ��
Let us also recall the following identity, see e.g. [13]∫

H

Lϕ ϕ dν = −1

2

∫
H

|C1/2Dϕ|2dν, ϕ ∈ D(L). (2.7)

We now define the Sobolev space W
1,2
C (H, ν).

For any k ∈ N, and for any ϕ ∈ C1
b(H), we denote by Dkϕ the derivative of ϕ

on the direction ek , and we set xk = 〈x, ek〉. The following identity is well known,
see e.g. [13],∫

H

Dkϕψdµ = −
∫
H

ϕDkψdµ + 1

λk

∫
H

xkϕψdµ, ϕ,ψ ∈ C1
b(H), (2.8)

and so we obtain the result,

Lemma 2.3. Let ϕ,ψ ∈ C1
b(H). Then for any k ∈ N the following identity holds

∫
H

Dkϕψdν = −
∫
H

ϕDkψdν + 2
∫
H

DkUϕψdν + 1

λk

∫
H

xkϕψdν. (2.9)

Moreover Dk is closable in L2(H, ν); we shall still denote by Dk its closure.



Self-adjointness of some infinite-dimensional elliptic operators 135

We can finally define the Sobolev space W
1,2
C (H, ν) by setting

W
1,2
C (H, ν) =

{
ϕ ∈ L2(H, ν) : Diϕ ∈ L2(H, ν) ∀ i ∈ N,

∞∑
i=1

α−ε
i

∫
H

|Diϕ(x)|2ν(dx) < +∞
}
.

We conclude this section with a result needed later.

Lemma 2.4. Let β : R → R be Lipschitz continuous (2), ϕ ∈ C1
b(H) and p > 1.

Then β ◦ ϕ ∈ W
1,p
C (H, ν).

Proof . Let {βn} ⊂ C1(R)be uniformly convergent toβ and such that supn∈N ‖βn‖Lip
≤ ‖β‖Lip. Then βn ◦ ϕ → β ◦ ϕ uniformly and∫

H

|C1/2Dβn ◦ ϕ|2dν =
∫
H

|Dβn(ϕ(x))|2|C1/2Dϕ(x)|2dν ≤ ‖β‖2
Lip‖ϕ‖2

1.

Thus, by a standard argument, we have β ◦ ϕ ∈ W
1,p
C (H, ν). ��

Proposition 2.5. Let p ≥ 1, and let ϕ ∈ W
1,p
C (H, ν). Then for any constant κ > 0

we have min{ϕ, κ} ∈ W
1,p
C (H, ν).

Proof. Let {ϕn} be a sequence in C1
b(H) convergent to ϕ in W

1,p
C (H, ν). Then

ψn = min{ϕn, κ}, n ∈ N belongs to W
1,p
C (H, ν) by Lemma 2.4. Therefore we

have ψn → min{ϕ, κ} in Lp(H, ν), and moreover

‖C1/2Dψn‖Lp(H,ν) ≤ ‖C1/2Dϕn‖Lp(H,ν) ≤ sup
n∈N

‖C1/2Dϕn‖Lp(H,ν) < +∞.

The same argument as before implies the conclusion. ��

3. The main result

Here we assume that Hypotheses 1.1 and 1.2 hold. We are concerned with the oper-
ator K̊ defined by (1.1). By (2.7) it follows immediately that for any ϕ,ψ ∈ D(K̊)

we have ∫
H

K̊ϕψdν = −1

2

∫
H

〈CDϕ,Dψ〉dν. (3.1)

Therefore K̊ is symmetric and consequently closable in L2(H, ν).
We now introduce an approximating problem. Let {Un} be a sequence inC∞

b (H)

convergent to U in W
1,4
C (H, ν). Such a sequence can be easily constructed by

setting
Un(x) = S1/n[Vn(x)],

2 ‖β‖Lip = supx,y∈R
|β(x)−β(y)|

|x−y|
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where St is an auxiliary strong Feller Ornstein–Uhlenbeck semigroup, see [11,
(9.50)], (3) and

Vn(x) =


U(x) if |U(x)| ≤ n,

U(x)
|U(x)|n if |U(x)| > n,

and recalling Proposition 2.5.
We define

Knϕ = Lϕ − 〈CDUn,Dϕ〉, ϕ ∈ D(L). (3.2)

Then it is easy to check, by a simple fixed point argument taking into account Prop-
osition 2.2, that the resolvent set of Kn contains the half line (0,+∞), and (since
DUn is regular) that Kn is the infinitesimal generator of the transition semigroup
corresponding to the differential stochastic equation


dXn(t, x) = (AXn(t, x) − DUn(Xn(t, x)))dt + √

C dW(t),

Xn(0, x) = x.

(3.3)

Consequently

R(λ,Kn)f (x) =
∫ +∞

0
e−λtE(f (Xn(t, x))dt, f ∈ Cb(H), (3.4)

Let now f ∈ C2
b (H) and let ϕn be the solution to

λϕn − Knϕn = f. (3.5)

It is easy to see that ϕn ∈ D(L) ∩ C2
b (H), and

λϕn − K̊ϕn + 〈C1/2(DU − DUn), C
1/2Dϕn〉 = f. (3.6)

In order to prove that K̊ is essentially self–adjoint we will show that the image of
λ−K̊ is dense inL2(H, ν). For this we need an estimate of |C1/2Dϕn| inL4(H, ν).
This is provided by the following result.

Proposition 3.1. Let f ∈ C2
b (H). Then the solution ϕn to (3.5) belongs to D(K̊)

and there is a positive constantκ depending only onλ,‖f ‖∞, and‖C1/2DU‖L4(H,ν)

such that ∫
H

〈CDϕn,Dϕn〉2dν ≤ κ. (3.7)

Proof. We proceed in several steps.

Step 1. For any ϕ,ψ ∈ D(K̊) we have.∫
H

Knϕ ψdν = −1

2

∫
H

〈CDϕ,Dψ〉dν +
∫
H

〈CDϕ,D(U − Un)〉ψdν. (3.8)

3 We can choose Stϕ(x) = ∫
H
ϕ(e

t
2 Q

−1
x + y)N(0,Q(1 − etQ

−1
))(dy)
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The simple verification is left to the reader.

Step 2. For any ϕ ∈ D(K̊) we have∫
H

〈KnDϕ,CDϕ〉dν = −1

2

∫
H

Tr [(CD2ϕ)2]dν

+
∫
H

〈D2ϕ CDϕ,C(DU − DUn)〉dν. (3.9)

We have in fact, taking into account (3.8),

∫
H

〈KnDϕ,CDϕ〉dν =
∞∑
i=1

α−ε
i

∫
H

KnDiϕ Diϕdν

= −1

2

∞∑
i=1

α−ε
i

∫
H

〈CDDiϕ,DDiϕ〉dν

+
∞∑
i=1

α−ε
i

∫
H

〈CDDiϕ,D(U − Un)〉Diϕdν,

and the conclusion follows.

Step 3. For any ϕ ∈ D(K̊) we have

2
∫
H

(Knϕ)
2dν +

∫
H

〈D2ϕ · CDϕ,CDUn〉dν + 2
∫
H

Knϕ〈Dϕ,CDUn〉dν

+
∫
H

〈D2ϕ · CDϕ,C(DU − DUn)〉dν−2
∫
H

Knϕ〈Dϕ,C(DU − DUn)〉dν

−2
∫
H

〈CDϕ,D(U − Un)〉 〈CDϕ,DUn〉dν

= 1

2

∫
H

Tr [(CD2ϕ)2]dν −
∫
H

〈ACDϕ,Dϕ〉dν. (3.10)

In fact, setting in (3.8) ψ = Knϕ we find∫
H

(Knϕ)
2dν = −1

2

∫
H

〈CDϕ,DKnϕ〉dν +
∫
H

〈CDϕ,D(U − Un)〉Knϕdν

= −1

2

∫
H

〈CDϕ, [D,Kn]ϕ〉dν − 1

2

∫
H

〈CDϕ,CKnϕ〉dν

+
∫
H

〈CDϕ,D(U − Un)〉Knϕdν

Now, taking into account (3.9) and (3.10), we find∫
H

(Knϕ)
2dν = −1

2

∫
H

〈CDϕ,ADϕ〉dν + 1

2

∫
H

〈CDϕ,D {〈CDU,Dϕ〉}〉dν

= −1

2

∫
H

〈D2ϕ CDU,Dϕ〉dν + 1

4

∫
H

Tr [(CD2ϕ)2]dν
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= −1

2

∫
H

〈D2ϕ CDϕ,C(DU − DUn)〉dν

+
∫
H

〈CDϕ,DU − DUn〉Knϕdν (3.11)

Setting in (3.8) ψ = 〈CDU,Dϕ〉 we find∫
H

〈CDϕ,D {〈CDU,Dϕ〉}〉dν

−2
∫
H

Knϕ〈CDU,Dϕ〉dν + 2
∫
H

〈CDϕ,D(U − Un)〉〈CDUn,Dϕ〉dν.

By substituting this in (3.11) the conclusion follows.

Step 4. For any ϕ ∈ D(K̊) we have∫
H

〈CDϕ,Dϕ〉2dν = −2
∫
H

Knϕ ϕ 〈CDϕ,Dϕ〉dν

−2
∫
H

ϕ 〈D2ϕ · CDϕ,CDϕ〉dν

+2
∫
H

〈CDϕ,DU − DUn〉〈CDϕ,Dϕ〉ϕdν. (3.12)

Setting in (3.8) ψ = ϕ〈CDϕ,Dϕ〉 we find∫
H

Knϕ ϕ 〈CDϕ,Dϕ〉dν = −1

2

∫
H

〈CDϕ,D(ϕ〈CDϕ,Dϕ〉)〉dν
+ 〈CDϕ,DU − DUn〉ϕ〈CDϕ,Dϕ〉,

that yields (3.12).
Now it is easy to see that

‖ϕn‖∞ ≤ 1

λ
‖f ‖∞, (3.13)

and
‖Knϕn‖∞ ≤ 2‖f ‖∞. (3.14)

Step 5. We have

‖C1/2Dϕn‖L2(H,ν) ≤ 2

λ
‖f ‖∞

[√
2λ + ‖C1/2D(U − Un)‖L2(H,ν)

]
. (3.15)

We first note that, multiplying (3.5) by ϕn and integrating, we have

λ

∫
H

ϕ2
ndν −

∫
H

Knϕn ϕndν =
∫
H

f ϕndν.



Self-adjointness of some infinite-dimensional elliptic operators 139

Taking into account (3.8), (3.13), and (3.14), it follows

1

2

∫
H

〈CDϕn,CDϕn〉dν ≤
∫
H

f ϕndν +
∫
H

〈CDϕn,D(U − Un)〉ϕndν

≤ 1

λ
‖f ‖2

∞+ 1

λ
‖f ‖∞

∫
H

|C1/2Dϕn||C1/2D(U−Un)|dν

≤ 1

λ
‖f ‖2

∞ + 1

λ
‖f ‖∞

(∫
H

|C1/2Dϕn|2dν
)1/2

×
(∫

H

|C1/2D(U − Un)|2dν
)1/2

,

that yields the conclusion.

Step 6. We have

∣∣∣∣
∫
H

〈D2ϕ · Cu,Cv〉dν
∣∣∣∣ ≤

(∫
H

Tr [(CD2ϕ)2]dν

)1/2(∫
H

〈Cu, u〉 〈Cv, v〉dν
)1/2

.

Step 7. Conclusion.

We now estimate
∫
H

〈CDϕn,Dϕn〉2 dν starting from (3.12), that we write in
the form ∫

H

〈CDϕn,Dϕn〉2 dν = &1 + &2 + &3. (3.16)

By (3.15) it follows

&1 ≤ 2

λ
‖f ‖2

∞
∫
H

|C1/2Dϕn|2dν

≤ 4

λ3
‖f ‖4

∞
[√

2λ + ‖C1/2D(U − Un)‖L2(H,ν)

]
(3.17)

Moreover, taking into account (3.15) we find

&2 ≤ 1

λ
‖f ‖2

∞

(∫
H

Tr [(CD2ϕn)
2]dν

)1/2 (∫
H

|C1/2Dϕn|4dν
)1/2

, (3.18)

and

&3 ≤ 2

λ
‖f ‖∞

∫
H

|C1/2Dϕn|3|DU − DUn|dν

≤ 2

λ
‖f ‖∞

(∫
H

|D(U − Un)|4dν
)1/4 (∫

H

|C1/2Dϕn|4dν
)3/4

. (3.19)
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Substituting (3.17), (3.18) and (3.19) in (3.16), we find∫
H

|C1/2Dϕn|4dν ≤ 4

λ3
‖f ‖4

∞
[√

2λ + ‖C1/2D(U − Un))‖L2(H,ν)

]

+1

λ
‖f ‖2

∞

(∫
H

Tr [(CD2ϕn)
2]dν

)1/2 (∫
H

|C1/2Dϕn|4dν
)1/2

+2

λ
‖f ‖∞

(∫
H

|D(U − Un)|4dν
)1/4 (∫

H

|C1/2Dϕn|4dν
)3/4

.

(3.20)

Consequently, there exists a constant κ1 > 0 depending on λ, ‖f ‖∞, and
‖C1/2DU‖L4(H,ν), but not on n, such that

∫
H

|C1/2Dϕn|4dν ≤ κ1

(
1 +

∫
H

Tr [(CD2ϕn)
2]dν

)
. (3.21)

Now we estimate the second hand side.
By (3.10), using the Hölder inequality, we find

1

2

∫
H

Tr [(CD2ϕn)
2]dν ≤ 4‖f ‖2

∞

+
(∫

H

Tr [(CD2ϕn)
2]dν

)1/2 (∫
H

|C1/2Dϕn|2|C1/2DUn|2dν
)1/2

+2‖f ‖∞
∫
H

|C1/2Dϕn||C1/2DUn|dν

+
(∫

H

Tr [(CD2ϕn)
2]dν

)1/2 (∫
H

|C1/2Dϕn|2|C1/2D(U − Un)|2dν
)1/2

+4‖f ‖∞
∫
H

|C1/2Dϕn||C1/2D(U − Un)|dν

+2
∫
H

|C1/2Dϕn|2|C1/2DUn||C1/2D(U − Un)|dν.

Using the Hölder inequality we find

1

2

∫
H

Tr [(CD2ϕn)
2]dν ≤ 4‖f ‖2

∞

+
(∫

H

Tr [(CD2ϕn)
2]dν

) 1
2
(∫

H

|C1/2Dϕn|4dν
) 1

4
(∫

H

|C1/2DUn|4dν
) 1

4

+2‖f ‖∞
(∫

H

|C1/2Dϕn|2dν
) 1

2
(∫

H

|C1/2DUn|2dν
) 1

2

+
(∫

H

Tr [(CD2ϕn)
2]dν

) 1
2
(∫

H

|C1/2Dϕn|4dν
∫
H

|C1/2D(U − Un)|4dν
) 1

4
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+4‖f ‖∞
(∫

H

|C1/2Dϕn|2dν
) 1

2
(∫

H

|C1/2D(U − Un)|2dν
) 1

2

+2

(∫
H

|C1/2Dϕn|4dν
) 1

2
(∫

H

|C1/2DUn|4dν ·
∫
H

|C1/2D(U − Un)|4dν
) 1

4

.

Therefore there exists κ2 > 0 depending only on λ and ‖f ‖∞ such that∫
H

Tr [(CD2ϕn)
2]dν

≤ κ2

[
1 +

(∫
H

Tr [(CD2ϕn)
2]dν

)1/2 (∫
H

|C1/2Dϕn|4 dν
)1/4

+
(∫

H

|C1/2Dϕn|4 dν
)1/2

]
. (3.22)

Setting

x =
∫
H

|C1/2Dϕn|4 dν, y =
∫
H

|C1/2Dϕn|4 dν,
we find by (3.21) and (3.22)

y ≤ κ1(1 + x), x ≤ κ2(1 + y1/2 + x1/2y1/4).

This gives the conclusion. ��
Now we are ready to prove

Theorem 3.2. Assume that Hypotheses 1.1 and 1.2 holds. Then K̊ is essentially
self-adjoint in L2(H, ν). Moreover, denoting by K its closure, we have∫

H

Kϕψdν = −1

2

∫
H

〈CDϕ,Dψ〉 dν. ϕ, ψ ∈ D(K). (3.23)

Proof. Since K̊ is symmetric, it is sufficient to show that the image of λ − K̊ is
dense in L2(H, ν), see [18].

Let f ∈ C2
b (H) and let ϕn be the solution of (3.5). By the Hölder inequality,

we have [∫
H

|〈C1/2(DU − DUn), C
1/2Dϕn〉|2dν

]2

≤
∫
H

|C1/2(DU − DUn)|4dν
∫
H

|C1/2Dϕn|4dν
Taking into account Proposition 3.1 we obtain

lim
n→∞

∫
H

|〈C1/2(DU − DUn), C
1/2Dϕn〉|2dν = 0,

so that
λϕn − K̊ϕn → f

in L2(H, ν) and, since C2
b (H) is dense in L2(H, ν), it follows that K̊ is essentially

self-adjoint. The last statement follows from (3.1). ��
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Remark 3.3. By (3.23) for any ϕ ∈ L2(H, ν) we have∫
H

|eKtϕ|2 dν +
∫ t

0
ds

∫
H

|C1/2DeKtϕ|2 dν =
∫
H

|ϕ|2 dν. (3.24)

Using (3.24) it is not difficult to show

lim
t→∞ eKtϕ =

∫
H

ϕ dν in L2(H, ν).

Thus the measure ν is strongly mixing.

Remark 3.4. Let K be the closure of K̊ . Then obviously D(L)∩C2
b (H) is a core

for K . Since EA(H) ⊂ D(L2) ∩ C2
b (H)(4) and is dense in D(L2), endowed with

the graph norm, then it is not difficult to show that EA(H) is a core for K .

Remark 3.5. Let F ∈ L4(H, ν;H) and consider the operator

N̊ϕ = Lϕ − 〈F(x),Dϕ〉, ϕ ∈ C1
b(H) ∩ D(L). (3.25)

Assume that there exists a Borel measure ν on H such that∫
H

N̊ϕϕdν = −1

2

∫
H

|C1/2Dϕ|2dν. (3.26)

Then all previous considerations can be repeated and we can conclude that N̊ is
closable on L2(H, ν) and its closure is m–dissipative.

4. Application to stochastic quantization

Let S be the square [0, 2π ]2. Let us consider the differential stochastic equation

dX = 1

2 ((4 − 1)X + σXn) dt + dW(t),

X(0) = x,

(4.1)

where n is odd, σ > 0, and W is the cylindrical Wiener process on L2(S), W(t)

is defined as

W(t)(ξ) =
∑
h∈Z2

eh(ξ)ηh,

where {ηh} is a sequence of gaussian random variables N(0, 1) mutually indepen-
dent and {eh} is the complete orthonormal system in L2(S) defined by

eh(ξ) = 1

2π
ei〈h,ξ〉, h = (h1, h2) ∈ Z2, ξ ∈ S.

Moreover 4 is the realization of the Laplace operator with 2π–periodic boundary
conditions.

4 Here we denote by D(L2) the domain of Ornstein-Uhlenbeck operator in L2(H,µ)
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Equation (4.1) describes a gradient system having formally the Gibbs invariant
probability measure:

ν(dx) = Z−1e
1

n+1

∫
S xn+1(ξ)dξN(0, C)(dx),

where C = (1 − 4)−1. Notice that this definition is not meaningful since

Tr C =
∑
h∈Z2

1

1 + |h|2 = +∞.

Equation (4.1) takes in account an interacting field. The corresponding free field is
described by 


dZ = 1

2 (4 − 1)Zdt + dW(t),

Z(0, x) = x,

(4.2)

so that

Z(t, x) = e
1
2 (4−1)t x +

∫ t

0
e

1
2 (4−1)(t−s) dWs.

Since
E|Z(t, 0)|2 = Tr [C(1 − e(4−1)t )] = +∞,

then Z(t) does not live in L2(S). However it lives in H−1(S) defined as the
completion of L2(S) with respect to the inner product

〈x, y〉−1 =
∑
h∈Z2

(1 + |h|2)−1〈x, eh〉〈y, eh〉.

We have in fact

E|Z(t, 0)|2−1 = Tr [C2(1 − e(4−1)t )] < +∞,

as easily checked.
Now we interpret equation (4.1) as an equation in H−1(S). For this we set

W1(t) = C−1/2W(t) so that W1 is a cylindrical Wiener process in H−1(S) and
replace the Gibbs measure by

ν(dx) = Z−1 exp

(
1

n + 1

∫
S

: xn+1(ξ) : dξ

)
N(0, C)(dx), (4.3)

where : xn+1(ξ) : is the Wick product that we recall below and Z is the normaliza-
tion constant. In this way (4.1) is replaced by


dX = 1

2 ((4 − 1)X + σC : Xn :) dt + C1/2dW1(t),

X(0) = x.

(4.4)

We notice that the factor C in front to : Xn : is necessary to make (4.4) a gradient
system (having (4.3) as invariant measure).
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We fix now n ∈ N and recall the definition of the Wick monomial of order n:

: xn : = Gn(x) : H−1(S) → H−1(S).

where Gn(x) is the limit in L2(H−1(S), µ,H−1(S)) of the functions Gn,N(x)

defined as

Gn,N(x)(ξ) =
√
n!ρn

N Hn


 1

ρN

∑
|h|≤N

〈x, eh〉eh(ξ)

 ,

where Hn denotes the Hermite polynomial of order n (see [10]) and

ρ2
N = 1

(2π)2

∑
|h|≤N

1

1 + |h|2 .

Moreover, setting

Un(x) = 1

n + 1

∫
S

Gn+1(x)(ξ)dξ,

we have that Un ∈ W
1,p
C (H−1(S), µ) for all p ≥ 1, and DUn(x) = Gn(x). Also

if n is a positive odd integer

e−pUn(x) is in L1(H−1(S), µ)

for all p ≥ 1. For a proof of these results we refer to Simon [22]; see also [10].

Finally fix σ > 0 and a positive odd integer n. Then consider the following
linear operator in H = H−1(S):

K̊ϕ = 1
2 Tr [CD2ϕ] − 1

2 〈C−1x,Dϕ〉−1 − σ
2 〈CGn(x),Dϕ〉−1.

Setting A = − 1
2 C−1, U = −σ

2 Un, we can apply Theorem 3.2 and conclude that
K̊ is essentially selfadjoint on L2(H, ν).
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