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Abstract To examine normal and aberrant translation
initiation in Saccharomyces cerevisiae mitochondria, we
fused the synthetic mitochondrial reporter gene ARGS™
to codon 91 of the COX2 coding sequence and inserted
the chimeric gene into mitochondrial DNA (mtDNA).
Translation of the cox2(1-91)::ARGS8™ mRNA yielded a
fusion protein precursor that was processed to yield
wild-type Arg8p. Thus mitochondrial translation could
be monitored by the ability of mutant chimeric genes to
complement a nuclear arg8 mutation. As expected,
translation of the cox2(1-91)::ARG8™ mRNA was de-
pendent on the COX2 mRNA-specific activator
PETI11. We tested the ability of six triplets to function
as initiation codons in both the cox2(1-91)::ARGS8™ re-
porter mRNA and the otherwise wild-type COX2
mRNA. Substitution of AUC, CCC or AAA for the
initiation codon abolished detectable translation of both
mRNAs, even when PET111 activity was increased. The
failure of these mutant cox2(1-91)::ARG8™ genes to
yield Arg8p demonstrates that initiation at downstream
AUG codons, such as COX2 codon 14, does not occur
even when normal initiation is blocked. Three mutant
triplets at the site of the initiation codon supported de-
tectable translation, with efficiencies decreasing in the
order GUG, AUU, AUA. Increased PETI11 activity
enhanced initiation at AUU and AUA codons. Com-
parisons of expression, at the level of accumulated
product, of cox2(1-91)::ARGS™ and COX2 carrying
these mutant initiation codons revealed that very
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low-efficiency translation can provide enough Cox2p to
sustain significant respiratory growth, presumably
because Cox2p is efficiently assembled into stable cyto-
chrome oxidase complexes.
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Introduction

The mechanisms that control translation initiation in
mitochondrial systems are poorly understood, owing to
the deficiencies of organelle-derived in vitro translation
systems (Dekker et al. 1993). However, it has been
possible to ascertain some general features of translation
initiation in fungal mitochondria by genetic analysis and
examination of mRNA structure in Saccharomyces ce-
revisiae (reviewed in Fox 1996). While all of the eight
ORFs encoding the major yeast mitochondrial transla-
tion products begin with AUG, it is not clear how, or
how stringently, the initiation codon is selected. Six of
the seven major mRNAs have long 5-untranslated
leaders (5’-UTLs) — 300 to 950 bases long — that contain
AUG triplets upstream of their initiation codons
(Grivell 1989; Dieckmann and Staples 1994), which ar-
gues against a scanning model similar to that for cyto-
plasmic translation (Sherman and Stewart 1982; Kozak
1989). Instead, it appears that mRNA sequence and
structural information is probably employed to identify
yeast mitochondrial initiation codons. This does not
seem to involve a simple Shine-Dalgarno interaction,
since sequences in the mRNAs that could pair in this
manner with 15S rRNA (Li et al. 1982) can be muta-
tionally destroyed without preventing translation (Cos-
tanzo and Fox 1988; Mittelmeier and Dieckmann 1995;
Dunstan et al. 1997). Other possible interactions be-
tween mRNAs and rRNAs could play a role (Dunstan
et al. 1997). Yeast mitochondrial translation depends on
mRNA-specific translational activator proteins that



functionally interact with 5-UTLs, and these activators
could participate in initiation codon selection (reviewed
in Fox 1996). Thus, the yeast mitochondrial initiation
mechanism might be analogous to that of internal ri-
bosome entry in eukaryotic cytoplasmic translation
(Belsham and Sonenberg 1996; Kolupaeva et al. 1998).

Only very limited genetic analysis of mitochondrial
initiation codons has been performed to date. AUG to
AUA mutations have been created by site-directed mu-
tagenesis and introduced in the S. cerevisiae genes COX2
and COX3, which encode key subunits of cytochrome ¢
oxidase (Folley and Fox 1991; Mulero and Fox 1994). In
both cases, production of functional cytochrome oxidase
subunits was strongly reduced but not eliminated. Syn-
thesis of functional subunits indicated that at least some
initiation occurred at the correct position. However, the
occurrence of aberrant initiation at downstream AUG
codons could not be ruled out, since this could have
generated nonfunctional polypeptides that were unde-
tectable in the previous studies. To remove this con-
straint we have here employed a reporter gene to
monitor translation initiation, as has been done in bac-
terial and cytoplasmic systems (Zitomer et al. 1984;
Clements et al. 1988; Gordon et al. 1992; Sacerdot et al.
1996; Sussman et al. 1996).

The nuclear gene ARGS encodes acetylornithine
aminotransferase, an enzyme of the arginine biosynthetic
pathway that is located in the mitochondrial matrix
(Jauniaux et al. 1978; Heimberg et al. 1990). A synthetic,
recoded, version of this gene, ARG8", can be pheno-
typically expressed as a reporter for mitochondrial gene
expression when inserted into yeast mtDNA (Steele et al.
1996; He and Fox 1997). In this study, we have transla-
tionally fused 4 RG8™ to an internal region of the COX2
coding sequence, at codon 91, so that translation initia-
tion, in its normal nucleotide context, could be moni-
tored by the ability of the chimeric cox2(/-91)::ARGS™
mitochondrial gene to complement the phenotype of a
nuclear arg8 mutation. Like translation of the native
COX2 mRNA (Poutre and Fox 1987; Mulero and Fox
1993b), translation of the cox2(1-91)::ARGS™ mRNA
depends specifically on the presence of the product of the
nuclear gene PETI111, which activates translation via
functional interactions with the 54-nucleotide 5-UTL of
COX2 mRNA (Mulero and Fox 1993a).

We have studied the ability of mutant initiation co-
dons to allow expression of both the cox2(1-91)::ARGS™
reporter and otherwise wild-type COX2. Some of the
mutant initiation codons caused reduced accumulation
of the COX2 gene product, cytochrome oxidase subunit
IT (Cox2p), but allowed respiratory growth. These same
mutations caused more severe reductions in accumula-
tion of the cox2(1-91)::ARGS"™ reporter product, Arg8p,
reflecting reduced translation initiation. Gene expression
in these mutants was enhanced by overproduction of a
hyperactive variant of the COX2 mRNA-specific trans-
lational activator Petll1p. Other mutations abolished
detectable translation of both COX2 and cox2(I-
91)::ARGS™ mRNAs. Our results demonstrate that ini-
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tiation at downstream AUG codons in the chimeric re-
porter mRNA does not occur detectably in this system,
indicating stringent selection of the initiation site. This
work provides new tools with which to search for cis- or
trans-acting elements of the mitochondrial translation
system that govern start site selection in this system.

Materials and methods

Yeast strains, media, genetic techniques and plasmids

All strains used in this study are listed in Table 1, with the excep-
tion of TF236 (see below). Strain NB40-3C is a spore obtained by
“forced” sporulation (Fox et al. 1991) between strains DFS188
(Steele et al. 1996) and GW116 (Dunstan et al. 1997), which carries
a 660-bp deletion in the upstream region of COX2 (-295 to + 363
relative to AUG, termed cox2—62). NB80 was created by cyto-
duction of wild-type mitochondria into a p° derivative of NB40-3C.
NB151-1B was derived from the petl11::LEU2 strain NB35-5D
(unpublished) by “forced” sporulation. In the pet111::LEU?2 allele
(C. A. Strick, unpublished) the 2-kb Xbal-Bg/ll fragment of
PETI11 has been replaced by a 2.7-kb LEU2 fragment. TF236
(MATa lys2 leu2-3,112 ura3-52 inolA::His3 arg8::hisG pet9 ura3-52
lys2 his3? [cox3::arg8™-1 p* ]) was derived from a meiotic segre-
gant of a cross between a D273-10B (ATCC25627) related strain
and 777-3A (Weiss-Brummer et al. 1979). TF236 carries a MnCl,-
induced mutation, termed cox3::arg8™-1, that maps to the ARGS™
coding sequence and causes an Arg~ phenotype.

Fermentable complete medium was YPDA or YpGalA (1%
yeast extract, 2% Bacto-peptone, 100 mg/l adenine, and either 2%
glucose or 2% galactose supplemented with 0.1% glucose). Non-
fermentable medium was YPEG (1% yeast extract, 2% Bacto-
peptone, 100 mg/l adenine, 3% ethanol, 3% glycerol). Minimal
medium (0.67% yeast nitrogen base without amino acids) was
supplemented with 2% glucose and specific amino acids, uracil and
adenine as required. Standard genetic methods were as described
(Rose et al. 1988; Fox et al. 1991). Yeast nuclear transformation
was carried out using the one-step transformation method (Chen
et al. 1992), with plasmids YEp352 (Hill et al. 1986), pJM20
(Mulero and Fox 1994) and pJM57 (Mulero and Fox 1993a).

Construction of cox2::ARGS™ fusion genes,
and initiation codon mutagenesis

The pTZ18u (BioRad)-derived plasmid pHD6 (H. M. Dunstan,
unpublished), which carries the 4RG8” ORF fused to flanking
COX?2 untranslated regions, was modified using a two step PCR
strategy (Horton et al. 1989) to construct the cox2(1-91)::ARGS™
translational fusion. The resulting plasmid contains the following
elements: 0.57 kb of 5-flanking mtDNA including the COX2
promoter, the first 91 codons of COX2 precisely fused to codon 2 of
ARG8™ (Fig. 1A), 0.81 kb of 3’-flanking mtDNA, and a 0.75-kb
Pacl-Mbol COX3 mtDNA fragment that can rescue the cox3-10
mutation (Costanzo and Fox 1993) following transformation. We
eliminated the Nisil site contained in the COX3 fragment, so that
the Nsil site at position + 65 of the COX2 coding sequence would
be unique. The final plasmid, pNB81, contains three unique sites
useful for making further alterations: Pacl at —60, Nsil at +65 and
Eagl at +270 (all positions are given relative to the first base of the
COX2 initiation codon).

The cox2(1-69)::ARG8™ translational fusion was constructed
by replacing the 330-bp Pacl-Eagl fragment of pNB81 with a
corresponding 273-bp Pacl-Eagl PCR product containing the first
69 COX2 codons and the modified codons 90 and 91 from the
cox2(1-91)::ARGS™ fusion (Fig. 1A).

Mutations in the COX2 initiation codon were generated by
replacing the wild-type COX2 Pacl-Nsil fragment with mutant
Pacl-Nsil fragments created by two-step PCR (Ho et al. 1989)
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Fig. 1A-C Structure, expression and PETI1] dependence of
cox2::ARGS™ chimeric genes inserted into yeast mtDNA. A Sequences
of junctions between COX2 and ARGS”. Numbers refer to COX2 or
ARGS"™ codons. Bold letters and numbers are used to indicate ARGS"™
sequences as well as alterations in the COX2 sequence. The Eagl
restriction site created by the silent mutations in COX2 is underlined
(see Materials and methods for details of construction). B Accumu-
lation of fusion proteins and mature Arg8p resulting from mitochon-
drial expression of chimeric cox2:: ARG8™ genes. 50 ug of total cellular
protein from strains NB40-3C (Aarg8), DL2 (4RGS8), HMD22
(cox2::ARG8™), NB53 [cox2(1-69)::ARG8™] and NB43 [cox2(I-
91)::ARG8"] were subjected to SDS gel electrophoresis and Western
analysis with anti-Arg8p antiserum. The positions of mature Arg8p
and fusion proteins are indicated. A fusion protein from the cox2(I—
91)::ARG8" strain is detectable upon longer exposure of the blot (not
shown). The middle band corresponds to a cross-reacting protein
which is present in arg8 deletion strains. C Phenotypic expression of
cox2(1-91)::ARGS™ is dependent on PETIII. The cox2(I-
91)::ARGSE™ arg8 petll1-9 strain NB151-1B was transformed with
either an empty vector Yep352 (“control”) or the PETIII-carrying
plasmid pJM20 (“PETI11”) (see Materials and methods). The
transformants were regrown and then replica-plated to either minimal
medium containing arginine (+Arg) or minimal medium lacking
arginine (—Arg), and incubated for 2 days at 28°C

using the high-fidelity polymerase Deep Vent (New England Bio-
labs). To place mutations in the initiation codon of cox2(/—
91)::ARG8™, we used pNB90, a derivative of pNB81 carrying the
mutation cox2-22 (Bonnefoy and Fox, in preparation), which in-
troduces a unique SnaBI restriction site between the Pacl and Nsil
sites. Thus cloning efficiency of mutant fragments could be im-
proved by digestion of the ligation reaction with SnaBI. To place
mutations in the COX2 gene itself, the pJM2 (Mulero and Fox
1993a) Pacl site upstream of COX2 was rendered unique by
shortening the COX2 3’-flanking region, creating pNB69, and the
cox2-22 mutation was introduced in pNB69 to yield pNB82, which
was then used for cloning of mutated fragments as described above
for pNB90.

To facilitate the insertion of mutant alleles into mtDNA, we
constructed a deletion mutation, cox2-60, that removed nucleotides
—63 to + 66 relative to the COX?2 initiation codon, by deleting the
Pacl-Nsil fragment from both COX2 (pNB69) and cox2(I—
91)::ARGS™ (pNB&81).

Plasmids containing fusion genes and mutations were checked by
DNA sequencing using mainly the primer (COX2A) complementary
to positions —254 to —237 relative to the COX2 initiation codon.
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Mitochondria transformation

The plasmids carrying modified COX2 sequences were introduced
into the p° mitochondria of strain DFS160p° (Table 1) by high-
velocity microprojectile bombardment, as previously described
(Wiesenberger et al. 1995), together with the LEU2 plasmid
YEp351 (Hill et al. 1986) to select nuclear transformants. To
identify transformants, colonies were mated to strains carrying
mutations in either ARG8™ (TF236), COX3 (MCC125) or COX2
(HMD107), as appropriate. Following mating, cells were replica-
plated to minimal medium lacking arginine or to nonfermentable
medium as appropriate, to detect mitochondrial transformants by
their ability to rescue the tester mutations. Mutant mtDNA se-
quences from purified mitochondrial transformants were integrated
into p* mitochondrial genomes by cytoduction (Fox et al. 1991)
into strains carrying either the cox2-60 deletion (NB54 or NB97) or
the cox2-62 deletion (Dunstan et al. 1997) (NB40-3C) in the COX2
5" region. The desired cytoductants were detected by their ability to
rescue the cox2-107 mutation (Dunstan et al. 1997) in strain NB63.
Crosses to strains NB62 (p~ COX2) and NB71 (cox3::arg8™-1) were
performed to confirm the p* state of the cytoductants and the
presence of the ARGS™ ORF as appropriate. In two cases, we
constructed the desired mitochondrial genome by directly bom-
barding a p* strain (Johnston et al. 1988) harboring a deletion in
the COX2 5’ region (NB41 or NB104) with mutant mtDNA plas-
mids and YEp351. The p* mitochondrial transformants were di-
rectly selected by replica-plating the Leu™ transformants to
nonfermentable medium (to construct the cox2-31 strain NB169) or
onto medium lacking arginine (to construct the cox2(1-69)::ARG8™
strain NB46). The p* genomes from NB169 and NB46 were then
transferred to NB40-3p° by cytoduction, to yield strains NB161
and NBS53.

All mitochondrial mutations were verified by DNA sequencing
following integration into p* mtDNA. Yeast genomic DNA
(Hoffman and Winston 1987) was used as a template to amplify the
COX2 region around the AUG (corresponding to positions —315 to
+266 relative to the initiating AUG) by PCR. The PCR product
was sequenced directly with primer COX2A (above). All sequenc-
ing reactions were carried out by the Synthesis and Sequencing
Facility in the Cornell Biotechnology Building.

Analysis of cellular RNA and protein

Total RNA was prepared and analyzed as described (Dunstan
et al. 1997), except that samples were supplemented with ethidium
bromide before application to the gels for electrophoresis. The
COX2 and ARG8™ probes were a mixture of the 1.6-kb Pacl
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fragment from pJM2 (Mulero and Fox 1993a), which contains the
whole COX2 coding region and some flanking sequences, and the
1.4-kb Pacl-BamHI fragment from pNB81, which contains part of
the COX2 gene (approximately from the start of the mature mRNA
to codon 91) and the whole ARG8™ coding sequence. The control
15S probe was the 2-kb BamHI fragment from plasmid pYJL25
(Tian et al. 1991), provided by O. Groudinsky.

Steady-state levels of Cox2p and Arg8p were analyzed by
Western blotting of total proteins (Yaffe 1991) fractionated on 12%
or 10% polyacrylamide gels, respectively, and probed with mono-
clonal anti-Cox2p (dilution 1/5000, Molecular Probes, provided by
G. Dujardin) and polyclonal anti-Arg8p (Steele et al. 1996) (dilu-
tion 1/1000) antibodies. Secondary anti-mouse or anti-rabbit anti-
bodies were detected using the Pierce chemiluminescent substrate.

Results

Translational fusion of the mitochondrial
reporter gene ARGS™ to COX2

To analyze the effect of mutations in the COX2 initia-
tion codon on translation, using a growth phenotype
that is independent of the function of Cox2p, we inserted
translational fusions of COX2 to the synthetic reporter
gene ARGS8™ (Steele et al. 1996) into mtDNA. COX2
specifies a precursor protein with a 15-amino acid leader
peptide that is processed to yield the mature protein
(Sevarino and Poyton 1980; Pratje and Guiard 1986).
Our fusions contained the beginning of the pre-Cox2p
coding region, to preserve the normal COX2 mRNA
initiation codon context. Furthermore, the reporter
portion of the chimeric genes comprised the entire cod-
ing sequence of pre-Arg8p (except for its initiation co-
don), which is normally imported from the cytoplasm
under the direction of its N-terminal signal targeting
sequence. Thus, we expected the mitochondrially syn-
thesized reporter protein to be cleaved by the matrix
processing protease, releasing the normal mature Arg8p
in its normal cellular location, the mitochondrial matrix
(Steele et al. 1996). This would ensure that nonstandard
initiation events in the COX2 portion of the chimeric
mRNAs could neither alter the structure nor diminish
the activity of the reporter protein.

We constructed two chimeric genes, specifying fusion
proteins with the pre-Arg8p moiety fused to pre-Cox2p
after the 69th or the 9l1st pre-Cox2p amino acid
(Fig. 1A). These constructs were transformed into mi-
tochondria (Materials and methods) and integrated in
place of COX2 in mtDNA of a strain carrying a dis-
rupted arg8::hisG allele at the nuclear ARGS locus. Ex-
pression of both chimeric genes, cox2(/-69)::ARGS™
and cox2(1-91)::ARGS™, in mtDNA fully complemented
the nuclear arg8::hisG mutation when cells were grown
on medium lacking arginine (not shown). Western
analysis using anti-Arg8p antibody showed that both
fusion proteins were expressed, but that cleavage of the
pre-Arg8p processing site was incomplete, especially in
the case of the cox2(1-69)::ARG8™ product (Fig. 1B).
We therefore employed the cox2(1-91)::ARG8™ reporter
gene for all subsequent studies.

As a first step, we verified that expression of the chi-
meric cox2(1-91)::ARGS™ gene was dependent on the
COX2 mRNA-specific translational activator Petl11p.
As expected, the petl11, arg8, cox2(1-91)::ARGS™ strain
NBI151-1B failed to grow on medium lacking arginine, but
arginine prototrophy was restored by transformation of
this strain with a plasmid carrying the wild-type PET111
gene (Fig. 1C) and by crossing it to the PET111 arg8 p°
strain DFS160p° (data not shown). Thus, the reporter
exhibits normal dependence on translational activation.

Residual initiation at some mutant codons
allows accumulation of Cox2p

In addition to the previously described AUA mutation
(Mulero and Fox 1994), we constructed five new initia-
tion codon mutations by site-directed mutagenesis of
plasmids carrying either the COX2 gene or the cox2(1—
91)::ARGS™ fusion. These six mutations included all
three possible modifications of the last nucleotide, the
GUG triplet, and alterations involving two (AAA) or
three (CCC) nucleotide positions in the initiation codon.

We first examined the phenotypes caused by these
mutations when introduced into the COX2 gene of
otherwise wild-type strains (Materials and methods).
Their cytochrome spectra all exhibited the typical ab-
sorption peaks of cytochromes ¢, ¢/ and b. However, the
mutants carrying initiation codons AUC, AAA and
CCC, lacked a detectable peak of cytochrome aa3,
corresponding to cytochrome ¢ oxidase (Fig. 2). The
cytochrome aa3 absorption peak was identical to wild
type in the mutant with a GUG initiation codon, was
slightly but reproducibly decreased in the AUU mutant,
and was very low in the AUA mutant.

Analysis of respiratory growth on nonfermentable
medium yielded a similar ranking amongst the mutants
(Fig. 3, top panel). The GUG mutant was almost in-
distinguishable from the wild type. Growth of the AUU
mutant was only slightly weaker, and could only be
differentiated from that of the GUG mutant by streak-
ing or by a brief incubation of patches printed to non-
fermentable medium. The AUA mutant grew poorly
compared to wild type, as previously described (Mulero
and Fox 1994). Finally, the triplets CCC, AAA and
AUC completely abolished respiratory growth. Immu-
nodetection of steady-state levels of Cox2p in the mu-
tants and control strains (Fig. 3, top panel) showed that
the pattern of protein accumulation closely mirrored the
growth and cytochrome spectra in all cases, as expected.

All mutations reduce translation of reporter mRNA

Respiratory growth phenotypes of the mutants reflect
translation of the COX2 mRNA, insertion of newly
synthesized pre-Cox2p into the inner membrane, pro-
cessing of the leader-peptide, and assembly into the
stable cytochrome ¢ oxidase complex. To focus more
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Fig. 2 Whole-cell cytochrome absorption spectra of strains harboring
either wild-type or mutant initiation codons in the COX2 gene. Low
temperature absorption spectra of dithionite-reduced cytochromes
from galactose-grown cells were recorded in liquid nitrogen as
described (Claisse et al. 1970). The absorption maximum expected for
the alpha band of cytochrome aa3 at 602 nm is indicated. The
absorption peaks at 558, 552 and 546 nm correspond to the alpha
bands of cytochromes b, ¢/ and ¢, respectively. The absorbance scale
is indicated at the rop right. The strains examined were: A, NB97;
CCC, NBI160; AAA, NBI162; AUC, NB163; AUA, NB60; AUU,
NB164; GUG, NBI161; AUG, NB80

closely on translation, we introduced the six initiation
codon mutations into the plasmid-borne cox2(I-
91)::ARGS™ reporter fusion, whose product is a soluble
enzyme. These mutant reporter genes were then inte-
grated into the mitochondrial genome, in place of
COX2, such that all surrounding regulatory sequences
would then be identical to those of wild-type COX2
(Materials and methods). As expected from the above
results, the GUG initiation codon allowed substantial
growth on medium lacking arginine (Fig. 3). However,
the AUU initiation codon led to only very weak growth
— detectable after a 5- to 7-day incubation — that was
enhanced at 36°C (not shown). No Arg" growth was
detected for the AUA mutant.
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Fig. 3 Effects of initiation codon mutations in COX2 and cox2(I—
91)::ARGS8™ on growth phenotypes and protein accumulation. The
panels at the rop show data for strains carrying the COX2 gene, while
the bottom panels show data for strains carrying the cox2(I—
91)::ARGS8™ reporter. Cells were patched onto complete glucose
medium, replica-plated onto selective medium (top, nonfermentable;
bottom, minimal medium lacking arginine) and incubated for 2 days
at 28°C. Relative growth patterns were similar at 16°C and 36°C,
and after 7 days of incubation, except that the AUU mutant with
cox2(1-91)::ARGS™ (strain NBI134) showed slight growth after
incubation for 5-7 days on minimal medium lacking arginine,
especially at 36°C (not shown). For Western analysis, 100 ug or
150 pg of total cellular protein from each strain was fractionated by
electrophoresis on SDS gels and reacted with anti-Cox2p or anti-
Arg8p antibodies, respectively (Materials and methods). Overexpo-
sure of the blot probed with anti-Arg8p (lowest panel) revealed the
presence of Arg8p initiated by the AUU codon, in addition to cross-
reacting proteins present in the arg8 deletion strain. The strains
examined, carrying COX2 or cox2(1-91)::ARGS"™, respectively, were:
AUG, NB80 and NB43; A, NB97 and NB54; CCC, NB160 and
NBS83; GUG, NB161 and NB131; AAA, NB162 and NB132; AUA,
NB60 and NB110; AUC, NB163 and NB133; AUU, NB164 and
NB134

In agreement with these growth phenotypes, Western
analysis using an anti-Arg8p antibody to detect steady-
state accumulation of Arg8p showed that while the
GUG mutant contained a significant level of the re-
porter protein, it was still substantially reduced relative
to wild-type (Fig. 3). The AUU mutant contained very
low levels of Arg8p, requiring overexposure for detec-
tion (Fig. 3). Arg8p was undetectable in the other
mutants (AUA, CCC, AAA and AUC) above the
background level of a crossreacting protein present in
the arg8 deletion control.

The contrast between the respiratory and Arg phe-
notypes of the respective AUA and AUU mutants raised
the possibility that extraneous mutations in the mito-
chondrial or nuclear genomes of the cox2(1-91)::ARGS™
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strains could be responsible for the Arg™ phenotypes. To
exclude this possibility we crossed all of the strains used
in the experiment shown in Fig. 3 with NB66 (Table 1),
whose mtDINA contains a 129-bp deletion that removes
the region including the COX2 initiation codon, up-
stream of the reporter [cox2-60(1-91)::ARGS™, Materi-
als and methods]. The resulting zygotes thus contained a
second copy of all mitochondrial and nuclear sequences,
except the deleted region. Diploids were selected on
appropriate minimal medium containing arginine, al-
lowing mtDNA recombination to occur, and then rep-
lica-plated to minimal medium lacking arginine. In every
case, the Arg phenotype of the diploids was the same as
that of the corresponding haploid initiation codon mu-
tants, confirming that no extraneous mutations were
affecting this phenotype.

The steady-state level of COX2 mRNA harboring an
AUA initiation codon mutation is very similar to that of
the wild-type COX2 mRNA (Mulero and Fox 1994). To
ask whether the steady-state levels of the mutant chi-
meric cox2(1-91)::ARG8™ mRNAs were also similar to
wild type, we carried out Northern analysis on total
cellular RNA from each strain, using a COX2-ARGS8™
probe (Fig. 4). Quantitation of the results by Phospho-
Imager (Molecular Dynamics) detection revealed that
the levels of cox2(1-91)::ARG8™ mRNA were similar to
or higher than wild-type in all the mutants, except for
the one containing a CCC initiation codon, which
expressed 60% of the wild-type level. Thus, the Arg™
phenotypes of the mutants were not due to defects in
mRNA stability, but rather to decreased translation of
the chimeric mRNA. In addition, the steady-state level
of chimeric cox2(1-91)::ARG8™ mRNA was roughly
similar to that of the normal COX2 mRNA.

_ incox2 (1-91)::ARG8™

O <« O < 0D
:383<:>:>
q < <O 0O <« <L

AUG (in COX2)

fusion - — e —— — —

COX2 »

T5S P e - - — - — - — -

Fig. 4 The chimeric cox2(1-91)::ARGS™ mRNA accumulates despite
the presence of mutant initiation codons. Total cellular RNA from the
strains NB80 (AUG COX2), NB54 (A), NB43 (AUG), NBI110
(AUA), NB83 (CCC), NBI31 (GUG), NBI32 (AAA), NBI133
(AUC), NB134 (AUU) was subjected to electrophoresis and then
hybridized to a mixture of COX2 and ARG8"™ probes (see Materials
and methods), revealing either the wild-type COX2 mRNA, or the
cox2(1-91)::ARGS™ RNA (fusion), depending on the strain. The same
blot was then hybridized to a probe for the 15S rRNA. Hybridization
was quantified using a Phospholmager (Molecular Dynamics)

Multicopy suppression of initiation codon mutations

Increased gene dosage of the COX2 mRNA-specific
translational activator gene, PETII1, was previously
shown to enhance translation of a COX2 mRNA bear-
ing an AUA initiation codon (Mulero and Fox 1994).
We therefore tested the whether elevated PET111 ac-
tivity could suppress all the initiation codon mutations
in both a COX2 and cox2(1-91)::ARGS™ context, as a
more sensitive way to detect low levels of translation
initiation. To maximize possible suppression effects, we
employed a multicopy plasmid bearing the dominant
PETI11-20 allele. PET111-20 has a missense mutation
that suppresses some mutations in the COX2 mRNA
5-UTL (Mulero and Fox 1993a; A. Seshan and T. D.
Fox, unpublished results), and the AUG to AUA initi-
ation codon mutation (Mulero and Fox 1993a). Thus,
PETI111-20 appears to encode a more active product
than the wild-type allele.

We transformed the mutant strains with a control
vector or a multicopy plasmid carrying PET111-20, and
examined the respiratory growth or arginine prototro-
phy of the transformants, as appropriate (Fig. 5). In the
context of the COX2 gene, both the AUA and AUU
mutations were clearly suppressed, as expected. In the
context of the cox2(1-91)::ARG8™ reporter, the AUU
mutation exhibited clear suppression, while the AUA
mutation was only weakly suppressed (detectable after
prolonged incubation). The AUC, AAA and CCC mu-
tations were not detectably suppressed by elevated
PETI11 activity, even after prolonged incubation, sug-
gesting that translation of these mRNAs is either com-
pletely blocked or extremely weak.

Discussion

In this study we have examined in vivo the ability of
altered COX2 initiation codons to function in mito-

in COX2 in cox2(1-91)::ARG8M
+Arg  YPEG +Arg  -Arg

AUG e

A £y
CCC =
GUG
AAA
AUA A
AUC 3
AUU '

control 1711 control 177

Fig. 5 Analysis of multicopy suppression of the initiation codon
mutants by the gene encoding the COX2 translational activator
Petl11p. Strains carrying either COX2 or the cox2(1-91::ARG8S™
reporter, as indicated (see legend to Fig. 3 for strain names), were
transformed with the empty vector Yep352 (control) (Hill et al. 1986),
or the PET111-20 carrying plasmid pJMS57 (111), (Mulero and Fox
1993a). Transformants were patched onto arginine-containing mini-
mal medium selective for the URA3 plasmid marker (+ Arg), and
then replica-plated to either nonfermentable medium (YPEG), or
minimal medium lacking arginine (—Arg), as appropriate. Cells were
incubated at 28°C for 2 days



chondrial synthesis of the normal gene product, Cox2p,
and a soluble reporter enzyme, Arg8p, that is released
by a processing protease from a chimeric Cox2p-Arg8p
fusion protein. The use of this reporter system should
have allowed the detection of translation initiation
events at downstream AUG codons in COX2, such as
the one at position 14, since the aberrant initiation
events would not affect the structure or stability of the
reporter protein, whose coding sequence begins at co-
don 92. A previous study examined the effects of an
AUG to AUA COX2 initiation codon mutation and
showed that the detectable residual COX2 translation
was initiated at the mutant AUA triplet, rather than the
AUG at position 14 (Mulero and Fox 1994). However
functional constraints on the structure of pre-Cox2p
could have prevented detection of additional down-
stream initiation events. The fact that the various initi-
ation codon mutations either reduced or completely
abolished all detectable synthesis of the reporter protein
demonstrates, for the first time, that downstream
translation starts do not occur, even when normal ini-
tiation is blocked. Thus, yeast mitochondrial initiation
site selection is under stringent control, at least for the
COX2 mRNA.

How might the mitochondrial translation machinery
discriminate between the initiation codon position and
the AUG codon at position 14? A previously suggested
sequence consensus surrounding yeast mitochondrial
initiation codons (A residues at positions —25, —13, —6.
+6, +12, +15and +18; Folley and Fox 1991) does not
appear to play a role here, since it is present around both
positions. We favor the hypothesis that the translational
activator Petl11p, or proteins associated with it, interact
with the mitochondrial ribosome and direct it to the
initiation codon. In this model, the initiation site would
be determined by the geometry of the functional inter-
action been Petlllp and the COX2 mRNA 5-UTL
(Mulero and Fox 1993a). Direct interactions between
the ribosome and the 5-UTL (Green-Willms et al. 1998)
could also play a role here. Subsequent translation ini-
tiation would then depend upon a productive interaction
between a codon in the selected region and the antico-
don of the initiator tRNA.

Three mutant triplets at the initiation codon position
supported detectable translation, with efficiencies de-
creasing in the order GUG, AUU, AUA. The compar-
ison between the effects of each mutation on COX2 and
cox2(1-91)::ARG8™ expression revealed that accumula-
tion of Cox2p in functional cytochrome ¢ oxidase
complexes was less affected than accumulation of the
soluble reporter protein Arg8p. For example, the AUG
to AUU mutation in COX2 had only a modest effect on
respiratory growth and the steady state level of Cox2p,
while the same mutation in cox2(1-91)::ARGS™ greatly
diminished growth in the absence of arginine as well as
the level of Arg8p. These differences are not due to
dramatic alterations in the steady-state-levels of the
COX2 and cox2(1-91)::ARG8™ mRNAs, nor are they
likely to be due to differences in the efficiencies of
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translation initiation since the mRNA 5-UTL and ini-
tiation codon context are the same in both mRNAs. We
propose instead that the differences observed between
Cox2p and the reporter protein reflect post-translational
differences in the behavior of the proteins.

Mitochondria contain ATP-dependent proteolytic
systems that play a role in assembly of membrane
complexes and degradation of unassembled mitochon-
drial translation products (reviewed in Rep and Grivell
1996). Indeed, unassembled Cox2p is known to be a
target of such proteolysis through the action of Ymelp
(Nakai et al. 1995; Pearce and Sherman 1995; Leonhard
et al. 1996; Weber et al. 1996). Thus, Cox2p produced in
excess of the amount needed to assemble with other
cytochrome ¢ oxidase subunits would be quickly de-
graded. On the other hand, if Cox2p synthesis were re-
duced below this level, then all of the available Cox2p
would be fully assembled into stable complexes. Thus,
the stability of Cox2p could depend on its rate of syn-
thesis, limiting the range over which its accumulation
could vary. In contrast, the soluble reporter protein
Arg8p does not assemble with other polypeptides and is
likely to have a constant half-life that is independent of
its rate of synthesis. Indeed, Arg8p can accumulate to
levels far higher than wild-type when it is overproduced
(Steele et al. 1996). These considerations suggest that
while respiratory growth is the most sensitive way to
detect low levels of COX2 mRNA translation, Arg8p
accumulation more accurately reflects relative rates of
synthesis. We therefore conclude, for example, that ini-
tiation at GUG is several times less efficient than at
AUG, based on the relative levels of Arg8p, despite the
fact that Cox2p accumulation in the corresponding
mutant was essentially wild-type.

Our results support the idea that there could be genes
in yeast mtDNA whose ORFs initiate with GUG, AUU
or AUA. At least one such gene has been previously
proposed (Colin et al. 1985), but there is no experi-
mental evidence to support this suggestion. Vertebrate
mitochondrial translation systems employ alternative
start codons such as AUA and AUU in humans
(Fearnley and Walker 1987) and GUG in ducks (Pan
et al. 1993) and fish (Johansen et al. 1990). GUG also
appears to be utilized for initiation in mitochondria of
filamentous fungi (Netzker et al. 1982) and plants (Bock
et al. 1994; Siculella et al. 1996; Sakamoto et al. 1997),
as well as in chloroplasts (Rochaix et al. 1989; Turmel
et al. 1993). Recently, the COX2 mRNA from radish
was shown to have an ACG initiation codon, which is
apparently not edited to AUG (Dong et al. 1998).
However, an ACG mutation at the human COX?2 initi-
ation codon apparently prevents translation and is as-
sociated with a mitochondrial encephalomyopathy
(Clark et al. 1999). Interestingly, mitochondrial trans-
lation systems in nematodes may not employ AUG at
all, utilizing UUG, AUU, AUA and GUU instead
(Okimoto et al. 1990). In bacterial and eukaryotic cy-
toplasmic systems, non-AUG codons occur naturally in
some mRNAs and can play a role in controlling gene
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expression (Hager and Rabinowitz 1985; Sacerdot et al.
1996; Arnaud et al. 1999, and references therein).

Mutational analyses of initiation codons in E. coli
genes (Sacerdot et al. 1996; Sussman et al. 1996) and
eukaryotic nuclear genes of yeast (Zitomer et al. 1984;
Clements et al. 1988; Donahue and Cigan 1988), plants
(Gordon et al. 1992) and animals (Mehdi et al. 1990;
Kozak 1997), as well as Chlamydomonas chloroplast
genes (Chen et al. 1993, 1995), have shown that a
number of non-AUG codons can direct detectable but,
in most cases, very low levels of, translation initiation.
The identification of suppressors of initiation codon
mutations has helped to elucidate the function of several
factors that control initiation specificity in bacteria
(Sussman et al. 1996) and the yeast cytoplasmic system
(Yoon and Donahue 1992; Huang et al. 1997). Similar
analyses have begun in organellar systems, but no spe-
cific factors have been identified to date (Folley and Fox
1994; Chen et al. 1997). The identification of nonfunc-
tional initiation codon mutations in this study will aid in
the extension of this genetic approach to yeast mito-
chondria. The AUC, AAA and CCC triplets failed to
direct detectable translation, even when we elevated the
activity of the translational activator gene PETIII, a
condition that enhanced translation initiation at par-
tially functional codons. Thus, these alleles should pro-
vide an excellent starting point for the selection of strong
cis- and trans-acting suppressor mutations whose anal-
ysis may provide insights into the mechanism of start site
selection in yeast mitochondria.
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