
Introduction

The cardinal signs of Parkinson’s disease (PD) reflect alter-
ations in striatal dopaminergic transmission. Tremor, rigid-

ity, and bradykinesia result from an insufficiency of in-
trasynaptic dopamine (DA) and become clinically mani-
fest when striatal levels of the transmitter decline by about
50% [13, 33, 57]. These motor abnormalities initially re-
spond well to drugs such as levodopa or DA agonists that
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improve dopaminergic transmission. Later, however, the
response to pharmacological agents of this type becomes
increasingly less satisfactory, mainly due to the appear-
ance of treatment-refractory signs (gait and balance disor-
ders, freezing, dementia, and affective changes) and vari-
ous adverse events, especially motor response complica-
tions [18, 55]. Most commonly, these latter changes in-
clude various types of response fluctuations and dyskine-
sias [55, 69]. As in the case of parkinsonian signs, these
ultimately disabling adverse events probably reflect the
non-physiological stimulation of striatal DA receptors. In
contrast to the chronic hypostimulation produced by DA
system degeneration, however, it is the periodic hyper-
stimulation associated with most dopaminomimetic thera-
pies that appears to favor the appearance of motor response
complications. 

Non-physiological stimulation of dopamine receptors

While it is easy to understand why dopaminergic denerva-
tion might alter downstream mechanisms in the basal gan-
glia, the basis for the reactive changes associated with stan-
dard dopaminomimetic therapies has only recently become
clear. DA-containing neurons comprising the nigrostriatal
system characteristically manifest slow (about 4–5 Hz),
single-spike activity which is occasionally interrupted by
short bursts of faster (usually in the 15–20 Hz range) spik-
ing in response to salient visual or auditory stimuli [29, 71].
Since postsynaptic receptor stimulation is roughly propor-
tional to impulse activity at the presynaptic terminal, in-
trasynaptic DA concentrations normally remain fairly con-
stant. Accordingly, the most physiological approach to do-
pamine replacement in PD would be to maintain stable
normal intrasynaptic levels of the transmitter amine; how-
ever, with disease progression, this goal becomes progres-
sively less attainable. As nigral dopaminergic neurons de-
generate, the amount of exogenous levodopa entering stri-
atal terminals diminishes. Instead, increasing amounts are
taken up and converted to DA in other decarboxylase-con-
taining cells, especially serotonergic neurons [52, 59, 84].
In the absence of appropriate mechanisms for storing or
regulating the release of DA, the newly synthesized amine
leaks into the extracellular compartment and diffuses into
nearby DA receptors. Under such circumstances, intra-
synaptic DA concentrations reflect the wide swings in
cerebral levodopa levels that occur with standard precur-
sor dosing regimens. Levodopa therapy in patients with
advanced PD thus results, at best, in only episodic restora-
tion of physiological dopamine levels [9]. For most of the
dosing cycle, with the administration of short-acting DA
agonists at any stage of Parkinson’s disease, or of levodopa
in patients with advanced disease, dopaminergic receptor
stimulation remains at subthreshold levels, interrupted soon
after each dose when it briefly rises into the physiological
range. Indeed, postmortem determinations of striatal DA

concentrations, as well as clinical measurements of spinal
fluid homovanillic acid levels (the major metabolite of
DA), suggest that transmitter levels in parkinsonian pa-
tients receiving standard levodopa therapy ordinarily peak
well above the physiological range, presumably at levels
approximating to those achieved in in vitro models ex-
posed to high-intensity (tetanic) stimulation [17, 37, 58].
With a sufficient loss of DA terminals, dopaminergic
transmission thus tends to be compromised whether or not
dopaminomimetic treatment is initiated. 

It has now become increasingly clear that this non-phys-
iological pattern of stimulation contributes to the appear-
ance of the major motor complications associated with
long-term levodopa or DA agonist administration. The ni-
grostriatal DA system terminates on the dendritic spines
of the preponderant striatal nerve cell, the medium-sized
spiny neuron [44]. Medium spiny neurons also receive
glutamatergic axons descending from all areas of the cere-
bral cortex. In addition, they make synaptic contact with
numerous other neuronal systems, both extrinsic (e.g.,
adrenergic and serotoninergic) and intrinsic (e.g., cholin-
ergic and somatostatinergic) to the striatum. In turn, these
GABAergic efferent neurons project, both directly and in-
directly, to the major output nuclei of the basal ganglia, the
internal segment of the globus pallidus and the pars retic-
ulata of the substantia nigra [30, 73]. Medium spiny neu-
rons, thus, serve as a major anatomical locus for the pro-
cessing of cortical information through the basal ganglia.
They also appear to contribute to certain plastic responses
now associated with basal ganglia function [11, 16].

Increasing evidence suggests that the chronic non-phys-
iological stimulation of DA receptors triggers adaptative
responses in the striatum and other basal ganglionic struc-
tures. To date, these changes have largely been studied in
animal models of PD. Rats rendered parkinsonian by the
injection of 6-hydroxydopamine and then treated intermit-
tently with levodopa (by twice-daily injection to simulate
clinical conditions) develop progressive motor response
alterations, which resemble the fluctuations occurring in
similarly treated parkinsonian patients [67]. Daily mea-
surements reveal a progressive shortening in response du-
ration that becomes statistically significant within about 
3 weeks. Thus, like parkinsonian patients, parkinsonian
rats exhibit the wearing-off phenomenon. At the same time,
they also show evidence of response alterations that mimic
human on–off fluctuations. The frequency with which there
is no response to an otherwise effective dose of levodopa
rises, and the slope of the levodopa dose/motor response
relation becomes steeper [49]. While parkinsonian rats de-
velop motor fluctuations, under the conditions of these
experiments they do not develop choreiform dyskinesias.
In contrast to 6-hydroxydopamine-lesioned rats, cynomol-
gus monkeys lesioned with MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) develop typical choreiform and
dystonic movements within a few weeks of daily levodopa
treatment [8, 48].
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Peptide cotransmitters

Levels of the peptide cotransmitters used by medium spiny
neurons can serve as reliable markers of their functional
state. Several of these neuropeptides have been found to
undergo characteristic alterations in parkinsonian rodents
and primates as a result of denervation and subsequent lev-
odopa therapy [25, 27, 34, 35, 56, 68]. Spiny neurons that
predominantly express the D2 DA receptor subtype mainly
project to the internal segment of the globus pallidus via
the external globus pallidus and subthalamic nucleus, and
they contain the neuropeptides enkephalin and neurotensin.
Spiny neurons that primarily express D1 DA receptors
largely project directly to the internal segment of the globus
pallidus/pars reticulata of the substantia nigra, and contain
dynorphin and neurotensin [27, 45]. Lesioning the DA
system of rats with 6-hydroxydopamine increases striatal
concentrations of both enkephalin and neurotensin [25].
Subsequent intermittent levodopa treatment at a dose suf-
ficient to induce motor response alterations leads to addi-
tional changes, most notably a striking rise in dynorphin
and neurotensin levels [23, 25]. At the same time, the ex-
pression of messenger ribonucleic acids (mRNAs) encod-
ing for these neuropeptides also increases, suggesting that
their concentration changes may be the result of acceler-
ated synthesis [27]. Related pharmacological studies indi-
cate that these peptide modifications reflect alterations in
spiny neuron output which can influence extrapyramidal
motor function [22, 26, 48]. 

Role of NMDA receptors in Parkinson’s disease

The effects of non-physiological stimulation on synaptic
plasticity have been extensively studied in various animal
models of learning and behavior [62]. Early investigative
attention focused largely on the ability of repetitive high-
frequency (tetanic) stimulation to evoke long-term poten-
tiation (LTP) in the hippocampus [38, 51, 85]. More re-
cently, LTP-like phenomena have been found in cortical
and subcortical areas which influence motor behavior [2,
12, 14]. In these model systems, considerable evidence
suggests that a rise in the sensitivity of glutamatergic recep-
tors, especially those of the N-methyl-D-aspartate (NMDA)
subtype, contributes to the persisting, activity-dependent
changes in neuronal responses [10, 60]. Since NMDA and
DA receptors are co-expressed in close proximity along
the distal dendrites of medium spiny neurons [43, 73], the
foregoing preclinical observations prompted evaluations
of the possibility that the non-physiological stimulation of
DA receptors on these striatal neurons might enhance
NMDA receptor sensitivity in ways that favor the clinical
appearance of parkinsonism and long-lasting motor com-
plications [15, 24, 65]. 

NMDA receptors are heteroligomers assembled to form
ligand-gated ion channels from one or two NR1 subunits,

expressed in eight currently recognized splice variants (a–
h), and two or three NR2 subunits composed of four ho-
mologous isoforms (A–D) [64, 87]. In rat striatum, me-
dium spiny neurons express NR1 variants along with
NR2B and, to a lesser extent, NR2A subunits [19]. Protein
phosphorylation serves as a major regulatory mechanism
for these receptors [32, 75]. The phosphorylation of tyro-
sine residues has been reported to modulate channel char-
acteristics, including opening probability [86, 88], while
serine/threonine phosphorylation by calcium/phospholipid-
stimulated or cAMP-stimulated protein kinases appears to
affect their subcellular distribution and anchoring to plasma
membranes [36, 79]. Recent studies of rat striatal NMDA
receptors have revealed changes in both tyrosine and ser-
ine phosphorylation that are associated with the develop-
ment of parkinsonism following nigrostriatal system de-
struction, as well as with the appearance of motor response
alterations following intermittent levodopa therapy. 

The phosphorylation of rat striatal NMDA receptors at
tyrosine residues increases when 6-hydroxydopamine-in-
duced parkinsonism becomes evident [53, 62], and to an
even greater extent when the altered motor responses to
levodopa appear [62]. Both nigrostriatal denervation and
subsequent levodopa administration mainly affect striatal
NR2B subunits, although levodopa treatment also augments
NR2A subunit tyrosine phosphorylation. In agreement with
previous observations [80], we have also found that lesion-
ing with 6-hydroxydopamine selectively increases striatal
NR2A protein expression. Subsequent intermittent lev-
odopa administration normalized levels of NR2A sub-
units, but had no effect on NR2B expression [62]. In rela-
tion to serine phosphorylation, there are increases on stri-
atal NR2A subunits when rats are lesioned with 6-hydroxy-
dopamine, and these are further augmented when the ani-
mals show altered motor responses to levodopa [63]. Nei-
ther nigrostriatal pathway destruction nor levodopa admin-
istration affect the expression or serine phosphorylation of
NR2B subunits. Since receptor channel function, and there-
fore calcium ion fluxes, at the NMDA receptor complexes
reflect their phosphorylation state, it is not unreasonable
to assume that the observed enhancement in tyrosine and
serine phosphorylation contributes to their heightened sen-
sitivity and thus to the motor dysfunction which accompa-
nies dopaminergic denervation and dopaminomimetic ther-
apy [63]. 

Phosphorylation changes affecting NMDA receptors
on striatal spiny neurons presumably depend on intracel-
lular signaling cascades linking them with nearby dopa-
minergic receptors. Both the nigral dopaminergic and cor-
tical glutamatergic systems innervate the distal dendrites
of medium spiny neurons [43, 73]. Glutamatergic excitatory
projections terminate at the spine heads, where all three of
the major glutamatergic receptor subtypes [NMDA, α-
amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid
(AMPA) and kainate] are expressed [1, 40]. Dopaminer-
gic terminals make synaptic contact on the spine necks,
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within a micron of the glutamate receptors, as well as at
more proximal sites [72]. This intimate anatomical ar-
rangement affords the potential for close physiological in-
teractions between dopaminergic and glutamatergic recep-
tor-mediated mechanisms. Indeed, recent observations sug-
gest that the non-physiological stimulation of rat DA re-
ceptors activates striatal kinases believed to be capable of
directly phosphorylating NMDA receptor subunits [61–
63]. These include serine kinases, such as cyclic AMP-pro-
tein kinase A (PKA) and calcium/calmodulin-dependent
protein kinase II (CaMKII), as well as tyrosine kinases,
which are as yet unidentified but are most likely to be
members of the src or fyn families [42, 61–63, 76, 77, 88].
Intrastriatal injection of the PKA inhibitor, Rp-cAMPS, or
the CaMKII inhibitor, KN-93, for example, reverses the
motor response changes produced by intermittent levodopa
therapy [61, 63]. At the same time, KN-93 has been shown
to attenuate the enhanced serine phosphorylation of NMDA
receptors produced by levodopa therapy [63]. With respect
to tyrosine phosphorylation, striatal infusion of the tyro-
sine kinase inhibitor, genistein, normalizes both the tyro-
sine phosphorylation increases and the motor response
changes associated with levodopa treatment. Conversely,
the tyrosine phosphatase inhibitor, okadaic acid, potenti-
ates these alterations [62]. The foregoing results support
the possibility that sensitization of NMDA receptors on stri-
atal spiny neurons resulting, at least in part, from height-
ened subunit phosphorylation contributes to the onset of
parkinsonian signs as a consequence of dopaminergic den-
ervation, as well as to the appearance of the response mod-
ifications associated with intermittent levodopa treatment.
In either case, alterations in cortical glutamatergic input to
the striatum presumably modify striatal output in ways that
influence motor function. 

Pharmacological evaluations of this possibility were ini-
tially based on the premise that if an increase in striatal
NMDA receptor sensitivity played a role in the produc-
tion of symptoms associated with dopaminergic denerva-
tion or levodopa treatment, then pharmacological blockade
of these receptors should ameliorate the motor dysfunc-
tion. The results of early studies in parkinsonian rats ap-
peared consistent with this possibility, since NMDA recep-
tor antagonists, such as MK801, were found to act both pal-
liatively and prophylactically to decrease response alter-
ations [24, 49, 65]. Subsequent observations in parkinson-
ian primates provided additional support for this hypothe-
sis. Co-administration of certain NMDA antagonists to
these animals substantially reduced the dyskinesiogenic ef-
fects of levodopa [4, 7, 28, 66]. Similarly, studies in parkin-
sonian patients given NMDA receptor antagonists, such
as dextrorphan, dextromethorphan or amantadine, indicated
that drugs of this type can alleviate motor fluctuations as
well as peak dose dyskinesias [6, 81–83]. Regarding the
clinical appearance of parkinsonian signs, results from 6-
hydroxydopamine-lesioned rodents [76] as well as MPTP-
lesioned primates [5, 31, 54] indicate that some intrastri-

atally- or systemically administered NMDA antagonists
possess antiparkinsonian activity. Similarly, the well-es-
tablished symptomatic benefit conferred to mildly afflicted
parkinsonian patients by amantadine suggests that NMDA
receptor antagonists can act as clinically effective pallia-
tives [21, 74]. The foregoing preclinical and clinical ob-
servations support the possibility that striatal NMDA re-
ceptor sensitization contributes to the characteristic motor
dysfunction occurring with both dopaminergic denerva-
tion and levodopa therapy. 

Role of AMPA receptors in Parkinson’s disease

Recent observations suggest that functional alterations in
glutamate receptors other than those of the NMDA type
may also contribute to symptom production in PD. For ex-
ample, the administration of the competitive AMPA recep-
tor antagonist, NBQX, to parkinsonian rats or monkeys re-
portedly has little or no effect on motor function but po-
tentiates the antiparkinsonian action of levodopa [41, 46,
47]. In rats, we have found that NBQX acts to reverse lev-
odopa-associated motor response alterations [48]. In pri-
mates, a selective, non-competitive antagonist of the AMPA
allosteric modulation site (LY 300164) alone did not mod-
ify the severity of parkinsonian signs, but did attenuate lev-
odopa-induced dyskinesias. Conversely, a selective AMPA
agonist (CX516) by itself had no antiparkinsonian activ-
ity, but potentiated levodopa-associated dyskinesias [43].
These animal model results suggest that alterations in
AMPA receptor-mediated mechanisms contribute to the
motor dysfunction associated with dopaminergic denerva-
tion and subsequent dopaminomimetic treatment. The same
may be true for glutamate receptors in the metabotropic
family. All three currently identified subtypes of these G-
protein-coupled receptors are known to be expressed in the
striatum [87]. Both group I and III metabotropic agonists
have now been reported to induce contralateral rotation,
similar to dopaminomimetics, in 6-hydroxydopamine le-
sioned rats [70, 39]. 

A complex series of events involving glutamate recep-
tor-mediated mechanisms in the basal ganglia participate
in the plastic changes in motor function that characteristi-
cally arise in parkinsonian patients, initially as a result of
the loss of striatal dopaminergic innervation and later due
to the intermittent high-intensity stimulation produced by
most currently available dopaminomimetic therapies. Al-
though drugs that prevent or reverse these changes might
be expected to confer symptomatic benefit, considerable
additional investigative effort will be required to deter-
mine the optimal sites of pharmaceutical intervention. In
part, this will involve the precise elucidation of the rela-
tive contribution of factors, such as the activation of par-
ticular signal transduction cascades, the differential phos-
phorylation of glutamate receptor subunits, and the sensi-
tization of glutamatergic receptor subtypes to their natural

II/39



II/40

ligand. It may also entail improving our understanding of
the modulatory role played by other neuronal systems that
make synaptic contact with critical neurons in the striatum
and in downstream basal ganglionic structures. Clearly, the
need for improved palliative treatments for PD continues
to be a crucial goal for pharmacological discovery. Of par-
ticular importance in this regard is exploration of the ther-
apeutic potential of currently available drugs that selec-

tively interact with central glutamatergic systems. Conceiv-
ably, the precise targeting of glutamatergic mechanisms in
the basal ganglia could provide the safest and most effec-
tive therapy for all stages of PD. In view of the neuropro-
tective potential of NMDA and AMPA antagonists and
metabotropic agonists, intensifying the evaluation of their
palliative utility for those suffering from PD seems emi-
nently worthwhile.
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