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Abstract A volatile-rich and chemically zoned phonoli-
tic magma reservoir was tapped successively during the
eruption of Laacher See volcano ca. 12,900 years BP
and produced a tephra sequence consisting of pheno-
cryst-poor, highly evolved phonolite at the base and
phenocryst-rich, more mafic phonolite at the top. The
stratospheric volatile loading was estimated by com-
paring pre- and post-eruptive S, F, Cl and H,O contents
of undegassed glass inclusions and partially degassed
matrix glasses. Glass inclusions (150-1490 ppm S) and
host matrix glasses (150-820 ppm S) both document a
strong S decrease during progressive magmatic differ-
entiation, which is interpreted to be partially caused by
crystallization of hauyne. The S®* /S,y ratio of the pre-
eruptive melt increased with differentiation from 8 to
71%, as indicated by S ko wavelength shift measure-
ments in glass inclusions. Sulfate-rich, highly evolved
phonolitic magma was erupted during Plinian and sul-
fide-rich, more mafic phonolitic magma during late
phreatomagmatic phases. F and Cl became enriched
during late stages of differentiation (glass inclusions:
6904060 ppm F, 1770-4400 ppm Cl; matrix glasses:
680-3660 ppm F, 21304330 ppm Cl). The most differ-
entiated melts (maximum 13 wt% Na,O) occur only as
matrix glass and are extremely F enriched (5080—
8780 ppm) but CI depleted (460-2820 ppm), suggesting
that F was retained in the melt, whereas some CI was
lost during pre- and/or syn-eruptive degassing. The H,O
contents of glass inclusions increase irregularly with
differentiation (2.5-5.7 wt%). Matrix glasses are H,O
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depleted (0.2-2.8 wt%) compared to most glass inclu-
sions, showing that most H,O was released to the
atmosphere by explosive degassing. A mass balance
calculation yields a syn-eruptive volatile release of 1.9 Tg
Siotal, 6.6 Tg Cl and 403 Tg H,O from the melt. This is a
minimum estimate, since S and Cl could have accumu-
lated in a separate fluid phase as indicated by fluid in-
clusions in hauyne and pre-eruption H,O contents close
to saturation level at the likely pressure-temperature
conditions in the Laacher See magma reservoir. We es-
timate that at least ca. 20 Tg SO, were injected into the
stratosphere causing a significant negative climate for-
cing as reflected by several paleoclimate proxies and as
shown by recent modeling.

Introduction

Plinian eruptions of volatile-rich, highly evolved mag-
mas are the most effective natural system for trans-
porting volatiles from the Earth’s interior to the
stratosphere. Rapid injection of water, halogens, and
sulfur can lead to formation of solid and liquid aerosols
and significantly affect global climate and the stability of
the global ozone layer (Brasseur and Granier 1992). For
example, the negative radiative forcing following the
1991 eruption of Mt. Pinatubo, resulting from the
worldwide distribution of sulfate aerosols, was estimated
at —0.4 °C and remained significant through 1993 (Mc
Cormick et al. 1995). Large historic Plinian eruptions
have repeatedly caused severe perturbations of the
global atmosphere (e.g., the “year without summer”
following the 1815 eruption of Tambora; Stothers 1984).
The most useful approach to estimate volcanic volatile
discharges, prior to use of remote sensing methods (e.g.,
TOMS satellite) and lacking ice core records, is to de-
termine volatile contents in glass inclusions and matrix
glasses coupled with determining volumes of tephra
deposits. The eruption of Laacher See volcano has been
assumed for some time to have affected the climate
based on several proxies as discussed below. Based on



earlier studies of the volcanic, mineralogical and chem-
ical evolution of this strongly zoned phonolitic magma
system (Bogaard and Schmincke 1984, 1985; Worner
and Schmincke 1984a,b) we have used volatile contents
of glass inclusions (undegassed melt) and matrix glasses
(partially degassed melt), together with a new estimate of
the erupted magma volume, to infer the pre-eruptive
volatile gradient established during magmatic differen-
tiation and to estimate the minimum syn-eruptive de-
gassing of S, F, Cl and H,O from the melt during the
Plinian eruption of Laacher See volcano.

Geologic background

A large volume of chemically zoned, phonolitic magma was erup-
ted from Laacher See volcano 12,900 years BP, resulting in a te-
phra layer that is widely dispersed across central Europe (Bogaard
and Schmincke 1984, 1985; Bogaard 1995; Schmincke et al. in
press; Fig. 1). The proximal tephra sequence is subdivided into
three major units: Lower Laacher See Tephra (LLST, first Plinian
stage, dominantly fallout except for the proximal facies), Middle
Laacher See Tephra (MLST A-C, second Plinian stage, dominantly
pyroclastic flows in the lower and alternating fallout and flow in the
upper part) and Upper Laacher See Tephra (ULST, phreatomag-
matic stage with dominantly surge breccias, dunes and flows)
(Fig. 2).

Three aspects of the eruption are especially relevant to estimate
the volatile flux into the stratosphere: (1) eruption mechanisms; (2)
height of the eruption column; (3) magma volume erupted. The
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Fig. 1 Areal distribution of Laacher See Tephra (LST) in central
Europe (Bogaard and Schmincke 1985). Stratigraphic section is
normalized to relative magma volumes (dense rock equivalent) of
major tephra units LLST, MLST A-C and ULST
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Fig. 2 Stratigraphy of proximal Laacher See Tephra (Mendig and
Krufter Ofen facies; Schmincke et al. 1973; Bogaard and
Schmincke 1985). Samples were collected from all major and most
sub-units of the entire tephra sequence. Representative samples are
shown at the left and right of both columns (see also Table 2).
Entire sample suite is given in Harms (1998)

bulk of the magma was erupted pyroclastically, but part of the
magma was erupted phreatomagmatically during the very begin-
ning of the eruption, the early MLST and, most importantly, the
entire ULST (Schmincke et al. 1973). The eruption column height
was estimated by plotting maximum pumice and lithic clast sizes
versus dispersal area, based on the model of Carey and Sparks
(1986) which relates the maximum clast size dispersal to column
height and wind strength. Our estimates are 13-21 km for Plinian
LLST and 20-22 km for Plinian MLST B. The maximum height of
the Plinian eruption column was estimated at 34-39 km, based on
mass eruption rates of 3—5 x 10® kg - s™' (Bogaard and Schmincke
1985). A straight-line model based on plots of log thickness ver-
sus area'/? (Pyle 1995; Fierstein and Nathenson 1992) using the
thickness data reported in Bogaard (1983) yields a total volume of
6.3 km” erupted magma (dense rock equivalent, DRE) which ex-
ceeds the volume previously estimated (5.15 km®, Bogaard and
Schmincke 1985). The Plinian phases LLST to MLST B lasted for 6
to 10 hours, based on the high mass eruption rates and the duration
of analogous Plinian eruptions (Bogaard and Schmincke 1985).
Park and Schmincke (1997) considered a duration of several days
more likely based on reconstruction of a large lake formed by
damming of the Rhine River behind a large tephra dam and syn-
eruptive collapse with post-collapse final eruptions possibly lasting
several weeks. In assessing the total volatiles released during the
eruption, it is also important to stress that the Laacher See eruption
successively tapped a strongly compositionally zoned magma co-
lumn from the top (nearly aphyric, highly differentiated phonolite
represented in LLST) towards lower levels (crystal-rich mafic
phonolite represented in ULST) (Worner and Schmincke 1984a, b).

Sample collection and analytical methods

Fallout pumice lapilli and felsic cumulates were taken in several
proximal tephra pits covering the entire Laacher See tephra se-
quence (Fig. 2). Single pumice clasts and cumulates were gently
crushed and phenocrysts separated by handpicking under distilled
water to identify glass inclusions. Phenocrysts and pumice chips
were fixed in epoxy resin and polished to expose glass inclusions
and matrix glass.

Major element analyses were carried out with a CAMECA
SX50 wavelength dispersive electron microprobe at GEOMAR
Research Center, Kiel. Analytical conditions were 15 kV acceler-
ating voltage and a beam current of 6 nA. A rastering electron
beam (15 pm in diameter) was used for glass analyses in order to
minimize Na migration, which was among the first elements mea-
sured during an analysis. Glass inclusion analyses were corrected
for Na migration and consequent Si and Al increase (e.g., Devine
et al. 1995; Nielsen and Sigurdsson 1981). Major elements were
measured for 20 s, F and CI for 30 s and for S for 300 s to improve
the detection limit (145 ppm) at the analytical conditions used.
Oxide concentrations were calculated following the PAP method
(Pouchou and Pichoir 1984). Relative analytical precision was
<2% for Si and Al, <3% for Na and K, <4% for Ti, <6% for
Fe, <12% for Mg, <7% for S, <3% for F and <6% for Cl,
based on repeated analyses of reference glasses (CFA 47 2, KE 12,
KN 18 and ALV 981 R23; Meétrich and Clocchiatti 1989) and
minerals (SI-F-apatite, Sl-scapolite, Smithsonian Institution,
Washington, D.C.).

H™" was determined with a CAMECA IMS-4f ion microprobe
at the Institute of Microelectronics at Yaroslavl (Russia). The
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technique is described in detail in Sobolev

Briefly, samples were gold-coated and sputtered with an O™ pri-

mary beam of 20 pum size in diameter at 5-7
of five cycles was used to calculate the H" ¢

The calibration curve for H*/3°Si was checked by using rhyolite
reference material with 0.16-4.72 wt% H,O (VNM50-15, 498, 508;

Devine et al. 1995) and phonolite references

Blank 1997). The analytical error was <10% for H". Total H,O

and Batanova (1995).
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contents of glass inclusions and matrix glasses were also estimated
by the difference between the total of an electron microprobe
analysis and 100 wt% (so-called ““difference method”, e.g., Devine
et al. 1995). The analytical error, based on the standard deviation
of the analysis total and glass references is +0.4 wt%. It is as-
sumed that the difference to 100 wt% is entirely attributed to total
H,O0, since S, F, Cl and trace element contents (ca. 1500 ppm on
average, based on SIMS (secondary ion mass spectrometry) anal-




ysis of glass inclusions and matrix glasses) are taken into account.
The CO, contents of whole rocks determined by XRF are low
(100-500 ppm; Worner and Schmincke 1984a) and very probably
do not contribute a significant error to the H,O estimate. The H,O
contents determined by SIMS (1.5-5.5 wt%) agree well with H,O
contents estimated by the difference method (1.3-5.7 wt%). Oxy-
gen isotopes show that matrix glasses from all tephra units were not
secondarily altered or hydrated despite their high alkali contents
(Worner et al. 1987).

The relative proportion of S“/Smm] in the pre-eruptive melt
was estimated by determining the shift of the S ko wavelength peak
position in glass inclusions (Carroll and Rutherford 1988). It is
assumed that the amount of the wavelength shift is linearly pro-
portional to the sulfur fraction present as sulfate. If S°* and S*~
are the only S-species present in the melt, then the apparent
wavelength shift reflects the superposition of the S°* and S*~ peaks
and the growth of one peak at the expense of the other (Nilsson and
Peach 1993). Barite and sphalerite were used as references for pure
sulfate and sulfide peak positions, respectively. For each point in
the step-scan, the analyzing crystals (PET) on two spectrometers
were moved simultaneously in 0.00005 sin 6 steps over the sin 0
range of 0.61320 to 0.61480.

Texture of glass inclusions

Glass inclusions are present in all major phenocrysts of
the Laacher See phonolite (amphibole, clinopyroxene,
hauyne, plagioclase, sanidine, magnetite and titanite;
Fig. 3). In LLST and MLST A/B, however, most glass
inclusions occur in amphibole and clinopyroxene, and
are absent in sanidine and plagioclase. Their sizes vary
between 10 and 230 pum in diameter, and most of them
are 10-50 um in diameter. Many hauyne crystals con-
tain bands of up to several hundred extremely small
glass inclusions (<1 um) outlining growth zones. Most
inclusions are pale brown to brown, sub-round to
round and contain undevitrified glass, indicating rapid
quenching (Beddoe-Stephens et al. 1983; Dunbar and

Fig. 3 Clinopyroxene with several glass inclusions (GI), sur-
rounded by crystal-rich matrix glass. A black pyrrhotite globule
(Po) at the upper right shows that an immiscible sulfide melt was
trapped during growth of the host phase (sample LST 3-1-10,
ULST-B1). Bar at lower right is 100 pm
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Kyle 1992). The volumes of bubbles in glass inclusions
span a wide range between 0 and 10%, most being
<2%. Thus, bubble formation of many inclusions was
probably caused by differential contraction of host
phase and trapped melt during quenching upon erupt-
ion. Vesicle volumes >2% indicate volatile-oversatura-
tion during pressure release and exsolution of a H,O-
rich volatile phase until the glass transition temperature
was reached. Fluid inclusions in hauyne further suggest
the presence of a fluid phase during formation of the
host crystal and heterogeneous trapping of silicate melt
and fluid.

Many glass inclusions in all host phases are only
partially decrepitated. Major element compositions do
not vary systematically with size of the inclusions.
Hence, the melt was not significantly modified during
entrapment (“‘boundary layer buildup”, Lu et al. 1995).
Potential host wall crystallization does not exceed 1-2%,
because corrections for higher amounts of incremental
host crystallization produced major element composi-
tions that are neither present in whole rocks nor in glass
inclusions and matrix glasses of the entire tephra se-
quence. This indicates that the glass inclusions studied
closely approximate melt compositions at the time of
entrapment.

Results
Chemical zonation of the Laacher See magma column

The Laacher See tephra sequence shows an inverted
cross section through part of a zoned phonolitic magma
reservoir. Highly differentiated phonolitic magma (re-
presented in LLST, 10.4-11.7 wt% Na,O, 0.7-1.1 wt%
CaO, 1371-2614 ppm Zr) was erupted from the top
levels during early Plinian phases, whereas mafic
phonolitic magma (represented in ULST, 4.9-5.8 wt%
Na,O, 3.3 wt% CaO, 257-283 ppm Zr) was tapped
during late phreatomagmatic phases of the eruption
(Worner and Schmincke 1984a). The chemical zonation
is postulated to have been formed by fractional crys-
tallization of the observed phenocryst assemblage
(Worner and Schmincke 1984b). The compositions of
most glass inclusions and matrix glasses from the same
tephra unit are identical within the analytical error and
reflect a chemical gradient that is essentially identical to
the bulk rock trend presented in Worner and Schmincke
(1984a) (Fig. 4). Several glass inclusions from MLST A/
B and LLST are less differentiated, however, than the
adjacent matrix glass. Some amphibole- and clinopy-
roxene-hosted glass inclusions from LLST IV even
document almost the full chemical variation observed in
the entire tephra sequence. This cannot be explained by
in-situ fractionation, since the modal phenocryst content
in LLST is <2 vol.%. This indicates that several phe-
nocrysts with mafic phonolitic glass inclusions were
separated from their host melt fraction represented in
ULST and MLST C and were redistributed within the
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Fig. 4 CaO, TiO,, Na,O and K,O of glass inclusions and matrix
glasses, plotted versus the inverted section of the Laacher See
tephra sequence. Section is normalized to relative magma volumes
of LLST, MLST and ULST

chemically stratified magma column. The Na,O and
K,O contents systematically change during magmatic
differentiation. This helps to constrain the pre- and post-
eruptive S, F, Cl and H,O gradient from mafic to highly
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Fig. 5 Na,O versus K>O in glass inclusions, matrix glasses and
interstitial glasses in cumulates. Shaded areas cover the Na,O and
K,O variation in matrix glasses from LLST to ULST including
standard deviation (+ 1o). Error bars in the inset at lower left refer
to the average standard deviation (% 1) in glass inclusions and
interstitial glasses in cumulates

differentiated phonolite (Fig. 5). Glass inclusions and
matrix glasses with identical Na,O/K,O ratios are as-
sumed to represent melt fractions from the same stage of
differentiation. Hence, differential volatile concentra-
tions of those inclusions and matrix glasses are attri-
buted to syn-eruptive degassing of the melt.

Most strikingly, the least differentiated melt fractions
(ca. 5.0-6.5 wt% Na,O, 8.5-10 wt% K,O) are only
represented by glass inclusions, whereas highly differ-
entiated melt fractions (ca. 11-13 wt% Na,O, 3.5—
5.0 wt% K,0O) are preserved only as matrix glasses
(Fig. 5). In other words, the early volatile evolution
prior to extensive fractional crystallization is docu-
mented, whereas the late pre-eruptive volatile evolution
cannot be inferred, since glass inclusions from the last
stages of differentiation are lacking.

Pre- and post-eruptive volatile zonation
Sulfur

The S content in mafic phonolitic glass inclusions in-
creases irregularly from 150 to 1490 ppm, parallel to a
slight increase of the Na,O/K,O ratio (0.3-1.2; Fig. 6).
Host matrix glasses from ULST and MLST C show
nearly the same trend and overlap with many glass in-
clusions (150940 ppm S). Highly differentiated glass
inclusions (Na,O/K,O = 1.5-1.9) are uniformly S poor
(160-310 ppm S), similar to matrix glasses from MLST
A/B and LLST (Na,O/K,O = 1.5-3.2; 145-390 ppm
S). The S contents of interstitial glasses in cumulate
rocks, believed to represent the crystallizing boundary
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layer of the chamber margin (Tait 1988; Tait et al. 1989),
decrease with increasing magmatic differentiation
(Na,O/K,0 = 0.7-1.8; <145-940 ppm S). Thus, a
strong S-zonation had developed both in the interior

and at the margin of the Laacher See magma body
(Fig. 6). The covariance of strongly varying S contents
of glass inclusions and matrix glasses from the same
stages of differentiation demonstrates that the S contents
were zoned prior to eruption and S was lost from the
melt prior to eruption.

Fluorine

The F contents of all mafic phonolitic glass inclusions
with a low Na,O/K,O ratio vary between 690 and
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2580 ppm and completely overlap with host matrix
glasses (680-2910 ppm). Only some hauyne-hosted glass
inclusions are F enriched (30704120 ppm) (Fig. 6). A
distinct F increase is recorded in highly differentiated
glass inclusions in amphibole (2530-4060 ppm) and host
matrix glasses (2010-3660 ppm). Highly differentiated
matrix glasses, mostly from LLST, are extremely F en-
riched (5080-8780 ppm) compared to less differentiated
inclusions and matrix glasses (Fig. 6). Fluorine is also
strongly concentrated in interstitial glasses in cumulate
rocks (1150-7090 ppm). The high F contents in the most
evolved matrix glasses indicate that F was further en-
riched after formation of the highly differentiated melt

Fig. 7 Cl and H,O versus Na,O/K,O ratio in glass inclusions (/ef?
diagram) and matrix glasses (right diagram). Bold symbols refer to
H,O determined by SIMS, all other symbols to H>O estimated by
difference method. Error bars in the H,O versus Na,O/K,O
diagram show the standard deviation of the microprobe total
(£0.4 wt%). The error of the H,O contents determined by SIMS is
+10%. See Fig. 6 for symbol description

(glass) inclusions studied and not removed from the melt
by crystallization of amphibole (1670-4060 ppm F) and
apatite (1.23-1.45 wt% F). We infer that F did not de-
gas significantly during eruption.

Chlorine

The Cl contents of mafic phonolitic glass inclusions
cluster between 1770 and 2950 ppm and overlap with
those of the host matrix glasses (2130-3540 ppm CI).
Several host matrix glasses from ULST are, however, Cl
enriched compared to the inclusions (3150-5350 ppm
Cl). Most glass inclusions in amphibole document a
distinct Cl increase (2200-4400 ppm) with progressive
differentiation (8-10.5 wt% Na,O) that is also recorded
in host matrix glasses (2130-4330 ppm Cl) (Fig. 7).
Some highly differentiated glass inclusions are, however,
Cl depleted (1880-2920 ppm), similar to most host ma-
trix glasses (460-2820 ppm). This suggests that the
Laacher See melt lost some Cl during late magmatic
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differentiation and probably also upon eruption. The CI
contents of interstitial glasses in cumulate rocks corre-
late positively with the Na,O/K,O ratio (2130-
5540 ppm), indicating that the magma column was
zoned with respect to CI at the crystallizing chamber
margin, similar to S and F. Amphibole is incompatible
for Cl in the Laacher See magma (220-730 ppm Cl).
Apatites are found only in traces (Worner and
Schmincke 1984a) and therefore also did not contribute
to a CI depletion.

H,0

The H,O contents of glass inclusions vary between 1.5
and 5.5 wt%, as determined by SIMS, which corres-
ponds well with the H,O contents estimated by the dif-
ference method (1.3-5.7 wt%) (Fig. 7). Such a large
variation could reflect a local heterogeneous H,O dis-
tribution in the melt (Dunbar and Hervig 1992; Stix and
Layne 1996). Most glass inclusions in amphibole,
clinopyroxene, hauyne and sanidine are, however, par-
tially decrepitated, which probably indicates partial loss
of water through microfractures during eruption (Tait
1992). Hence, these glass inclusions have not preserved
their original water contents and the strong variation
likely reflects variable decrepitation.

The H,O contents of matrix glasses from MLST C
and ULST vary strongly between 0.4 and 2.7 wt%,
which is probably due to incomplete degassing, because
the magma was quenched by groundwater during phre-
atomagmatic phases. In contrast, matrix glasses from
LLST and MLST A/B contain 0.2-1.5 wt% H,O, indi-
cating strong H,O degassing during Plinian phases.

Evidence for an increase of oxygen fugacity
during magmatic differentiation

Sulfur occurs as both sulfate (S°*) and sulfide (S*7) in
silicate melts (e.g. Fincham and Richardson 1954; Pu-
chelt and Hubberten 1980; Ueda and Sakai 1984; Car-
roll and Rutherford 1988; Wallace and Carmichael
1994). Estimates of the S®* /Sy ratio is of particular
interest, since a quantification of sulfur released during
explosive eruptions requires constraints on the S speci-
ation in the melt prior to eruption (Carroll 1997).
Measurements of the Ska wavelength shift in Laacher
See glass inclusions suggest that the S6+/Stotal ratio in-
creased during magmatic differentiation from 8 to 30%
(mafic phonolite, Na,O/K,O = 0.55-0.85) to 46 to 71%
(highly differentiated phonolite, Na,O/K,O = 1.15 and
1.8; Fig. 8). Additional lines of evidence for an increase
of the sulfate content include sulfide phases and the
occurrence of hauyne in the crystal assemblage. Many
amphibole, clinopyroxene, plagioclase and titanite
crystals from ULST to MLST B contain numerous
pyrrhotite globules (Fe;_S, <5-10 um in diameter)
representing a quenched immiscible sulfide melt (Fig. 3).
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Fig. 8 Variation of S°7/Siowm (%) versus Na,O/K,O in glass
inclusions (GI) from ULST, MLST BéC and LLST. Error bars
refer to the uncertainty of the S°* and S*~ peak positions measured
on PET crystals on two spectrometers simultaneously. The errors
for two inclusions in amphibole and titanite are unknown, because
the scan data of only one spectrometer could be used for fitting the
data via a Gaussian curve

Moreover, pyrrhotite is trapped in mafic phonolite glass
inclusions, demonstrating that the Laacher See melt was
FeS-saturated during early stages of differentiation.
Most strikingly, Laacher See hauyne never contains
pyrrhotite and is not found as inclusions in other crys-
tals, indicating that hauyne crystallized sometime after
formation of pyrrhotite-bearing phenocrysts. The
occurrence of pyrrhotite-free hauyne in the crystal
assemblage might reflect the transition from a sulfide-
saturated to a sulfide-undersaturated melt during dif-
ferentiation of the mafic phonolite. Pyrrhotite does not
occur in matrix glasses, including the least differentiated
mafic phonolite glasses. This shows that the crystallized
sulfide had been resorbed during early stages of melt
evolution. The generally lower S contents in glass in-
clusions in hauyne compared to those in co-existing
clinopyroxene, titanite and sanidine further suggest that
much of the hauyne could have crystallized later than
OH-free phases (Fig. 6).

Pre-eruption H,O enrichment
in the Laacher See magma

Two mafic phonolitic glass inclusions in titanite from the
ULST contain 2.5 and 2.9 wt% H,O as determined by
SIMS (Fig. 7). We assume that these inclusions record
the H,O content of the Laacher See magma during early
fractionation stages, since they are vesicle-free, glassy,
and lack microfractures. The ULST magma was pro-
bably held at a pressure of 120-140 MPa (Harms and
Gardner in prep.). This implies a dissolved water content
of 5.4-6.0 wt%, based on the solubility of water in
phonolitic melts (Carroll and Blank 1997). Hence, the
Laacher See magma was water-undersaturated during
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early stages of differentiation. The high water contents
of several mafic phonolitic glass inclusions in sanidine
and titanite (5.5-5.7 £ 0.4 wt%) indicate, however,
that the water content increased during melt evolution
and the melt was close to water saturation. The unsys-
tematic variation of CI observed in less differentiated
glass inclusions (ca. 5-8 wt% Na,O, Fig. 7) further
suggests that the Laacher See melt could have been
water-saturated during progressive stages of differenti-
ation. Hauyne (D¢ = 1.01-1.52) and apatite (D¢=
0.91-1.37) are the only phenocrysts slightly compatible
for Cl (Harms 1998). It is, however, unlikely that they
buffered the Cl content of the magma, since the modal
content of hauyne (0.5-1.5vo0l.%) and apatite
(<1 vol.%) is low. More likely, the Cl contents of mafic
phonolitic glass inclusions were buffered by fractiona-
tion between melt and a H,O-rich fluid phase.

Atmospheric volatile loading during the eruption
of Laacher See volcano

In order to calculate the mass of magmatic volatiles
released during explosive volcanic eruptions, volatile
contents of non-degassed glass inclusions (pre-eruptive
volatile content) and partially degassed host matrix
glasses (post-eruptive volatile content) are compared.
Differences in volatile contents, scaled to the erupted
magma volume (DRE), allow us to estimate the volatile
release from the melt upon eruption (petrologic method;
e.g. Devine et al. 1984; Gerlach et al. 1994; Westrich and
Gerlach 1992) using the following equation:

Total volatile loss = Ayopagite X pmelt X Gpere X Vinelt (1)

with Ayoaile — melt volatile loss, differential volatile
concentrations in glass inclusions and matrix glasses, on
average. Pmelt = 2.3 X 10'? kg/km®, melt density, as-
suming 3.5 wt% melt-H,O at 860 °C (Tait et al. 1989);
Omelr — melt fraction, 0.97 and 0.74, based on average
phenocryst contents of 3 vol.% in LLST and MLST A/
B and 26 vol.% in MLST C and ULST (Bogaard and
Schmincke 1985); Ve — erupted magma volume, ve-
sicle-free, 4.04 km® (LLST and MLST A/B), 2.26 km?
(MLST C and ULST).

This approach is based on the fundamental assump-
tion that volatiles released upon eruption are derived
from the volume of the erupted melt. Hence, the petro-
logic method yields only a minimum amount of the total
volatile mass which was syn-eruptively degassed when
excess gas is present.

Glass inclusions and matrix glasses selected for the
volatile mass balance are representative melt fractions
from the same stage of magmatic differentiation as in-
dicated by similar Na,O and K,O contents (Fig. 5). The
comparison between glass inclusions and host matrix
glasses shows (Fig. 9):

1. The S contents of glass inclusions are only slightly
higher than those of host matrix glasses from LLST and
MLST A/B (50 ppm, on average), except in a single

glass inclusion in clinopyroxene (710 ppm S). This sug-
gests minor syn-eruptive S-degassing of the highly dif-
ferentiated phonolitic magma during the initial and
major Plinian phases.

2. Most mafic phonolitic glass inclusions from MLST
C and ULST contain, on average, 400 ppm more S than
host matrix glasses, indicating that S was predominantly
released during late phases of the eruption.

3. The F contents of glass inclusions and host matrix
glasses from ULST to LLST do not differ significantly.
Matrix glasses from LLST and MLST A/B appear to be
F enriched compared to glass inclusions, implying that
the melt retained its F content during magmatic differ-
entiation and eruption.

4. The CI contents of most matrix glasses are identical
to those of glass inclusions. Some matrix glasses contain
more Cl than glass inclusions from the same stage of
differentiation. Only some highly differentiated matrix
glasses from MLST A and LLST are depleted in Cl
compared to glass inclusions. This indicates that Cl was
released during Plinian phases, whereas Cl was retained
during late phases of the eruption.

5. The H,O concentrations in glass inclusions from
LLST to ULST are generally higher than in host matrix
glasses, implying that the melt lost most of its H,O
during eruption.

Mass balance calculations yield a magmatic volatile re-
lease of 1.9 Tg Sioa1 (0.45 Tg during Plinian and 1.45 Tg
during late phases), 6.6 Tg CI (Plinian phases only) and
403 Tg H,O (307 Tg during Plinian and 96 Tg during
late phases, Table 1). The molecular form of S degassing
during the eruption of Laacher See volcano is uncertain.
Most likely, sulfates were also degassed together with
the major S-compound SO,, particularly during Plinian
phases when sulfate-rich melt was tapped from the upper
levels of the reservoir. This is indicated by the high
proportion of S°* (up to 71%, Fig. 8) in highly differ-
entiated glass inclusions.

Sulfur mass balance

Studies of recent eruptions (e.g., El Chichon 1982;
Mt. Redoubt 1989/90; Mt. Pinatubo 1991) have demon-
strated that the petrologic method for estimating volcanic
volatile yields may severely underestimate the amount of
sulfur released to the atmosphere and, therefore, the
potential climatic impact of explosively degassing H,O-
rich magmas. Various mechanisms of the “‘excess sulfur”
have been invoked (e.g., Carroll and Rutherford 1987;
Andres et al. 1991; Matthews et al. 1992; Hattori 1993;
Wallace and Gerlach 1994; Gerlach et al. 1994, 1996;
Oppenheimer 1996; Rutherford and Devine 1996; Kress
1997). Most likely, additional sulfur was accumulated in
a vapor phase within the magma body prior to eruption
(e.g., Gerlach et al. 1996; Kress 1997).

In the case of Laacher See volcano, three major pro-
cesses could have led to a S-loss from the melt prior to
eruption: (1) sulfide and hauyne formation; (2) loss to a
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fluid phase; (3) loss to wall rocks. Apparently, the mafic
phonolitic magma lost some sulfur by pyrrhotite forma-
tion prior to crystallization of hauyne. Sulfur is, however,
incorporated predominantly in hauyne (4.6 £ 0.2 wt%),
whereas only minor amounts of S are fractionated in
amphibole (120-530 ppm S) and apatite (1700-4070 ppm
S). A mass balance calculation indicates that 230-—
690 ppm S could have been removed from the mafic
phonolitic melt assuming a modal content of 0.5-
1.5 wt% hauyne based on the estimate by Bogaard and
Schmincke (1985) (Fig. 6). The S content in the Laacher
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See melt just prior to hauyne crystallization cannot be
determined exactly, since the sulfate content in the melt
required for hauyne formation is uncertain. Experimental
studies show, however, that sulfate and probably also
sulfate-bearing silicates such as hauyne can only coexist
over a narrow range of oxygen fugacity (Carroll and
Rutherford 1987). Hence, the maximum S content in the
melt at the onset of hauyne crystallization was most likely
not higher than 1070-1230 ppm, since these S contents
are present in pyrrhotite-bearing glass inclusions in
clinopyroxene and titanite. The modeled S depletion via
hauyne formation covers the strong S variation observed
in both mafic phonolitic glass inclusions and host matrix
glasses from MLST C and ULST (Fig. 6).

The S contents of hauyne-hosted glass inclusions in-
dicate that 270-700 ppm S are required to crystallize
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Table 1 Atmospheric S, Cl and
H,O release during the Plinian

Stotal (PPM) F (ppm) CI (ppm) H>O (wt%)

and phreatomagmatic phases of
the Laacher See eruption, esti-
mated by comparing glass in-
clusions and matrix glasses. The
calculation for the volatile loss
is based on 41 glass inclusions
(2-20 point analyses per inclu-
sion) and 25 host matrix glasses
(2-57 point analyses per matrix
glass)

Glass inclusions (n = 8)
Matrix glasses (n = 6)
Average volatile difference
Magmatic volatile release (Tg)

Glass inclusions (n = 33)
Matrix glasses (n = 19)
Average volatile difference
Magmatic volatile release (Tg)

Stotar» F, Cl, HyO release (Tg)

LLST and MLST A/B (S-poor highly differentiated phonolite magma)

MLST C and ULST (S-rich mafic phonolite magma)

270 + 48 2910 £ 751 3394 + 835 3.61
219 + 49 3798 + 956 2665 + 1421 0.20
51 - 729 3.41
0.45 ? 6.60 307
886 + 112 1683 + 161 2090 + 254 4.04
535 + 226 1873 + 713 2951 + 983 1.73
351 - - 2.31
1.45 ? ? 96

1.90 ? 6.60 403

0.9 vol.% hauyne at most. Two glass inclusions in clino-
pyroxene and titanite that also contain pyrrhotite
globules clearly show that the Laacher See melt was
sulfide-saturated at S contents of between 1070 and
1230 ppm. Moreover, two bubble-free glass inclusions in
titanite with 2.5-2.9 wt% H,O indicate that the pre-
eruptive Laacher See melt was H,O-undersaturated at S
contents between 880—-1190 ppm. If the melt saturated in
water at about 880 ppm S and hauyne began crystallizing
at 700 ppm (highest S content in hauyne-hosted glass
inclusions), then 180 ppm S could have partitioned into a
fluid. If only 0.5 wt% hauyne (minimum modal content
in MLST C and ULST) crystallized, then at most
660 ppm S could have been lost to a fluid phase. This
corresponds to 2.3-8.6 Tg S, accumulated in the fluid,
based on 6.3 km?® erupted magma volume, 10% average
crystal content and a melt density of 2.3 x 10'? kg/km®.
This is only a rough estimate, since the relative timing of
fluid saturation and hauyne formation is uncertain.

Olivine-bearing basanites in the ULST indicate mix-
ing of basanitic and mafic phonolitic melt and crystal
overgrowth in clinopyroxenes and amphiboles suggests
rapid crystallization rates for several hours prior to
eruption (Worner and Wright 1984). This suggests, that
additional SO, could have been released by magma
mixing between a reduced and an oxidized melt just
prior to eruption as postulated by Kress (1997) for the
Pinatubo dacite.

Potential volatile input during the eruption
of Laacher See volcano and its climate impact

A negative climate forcing caused by Plinian eruptions
depends strongly on whether the eruption column height
is sufficent to inject volatiles into the stratosphere. The
Laacher See tephra is usually found between the “winter
layer” and “‘summer layer” in lacustrine sediments in
southern Germany (Merkt 1991). This and other lines of
evidence summarized in Schmincke et al. (in press) in-
dicate that the Laacher See volcano erupted sometime
between late winter (early spring) and early summer. The
tropopause level during that time ranged between ca.
11 km (January) and ca. 13 km (July), assuming that the
atmospheric distribution of zonal mean temperatures

has not changed significantly since the late Pleistocene
(Warneck 1988). As shown by Bogaard and Schmincke
(1985) and our data, the Laacher See Plinian eruption
plume clearly entered the stratosphere.

Earlier speculations that the Laacher See eruption
was responsible for the Younger Dryas cold spell are no
longer maintained because an age difference of at least
750 years occurs between the Laacher See eruption and
the beginning of the Younger Dryas (12,150 years BP;
Kaiser 1993). Nevertheless, a number of proxies have
been documented for some time showing a likely strong
negative climate forcing of the Laacher See eruption.
Tree-rings from the late glacial Déttnau pines (Switzer-
land) show marked disturbances in the Alleréd pine
chronology (Kaiser 1993), the age of the ca. 6 bands of
reduced tree-ring growth being close to that of the
Laacher See eruption. Merkt (1991) and others have
demonstrated that sedimentation in lakes in Central
Germany was strongly disturbed for up to 20 years
following deposition of the Laacher See tephra layer.
The disturbance may have been due to a period of heavy
rains following the climatic impact after the Laacher See
eruption (Schmincke et al. in press). Timmreck and Graf
(1999) suggest an extremely strong negative anomaly as
high as —6 W/m? for at least 4 years. In comparison, the
effect of the Pinatubo eruption was much smaller
(=2.4 W/m?, McCormick et al. 1995). Satellite data for
the eruptions of El Chichon (1982), Redoubt (1989) and
Pinatubo (1991) do indicate a factor of up to 435 for the
very low petrologically estimated sulfur emissions com-
pared to those registered by TOMS. In analogy, we es-
timate that at least 20 Tg were emitted by Laacher See
volcano into the stratosphere assuming only a factor of
10. The actual amount may have been appreciably
higher considering the drastic negative forcing shown by
the modeling results of Timmreck and Graf (1999).

Conclusions

1. Glass inclusions and matrix glasses record the
development of volatile zonations in the Laacher See
magma body. The S contents decreased during early
stages, whereas F was enriched in the melt during late
stages of differentiation in the upper portions of the
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Table 2 (continued)

Total

Cl

S

NaZO K20

MgO CaO MnO FeO*

n nS P205 SIOZ T102 A1203

Host

Sample

Tephra unit

99.02

0.231

0.175
0.065

0.078

7.65
0.19
7.80

5.62
0.73
6.50
0.17
6.59
0.25
8.83
0.18
6.91
0.20
6.54
0.48
8.06
0.29
7.11

0.08

2.26
0.08
2.26
0.12
2.31
0.16
2.11
0.44
2.47
0.14
1.84
0.66
3.23
0.17
2.07
0.05

0.19
0.04
0.20
0.05
0.18
0.04
0.31
0.08
0.15
0.04
0.14
0.05
0.39
0.05
0.20
0.07

1.84
0.12
2.04
0.09
1.70
0.17
0.95
0.13
1.42
0.18
1.90
0.44
1.39
0.13
1.59
0.06

0.25
0.02
0.33
0.03
0.15

20.51

0.56
0.20
0.83
0.07
0.61
0.06
0.21
0.10
0.62
0.09
0.58
0.16
0.89
0.16
0.51
0.05

60.57

0.07
0.01
0.05
0.02
0.06
0.03
0.03
0.01
0.05
0.02
0.08
0.03
0.10
0.02
0.03
0.02

ULST XVII-B2 LST 1-1-06

0.41
98.02

0.040
0.244
0.029

0.034

0.11
20.07

0.57
59.36

SD

0.158
0.036

0.047

20

20

ULST XVII-B3/5 LST 1-1-71

0.53
97.45

0.20 0.017

7.71
0.21
6.81
0.20
8.35
0.22
7.64
0.45
6.44
0.14
7.57
0.09

0.15
20.22

0.35

59.98

SD

0.168 0.261

0.055

0.043

52

54

ULST XVIII-B13 LST 1-1-41

0.62
99.21

0.034

0.021

0.24 0.05
20.25

0.47
59.10

SD

0.554
0.085

0.709
0.064
0.179
0.026

0.022

0.11
0.06
0.28
0.03
0.08
0.03
0.37
0.03
0.25
0.02

10

10

ULST XIX-B16 LST 1-1-48

0.62
98.53

0.005

0.39
19.95

0.11
20.78

0.66
59.20

SD

0.354
0.052

0.058

ULST XIX-B16 LST 2-1-19

0.40
98.22

0.028

0.39
59.77

SD

0.121  0.472

0.062

LST 1-1-80

ULST XX-D8

1.21

0.086 0.063
97.58

0.016

0.17
17.98
0.16

20.17

1.29
60.53

SD

0.306
0.038

0.229
0.066

0.072

20

LST 1-1-80() 20

ULST XX-D8

0.39
98.08

0.028

0.41
59.94

SD

0.272
0.02

0.192
0.03

0.082
0.01

10

LST 3-1-17

ULST XX-D8

0.31

0.09

0.26
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chemically zoned magma column. Highly evolved matrix
glasses are Cl depleted compared to glass inclusions
from the same stages of differentiation and also in
relation to less differentiated glass inclusions and matrix
glasses. This indicates that Cl was mainly lost during the
Plinian eruption phases represented by LLST and
MLST A/B.

2. Pyrrhotite globules trapped in phenocrysts other
than hauyne demonstrate that the mafic phonolitic melt
was sulfide-saturated during early stages of differentia-
tion. The S®" /S,y ratio increased, however, during
differentiation from 8 to 71%, as indicated by the S ka
wavelength shift in glass inclusions. We assume that
sulfate-rich magma was tapped during Plinian phases and
sulfide-rich magma during late phreatomagmatic phases.

3. A comparison between glass inclusions and host
matrix glasses indicates that 1.9 Tg Soa1, 6.6 Tg Cl and
403 Tg H,O were released from the melt during the
eruption of Laacher See volcano. Strongly Cl and H,O
depleted matrix glasses from MLST A and LLST suggest
that larger amounts of Cl and H,O were released from the
melt during Plinian phases. Both Cl- and H,O-degassing
were subordinate during late phases of the eruption.

4. The total amount of sulfur released to the
atmosphere was probably much higher (>20 Tg), in
view of abundant proxies and modeling results all
indicating drastic negative climate forcing. This assumes
that sulfur was not entirely consumed by pyrrhotite and
hauyne and partially stored in a fluid phase prior to
eruption.
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