
Abstract. Concerns regarding the reliability of slow-
and fast-rotating uni-axial clinostats in simulating
weightlessness have induced the construction of devices
considered to simulate weightlessness more adequately.
A new three-dimensional (3-D) clinostat equipped with
two rotation axes placed at right angles has been
constructed. In the clinostat, the rotation achieved with
two motors is computer-controlled and monitored with
encoders attached to the motors. By rotating plants
three-dimensionally at random rates on the clinostat,
their dynamic stimulation by gravity in every direction
can be eliminated. Some of the vegetative growth phases
of plants dependent on the gravity vector, such as
morphogenesis, are shown to be in¯uenced by rotation
on the 3-D clinostat. The validity of 3-D clinostatting
has been evaluated by comparing structural parameters
of cress roots and Chara rhizoids obtained under real
microgravity with those obtained after 3-D clinostatting.
The parameters analyzed up to now (organization of the
root cap, integrity and polarity of statocytes, dislocation
of statoliths, amount of starch and ER) demonstrate
that the 3-D clinostat is a valuable device for simulating
weightlessness.

Key words: Automorphosis (root, shoot) ± Chara
(rhizoid) ± Clinostat (three-dimensional, random
rotation) ± Lepidium ± Gravitropism ± Weightlessness
(simulated)

Introduction

Plants have evolved in the presence of the gravitational
force. Gravity as a stimulus acts permanently on
organisms as either static or dynamic stimulation (Sievers
et al. 1991). Both gravisensitivity and -response have
been studied intensively in fungi (see Kern et al. 1997, this
issue) and in lower and higher plants (see Braun 1997,
Perbal et al. 1997, Sack 1997, all this issue). A step
forward in the understanding of the cellular mechanisms
involved in gravitropism has been achieved by using
microgravity conditions in space. Competent overviews
with references on experiments in space covering a wide
range of plant and animal cells have recently been
presented (Claasen and Spooner 1994; Brown et al. 1996;
Moore and Cogoli 1996; Kordyum 1997).

On Earth, real microgravity conditions (ca. 10)4 g;
no thermal convection; no hydrostatic pressure etc.) can
be produced by a free fall from a drop tower, a drop
shaft or a balloon or by parabolic ¯ights of airplanes
and sounding rockets. However, the duration of micro-
gravity obtained by these methods is generally too short
for plants to exhibit obvious changes in growth and
development. It is evident that gravity-speci®c altera-
tions in cells and organisms can be proven beyond
doubt only by experiments done in orbit and, in special
cases, during parabolic ¯ights of rockets. However,
access to space¯ights is limited so that alternatives to
simulate weightlessness on Earth have been sought for
more than a century: clinostats (slow- and fast-rotating,
with one or two axes) were considered as the instru-
ments of choice.

Slow-rotating (e.g. 2±4 rpm) clinostats with one axis
(mostly horizontal) have been used to compensate for
the unilateral in¯uence of gravity (Sachs 1882; Pfe�er
1904; Fitting 1905). Due to the omnilateral stimulation
on a clinostat (instead of a unidirectional stimulation for
a given time) the response, i.e. bending upwards or
downwards of a plant organ, is eliminated. The physical
background and limitations on the use of clinostats have
been considered theoretically (Dedolph and Dipert
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1971; Brown et al. 1976a; reviews by Albrecht-Buehler
1992, Briegleb 1992, Kessler 1992; Moore and Cogoli
1996 and references therein). In addition, the e�ects of
slow-rotating (e.g. Gordon and Shen-Miller 1971;
Brown et al. 1976b; Salisbury and Wheeler 1981; Sievers
and Hejnowicz 1992; Piastuch and Brown 1995; Brown
et al. 1996; see also Moore and Cogoli 1996 for further
references) and fast-rotating uni-axial clinostats (review
by Cogoli 1992; Hilaire et al. 1995; Cai et al. 1997) on
the morphological, structural and physiological respons-
es of plant organs have been studied and compared with
1-g controls. It has become evident that clinostat
rotation in a constant direction often causes undesired
side-e�ects. For example, if the rotation is not fast
enough, a chronic dynamic stimulation, instead of no
stimulation, may be brought about (Larsen 1957; Hensel
and Iversen 1980; Hensel and Sievers 1980, 1981). The
fast-rotating clinostat should be designed not to produce
such a situation and is useful under certain conditions
(Sievers and Volkmann 1977; Sobick and Sievers 1979).
On the other hand, if the rotation is too fast or the
distance from the rotation axis to plant materials is too
large, the centrifugal force produced by the rotation
causes a bending of organs (Sobick and Sievers 1979;
Hoson et al. 1996).

Experiments in space crafts ®rst allowed results
obtained under authentic microgravity to be compared
with those under 1 g or after simulation of weightless-
ness by clinostats on the ground. The microgravity data
thus serve as the real and valuable controls for gravity-
dependent changes in growth behaviour, organization
and structure of statocytes (references in Sievers and
Hejnowicz 1992; Claasen and Spooner 1994; Moore and
Cogoli 1996; Kordyum 1997; see also Moore 1990a,
1990b; Brown et al. 1995, 1996; Hilaire et al. 1995;
LaurinavicÏ ius et al. 1996; Tripathy et al. 1996).

However, when data from microgravity conditions
are compared with corresponding data from clinostat-
ting, divergent results are reported (reviews by Cogoli
1992; Sievers and Hejnowicz 1992; Claasen and
Spooner 1994; Moore and Cogoli 1996; see also Brown
et al. 1996). This might be based on the fact that the
e�ect of simulating weightlessness by clinostats depends
on the rotational frequency, the size, mass and density
of gravity-susceptible organelles, and the viscosity and
density of the medium surrounding those organelles
(see Moore and Cogoli 1996). The following data act as
a reminder of how sensitive plants are to gravity and
how e�ciently clinostats mimic weightlessness. (i) The
thresholds for gravity perception are ca. 10)3 and 10)4

g for shoots and roots, respectively. (ii) The perception
time, the minimum time the stimulus must be provided
is<1 s (Fitting 1905; review Volkmann and Sievers
1979). (iii) Clinostatting at 2 rpm has a rotation period
T = 30 s; the plant therefore rotates half a turn in
15 s, and the direction of gravitational force changes by
180° during this period (Sievers and Hejnowicz 1992).
(iv) Clinostatting at 60 rpm provides a centrifugal force
at the periphery of a circle with a radius of 1 mm of
about 4.2 ´ 10)3 g (Briegleb 1992). (v) The higher the
rotational frequency the higher is the centrifugal force

even at small deviations from the clinostat axis (Albrecht
Buehler 1992). Thus, depending on the orientation and
size of the object in the rotation axis, and on the speed of
rotation, i.e. the alteration of the stimulus angle with
time, uni-axial clinostatting might suppress a gravire-
sponse, but not necessarily the perception of the
stimulus.

Based on these considerations, facilities have been
developed to simulate weightlessness more e�ciently. A
centrifuge-clinostat with two perpendicular axes has
been developed (Shen-Miller et al. 1968; Gordon and
Shen-Miller 1971). With this clinostat, plants are
rotated on a horizontal axis by a motor whose end is
attached to a vertical central hub. Horizontal and
vertical rotations are independently driven by two
motors and the vertical rotation is solely used to
produce a di�erent magnitude of the outward acceler-
ation. Thus, the in¯uence of the gravity vector is in
principle compensated by the horizontal rotation as is
done with conventional uni-axial clinostats (not by the
combined action of horizontal and vertical rotations, as
achieved on the 3-D clinostat).

A similar but more sophisticated device has just been
applied by LaurinavicÏ ius et al. (1997) to estimate the
threshold value for the perception time in Lepidium roots
and shoots and to design a protocol for experiments in
space. Moore (1990b) used a ¯uid-®lled ``slow-turning
lateral vessel'' (STLV, rotating at 50 rpm; thus, ``slow''
is di�erent from the meaning in ``slow-rotating'' clino-
stats) for the analysis of Brassica statocytes. Whereas
statocytes grown on a slow-rotating clinostat di�er in
ultrastructure from those grown under microgravity, the
statocytes grown on the STLV were nearly the same as
the microgravity samples, indicating a better simulation
of weightlessness by the STLV (Moore 1990b). Recently,
Mesland (1996) introduced a ``Free Fall Machine''
(FFM) as a new device to achieve weightless conditions.
The FFM produces weightlessness during the free fall
which is interrupted every second by a maximal value of
20 g in one direction for 50 ms. These short peaks are
considered to be below the threshold of perception time.
However, it is necessary to prove that the treatment does
not involve gravity stimulation since organisms are able
to add up stimuli and plant species might di�er in their
gravisensitivity and -responsiveness.

By rotating materials three-dimensionally, the above-
mentioned problems should be at least partly solved. In
general, the dimension of amyloplasts corresponds to
10±30% of the length of statocytes in primary roots
(Iversen and Larsen 1973; Volkmann et al. 1986b;
Buchen et al. 1993). If we consider the cell to be a cube,
the slow rotation on the uni-axial clinostat would appear
to give a chronic gravity stimulation on 10±30% of the
area of four lateral planes of the cell. On the other hand,
with 3-D rotation, such a stimulation, if any, would be
shared by all of six planes and would be diminished by
80±93%. In the present article, we describe the machin-
ery of the newly developed 3-D clinostat equipped with
two rotation axes placed at right angles (Hoson et al.
1992) and discuss its usefulness as a simulator of
weightlessness.
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The 3-D clinostat

Machinery of the 3-D clinostat. In the 3-D clinostat
(Fig. 1), plants are moved along a sphere by the
cooperative rotation of two motors (Hoson et al.
1992). The sample stage, 660 mm ´ 340 mm in area,
and an illumination apparatus are attached to the
opposite sides of a supporting frame at a distance of
220 mm from the center of rotation. The outer frame is
rotated around a horizontal axis. The inner supporting
frame is mounted on this outer frame. The rotational
axis of the assembly of the inner frame and the sample
stage are perpendicular to the ®rst horizontal axis.
Rotational motions of the frame and the sample stage
are driven by two stepping motors. Onset, rate, and
duration of rotation of the motors are controlled with a
personal computer. The rotation of the motors is
monitored with encoders. Electrical connections to
motors, illumination, encoders, and a video terminal
are made via slip rings.

Operation of the 3-D clinostat. In order to operate the 3-
D clinostat properly, some procedures must be observed.
Figure 2 shows the motion of plants placed on the
sample stage when they are subjected to two types of
rotation. When two motors are operated at the same
constant rate, plants rice up to the perpendicular
position, but they then return to their original position
and the cycle is repeated (Fig. 2a). Under these condi-
tions, the unilateral in¯uence of gravity is never
compensated. When two motors are rotated at di�erent
constant rates, the positions of plant organs are
repeatedly reversed with respect to the gravity vector
and the e�ect of gravity is in essence eliminated.
However, samples move only along a ®xed path and
their motion is not randomized even by this type of

rotation (date not shown). True compensation for the
e�ect of the gravity vector can be achieved when the
rotation rates of the two motors are changed at random
according to the table of random numbers at regular
intervals (Fig. 2b). Therefore, in our experiments, the
rotation rate of the motors is usually changed at random
from 2 to )2 (reverse direction) rpm every 30 or 60 s.
These conditions of operation enable a large steric angle
to be swept out in a period shorter than the character-
istic response time of plants under investigation.

The e�ectiveness of random rotation in simulating
weightlessness can be validated by measuring the com-
ponents of gravity vectors perpendicular and parallel to
the sample stage. Signals from two gravity sensors
mounted on the sample stage are transmitted through

Fig. 1. The 3-D clinostat ap-
paratus. IA, illumination appa-
ratus; IF, inner frame;M, motor
with encoder; OF, outer frame;
SR, slip ring; SS, sample stage.
Actual height of the outer
supporting frame (left): 1.40 m

Fig. 2a,b. Motion of plant materials on the 3-D clinostat. The spatial
positions of the sample were continuously observed from one
direction for 3 h. The rotation started at the top of an arc or a circle
where the plants were in the horizontal position. On the equator and
at the bottom, the plants were in the vertical and the reversed
positions, respectively. The two motors were rotated at the same
constant rate (a) or at random rates (b). The trajectory recorded from
the perpendicular direction gives similar patterns
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slip rings and analyzed. With random motion, the
frequency spectrum of the gravity pro®le is distributed
over a wide range (data not shown). Contrary to this
result, sharp peaks are found for motions with constant
rates.

Because plant materials are rotated at random on the
3-D clinostat, the gravitational force happens to be
unevenly distributed in short-term rotations. Further-
more, because the farthest distance from plant materials
to the rotation center is 220 mm, the maximum centri-
fugal acceleration that can be applied to the materials is
9.8 ´ 10)4 g, which is larger than the smallest threshold
value of graviperception reported in oat roots (Shen-
Miller et al. 1968) even if the plants are placed closer to
the axis in practice and such a situation lasts at most
only for 60 s. To discriminate the events occurring under
a stimulus-free environment from those induced by
gravitational or centrifugal force it is necessary to attach
the plant material in di�erent directions within the same
culture container and ®nd the induced response irre-
spective of direction.

Another problem of random rotation originates from
the stepwise change in rotation rate. The large angular
acceleration which occurs when the rate changes gener-

ates an incompatible torque for the motors and causes
damage to slip rings through structural distortion of the
machinery. At the same time, the mechanical vibration
and a stress are also applied to the plants. This problem
can be solved by inserting a short intermittent phase of
motion between two successive rates. The rotation rate is
gradually changed at this phase to suppress the angular
acceleration below a permissible level. Since vibration is
also generated by the motor, the level of disturbance is
reduced by the use of a ®ve-phase stepping motor with a
harmonic gear with step angle of 0.0072°. As a measure
of the magnitude of the applied stress, the level of
ethylene evolved has been determined. So far, no
substantial increase in ethylene concentration has been
observed either in the gas phase within a culture
container or in the intercellular space of plant materials
(data not shown).

Evaluation of 3-D clinostatting: organ development

E�ect of clinostat rotation on growth and development of
plants. Various plant species have been grown on the
3-D clinostat and the e�ect of clinostat rotation on

Table 1. E�ect of 3-D clinostat rotation on
various growth processes Event Plant material Reference

Not in¯uenced
Rate of germination Lepidium, Pisum, Hoson et al. (1992),

Vigna, Zea, Oryza Yamada et al. (1993),
Adiantum Kasahara et al. (1994)

Development of Lepidium Buchen et al. (1993)
root statocyte

Graviresponse of root Lepidium Hoson et al. (1996)
Rate of organ growth Lepidium,b Pisum, Hoson et al. (1992)

Zea, Oryza
Extensibility of Vigna, Zea Masuda et al. (1994)
the cell walla

Sugar composition Vigna, Zea Hoson et al. (1995)
of the cell walla

Osmotic potential of Pisum Hoson et al. (1993)
the cell sap

Translocation of Pisum Hoson et al. (1993)
sugar

Polar transport of Arabidopsis Oka et al. (1995)
auxin

Growth correlation Lepidium, Pisum, Hoson et al. (1993)
among organs Vigna, Zea, Oryza

In¯uenced
Rate of organ growth Vigna, Lepidium,b Hoson et al. (1992),

Adiantum Yamada et al. (1993),
Kasahara et al. (1994)

Direction of organ Lepidium, Pisum, Hoson et al. (1992, 1995),
growth Vigna, Zea, Oryza Hoson (1994)

Straightness of Lepidium, Pisum, Hoson et al. (1992, 1995),
organ growth Vigna, Zea, Oryza Hoson (1994)

Axiality of seedling Lepidium, Pisum, Hoson et al. (1993)
Vigna, Zea, Oryza

Peg formation Cucumis Takahashi et al. (1995)
Senescence of leaf Avena Miyamoto et al. (1995)

aDi�erences were detected between the convex and the concave sides
bGrowth of Lepidium hypocotyls was either promoted (Yamada et al. 1993) or not in¯u-
enced (Hoson et al. 1992; Yamada et al. 1993) dependent on the condition of clinostat
rotation
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growth processes has been analyzed and compared with
1-g controls (Table 1). The germination rate of seeds of
higher plants or spores of ferns is not in¯uenced by
clinostat rotation (Hoson et al. 1992; Kasahara et al.
1994), as has also been observed in space experiments
(see Halstead and Dutcher 1987). The graviresponse of
clinostatted cress roots was also found to be the same as
that of control roots, when they were placed horizontally
and exposed to the gravity vector (Hoson et al. 1996).
Thus, cress roots rotated on the 3-D clinostat develop
the gravity-sensing mechanism and respond to the
gravity vector.

The growth rate of various organs is usually not
a�ected by clinostat rotation (Hoson et al. 1992), al-
though it can be promoted (Hoson et al. 1992; Yamada
et al. 1993) or suppressed (Kasahara et al. 1994) in some
species under certain conditions. Clinostat rotation does
not in¯uence the osmotic potential of the cell sap (Hoson
et at. 1993) or the mechanical properties of the cell wall
(Masuda et al. 1994), the major factors controlling the
rate of cell elongation. No di�erences have been detected
in growth correlation among di�erent organs between
control and clinostatted seedlings (Hoson et al. 1993). In

addition, clinostat rotation does not in¯uence either the
translocation of sugars from the cotyledons to elongating
internodes (Hoson et al. 1993) or the polar transport of
IAA in in¯orescence stalks (Oka et al. 1995).

On the other hand, the shape of seedlings is changed
by rotation on the 3-D clinostat (Table 1). Roots and
shoots of various species exhibit a spontaneous curva-
ture as well as an altered growth direction (Hoson et al.
1992). As a result, the axiality along the gravity vector
disappears and seedlings form themselves into a sphere-
like shape on the clinostat (Hoson et al. 1993). Peg
formation in Cucurbitaceae plants is also disturbed by
the clinostat rotation. On the clinostat, the proportion of
seedlings without a peg or with two pegs increases
(Takahashi et al. 1995; see also Takahashi 1997, this
vol.). Thus, growth responses directly dependent on the
gravity vector are especially in¯uenced by clinostat
rotation. It has also been reported that the senescence
of excised leaves is stimulated on the 3-D clinostat
(Miyamoto et al. 1995).

Automorphosis. Under a stimulus-free environment,
higher plants show spontaneous growth responses called
``automorphosis'' (Pfe�er 1904). On the 3-D clinostat, in
general, shoots show curvature either towards the seed or
caryopsis (adaxial) or away from the seed or caryopsis
(abaxial) depending on the species and growth condi-
tions, while roots grow in the direction of the tip of
primordia in the early stage of growth and later in a

Fig. 3. Maize seedlings grown in the normal gravitational ®eld or on
the 3-D clinostat. The type of spontaneous curvature and possible
mechanisms involved in the bending on the clinostat are shown in the
diagram. CW Ext, cell wall extensibility; CWPS, cell wall polysac-
charides
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random fashion (Hoson et al. 1992, 1993). Such a
curvature of various plant organs, often called autotropic
reactions or nastic bending, can also be induced by a uni-
axial horizontal rotation (Larsen 1953; Nick and SchaÈ fer
1989; Lorenzi and Perbal 1990). On the uni-axial
clinostat, the automorphic bending is often exaggerated
or suppressed as compared with on the 3-D clinostat
(Hoson et al. 1992, 1996). This di�erence between the
two types of clinostat appears to be caused by the
centrifugal acceleration produced by the horizontal
rotation (Hoson et al. 1996). Plant organs also show
automorphosis in satellite orbit (Volkmann et al. 1986b;
Chapman et al. 1994; Heathcote et al. 1995; Johnsson
et al. 1996).

The spontaneous bending of plant organs observed
under simulated weightlessness is a complex phenome-
non. The details and the mechanism of such a sponta-
neous growth response have been further analyzed in
maize seedlings using the 3-D clinostat (Fig. 3).

On the 3-D clinostat, maize shoots exhibit curvatures
in three di�erent parts: (i) the basal transition zone
connecting roots and mesocotyls, (ii) the coleoptile node
located between mesocotyls and coleoptiles, and (iii) the
elongating region of the coleoptiles (Hoson et al. 1995a).
Even non-clinostatted control shoots show some degree
of curvature away from the caryopsis in the transition
zone, toward the caryopsis in the coleoptile node, and
bending again away from the caryopsis in coleoptiles.
Rotation on the 3-D clinostat strongly stimulates these
curvatures. On the 3-D clinostat, maize roots also exhibit
curvatures in three di�erent parts: (i) the basal region just
protruding from the coleorhiza, (ii) the middle region
between the mature and the elongation zone, and (iii) the
elongation zone, several millimeters from the tip (Hoson
1994). Control roots show some degree of curvature,
which occurs at random without any dorsiventrality.
Bending is most prominent in the basal regions and
appears to be related to circumutations (Fig. 3).

There is no di�erence in the osmotic concentration of
the cell sap between the convex and the concave halves
of any bending region of maize seedlings. However, in
coleoptile nodes and elongating coleoptiles or in the
middle portion of roots, the faster-expanding convex

side exhibits a higher extensibility of the cell wall than
the opposite side, and this appears to be a cause of the
curvature (Hoson 1994; Hoson et al. 1995a). Chemical
analysis of the cell wall constituents and the measure-
ment of enzymic activities in the cell walls has revealed
that either the breakdown or the accumulation of wall
polysaccharides, such as (1 ® 3) (1 ® 4)-b-glucans, is
involved in the curvature of clinostatted coleoptile nodes
and coleoptiles (Hoson et al. 1995b). Similarly, the
extensibility of the cell wall of the convex side is higher
than that of the concave side in gravi-stimulated stems
(Shen-Miller and Masuda 1973; Iwami and Masuda
1974; Bagshaw and Cleland 1990; Cosgrove 1990) and
pulvini (Gibeaut et al. 1990). The metabolism of
b-glucans (Gibeaut et al. 1990) or xyloglucans (Talbott
and Pickard 1994) and the synthesis of cell wall
polysaccharides (Edelmann and Sievers 1995; Montague
1995) also contribute to gravicurvature. Thus, cell wall
changes appear to be the major factor controlling both
the spontaneous and the tropistic curvatures of plant
stems, even if the rate of the former is less than one-tenth
of the latter. These data indicate that the 3-D clinostat is
useful for analyzing not only growth responses of plants
under weightlessness but also the mechanism of gravi-
tropism.

Evaluation of 3-D clinostatting: Lepidium statocytes
and Chara rhizoids as model cells

The reason for choosing these cells is obvious: both cell
types have been structurally and physiologically well
examined on the ground, on slow- and fast-rotating 2-D
clinostats and ± most important ± under microgravity
(Volkmann et al. 1986b, 1991; Volkmann and Sievers
1990; Sievers et al. 1991; LaurinavicÏ ius et al. 1994, 1996).
Thus, results obtained under microgravity could be used
as real controls in this examination.

Lepidium roots. The following criteria have been ana-
lyzed in 24-h-old root statocytes of Lepidium sativum L.
germinated and grown on the 3-D clinostat (Buchen
et al. 1993): (i) cellular organization of the root cap; (ii)
polarity of statocytes; (iii) dislocation of statoliths; (iv)
ER content in statocytes; (v) starch content in amylop-
lasts (statoliths); and (vi) diameter of the lipid bodies.
All criteria are related to structural features of the
gravisensing cells and displacements of organelles/parti-
cles susceptible to gravity. To evaluate the quality of the
3-D clinostat at the molecular and biochemical level,
however, other parameters must be analyzed.

After development and growth for 24 h on the 3-D
clinostat, the external shape and internal structure of the
root cap and the symmetrical organization of four
storeys of statocytes are equal to those of 1-g-and
microgravity-grown roots (Buchen et al. 1993). The
polarity of the statocytes (nucleus proximal, ER complex
distal; Fig. 4, 5b) is expressed as in cress roots grown
during space¯ights (Volkmann et al. 1986a,b; La-
urinavicÏ ius et al. 1996) a phenomenon which is in
principle also shown for other species (Perbal and

Table 2. Morphometric analysis in statocytes (storeys III and IV)
of Lepidium roots. For starch quanti®cation, on at least four
median-to-tangential longitudinal sections of control and clin-
ostatted roots (n = 4 samples each experiment set), the area of
starch grains was measured with a Videoplan (Kontron, MuÈ nchen,
Germany) and is expressed as percent of the area of amyloplasts
(=100%). The length of the ER and the diameter of lipid bodies
(10±15 each experiment set) were measured on three serial sections
(n = 4; see also Buchen et al. 1993)

1-g control
(24 h)

Weightlessness
Spacelab D1
(32 h)

3-D
clinostatting
(24 h)

Starch content 100% 70% 85%
ER content 100% 195% 180%
Lipid bodies
(diameter, lm) 0.1±0.3 <3 2
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Driss-Ecole 1989; Lorenzi and Perbal 1990; Hilaire et al.
1995). Morphometric analyses of the starch content in
the statoliths, the distance of the statoliths from the
lower cell wall, the ER content and the diameter of the
lipid bodies in the statocytes show the general tendency
for a decrease in starch content and an increase in the
other parameters (Table 2). This is in agreement with
®ndings under microgravity conditions (Volkmann et al.
1986b; Volkmann and Sievers 1990; LaurinavicÏ ius et al.
1996) although the values might slightly di�er in
independent experiments due to natural variations and
di�erences in seedling age. The tendency for reduced
starch content also occurs in other species investigated in
space (Johnson and Tibbits 1968: Capsicum; Alijyev et al.
1987: Pisum; Moore et al. 1987, Moore 1990a: Zea;
Moore 1990b: Brassica; Brown and Piastuch 1994:
Glycine; LaurinavicÏ ius et al. 1994: Arabidopsis; Tripathy
et al. 1996: Triticum).

Following the experimental schedule of Hensel and
Sievers (1980, 1981), a crucial test for validating the 3-D
clinostat has been performed: the cellular integrity of
statocytes grown for 24 h under 1 g in normal vertical
orientation and then for 20 h on the slow-rotating uni-
axial clinostat has been compared with that of statocytes
rotated on the 3-D clinostat. In contrast to results
obtained using the horizontal clinostat (2 rpm; Hensel
and Sievers 1980, 1981), rotation on the 3-D clinostat
does not induce self-destruction of the statocytes and
neither autophagosomes nor destruction of cell organelles
and cell walls have been observed (Fig. 5). The conclusion
is evident: chronic dynamic overstimulation produced by

the slow-rotating uni-axial clinostat is avoided and thus
the 3-D clinostat operates in favour of a stimulus-free
situation.

Chara rhizoid. The Chara rhizoid as model for studies of
gravitropism in unicellular systems (Sievers et al. 1996;
see Braun 1997, this issue) has been rotated on the 3-D
clinostat and cell polarity and dislocation of statoliths
have been compared with results obtained under micro-
gravity (Sievers et al. 1991; Volkmann et al. 1991) and
on uni-axial clinostats (Cai et al. 1997).

Tip growth and typical polar organization of the
rhizoid (see Braun 1997, this issue) is maintained when
growth continues on the 3-D clinostat. This corresponds
to results from experiments under microgravity
(TEXUS: Volkmann et al. 1991; Spacelab IML-2: Braun
et al. 1996). After 6 min in both authentic microgravity
and under simulated weightlessness on the 3-D clinostat
the statoliths are basipetally displaced (Fig. 6). The
pattern of statolith distribution is similar to that found
after short-term (TEXUS, 6 min: Volkmann et al. 1991)
and long-term periods of microgravity (IML-2, 30 h:
data not shown) and within the range of natural
variation. So far, only the static end points of the
basipetal displacement have been analyzed in ®xed
rhizoids, since no in-vivo videomicroscopic observation
has been performed on the 3-D clinostat. Therefore, the
kinetics of the basipetal displacement of the statoliths
have not yet been followed.

A basipetal dislocation of statoliths has also been
described on slow- and fast-rotating uni-axial clinostats

Fig. 4a,b. Statocytes of 24-h-
old Lepidium roots (storey III)
grown on the 3-D clinostat (a)
and under microgravity condi-
tions during the D1 mission (b;
from Volkmann et al. 1986a). A,
amyloplasts; ER, endoplasmic
reticulum; N, nucleus. X 5800
(a), 4200 (b); bars = 1 lm
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(Cai et al. 1997). The movement of statoliths shows a
time-dependent rapid adaptation of the cell to changes
in gravity conditions and an acropetal retransport of
statoliths. Thus, di�erent patterns of statolith distribu-
tion are visible, e.g. after 45 or 120 min of rotation on
the fast-rotating uni-axial clinostat (Cai et al. 1997).

Basically, it holds true for all conditions ± micrograv-
ity, simulated weightlessness on slow- and fast-rotating
uni-axial as well as 3-D clinostats ± that the statoliths are
basipetally dislocated within a short time (as fast as
6 min). These ®rst studies of Chara rhizoids on the 3-D
clinostat also con®rm that this clinostat is a valuable
device for simulating weightlessness. However, in-vivo
videomicroscopy on the 3-D clinostat is especially neces-
sary for more-detailed studies.

Concluding remarks on the usefullness of the 3-D
clinostat in simulating weightlessness

Looking back at 30 years of research in plant biology
in space, we become aware that the role of space
experiments has still been con®ned to examining and
supplementing the results obtained by weightlessness
simulation experiments on Earth. Arguments against
the use of clinostats ± regardless of the type ± are
numerous. Clinostat experiments clearly demonstrate
that care is necessary when reaching conclusions on
microgravity e�ects. However, much valuable and
already long-known information, as well as inputs for
space experiments, would never have been obtained
without clinostat experiments. For example, the ques-
tion of the perception time was investigated years ago by

Fig. 5a,b. Statocytes of Le-
pidium roots grown for 24 h in
normal vertical orientation and
then for 20 h on a slow-rotating
clinostat at 2 rpm (a, from
Hensel and Sievers 1980) and on
the 3-D clinostat (b). Cell in-
tegrity and polarity is main-
tained after 3-D clinostatting,
contrary to 2-D clinostatting at
2 rpm. Symbols as in Fig. 4;
arrowheads, remains of cell
walls. ´ 5000; bars = 1 lm
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clinostatting of plants. The range of stimulus duration
deduced from these experiments has been taken as
indicator for experimental schedules performed in space
(see Perbal et al. 1997, this issue). It is necessary to
choose the weightlessness simulator that is the most
suitable for the purpose of the study and for the plant
material to be studied. Clinostat experiments will be
needed to propose and plan rare but crucial space
experiments as long as no space station allows long-term
experiments or scientists to work in space.

The 3-D clinostat has been proven as a most useful
device to simulate weightlessness and is preferable to
slow- or fast-rotating uni-axial clinostats: the size of the
object and the orientation within the clinostat axis is not
as critical as on the uni-axial clinostats. Some processes
in plant growth, such as morphogenesis, have been
examined in detail using the 3-D clinostat. The structural
parameters so far analyzed and compared with results
from microgravity experiments demonstrate the validity
of the 3-D clinostat.

On a biochemical and molecular level, however,
stress-related e�ects of clinostatting might nevertheless
occur: this has to be critically checked in future. In
addition, if objects are big (e.g. whole plants, stems), the
3-D clinostat is unlikely to simulate weightlessness in a
realistic way. It is always important and indispensible to
have key data from experiments in space: these are the
real controls. They are needed because of the divergence
in plant sensitivity and responsiveness to gravity re¯ect-
ing evolutionary and ecological adaptations. Experi-
ments proposed for space¯ights, however, should be ®rst
performed using clinostats with emphasis on the use of
the 3-D clinostat in order to minimize the physical
problems. The data should be used to focus on basic
experiments in space. Missing data from space¯ight
experiments could be obtained by using clinostats [for
example, with the slow-rotating centrifuge microscope
(NIZEMI) on spacelab IML-2, only two experiments on
the threshold value in Chara rhizoids have been
performed; to obtain a more accurate value, additional

intermediate experiments are necessary]. Moreover,
statistical analyses might be done by using clinostat
data. Use of the 3-D clinostat might be made more
e�ective by combining the clinostat with other simula-
tors, for instance, by loading it on airplanes for
parabolic ¯ight experiments, and by improving the
machinery of the clinostat further. Experiments to solve
old questions in sensory biology, e.g. on stimulus-
summation (``memory''), should be performed ®rst on
clinostats before space experiments are done in order to
justify the expensive work in microgravity. However,
control and key experiments in space are needed in
addition to experiments on clinostats.
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