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Abstract. Two behavioral goals are achieved simulta-
neously during forward trunk bending in humans: the
bending movement per se and equilibrium maintenance.
The objective of the present study was to understand
how the two goals are achieved by using a biomechan-
ical model of this task. Since keeping the center of
pressure inside the support area is a crucial condition for
equilibrium maintenance during the movement, we
decided to model an extreme case, called “optimal
bending”, in which the movement is performed without
any center of pressure displacement at all, as if standing
on an extremely narrow support. The “optimal bend-
ing” is used as a reference in the analysis of experimental
data in a companion paper. The study is based on a
three-joint (ankle, knee, and hip) model of the human
body and is performed in terms of “‘eigenmovements”,
i.e., the movements along eigenvectors of the motion
equation. They are termed “ankle”, “hip”, and “knee”
eigenmovements according to the dominant joint that
provides the largest contribution to the corresponding
eigenmovement. The advantage of the eigenmovement
approach is the presentation of the coupled system of
dynamic equations in the form of three independent
motion equations. Each of these equations is equivalent
to the motion equation for an inverted pendulum.
Optimal bending is constructed as a superposition of
two (hip and ankle) eigenmovements. The hip eigen-
movement contributes the most to the movement
kinematics, whereas the contributions of both eigen-
movements into the movement dynamics are compara-
ble. The ankle eigenmovement moves the center of
gravity forward and compensates for the backward
center of gravity shift that is provoked by trunk bending
as a result of dynamic interactions between body
segments. An important characteristic of the optimal
bending is the timing of the onset of each eigenmove-
ment: the ankle eigenmovement onset precedes that of
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the hip eigenmovement. Without an earlier onset of the
ankle eigenmovement, forward bending on the extreme-
ly narrow support results in falling backward. This
modeling approach suggests that during trunk bending,
two motion units — the hip and ankle eigenmovements —
are responsible for the movement and for equilibrium
maintenance, respectively.

1 Introduction

Maintenance of dynamic equilibrium requires efficient
control strategies to master the many degrees of freedom
in order to achieve the whole body stabilization. This is
particularly evident for humans performing movements
while standing. Raising an arm or bending the trunk
cause dynamic interactions between segments which, in
absence of adequate compensations, would result
in falling (Ramos and Stark 1990) or in marked changes
in the body geometry (Eng et al. 1992). How the control
exerted by the central nervous system (CNS) is orga-
nized in order to perform the movement and maintain
equilibrium is still a matter of discussion. There are two
main theories for explaining how the central control for
coordinating these two tasks is organized. One of the
theories suggests that the CNS controls the movement
and equilibrium maintenance as a single process. This
could be performed according to two main hypotheses.
A first one is represented by the equilibrium point model
and the second one by the inverse dynamic model. In the
equilibrium point model (Bizzi et al. 1992; Latash 1993;
Feldman and Levin 1995), the CNS controls only
equilibrium body states. Transition from initial to final
posture (i.e., the movement) is provoked by a single
central signal which defines a new final body configura-
tion (Feldman and Levin 1995). This model suggests
that dynamic interaction between segments is automat-
ically compensated due to the viscoelastic properties of
the neuromuscular apparatus and that the CNS does
not have to take into account these interactions in the
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movement control. In contrast with this view, in the
inverse dynamic model the expected coupling torques
are calculated explicitly and activation patterns for
individual muscles are generated to compensate in
advance for the expected perturbations (Kawato et al.
1987). In this case, the central command predicts all
forthcoming posture perturbations and therefore does
not need posture corrections. In spite of the differences
in the central command generation, both these models
treat the movement and equilibrium maintenance as a
single process. A second theory proposes two parallel
independent controls of the two movement components:
prime (focal) and associated (postural) movements (for
review see Massion 1992). The prime movement serves
the main behavioral goal whereas the associated move-
ment counteracts dynamic posture perturbations pro-
duced by the prime movement. Usually, the associated
movement precedes the voluntary prime movement. This
implies that the associated movement is pre-pro-
grammed and could be considered as an integral part
of a central motor program (Bouisset and Zattara 1987).

Fast human trunk bending in the sagittal plane seems
to be a good behavioral model to reveal the rules of
coordination between movement and posture, because
in this movement such coordination is especially im-
portant. The fast displacement of the heavy trunk pro-
duces a large equilibrium disturbance while the support
is limited by the relatively small feet size. During the
performance of the task, the center of pressure (CP) as
well as the center of gravity (CG) are kept within safety
margins along the anteroposterior axis. Axial synergies,
i.e., opposite displacements of the upper and lower body
segments, have been thought as responsible for the
minimization of the CG shift (Babinski 1899). In a
previous paper, using a prinicipal component kinematic
analysis of these axial synergies (Alexandrov et al.
1998), it was proposed that a single central control is
applied to the various joints of the kinematic chain,
ensuring both the trunk movement and the equilibrium
maintenance. This work was in favor of the equilibrium
point hypothesis as proposed by Feldman and Levin
(1995). However, the conclusion was reached by using
an analysis restricted to the kinematics. It did not ex-
plain how the complex dynamic interactions between
segments were compensated during trunk bending and
how the CNS was actively involved in this compensa-
tion. In particular, the pure kinematic analysis did not
explain the electromyographic (EMG) pattern observed
in forward upper trunk bending. The bending is usually
preceded by an activation of tibialis anterior and/or an
inhibition of the soleus (Oddsson and Thorstensson
1986, 1987, 1990; Crenna et al. 1987, 1988; Pedotti et al.
1989). The EMG pattern at the ankle joint has been
interpreted as being related to an associated movement
aimed to compensate in advance for equilibrium dis-
turbance provoked by the forthcoming hip flexion,
considered a prime movement (Oddsson and Thor-
stensson 1986). However, this early ankle muscle activity
cannot be considered as compensatory for the forth-
coming posture perturbation due to hip flexion per se,
because such activity provokes CG displacement in the

same (forward) direction as hip flexion. A more thor-
ough analysis is therefore required to understand how
prime and associated movements are coordinated in the
trunk forward bending.

In the present study we propose a biomechanical
analysis of kinematic as well as dynamic aspects of trunk
bending movement in order to better understand the
mechanisms of coordination between movement and
posture in this task. In a first step, which is developed
in the present paper, we propose an analysis based on
computer simulations. Since keeping the CP and the
projection of the CG inside the support area is essential
for equilibrium, we model a trunk bending movement
where one or the other of these two reference values are
kept constant during the whole movement. Thus, from a
biomechanical point of view, two “ideal” trunk bending
movements were modeled, a movement with complete
stabilization either of the CG (Bouisset and Zattara
1987; Massion 1992; Massion et al. 1997; Domen et al.
1999) or a movement with complete stabilization of the
CP (Do and Gilles 1992). The main goal of the present
study is to describe the biomechanical peculiarities of
both these ‘““ideal” movements.

The analysis is based on a three-joint (ankle, knee,
and hip) biomechanical model of the human body (Barin
1989; Yang et al. 1990; Kuo and Zajac 1993). It is car-
ried out in the linear approximation which allows
decomposition of the movement into three “eigenmov-
ements’’ along the eigenvectors of the motion equation.
Each eigenmovement is a multijoint movement involving
the hip, knee, and ankle joints. By definition, in eigen-
movement (in contrast to any other movement) the lin-
ear relationship between the joint angles is accompanied
by a linear relationship between joint torques. Each ei-
genmovement appears to have a dominant joint (ankle,
hip, or knee) which contributes the most to eigenmov-
ement kinematics and dynamics, and therefore they are
termed in this study “ankle” (A), “hip” (H), and “knee”
(K) eigenmovements. It is shown that in both “ideal”
movements, H-eigenmovement alone almost completely
describes the whole movement kinematics. For the
movement dynamics, two eigenmovements (A and H)
are important. The eigenmovement approach allows to
split the coupled system of dynamic equations into in-
dependent equations and therefore to construct the de-
sired “‘ideal” movements in the easiest way. Particularly,
it avoids tedious calculations of joint torques which
ensure forward trunk bending without any CG or CP
displacements.

It will be shown that reducing the CG displacement to
zero requires large CP displacements which are not
compatible with experimental data. Therefore, the most
detailed analyses relate to the second ideal movement,
i.e., bending without CP displacement. This bending is
termed below as “optimal” one because in principle it
can be performed without equilibrium loss while stand-
ing on an extremely narrow support. Neither biome-
chanical peculiarities of such bending nor even its
theoretical possibility are obvious. As it will be shown,
this movement is possible but it requires very precise
coordination between internal muscle forces and exter-



nal gravitational forces. In particular, the movement has
to start with a forward CG acceleration in A-eigen-
movement which compensates in advance for the
forthcoming backward CG displacement in H-eigen-
movement.

This coordination between H- and A-eigenmove-
ments leads us to the suggestion that these eigenmove-
ments are the prime and the postural movement
components, respectively. First, as a prime movement,
the H-eigenmovement almost completely describes the
movement kinematics. Second, this eigenmovement is
accompanied by a backward CG displacement which
requires a compensation by the postural movement
component (A-eigenmovement) producing a forward
CG shift. The results of the biomechanical modeling are
in line with the observed EMG pattern mentioned
above.

In Alexandrov et al. (2001) this suggestion is con-
sidered further. In particular, it is shown that the pe-
culiarities of the hypothetical bending on the extremely
narrow support described here are illustrative of the
experimental bending performed on a support of small
but finite size.

2 Biomechanical model of forward trunk bending

In the present study, human dynamics in the sagittal
plane are represented as an open-chain three-link
inverted pendulum (Barin 1989; Yang et al. 1990; Kuo
and Zajac 1993), placed on a triangular foot (Gurfinkel
1973). As shown in Fig. 1, the foot is assumed to be
motionless with respect to the support. Body segments
are assumed to be thin rigid links rotating about three
ideal pin joints — hip, ankle, and knee — with a torque
actuator at each joint.

The motion equation of a three-rigid-link system
under the gravity force is:

C(p)p —D(@)p +A(p,p) =T (1)

where ¢ is the vector of hip, knee, and ankle joint angles,
and T is the vector of joint torques. In vectors ¢ and T

A-eigenmovement H-eigenmovement
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the first component relates to the ankle, the second to
the knee, and the third to the hip. C and D are inertia
and gravitational matrices, and vector A defines cen-
tripetal and Coriolis forces.

To specify the elements of matrices C and D and the
components of vector A (Appendix A), one needs to
know four anthropometric parameters of each of the
three body segments: the length, mass, and location of
the centers of mass with respect to the distal end, and the
moment of inertia with respect to the center of mass.

The most complete and transparent analysis of the
motion equation (1) can be carried out in the linear ap-
proximation (Barin 1989). Equation (1) can be linearized
with high precision up to the trunk bending of 60° (Ap-
pendix B). In the linear approximation it takes the form

Cop—Dp=T (2)

where, in contrast to (1), inertia matrix C and gravita-
tional matrix D are angle independent (Appendix A).
The linear approach allows decomposition of any three-
joint movement into three components (‘‘eigenmove-
ments’’), each one representing a movement along one of
the three eigenvectors w; of the linear motion equation
(2), which are defined by

CW,’ = },,'DWI' (3)

where A; are corresponding eigenvalues. Subscripts
i = A,HK correspond to the dominant component
(of ankle, hip, or knee joints) in each eigenvector; see
(10).

The presentation of the movement in terms of ei-
genmovements implies the transformation of the vector
of joint angles ¢(¢) into the vector of eigenmovement
“kinematic scaling amplitudes” &(z):

p(1) = W) (4)

where columns of matrix W are eigenvectors w; and each
component of vector £(¢) defines the time course of the
movement along each eigenvector (eigenmovement).
The “dynamic scaling amplitude #; of each eigen-
movement is calculated by inserting (4) into (2). Taking

K-eigenmovement

Fig. 1. Three-link model of the human
body. Joint angles in the ankle, knee,
and hip are represented by @A, oK,
and @py. Three stick diagrams repre-
sent kinematic patterns described by
ankle (A), hip(H), and knee (K)
eigenvectors shown in (10)
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into account (3), one obtains three independent dynamic
equations for each eigenmovement:

—iiéi +&=mn (5)

and the vector of joint torques T is defined by the vector
of dynamic scaling amplitudes # according to

T(1) = Un(r) (6)

where matrix U = —DW defines the contribution of each
eigenmovement to the total joint torques.

The advantage of the analysis of the motion equation
in terms of eigenmovements is the splitting of the cou-
pled dynamic equation (2) into three simple independent
motion equations (5). Each of these equations is equiv-
alent to the motion equation for an inverted pendulum
with inertia 4;. As a consequence (Appendix C), it is
possible to calculate the resulting CP and CG positions —
X6 and X P - in each eigenmovement in which their
relationship takes a simple form:

—(Ai+h/g)X O + X6 = xF (7)

where / is the distance between the ankle joint and the
support (feet height, Fig. 1) and g¢g is the gravity
acceleration. In the simulations, the distance 4 for a
“standard human” was taken to be 5 cm.

Equation (7) is the basis for the analysis of the trunk
bending carried out in the present study. The respective
changes in CP and CG positions, which are of special
importance for equilibrium maintenance, will be ana-
lyzed. The relationship between X S and the corre-
sponding kinematic scaling amplitude ¢&; is

X0 = b (®)

where coefficients b; are defined by human anthropo-
metric parameters (Appendix C).

For a “standard human” of 70-kg body mass and
170-cm height, with standardized anthropometric pa-
rameters of the body segments (Winter 1990), the solu-
tion of (3) gives the following eigenvalues for A-, H- and
K-eigenmovements:

Ja =0.108s%, Ay =0.020s%, ix = 0.0021s> 9)

the following eigenvectors (columns of matrix W in
Eq. 4):

—0.94 —0.24 —0.33
wa = | —0.09 |, wyg = 0.06 |, wg = 0.80
-0.32 0.97 -0.52
(10)
and the following columns of matrix U in (6):
668.4 32.1 6.3
upy = | 3825 |, ug=| —414 |, ug = | —96.0
143.1 —83.4 7.7
(11)

Vectors w; and w;(i = A,H,K) in (10) and (11) are
ordered by the increasing eigenvalue 4; (eigenmovement
inertia). The components of these vectors (the relative
weights of each joint in a given eigenmovement)
correspond to the ankle, knee, and hip joints from top
to bottom. The three eigenmovements are termed A-, H-
and K-eigenmovements according to the joint which has
the largest component in eigenvectors w; and in vectors
u;, and thus contributes the most to the eigenmovement
kinematics (w;) as well as dynamics (u;).

The coefficients b;(i = A,K,H) in (8) defining the
displacement of the CG as a function of the kinematic
scaling amplitude ¢; in each eigenmovement are the
following:

bpn = 1.636 cm/deg, by = 0.079 cm/deg,
bk = 0.015 cm/deg (12)

The kinematic pattern of A-eigenmovement (given by
eigenvector wy) is close to the whole body rotation
around the ankle joint (Fig. 1, left). The kinematic
pattern of H-eigenmovement (wy) is close to the forward
trunk bending which is accompanied by opposite
displacements of upper and lower segments (Fig. 1,
middle). The kinematic pattern of K-eigenmovement
(wg) is close to a sitting down movement with knee
flexion and an almost vertical translational movement of
the trunk segment (Fig. 1, right).

Figure 2 illustrates the relationships between CG and
CP displacements and the corresponding scaling ampli-
tudes &; in the eigenmovements with a “typical” bell-
shaped CG velocity profile

X (1) = VF((2(t = 10) /7 = 1)°) (13)

where V, ty, and 1 are the peak velocity, the onset, and
the duration of CG displacement in the eigenmovement,
respectively, and F(y) is a bell-shaped function given by
a polynomial of fourth order so that

4
F(y)=1+ Za,»yi for
P

V<1,

F(y)=0 for|y|>1.

Coefficients a; are chosen as a; = —2.6,a; = 5.2,
a3y = —3.6,a4 = 1 to fit the velocity time profile during
experimental trunk bending. Under the given parame-
ters, the CG shift amounts to AXCC = 0.51 V't, which
corresponds to the values of experimental bending (see
Alexandrov et al. 2001).

In each eigenmovement shown in Fig. 2, the CG shift
amplitude onset and duration were taken AX®S =1 cm,
to = 0 and 7 = 500 ms. The initial CP shift is first di-
rected backward and exerts a forward CG acceleration,
thus in a direction opposite to CP shift (Fig. 2A).
Thereafter the CP moves forward and goes beyond the
CG, which is decelerated. Since the inertia of the
A-eigenmovement is the highest, the CP excursion in this
eigenmovement is the largest (6.5 cm). By contrast, in
K-eigenmovement with the lowest inertia, the CP
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Kinematic scaling amplitudes

/

Fig. 2A,B. Center of pressure
(CP) displacement and eigen-
movement amplitude which
produce a forward center of
gravity (CG) displacement of
1 cm for 500 ms movement are
A represented for A-, H- and K-
eigenmovements: A thick line:

N
T

e

250 ms

excursion is the smallest (1.2 cm), and the CP time
course is similar to that of the CG. At the first sight K-
eigenmovement seems to be the most efficient in equi-
librium regulation, because a smaller size of support is
required to produce a given CG displacement. However,
according to (12), the CG displacement in K-eigen-
movement is accompanied by the largest movement
amplitude. For example a CG shift of 1 cm corresponds
(Fig. 2B) to a movement of 65° in K-eigenmovement
(52° of knee flexion) and only to 0.61° in A-eigenmov-
ement (0.58° of ankle flexion). Thus, A-eigenmovement
is the most efficient at producing slow and large CG
shifts, and K-eigenmovement is the most efficient to
produce fast and small CG shifts.

In the experimental forward bending, the amplitude
of K-eigenmovement is small and the mean CG dis-
placement in K-eigenmovement amounted only to
0.1 cm, whereas in A- and H- eigenmovements it
amounted to 4.9 cm and 4.5 cm, respectively (see Alex-
androv et al. 2001). Thus the contribution of K-eigen-
movement to equilibrium maintenance during human
forward bending appeared to be negligible. Taking this
into account, we ignore the K-eigenmovement in the
modeling described in the following section.

3 “Ideal” trunk bending movements

In Sect. 2 we identified during forward trunk bending
three linear biomechanical synergies (eigenmovements),
each one involving ankle, knee, and hip joints, and we
illustrated their potential contributions to the control of
CG. Since the contribution of the K-eigenmovement is
negligible, the aim of this part of the modeling is to see
how the coordination between the H- and A-eigenmov-
ements provides for different patterns of CP and CG
displacements. For this purpose, we simulate two
extreme conditions: (1) trunk bending without CG

CG displacement, thin lines: CP
displacements in corresponding
eigenmovements; B kinematic
scaling amplitudes (time courses
&i(2), see text) of the corre-
sponding eigenmovements

displacement, and (2) trunk bending without CP dis-
placement. The idea of the modeling procedure is as
follows. First we take a bending movement described by
an H-eigenvector (Fig. 1, middle) with a ‘“‘typical”
velocity profile (13). Then we “add” an A-eigenmove-
ment with proper parameters (Fig. 1, left) to this
movement in order to compensate for either CG or CP
displacements induced by the chosen H-eigenmovement.
In both “ideal” movements, the CG shift in A-eigen-
movement is equal by absolute value to that in H-
eigenmovement. Since coefficient b is about 20 times
larger than by (see Eq. 12), then according to (8) the
amplitudes of A-eigenmovement in both “ideal” move-
ments are about 20 times smaller than those of H-
eigenmovement. This means that more than 95% of the
angular variance in these movements is explained by H-
eigenmovement.

Let the CG displacement in H-eigenmovement have a
“typical” bell-shaped velocity profile given by (13)
where, according to experimental data (see Alexandrov
et al. 2001), ty = 510 ms, fn = 390 ms, and AXSC =
4.5 cm. The “typical” CG movement in forward trunk
bending performed along H-eigenvector wy is shown in
Fig. 3A (left, thick line) as calculated by (13).

3.1 Bending without CG displacement

Let us first consider the bending without any CG
displacement. The initial zero positions X C(0) =0,
XCP(0) =0(i = A,H) of the CG and the CP for both
eigenmovements are assumed to correspond to initial
vertical standing with the ankle joint at zero position. To
compensate for the CG displacement in H-eigenmove-
ment, the A-eigenmovement must provide the opposite
CG displacement: X6 = —X56. Displacements of the
CP in H- and A-eigenmovements are calculated by using
(7). They are shown in Fig. 3A along with correspond-
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CP and CG displacements

H-eigenmovement A-eigenmovement Total

T
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!
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500 ms

10 cm

Fig. 3A-C. Displacements of CP (thin lines) and CG (thick lines) in
three types of simulated bendings. Total displacements (right) are
decomposed into corresponding displacements in H-eigenmovements
(left) and A-eigenmovements (middle). The stick diagrams illustrate
eigenmovement kinematic patterns. The knee joint and K-eigenmov-
ement are not shown due to their weak contribution into human
forward bending: A movement without CG displacement, B, C
movement without CP displacement (B with and C without anticipa-
tory forward CG displacement in A-eigenmovement). Note that in C
the subject falls backward. Vertical bars in all graphics indicate onsets
and offsets of H-eigenmovement. The H-eigenmovement was taken to
be the same for all three (A, B, and C) types of bendings

ing CG displacements. Since the inertia of A-eigenmov-
ement is much higher than that of H-eigenmovement,
CP excursion in A-eigenmovement is much larger.
Consequently, the total CP excursion amounts to
17.6 cm. This value is more than double the experimen-
tally observed values (7.8 cm average, see Alexandrov
et al. 2001). Thus, trunk bending in which the CG
displacement is completely eliminated does not corre-
spond to the actual performance as revealed by the
analysis of the experimental data.

3.2 Bending without CP displacement (optimal bending)

Such movement could be performed, in principle, while
standing on an extremely narrow support. Let the CG

displacement in H-eigenmovement again be described by
(13) with the previous values of ty, fyy, AXHG and with the
same initial zero position X5¢(0) =0. Fig. 3B (left)
shows the same CG (thick line) and CP (thin line)
displacements in H-eigenmovement, as in Fig. 3A (left).
To compensate for the CP displacement in H-eigenmov-
ement, the A-eigenmovement must have the same but
opposite CP time course X<© = —X5" (Fig. 3B, middle,
thin line). Then, XY can be found by solving (7)
under boundary condltlons X{6(—00) = X{6(+00) =
0, which again correspond to vertical standing in the
initial and final positions. Figure 3B (middle, thick line)
shows the calculated CG displacement in A-eigenmove-
ment (middle). Figure 3B (right, thick line) shows the total
CG displacement. The total CG excursion amounts to
2.0 cmin spite of the absence of CP displacement (Fig. 3B,
right, thin line).

Figure 3B (middle) shows that during bending with-
out CP displacement, the A-eigenmovement starts ear-
lier and stops later than the H-eigenmovement (vertical
bars indicate the onset and offset of H-eigenmovement).
The bending consists of three phases. During the initial
(before the left bar) and final (after the right bar) phases,
only the A-eigenmovement is present, whereas during
the middle phase both eigenmovements are superim-
posed. In the initial phase, the subject is “passively”
falling forward under the gravity forces like an inverted
pendulum. The movement initiation along eigenvector
wp implies the existence of three infinitesimal initial joint
torques with intertorque ratios defined by vector uy in
(12). These torques do not affect to movement kine-
matics except to define the beginning of the movement.
In the initial phase, the CG is located in front of the CP
(the latter being always at the initial zero position) and
slowly increases its velocity due to the forward directed
support reaction force. During the middle phase
(Fig. 3B, between bars), the initial forward CG dis-
placement in A-eigenmovement is transiently reversed
due to a backward CG displacement in H-eigenmove-
ment (Fig. 3B, left, thick line). Consequently, the total
CG is now located behind the extremely narrow support
(Fig. 3B, right, thick line between bars) but continues
moving forward due to the persisting A-eigenmovement
velocity. In the final phase, this residual forward velocity
is reduced to zero by the support reaction force braking
the CG (which in this phase is located behind the CP). In
this phase A-eigenmovement is similar to the movement
of an inverted pendulum returning to the initial unstable
equilibrium position.

It is noteworthy that in order to produce bending
without CP displacement, a very precise coordination
between A- and H-eigenmovements is required. This
coordination is achieved by a finely tuned balance be-
tween internal muscle forces and external gravitational
forces. The aim is to provide an appropriate time
course of the horizontal component of the support re-
action force. A precise time for the onset of the prime
H-eigenmovement (left bars in Fig. 3B) must be chosen
to ensure that CG forward acceleration is already suf-
ficient to compensate for the forthcoming backward
movement along the H-eigenvector. Similarly, the offset



of the H-eigenmovement (right bars in Fig. 3B) must
stop exactly at the time when the CG is already pos-
terior to the extremely narrow support, and the amount
of residual forward CG velocity is just enough to return
the CG to the zero position. Evidently, such finely
tuned coordination between A- and H-eigenmovements
is not expected in real human bending performed on a
finite, though relatively small support. On the finite
support however, the subject has an additional possi-
bility for the control of CG movement: to use ankle
joint torque for the CP displacements within the limits
of the support.

Note that the results obtained for the total CG dis-
placement in the “optimal” bending are valid only for
the “typical” time profile of bending given by (13). Ev-
idently, some changes in the time profile of the bending
movement would result in some changes of the total CG
displacement. But qualitatively the results would not
change. For example, for the bending with the same
amplitude and duration as in the “typical” case, but with
a triangle velocity profile, the calculated total CG tra-
jectory is indistinguishable from the trace shown in
Fig. 3B.

To be sure that the obtained results were not the
consequence of linearization of the motion equation,
joint angles were subsequently calculated by direct
solving the nonlinear motion equation (1). The joint
torques were the same as those used in the linear case.
The maximal difference between nonlinear and linear
solutions amounted to 0.45° (5% of the excursion) for
the ankle, 0.4° (7%) for the knee, and 3.7° (8%) for the
hip joint angles. The difference between ‘linear” and
“nonlinear” CG positions did not exceed 0.07 cm and
the general pattern of movement was the same.

The following simulation proves that successful for-
ward bending without CP displacement is possible only
under the condition that forward CG acceleration pre-
cedes bending per se. Let H-eigenmovement (Fig. 3C,
left) be the same as in Fig. 3A and B (left), and let us
suppose that forward CG displacement X{C in A-ei-
genmovement starts from its equilibrium zero value at
the same time 7y as in H-eigenmovement. To provide
the absence of the total CP displacement, CG dis-
placement in A-eigenmovement must again satisfy (7),
but now with the initial conditions X{Y(#y) =0 and
XY (ty) = 0. The solution of (7) under these conditions
is presented in Fig. 3C (middle). The early backward
CP displacement (thin line) in A-eigenmovement pro-
vides a small forward CG displacement in this eigen-
movement (thick line). But the latter — due to large
inertia of A-eigenmovement — is too small to
compensate for the backward CG displacement in H-
eigenmovement (Fig. 3C, left, thick line). The under-
compensation results in backward falling (Fig. 3C,
right, thick line). Thus, forward CG acceleration due to
A-eigenmovement, when occuring at the onset of H-
eigenmovement, does not prevent backward falling
during forward trunk bending on the extremely narrow
support. The forward bending while standing on an
extremely narrow support therefore can only be suc-
cessful if forward CG acceleration provided by A-ei-
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genmovement precedes the onset of H-eigenmovement
as in Fig. 3B (middle).

This result is consistent with the simulation results of
Ramos and Stark (1990), in spite of the fact that their
study was carried out in the frame of a two-joint (hip
and ankle) nonlinear model. The reasons are the fol-
lowing. First, the general character of the movement
(falling from the beam) in our linear simulation is de-
termined at the initial stage of the movement when
nonlinear effects are evidently negligible. Second, in our
simulation the movement in the knee joint is small and
thus cannot drastically affect the kinematic pattern.

4 Discussion

Two behavioral goals are achieved simultaneously during
upper trunk bending: the bending per se and equilibrium
maintenance. The question raised in this paper is how
these two goals are reached. In order to have an insight
into the movement organization, we used a biomechan-
ical modeling of the performance. The equilibrium can be
maintained only if the CP is kept inside the relatively
small support area defined by the size of the foot. To
clarify the movement strategy from a biomechanical
point of view, we simulated a hypothetical “optimal”
bending in which the equilibrium constraint is maximal.
We analyzed how the bending could be performed on an
extremely narrow support, if CP does not move.

The human body is represented as three rigid links
rotating around three joints (ankle, knee, and hip) in the
sagittal plane. In a linear approximation, which was
shown to be valid for the bending up to 50-60°, the
movement is decomposed into three eigenmovements
which correspond to three eigenvectors of the motion
equation. Each eigenmovement includes a contribution
of ankle, knee and hip joints. The main advantage of the
eigenmovement approach is the splitting of a coupled
system of dynamic equations into independent equations
for separate eigenmovements. Each equation is similar
to the motion equation for an inverted pendulum. The
additional advantage of this approach is the possibility
to exclude the K-eigenmovement from the biomechani-
cal analysis because its effect on equilibrium mainte-
nance during forward bending is negligible. The
three-dimensional system can therefore be reduced to a
two-dimensional system (ankle and hip eigenmove-
ments). The analysis in terms of eigenmovements
appeared to be demonstrative because the two remaining
eigenmovements substantially differ in their inertias: the
inertia of A-eigenmovement is five times greater than
that of H-eigenmovement. Therefore, the CP excursions
required to produce a given CG displacement in these
eigenmovements are clearly different (Fig. 2) and the
contribution of each eigenmovement to the total CP
displacement can be easily separated.

The optimal bending is constructed as a reference for
analysis of experimentally observed bending (see Alex-
androv et al. 2001). The zero CP displacement in the
optimal bending is considered as a limit case of the small
displacement observed in the actual bending (Oddsson



432

and Thorstensson 1986; Crenna et al. 1987; Alexandrov
et al. 1998). As shown, on an infinitively small support,
the initial anticipatory acceleration of CG in the hypo-
thetical optimal bending is achieved by passive falling
under the gravity force. The fall is similar to the move-
ment of an inverted pendulum moving away from the
unstable equilibrium. The initial loss of equilibrium is
compensated thereafter by the low-inertia H-eigenmov-
ement which is responsible for the trunk bending, and
provokes a backward CG displacement (Fig. 3). The
initial forward bending cannot be provoked by an active
contraction of the ankle muscles, because — due to in-
finitively small size of support — it would not produce
any torque at the ankle joint. Therefore the passively
initiated ‘“‘optimal bending” should be considered a
purely hypothetical case. One can expect that during
voluntary trunk bending on a small (but not zero) sup-
port, the required initial CG acceleration is produced
not only passively by the gravity force but also by the
muscle activation at the ankle joint. This prediction is
verified in Alexandrov et al. (2001).

To conclude, the biomechanical modeling of trunk
bending suggests that trunk movement and equilibrium
maintenance are performed by two distinct motion units
or eigenmovements. The hip eigenmovement accounting
for more than 95% of the movement kinematics is re-
sponsible for the trunk bending, and the ankle eigen-
movement compensates for the equilibrium disturbance
due to the hip eigenmovement. This point of view is
further analyzed in Alexandrov et al. (2001).
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Appendix A: Motion equation

The motion equation has a simple form in terms of
segment angles 0; with respect to the vertical:
C'(0)0—D'(0)0+A'(0,0) = (A1)

where T is the vector of joint torques. Matrix N is

1 -1 0
N=1]10 1 —1] and the elements of the inertia
0 0 1

matrix C'(0), gravitational matrix D’(0) and compo-
nents of the vector of centripetal and Coriolis forces
A'(0,0) are

bu = mucy + Iy
C,UM = Cl,\/IU = mUcUlM COS(@U — QM)
C£JL = C;_U = mUcUlL COS(@U — 9]_)

C;\/[M = mMc%,[ + mUli,[ + Iv

Cyp = Ciy = (mmemlIL + mulyLiv) cos(Om — 01)
Cl =mprci + (my +my)l; + 1

Dy = mycugsin(Ou) /0y

Dy = (mvem + muly)g sin(Om)/0m

D = (myreL + (mm + my)IL)gsin(0L) /00

Dyy = DyL = Dyy = Dyy = Dy = Din =0

A,U = mUCU(lL sin(HU — HL)Hi + lM Sil’l(BU — BM)gﬁ/[)

Ai\/{ = (mMcMZL + mUlLlM) Sil’l(QM — 0L>0i

— mUCUZM sin(OU — OM)O%J

Ai = —(mMchL + mUlLlM) sin(@M - HL)gi/l

— mUcUlL Sil’l(@U — 0L>0%j

where the parameters m, I, [, and ¢ for each of the three
body segments are its mass, moment of inertia about the
center of mass, length, and distance of segment center of
mass from its distal end, respectively. Subscript i applied
to the body segment indicates the lower (i = L, shanks),
middle (i = M, thighs), and upper (i = U, trunk with
arms and head) segments.

Motion equation (1) is written in terms of joint angles
¢ and can be easily obtained from (Al)_by the change of

variables 0 = Ugp where U= (N Then C(¢) =
u'c(ou,
D(p) = UD'(0)U, and A(p¢p) = UTA'(0,0) .

In the linear approximation about the erect body
position, the motion equation (1) takes the form (2),
where C = C(0),D =D(0) and A = 0.

Appendix B: The validity of the linear approximation

Since linear approximation allows any movement to be
decomposed into the eigenmovements of motion equa-
tion, the validity of the linear approximation was
estimated for each of the three eigenmovements sepa-
rately. The movement time course &;(¢) along the ith
eigenvector in the linear approximation was assumed to
have a “typical” bell-shaped velocity profile given by
(10). Then “linear” joint angles ¢; and torques T were
calculated by linear equations (4), (5), and (6). There-
after, a direct, dynamic task was solved by the nonlinear
motion equation (1) under the given joint torques Ty,
and under boundary conditions ¢y (0) = @ni(7) = 0.
The obtained ‘“nonlinear” joint angles ¢y; were then
compared with ¢; and the accuracy of the linear
approximation was estimated by the mean square root
error



Table Al. Coefficients E (in rad™>) for the errors between direct
solution of nonlinear motion (1) and its solution when angular
dependence of matrices C and D is ignored (E;), when centripetal
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and Coriolis forces are ignored (£3), or when both nonlinear effects
are ignored (Et) for each eigenmovement

Eigenmovement T = 250 ms T = 500 ms t = 1000 ms
list

E, E, Et E; E; Et E, E; Er
A-eig. 0.11 0.53 0.55 0.10 0.14 0.21 0.11 0.04 0.13
H-eig. 0.22 0.24 0.07 0.05 0.06 0.04 0.03 0.02 0.04
K-eig. 0.21 0.18 0.15 0.05 0.05 0.05 0.01 0.01 0.02

—_—

&= ;/ Z (o — oxu) dt
0 i:A,H,K

In general, linear approximation results in two kinds of
errors. The first one (g;) is due to ignoring the angular
dependences of matrices C and D, and the second (¢;) is
due to ignoring the centripetal and Coriolis forces
defined by vector A. The influence of each of these two
nonlinear effects on the accuracy of linear approxima-
tion was estimated by solving the motion equation (1), in
which only one nonlinear effect was taken into account.
The total error et was calculated when both nonlinear
effects were taken into account.

As seen from the expressions for the components of
matrices C and D, and of vector A given in Appendix A,
for small movement amplitudes A, the error between
linear and nonlinear approximation is proportional to A®.

Table A1 shows coefficients of proportionality £}, E»,
and Et (in rad—?) for each eigenmovement A, H, and K
and for different movement durations 7. In each eigen-
movement, the total error decreases when the movement
duration increases. Interestingly, in H-eigenmovement
for small movement durations 7, the two nonlinear ef-
fects partially compensate each other so that the total
error coefficient Et is less than E; and E,.

As is shown in Alexandrov et al. (2001) the experi-
mentally observed amplitudes and durations of eigen-
movements were on average 4.1° and 820 ms for
A-eigenmovement, 65.2° and 510 ms for H-eigenmove-
ment, and 7.4° and 450 ms for K-eigenmovement. Thus
according to Table Al, the total errors amount on av-
erage to only 0.04%, 3.8%, and 0.1% of the amplitude
of A-, H-, and K-eigenmovements, respectively. It is
noteworthy that the estimation of the total error
er ~ ErA® appeared to be valid even up to A = 55°.

Appendix C: CG and CP displacements

The anteroposterior CG position is given by

X6 = —((mpep + myly +myly) sin(@y)
+ (mmem + muly) sin(@a + @k)
+ muycu sin(@a + ¢k + ou))/M
where M is the whole body mass. The subscripts A, K

and H indicate ankle, knee and hip joints. Positive X¢9
corresponds to the forward CG displacement.

The time course of CP displacement in the antero-
posterior direction, XP, is defined by ankle joint torque
Tx and support forces

X = (Ty — hFx)/Fy (C2)

where T is the torque at the ankle joint, 4 is the height
of the foot (Fig. 1), Fx = MX S and Fy = M(g + Y©)
are the anteroposterior and vertical reaction forces, and
g is the gravity acceleration.

In the linear approximation X“¢ =BTy, where
B" = —D}/(Mg) and D}, is the first row of the gravita-
tional matrix D (see Appendix A). According to (C1)

Ba = —(myrcL + myiv + myuly + mvem
+ myly + mycy)/M

Bx = —(mmem + myly + mycy) /M

By = —mycy/M

The CG position in each eigenmovement is defined by
(8), where according to (4) b; = B'w;(i = A, K, H).

Equation (C2) in the linear approximation takes the
form

X = (T — hFx)/(Mg) (C3)
In each eigenmovement
Fx; = MX,'CG = Mbiéi (C4)
and according to (5) and (6)
Tai = Mgbi; = Mgb;(—1.& + &)

= Mg(—2, X% +X9) (CS5)

Putting (C4) and (C5) into (C3), one obtains (7).
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