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Abstract. In previous work it has been shown in posture
experiments of the human arm that reflexive dynamics
were substantial for narrow-band stochastic force dis-
turbances. The estimated reflex gains varied substantial-
ly with the frequency content of the disturbances. The
present study analyses a simplified linear model of the
reflexive feedback control loop, to provide an explana-
tion for the observed behaviour. The model describes
co-activation and reflexive feedback. The task instruction
‘minimize the displacements’ is represented mathemat-
ically by a cost function that is minimized by adjusting
the parameters of the model. Small-amplitude displace-
ments allow the system to be analysed with a quasi-
linear approach. The optimization results clarify the
limited effectiveness of reflexive feedback on the system’s
closed-loop behaviour, which emanates from the time
delay present in the reflex loops. For low-frequency
inputs less than 5 Hz, boundary-stable solutions with
high reflex gains are predicted to be optimal. Input
frequencies near the system’s eigenfrequency (about
5 Hz), however, would be amplified and result in
oscillatory behaviour. As long as the disturbance does
not excite these frequencies, boundary stability will be
optimal. The predicted reflex gains show a striking
similarity with the estimated reflex gains from the
experimental study. The present model analysis also
provides a clear explanation for the negative reflex gains,
estimated for near-sinusoidal inputs beyond 1.5 Hz.

1 Introduction

The aim of the present study was to explain the
estimated reflex gains during human arm posture tasks
(F.C.T. van der Helm, submitted, 2000), by using an
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optimal control approach to analyse the closed-loop
behaviour of a simplified linear model of the neuro-
musculo-skeletal (NMS) system. Optimal control is a
common tool in system engineering practice to design a
controller which optimizes the system’s response.

The subjects in these experiments were asked to
‘minimize displacements’ while small-amplitude sto-
chastic force perturbations were applied to the hand
with the aid of a compliant, linear hydraulic manipula-
tor. Hand displacements were allowed only in the sag-
ittal plane in anterior-posterior directions. Under these
constraints the largest movement occurred around the
shoulder joint. Because most natural posture tasks re-
quire the maintenance of an equilibrium position, force
disturbances were applied, leaving a position task that
required active stabilization. It is believed that under
such conditions, the stabilizing role of spinal reflexes is
studied best (Wieneke 1972; Fitzpatrick et al. 1992). The
equilibrium position and the actual hand position were
presented on a display to give the subject a clear per-
ception of the task and prevent the hand drifting from
the equilibrium position. The visual feedback with its
long time delay of approximately 0.2 s (McRuer and Jex
1967) is most likely not effective for force disturbances
above 1 Hz and therefore does not contribute to the
performance of the task for these frequencies.

Since a NMS system is highly non-linear (Agarwal
and Gottlieb 1977a,b, 1985; Kirsch et al. 1994), the
features of the disturbance signal will have a large im-
pact on the behaviour identified. In the experiments the
stochastic perturbations excluded voluntary responses
and were small enough to enable a quasi-linear approach
in order to facilitate system identification (Kearney and
Hunter 1990). From the experimental data, a linear de-
scribing function of the human arm dynamics was esti-
mated by means of a closed-loop identification method.
This function describes the dynamic relation between the
hand position and the applied force disturbance in the
frequency domain. A method was developed to identify
intrinsic and reflexive components from the estimated
describing function. This method shows that it is very
plausible to assume invariant intrinsic behaviour with
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varying frequency content of the applied force pertur-
bations. Any difference in response, as obtained from
the estimated describing function, is then accounted for
by reflexive feedback. The estimated reflex gains varied
strongly with the input spectral bandwidth. For input
spectra containing only low frequencies, significant re-
flex gains were estimated. This seems plausible consid-
ering the time delays present in the reflex loops. High
reflex gains were only effective for low-frequency inputs
that did not excite the closed-loop system’s eigenfre-
quency. High-frequency inputs close to the eigenfre-
quency would be amplified when the reflex gains were
high. The gains decreased gradually, and reached zero
around 3 Hz as the input bandwidth increased. For
near-sinusoidal inputs, significant negative reflex gains
were estimated for input frequencies beyond 1.5 Hz.
Clearly, a system dynamics approach is indispensable
when studying the stability issues underlying the ob-
served behaviour.

Several theoretical studies of the postural control
loop consider a system dynamics approach. Hogan
(1984) predicts the optimal parameters of a simplified
antagonistic muscle model, by minimizing a criterion
function that weights performance and metabolic energy
consumption. However, this model does not describe
reflexive feedback and represents only co-activation of
the muscles. Stein and Oguztoreli (1984) simulate the
impulse response of an antagonistic muscle model, in-
cluding reflexive pathways between motor neurons and
several inter neurons, by stimulating these neurons.
Unfortunately, it is difficult to validate these results by
means of similar experiments in intact systems during
natural behaviour. Therefore, it is desirable to consider
models with more simplified descriptions of reflexive
feedback which can be validated by means of distur-
bance experiments with intact systems. Yurkovich et al.
(1987) analyze the frequency response of a model de-
scribing a single stretch reflex loop. However, no ex-
planation is provided for the relation between behaviour
and goal of the system. Rozendaal (1997) optimizes the
parameters of a model describing three reflex loops with
position, velocity and force feedback. The goal of the
system is assumed to be the realization of a pre-specified
dynamic behaviour, which is represented in a criterion
function. This is an alternative optimal control hy-
pothesis of the adaptive behaviour of the central nervous
system (CNS).

Optimal control theory predicts a relation between
the experimental variables and the reflexive feedback
gains. It assumes that the goal of the CNS is to minimize
a criterion function. Evidence for this hypothesis is ob-
tained by comparing predicted and estimated reflexive
responses. Agreement between predicted and estimated
behaviour is associated with the following conditions:
(1) the criterion function is a valid representation of the
task instruction, (2) the model is a valid representation
of the real system, constraints and experimental condi-
tions, and (3) the separation method estimates valid in-
trinsic and reflexive components.

The postural control loop is dominated by the (in-
ter)action of mechanical muscle and joint properties,

and spinal (stretch) reflexes. Mechanical stiffness and
damping of joints increase simultaneously with the level
of co-activation of opposing muscles. The gains of re-
flexive length and velocity feedback can be adjusted in-
dependently to optimize the response of the controlled
system. The present study considers co-activation and
reflex gains to be the primary parameters for postural
control. Since co-activation influences the visco-elastic
properties, high co-activation levels will effectively re-
duce the effects of external disturbances. The reflex
gains, however, are not purely mechanical. Due to the
time delays and the muscle activation phase lags in
the reflex loops, high reflex gains will tend to destabilize
the system by introducing oscillatory behaviour.

2 Model development

The dynamics of the postural control loop are linearized,
describing the basic intrinsic and reflexive postural
control mechanisms of the CNS for small variations of
the variables around an equilibrium position x4 and a
static muscle activation level uy. The frequency-domain
representation of the linear model is shown in Fig. 1,
with s = A+ j2nf where f is the frequency in Hz. It is
assumed that 4 =0, because the initial transient re-
sponse is not important.

The model parameters used are chosen to reasonably
match the experimental results (Table 1). The linkage
system is described by a second-order system H(s),
representing the inertia m, and passive visco-elastic
properties bq and kq:

1

H(s) = ——
i(s) mys? + bys + kg

(1)
The intrinsic feedback control loop Hi(s) represents the
simultaneous increase in mechanical muscle stiffness and
damping by co-activation, around a certain muscle
length and around zero muscle velocity. This is
described by co-activation gain u:

D(s)
+
U, U(s) H,(s) > H(s) X(s) >
‘i _ —
H(s) [
H(s)

Fig. 1. Linear model of the postural control loop, consisting of an
intrinsic feedback loop H(s) and Hi(s), and a reflexive feedback
control loop H,(s) and H,(s). Uy is the static muscle activation level,
U(s) is the result of Uy and reflexive feedback, D(s) is the external
force disturbance and X (s) is the hand position



Table 1. Parameters of the postural control loop model (F.C.T.
van der Helm, submitted, 2000)

Value Unit Description
my 2 kg Arm mass
bq 15 Ns/m Passive damping
kq 180 N/m Passive stiffness
bm 30 Ns/m Intrinsic damping coefficient
ki 650 N/m Intrinsic stiffness coefficient
Ta 55 ms Activation time constant
Ty 40 ms Neural time delay
1 - - Co-activation level
kp - N/m Reflexive position feedback gain
ky - Ns/m Reflexive velocity feedback gain
1) 0.05 - Smallest stability margin
Hi(s) = (bws + km)ug (2)

with 0 < uy < 1. The reflexive feedback control loop is
described by receptor dynamics H(s) and by muscle
activation dynamics H,(s). H;(s) represents the position
sensitivity k,, the wvelocity sensitivity &, of muscle
spindles, and the conduction time delays 7y:

H,(s) = (kys + kp)e T (3)

Reflexive force feedback is also incorporated in the
model. However, force feedback appears not to be
relevant to the present analysis (see Sect. 4). Conse-
quently, the description of force feedback is omitted here
for clarity. Muscle activation to force build-up is
represented by a first-order process with activation time
constant 7, = 55 ms. This is a reasonable approximation
of two linear first-order processes in series, representing
the excitation and activation dynamics with time
constants of 40 ms and 30 ms (e.g. Winters and Stark
1985; Winters et al. 1988), respectively:

1

Ha(s) = Tas + 1
a

“4)

The intrinsic dynamics, (1) and (2), represent the
musculo-skeletal system, and can be considered to be
controlled by reflexive feedback. Therefore, in order to
analyze the reflexive feedback loop, the intrinsic dynam-
ics are lumped into the ‘plant’ dynamics H,(s):

Hl(S)

) = T ) )

()

whereas the reflexive dynamics are lumped into the
‘controller’ dynamics H(s):

He(s) = Ha(s)Hx(s) (6)

The overall behaviour is described by the closed-loop
transfer function Hey (s):
X(s)
D(s)
_ Hy(s)

1+ Hp(s)Hc(s)

Hc(s) = (7)

(®)
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and including (1-6) gives:

HcL(S)
Tas+1
(Tas+ 1) (mas? +bgs+kq+ (bms+km)uo) + (kys+kp )esTa
©)

The stability properties are described by the open-loop
transfer function Hop (s):

HoL(s) = Hy(s)H(s) (10)
Again, including (1-6) gives:
(kys + kp)e T
(tas + 1)(mas? + bys + kq + (bms + ki )ug)
(11)

HOL (S) =

3 Methods
3.1 Cost function

The task instruction ‘minimize the displacements’ is
represented mathematically in the form of a cost
function to be minimized. Having a linear, noise-free
system with stationary stochastic inputs, the cost
function J of the displacement x(¢) is:

J=E{x*(1)} (12)

where FE{-} is the expectation operator. When
E{x(t)} =0, J is the variance ¢> of x(f). By using the
following relations:

o0 o 0]

== [ Satraf=2- [ sar)ar

—00 0+
and

Su(f) = E{X(f) - X(=/)}
X(f) = HcL(f) - D(f)

J can be rewritten in the frequency domain:
g =2 [ Healr)Pssatrds (13)
0t

Saa(f) is the power spectrum of the input signal. The
system inputs have rectangular power spectra:

Saa(f)=c YASS </t , (14)
and zero elsewhere, so that J can be written as:
Jh
J:2c-/|HCL(f)|2df (15)
fi
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Now J depends only on the gain of the closed-loop
dynamics inside the input frequency range. Equation
(15) indicates that, in order to minimize J, the closed-
loop gain (squared) must be minimized but only for
fi < f < fn. Consequently, the closed-loop behaviour
outside the input frequency range is not relevant except
for the closed-loop stability constraint (see Sect. 2)
which is determined by the amplitude and phase margins
of HoL(f). The interesting question is now: what values
of the co-activation gain and reflex gains minimize J for
a given input spectrum {fj, f;}? Minimizing the gain of
Hci (s) requires maximization of uo, k, and k,, as can be
seen from (9).

The stability properties can be obtained from Hoy (s).
The system is stable if the Nyquist plot of Hop(s) does
not encircle the point (—1,0). Equation (11) indicates
that uy increases the gain margin, i.e. it stabilizes the
system. Therefore, ug = 1 will be the optimal solution.
However, the reflex gains decrease the gain margin, and
must be limited to maintain stability since the presence
of the time delay and the activation dynamics cause the
phase of Hop (s) to shift beyond —180 degrees.

3.2 Parameter optimization

The parameters of the postural control model will be
optimized by minimizing the cost function in (15). For
the incorporation of the stability constraint, it is
convenient to consider a state-space representation of
the closed-loop transfer function in (8):

Xnms (t) = Anmsxnms (t) + Bnmsd(t)

x(t) = Cnmsxnms<t) (16)

where x,ms(?) is the state vector. The state matrices Apps,
Bums and Cp,s specify the relation between the system
input d(¢) and the model output x(¢). The time delay is in
theory an infinite order system, and must therefore be
approximated by a low-order filter in a finite-order state-
space representation. In this study a third-order Padé
filter (Marshall 1979) is used. Consequently, X,ms(¢) is a
6 x 1 vector, composed of x(¢), x(¢), the activation state
and the three Padé filter states. Equation (15) is
computed by integrating numerically over f. Hereby,
Heo(f) is computed either from (9) or from the
frequency-domain equivalent of (16), i.e.:

HC]_(S) = Cnms(sl _Anms)_anms (17)

The size of the identity matrix / equals the size of Apy;.
Stability of the system is incorporated by a constraint on
the eigenvalues of A.,s. The system is stable if all
eigenvalues have a negative real value:

max(real(eig(4nms))) < —0 (18)

When 6 =0, one or more eigenvalues have only an
imaginary part, which corresponds with a boundary-
stable system. This will introduce numerical problems
which can be prevented when 6 has a small positive
value (Table 1). Regarding the input signals, two

different types of narrow-bandwidth (NB) noise are
considered:

1. NB noise type 1: f{ = 0.05 Hz whereas f;, is variable
2. NB noise type 2: fi = fo — 0.15 Hz and f, = f. + 0.15
Hz whereas f; is variable

4 Results
4.1 Optimized reflex gains

The optimized reflex gains are shown in Fig. 2A and 2B.
The optimal value for the co-activation gain is uy = 1 for
all inputs. Force feedback did not contribute to increase
the performance for all disturbance conditions because
either the estimated force reflex gains became very small
or the convergence of the gains was poor. This suggests
that the reflexive force feedback is ineffective for the
current task.

For comparison the average reflex gains k, and k,,
estimated from the experiments over five subjects, are
also shown in Fig. 2C and 2D. For NB noise type 1, f} is
varied between 0.8 and 3.8 Hz whereas for NB noise
type 2, f. is varied between 0.5 and 7 Hz.
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Fig. 2A,B. Optimized reflex gains: A narrow-bandwidth (NB) noise
type 1; B NB noise type 2. C, D. Average reflex gains (solid curves),
estimated from the experiments, plus and minus the SD over five
subjects (error bars): C NB noise type 1; D NB noise type 2
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Fig. 3. Nyquist plots of Hop(f) for NB noise type 1 with different
values of f,. The solid curves denote the frequency range between f
and f;. The crosses denote f;,. The circle denotes the point (—1,0)

4.2 Open-loop and closed-loop behaviour

In Figs. 3 and 4 the Nyquist plots of Hop(f) are shown,
corresponding to the optimized model parameters. To
guarantee stability, the Nyquist plot may not encircle the
point (—1,0). It is indicated which part of the Nyquist
plot corresponds with the input frequency range.

In Figs. 5 and 6 the magnitudes of Hcp (f) are shown,
corresponding to the optimized model parameters. As a
reference, the gains of Hcp(f) of the intrinsic model
(H.(f) = 0) are also plotted.

In Figs. 7 and 8 the magnitudes of the estimated
transfer functions for both NB noise type 1 and type 2
are shown for one subject. As a reference the gains
which correspond with wide-bandwidth (WB) noise
(fi = 0.05 Hz and f;, = 20 Hz) as input, are also plotted.
For WB noise, only intrinsic dynamics were estimated.
In these figures the corresponding input frequency
ranges are also indicated.

5 Discussion
The optimized and estimated reflex gains in Fig. 2, and

especially k,, show a surprisingly comparable variation
with the input spectral bandwidth, whereas their values
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Fig. 4. Nyquist plots of Hop(f) for NB noise type 2 with different
values of f., denoted by the crosses. The circle denotes the point

(7170)

have the same order of magnitude. The Nyquist plots of
Hov(f) and the Bode plots of |Hcp(f)| provide a visual
interpretation of how the optimal reflex gains affect the
stability of the system.

5.1 NB noise type 1, signals with increasing bandwidth

It is evident that the solutions for low-frequency inputs
are boundary-stable, because Hop (f) touches the point
(—1,0). The solutions are still optimal, since the
frequencies around the point (—1,0) are not excited by
the input signal. On the one hand, input frequencies
close to the point (—1,0) are highly amplified and will
result in oscillatory behaviour. On the other hand, input
frequencies far from the point (—1,0) will be suppressed
(see also Eq. 8). Therefore it is beneficial to maximize
the distance between Hor (f) and the point (—1,0) in the
frequency region where the input signal excites the
system (McRuer and Jex 1967). This is what happens in
Fig. 3. For low-frequency inputs, k, is maximized such
that HoL(f) is located far from the point (—1,0),
whereas the system is boundary stable. However, as the
input bandwidth increases, at some point between
fh=45Hz and f, =5 Hz, HovL(f) approaches the
point (—1,0). Beyond this point k; is no longer effective
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Fig. 5. Magnitudes of Hcp(f) for NB noise type 1 with different
values of f, (solid curves), and for H.(f) =0, i.e. only intrinsic
feedback (dashed curves). The filled areas denote the frequency range
between f; and fy

and decreases to zero. The role of k, is to increase the
phase margin of Hop (f), i.e. rotating the Nyquist plot
counterclockwise. This will result in a phase lead, i.e.
increasing the distance to the point (—1,0). As shown in
Fig. 5 for the closed-loop system Hc¢yp, the boundary-
stable solutions between f;, = 0.5 Hz and f;, = 4.5 Hz
clearly introduce the resonant peak between 4 Hz and
5 Hz, the so-called eigenfrequency. Beyond the eigen-
frequency, high reflex gains would lead to an increase in
the area under the closed-loop gain by the resonant
peak. Low reflex gains eliminate this peak.

5.2 NB noise type 2, near-sinusoidal signals
with increasing center frequency

Most solutions are boundary-stable. In this case, for
optimal behaviour it is beneficial to maximize the
distance between the cross and the circle in Fig. 4. Up
to about 1 Hz, the situation is identical to the NB noise
type 1 case. Between f. = 2 Hz and f. = 3 Hz, the phase
shift in the low-frequency part of Hop(f) becomes
positive. In this case k, has a maximally negative value,
introducing a phase shift of +180 degrees, and projects
the Nyquist plot for f =0 onto the point (—1,0) (this
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Fig. 6. Magnitudes of Hcp (f) for NB noise type 2 with different
values of f. (solid curves), and for H.(f) =0, i.e. only intrinsic
feedback (dashed curves). The crosses denote f.

Fig. 7. Magnitudes of modelled closed-loop transfer function for
subject NS: for NB noise type 1 with different values of fy, (solid
curves), and for wide-bandwidth (WB) noise (dashed curves). The filled
areas denote the frequency range between f] and fj

means that k,/(kq+kn) = —1, ie. kp = —830 N/m).
Notice that this solution is not effective for NB type 1
noise, because it would result in amplification of the low
input frequencies! Between 3.5 Hz and 7 Hz, both £,
and k, have a maximally negative value. This implies
that the Nyquist plot with positive reflex gains is shifted
by —180 degrees. This solution clearly keeps away the
cross from the point (—1,0) as the center frequency
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Fig. 8. Magnitudes of modelled closed-loop transfer function for
subject NS: for NB noise type 2 with different values of f. (solid
curves), and for WB noise (dashed curves). The crosses denote f

increases, and is only effective for NB noise type 2.
According to (15), the closed-loop gain must be minimal
for f =~ f., which is illustrated in Fig. 6. In Fig. 4, the
negative reflex gains between f. =2 Hz and f. = 6 Hz
locate the Nyquist plot for /= 0 near the point (—1,0).
Consequently, the magnitude of Hcp (f) is very large for
low frequencies, whereas it is minimal near f = f,.

5.3 Comparison with experimental results

The model optimization approach results in a maximal
co-activation gain, independent of the input spectrum.
This result is consistent with the assumption in the
separation method to estimate intrinsic and reflexive
dynamics, yielding that the intrinsic dynamics are
constant and independent of the input spectrum. The
experiments show essentially the same reflexive behav-
iour as predicted by the theoretical study. The predicted
ky, and k, show striking similarities with the estimated
reflex gains (Fig. 2). For NB noise type 1, k, decreases
gradually to zero as fj, increases. For NB noise type 2, k;
decreases quite steeply to negative values as f; increases,
and crosses zero for f; ~ 1.5 Hz. The predicted force
reflex gain is very small, which is also consistent with the
experimental results.

There are, however, also particular differences. For
NB noise type 1, k, reaches zero around f;, = 5 Hz for
the model prediction, and around f;, =3 Hz for the
experiments. Figure 7 shows that the resonant peak is
already suppressed at f, = 2.3 Hz in contrast to the
model prediction where this peak is not suppressed
before 5 Hz. For NB noise type 2 (Fig. 8) the reso-
nant peak vanishes almost beyond 1.3 Hz. Further-
more, for all conditions the variation of the estimated
k, appears to be less pronounced than the predicted
ky, although there is a weak transition between posi-
tive and negative values for NB noise type 2. These
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differences suggest that the subjects prefer submaximal
performance by smaller reflex gains, compared with
the predicted reflex gains, which may be attributed to
several factors:

1. The position signal of the manipulator may contain
quite some power for f > fp, due to the non-linear
behaviour of the subject. However, this explanation is
not likely since the experiments show highly linear
behaviour which can be expected for small displace-
ments.

2. The choice of the model constants is not likely to
cause the differences between predicted and estimated
behaviour, since they match the corresponding ex-
perimental values quite well.

3. The estimated behaviour is a reflection at endpoint
level of the effects of underlying control processes at
joint and muscle levels of shoulder and elbow, which
are not described by the simplified model in the pre-
sent paper. The model represents a set of muscle re-
flex gains by a single lumped reflex gain at the
endpoint level. This simplification may result in dif-
ferences between predicted and estimated reflex gains.

4. During the experiments, subjects may have weighted
metabolic energy consumption, due to co-activation,
to some extent. This results in a decrease in co-acti-
vation and, consequently, a decrease in the gain
margin of the open-loop transfer function. This re-
sults in smaller reflex gains.

5. During the experiments, subjects may have weighted
control effort, due to muscle activation by reflexive
feedback, to some extent. This results in smaller reflex
gains.

Consequently, it would be appropriate to perform a
model analysis, similar to the present study but with the
use of a more detailed arm model (Schouten et al. 2000).
In this way, the effects of certain non-linearities (i.e.
muscle dynamics, muscle activation dynamics, arm
geometry, transducer dynamics), higher-order dynamics
and the effects of control effort and energy consider-
ations could be studied.

Furthermore, subjects will likely use their visual
feedback for frequencies up to 1 Hz. The inclusion of
visual feedback will be expected to improve the estimates
into rather more realistic values for these lowest fre-
quencies.

5.4 Implications

The basic agreement between the experimental and the
theoretical results strongly suggests that during maximal
performance posture tasks, the reflex gains are adapted
by the CNS, in response to variations in the input
frequency spectrum, in an optimal way. This conclusion
is strictly valid for the ‘minimize displacements’ task
instruction, in combination with small-amplitude sta-
tionary stochastic force inputs with rectangular power
spectra. Nevertheless, the consistent adaptability of
reflex gains by the CNS in response to different external
stimuli is evident from this study.
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The term ‘impedance control’, which is frequently
used in postural control studies, is confusing. It suggests
that the goal of the CNS is to attain a prespecified ref-
erence impedance, i.e. reference dynamics (e.g. Ro-
zendaal 1997). However, the present study demonstrates
that the goal of the CNS is rather to minimize a per-
formance measure, such as the variance of the dis-
placement, eventually weighted by measures of energy
and control effort.

The response to wide-bandwidth inputs, or the step
response, is not always useful as a criterion to adjust the
controller parameters. A strongly undamped system is
shown to be effective for narrow-bandwidth inputs
which do not include the system’s eigenfrequency
(Figs. 5 and 6). Such a system reduces the relevant dis-
turbance frequencies effectively, whereas the resonant
frequencies do not occur, simply because they are not
excited by the input signal.

6 Conclusions

The model predictions provide a clear explanation
for the relation between the model parameters which
affect the performance measure, the system stability, and
the spectral bandwidth of the disturbance signal. The
goal of the system is to maximize the performance,
which corresponds to a minimization of the system
response.

Due to time delays and activation dynamics in the
reflexive feedback loops, substantial reflex gains de-
crease the stability margin amplifying the system’s re-
sponse at particular resonant frequencies, whereas they
reduce the response at other frequencies. This property
can be used to effectively suppress narrow-bandwidth
disturbances which do not excite the resonant fre-
quencies, especially when the system is close to
boundary stability.

The predicted co-activation gain is maximal and in-
dependent of the input spectrum. This is consistent with
the assumption in the separation method to estimate
intrinsic and reflexive behaviour, yielding that the in-
trinsic dynamics are constant and independent of the
input spectrum. Intrinsic feedback increases the system’s
stability margin and reduces the system response for all
frequencies.

The predicted reflexive behaviour shows remarkable
similarities with the estimated behaviour: (1) the pre-
dicted position reflex gain decreases gradually to zero
with increasing bandwidth of the input; (2) for near-
sinusoidal inputs with increasing center frequency, the
predicted position reflex gain decreases steeply to nega-
tive values and crosses zero at about 1.5 Hz; and (3) the
predicted force reflex gain is very small, which implies
that force feedback does not contribute to increase the
performance.

There are particular differences between estimated
and predicted behaviour, likely suggesting that subjects
prefer submaximal performance by smaller reflex
gains, compared with the predicted reflex gains. This
may be explained by several factors: (1) the estimated

behaviour is a reflection at the endpoint level of the
effects of underlying control processes at joint and
muscle levels of shoulder and elbow; and (2) the
subjects may have weighted metabolic energy con-
sumption or control effort to some extent. Conse-
quently, it would be appropriate to perform a model
analysis, similar to the present study but with the use
of a more detailed arm model. In this way, the effects
of certain non-linearities, higher order dynamics and
the effects of control effort and energy considerations
could be studied.

The model simplifications in this study enable a very
basic analysis of the different contributions of intrinsic
and reflexive feedback to stability and performance in
postural control. The basic principles appear to be
consistent with reality, since the modelling and the ex-
perimental approach show essentially the same intrinsic
and reflexive behaviour. The agreement between the
experimental and the theoretical results strongly sug-
gests that during maximal performance posture tasks,
the reflex gains are adapted by the CNS, in response to
variations in the input frequency spectrum, in an opti-
mal way. Hereby, the CNS minimizes the variance of the
displacements, rather than specifying the desired dy-
namical behaviour explicitly.
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