Graphs and Combinatorics

© Springer-Verlag 2001

Degree Sums and Path-Factors in Graphs*

Yaojun Chen¹, Feng Tian², and Bing Wei²

¹ Department of Mathematics, Nanjing University, Nanjing 210093, China

Abstract. Let *G* be a connected graph of order *n* and suppose that $n = \sum_{i=1}^{k} n_i$, where $n_i \ge 2$ are integers. In this paper we give some sufficient conditions in terms of degree sums to ensure that *G* contains a spanning subgraph consisting of vertex disjoint paths of orders n_1, n_2, \ldots, n_k .

1. Introduction

In this paper all graphs considered are finite undirected graphs without loops and multiple edges. Let G be a graph, V(G) and E(G) will denote the set of its vertices and edges, respectively. The neighborhood $N_G(v)$ of a vertex v is the set of vertices adjacent to v and the degree $d_G(v)$ of v is $|N_G(v)|$. For a vertex $v \in V(G)$ and a subgraph H of G, $N_H(v)$ is the set of neighbours of v contained in H, i.e., $N_H(v) = N_G(v) \cap V(H)$. We let $d_H(v) = |N_H(v)|$. We will write N(v) and d(v) instead of $N_G(v)$ and $d_G(v)$, respectively. A subgraph H is said to be k-dominating if $d_H(v) \ge k$ holds for every vertex $v \in V(G-H)$. A subgraph H is said to be strongly dominating if G-H contains no edges. Let C be a cycle. We denote by \overrightarrow{C} the cycle C with a given orientation, and by \overline{C} the cycle C with the reverse orientation. If $u, v \in V(C)$ then $u \subset V$ denotes the consecutive vertices of C from u to v in the direction specified by \overrightarrow{C} . The same vertices, in reverse order, are given by $v\overline{C}u$. If u = v then $u\overline{C}v = \{u\}$. We call $u\overline{C}v$ an s-segment of C if $|u\overline{C}v| = s + 2$. We will consider $u\overline{C}v$ and $v\overline{C}u$ both as paths and vertex sets. We use u^+ to denote the successor of u and u^- to denote its predecessor. If $A \subset V(C)$ then $A^+ = \{a^+ : a \in A\}$ and $A^- = \{a^- : a \in A\}$. Similar notation is used for paths.

A path of order k is denoted by P_k . A spanning subgraph H of G is called a *path-factor* if each component of H is a path of order at least 2. Specially, H is called a P_k -factor if each component of H is isomorphic to P_k . The independent number, and connectivity of G are denoted by $\alpha(G)$ and $\kappa(G)$, respectively.

² Institute of Systems Science, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China

^{*} This research was supported by NSFC

```
Let U \subseteq V = V(G). We define:
```

$$\delta(U) = \min\{d_G(x) : x \in U\},\$$

 $\Delta(U) = \max\{d_G(x) : x \in U\},\$

 $\sigma_3(U) = \min\{\sum_{i=1}^3 d_G(v_i) : \{v_1, v_2, v_3\} \subseteq U \text{ is an independent set of } G\}.$

In particular, we write $\delta(G)$, $\Delta(G)$ and $\sigma_3(G)$ insteading of $\delta(V)$, $\Delta(V)$ and $\sigma_3(V)$, respectively. Terminology not defined here can be found in [2].

In [7] Johansson proved the following result:

Theorem 1. (Johansson [7]). Let G be a connected graph of order $n = \sum_{i=1}^{k} n_i$, where $n_i \geq 2$ for all $1 \leq i \leq k$. If $\delta(G) \geq \lfloor \frac{1}{2} n_1 \rfloor + \cdots + \lfloor \frac{1}{2} n_k \rfloor$, then G contains a path-factor consisting of paths of orders n_1, n_2, \ldots, n_k .

The form of the degree condition in Theorem 1 came from the following conjecture of M. El-Zahar:

Conjecture. (*El-Zahar* [4]). If G is a graph with $n = n_1 + \cdots + n_k$ vertices and $\delta(G) \ge \lceil \frac{1}{2} n_1 \rceil + \cdots + \lceil \frac{1}{2} n_k \rceil$, then G has a spanning subgraph consisting of cycles of lengths n_1, \ldots, n_k .

The case of $n_i = 3$ for all i of Theorem 1 was settled by Enomoto, Kaneko and Tuza in [6].

Theorem 2. (Enomoto et al. [6]). Suppose G is a connected graph of order 3k with $\delta(G) \geq k$. Then G has a P_3 -factor.

Let n, n_1, n_2, \ldots, n_k be integers. If $n = \sum_{i=1}^k n_i$ and $n_i \ge 2$ $(1 \le i \le k)$, then we call (n_1, n_2, \ldots, n_k) a k-partition of n. Given a k-partition (n_1, n_2, \ldots, n_k) of n, we let $\lambda = \lambda(n_1, n_2, \ldots, n_k) = |\{n_i : n_i \text{ is even}, 1 \le i \le k\}|$. It is easy to see that Theorem 1 is equivalent to the following:

Theorem 1'. Let G be a connected graph of order n and $(n_1, n_2, ..., n_k)$ a k-partition of n. If $\delta(G) \ge (n - k + \lambda)/2$ then G contains a path-factor consisting of paths of orders $n_1, n_2, ..., n_k$.

We note that if G contains a hamiltonian path then Theorem 1 holds trivially. So we may always assume that G has no hamiltonian path. Thus we can get that $\alpha(G) \geq 3$ by a result of Chvátal and Erdös [3] which says that if $\alpha(G) \leq \kappa(G) + 1$ then G has a hamiltonian path. Hence we may consider the existences of path-factors in connected graphs with the assumption that $\alpha(G) \geq 3$.

In this paper we give some sufficient conditions in terms of degree sums for the existence of path-factors in a connected graph. The following are main results of this paper.

Theorem A. Let G be a connected graph of order n and $(n_1, n_2, ..., n_k)$ a k-partition of n. If $n \ge 3(k - \lambda) + 4$ and $\sigma_3(G) \ge 3(n - k + \lambda)/2 - 2$ then G contains a path-factor consisting of paths of orders $n_1, n_2, ..., n_k$.

For the case $n < 3(k - \lambda) + 4$, we first note the following:

Proposition 1. Let $(n_1, n_2, ..., n_k)$ be a k-partition of n. Then $n < 3(k - \lambda) + 4$ if and only if one of the following three cases holds:

- (a) n = 3k + 2, $n_1 = n_2 = \cdots = n_{k-1} = 3$ and $n_k = 5$;
- (b) n = 3k, $n_1 = n_2 = \cdots = n_k = 3$;
- (c) n = 3k 1, $n_1 = n_2 = \cdots = n_{k-1} = 3$ and $n_k = 2$.

Proof. It is enough to show the part "only if". By the definition of the k-partition, we have $n \ge 2\lambda + 3(k - \lambda)$ i.e. $n \ge 3k - \lambda$. Thus the assumption $n < 3(k - \lambda) + 4$ implies $3k - \lambda \le n \le 3k - 3\lambda + 3$ and hence $\lambda \le 1$. It is easy to see that the cases (a) and (b) occur if $\lambda = 0$, and the case (c) occurs if $\lambda = 1$.

Let G be a connected graph of order $n = \sum_{i=1}^{k} n_i$. A path-factor of G consisting of paths of orders n_1, n_2, \ldots, n_k is called a $P_{s,t}$ -factor if $n_1 = \cdots = n_{k-1} = s$ and $n_k = t$. For the cases (a) and (b), we will show the following:

Theorem B. Let G be a connected graph of order n. If $\sigma_3(G) \ge n$, then

- (a) G contains a P_3 -factor if n = 3k;
- (b) G contains a $P_{3,5}$ -factor if n = 3k + 2. For the case (c), we have

Theorem C. Let G be a connected graph of order n = 3k - 1. If $\sigma_3(G) \ge n - 1$, then G contains a $P_{3,2}$ -factor.

It is easy to see that $\frac{3}{2}(n-k+\lambda) \ge n$. Hence combining Theorems A, B and C we can get the following:

Corollary. Let G be a connected graph of order n and $(n_1, n_2, ..., n_k)$ a k-partition of n. If $\sigma_3(G) \ge \frac{3}{2}(n-k+\lambda)$ then G contains a path-factor consisting of paths of orders $n_1, n_2, ..., n_k$.

Since $\delta(G) \ge \frac{1}{2}(n-k+\lambda)$ implies that $\sigma_3(G) \ge \frac{3}{2}(n-k+\lambda)$, the corollary above generalizes Theorem 1.

Remark. Theorems A, B and C are best possible in the following sense:

The bound of Theorem A is sharp.

Take the complete bipartite graph $K_{a,b}$ with bipartition (A,B), where $|A| = a \le b = |B|$. Suppose that $n = \sum_{i=1}^k n_i$, $a = \frac{1}{2}(n-k+\lambda)-1$ and b = n-a. Clearly, $K_{a,b}$ is connected and $\sigma_3(K_{a,b}) = \frac{3}{2}(n-k+\lambda)-3$. Since $a = \lfloor \frac{1}{2}n_1 \rfloor + \cdots + \lfloor \frac{1}{2}n_k \rfloor - 1$ and each path contributes at least $\lfloor \frac{1}{2}n_i \rfloor$ vertices to $A, K_{a,b}$ can not have vertex disjoint paths of order n_1, \ldots, n_k .

The bound of Theorem B is sharp.

- (a) Let $G_{p,q,r}$ be a graph of three complete graphs $K_{p+1}, K_{q+1}, K_{r+1}$ with one vertex in common, where $|G_{p,q,r}| = n = p + q + r + 1$ and $p \equiv q \equiv 2 \pmod{3}$, $r \equiv 1 \pmod{3}$. It is easy to see that $\sigma_3(G) = n 1$ and G has no P_3 -factor.
- (b) Let G be a graph of three complete graphs K_3 , K_5 , K_{p+1} with one vertex in common, where |G| = n = p + 7 and $p \equiv 1 \pmod{3}$. It is easy to see $\sigma_3(G) = n 1$ and G does not contain a $P_{3,5}$ -factor.

The bound in Theorem C is also sharp.

Consider complete bipartite graph $K_{k-1,2k}$. It's easy to see $\sigma_3(K_{k-1,2k}) = 3k - 3 = n - 2$ and $K_{k-1,2k}$ does not contain a $P_{3,2}$ -factor.

2. Lemmas

To prove our results, we need some lemmas.

Lemma 1. (Enomoto et al. [6]). Suppose G is a connected graph of order n with $\sigma_3(G) \ge n$ or $\alpha(G) \le 2$. Then either G contains a hamiltonian path or every longest cycle of G is strongly dominating.

Lemma 2. (Erdös and Gallai [5]). Let $C = x_1x_2 \cdots x_mx_1$ be a cycle of G. and $x_i, x_j \in V(C)$ with $i \neq j$. If $d_C(x_i) + d_C(x_j) \geq m + 1$, then G has a path P from x_i^+ to x_i^+ such that V(P) = V(C).

Lemma 3. Let G be a connected graph and C a maximal cycle of G. Suppose that $v \in V(G-C)$ and $d_C(v) \geq 2$. Then for any two distinct vertices y and z in $N_C^+(v)$ or $N_C^-(v)$, $yz \notin E(G)$ and $N(y) \cap N(z) \cap V(G-C) = \emptyset$.

Lemma 4. Let G be a connected graph of order n and k an integer with $k \leq \frac{1}{3}(n-4)$. Suppose $\sigma_3(G) \geq 3k_0 - 2$, where $k_0 = \frac{1}{2}(n-k)$. Then either G has a hamiltonian path or G contains a k_0 -dominating path.

Proof. Suppose G has no hamiltonian path. Let C be a longest cycle of G. Since $\sigma_3(G) \geq 3k_0 - 2 = \frac{3}{2}(n-k) - 2$ and $k \leq \frac{1}{3}(n-4)$, we have $\sigma_3(G) \geq \frac{3}{2}(n-k) - 2 \geq n$. Hence C is a strongly dominating cycle of G by Lemma 1. Let Y = V(G) - V(C) and |Y| = l. Because G has no hamiltonian path, we have $l \geq 2$. If Y contains at most one vertex of degree less than k_0 , the conclusion holds trivially. On the other hand, because of $\sigma_3(G) \geq 3k_0 - 2$, Y contains at most two vertices of degree less than k_0 . Hence we may assume Y contains exactly two vertices, say y_1, y_2 , such that $d(y_1) \leq d(y_2) < k_0$ in the following proof.

The following proposition is obvious.

Proposition 2. If $v \in V(G)$ such that $\{v, y_1, y_2\}$ is an independent set, then $d(v) \ge 3k_0 - 2 - d(y_1) - d(y_2)$.

Let $N(y_1) = \{u_1, \dots, u_s\}$ and $N(y_2) = \{v_1, v_2, \dots, v_t\}$. Assume that v_1, v_2, \dots, v_t occur on \overline{C} in the order of their indices. The vertices of $N(y_2)$ divides C into t segments. Let t_1 , t_2 and t_3 be the numbers of 1-segments, 2-segments and t_3 segments for all t_3 and t_4 segments are segments. Thus $t_1 + t_2 + t_3 = t$. Let t_4 be the union of the vertex sets of all t_4 -segment and t_4 and t_4 is t_4 and t_4 is t_4 and t_4 is t_4 and t_4 is t_4 and t_4 in t_4 in t

$$N(y_1) \cap N^+(y_2) = N(y_1) \cap N^-(y_2) = \emptyset$$
 (*)

in the following proof.

Claim 2.1. For any $x_1, x_1' \in X_1$, and for any $x_2, x_2' \in X_2$, we have:

- (a) $N_Y(x_1) \cap N_Y(x_1') = N_Y(x_1) \cap N_Y(x_2) = \emptyset;$
- (b) $N_Y(x_2) \cap N_Y(x_2') = \emptyset$.

Proof. Noting that $x_1, x_1' \in N^+(y_2) \cap N^-(y_2)$ and $x_2, x_2' \in N^+(y_2) \cup N^-(y_2)$, by Lemma 3, we get (a).

For (b), we may assume that $x_2 \in N^-(y_2)$ and $x_2' \in N^+(y_2)$ by (a). Assume that $z \in N_Y(x_2) \cap N_Y(x_2'), x_2 = v_i^-$ and $x_2' = v_j^+$. It is easy to see that $i \neq j-1$ by the maximality of C. Let $C' = x_2 \overrightarrow{C} v_j y_2 v_{i-1} \overrightarrow{C} x_2' z x_2$. Obviously, $V(C') = (V(C) - \{v_{i-1}^+\}) \cup \{y_2, z\}$, which contradicts the maximality of C. The proof of Claim 2.1 is complete.

We consider the following four cases separately.

Case 1.
$$l = 2$$
 and $d(y_2) = t = k_0 - 1$.

Since $k_0 = \frac{1}{2}(n-k)$ and $k \leq \frac{1}{3}(n-4)$, we have $t = k_0 - 1 \geq \frac{1}{3}(n-1)$. Hence $t_1 \geq 1$. Otherwise we have $3t \leq |C| = n-2$, that is $t \leq \frac{1}{3}(n-2)$. Assume, without loss of generality, that $v_1 \overrightarrow{C} v_2 = v_1 x_1 v_2$ be a 1-segment. Let $P = y_1 u_1 \overrightarrow{C} v_1 y_2 v_2 \overrightarrow{C} u_1^-$. Since $\{x_1, y_1, y_2\}$ is an independent set, we have $d_P(x_1) = d_C(x_1) = d(x_1) \geq k_0$ by Proposition 2. Therefore P is a path as required.

Case 2.
$$l = 2$$
 and $d(y_2) = t \le k_0 - 2$.

Since $\sigma_3(G) \ge 3k_0 - 2 \ge n$, we have $t \ge 2$. Hence we can choose two vertices, say u_1, v_1 , such that $u_1 \ne v_1$. By the maximality of C and (*), we have that both $\{u_1^-, y_1, y_2\}$ and $\{v_1^-, y_1, y_2\}$ are independent sets.

Subcase 2.1. There is an m-segment with $m \le 3$ among these t segments.

Without loss of generality, we may assume $v_1\overrightarrow{C}v_2 = v_1x_1x_2\cdots x_mv_2$ is an m-segment with $m \leq 3$. Since both $\{x_1,y_1,y_2\}$ and $\{x_m,y_1,y_2\}$ are independent sets, we have $d_C(x_1) \geq k_0 + 2$ and $d_C(x_m) \geq k_0 + 2$ by Proposition 2. Let $P = y_1u_1\overrightarrow{C}v_1y_2v_2\overrightarrow{C}u_1^{-}$. If m = 1, then P is a path as required since $d_P(x_1) = d_C(x_1) \geq k_0 + 2$. If m = 2, since $d_P(x_i) = d_C(x_i) - 1 \geq k_0 + 1$ for i = 1, 2, P is a path as required. Now we assume m = 3. If $x_2 \in N(y_1)$, then $y_1x_2\overrightarrow{C}v_1y_2$ is a path as required. If $x_2 \notin N(y_1)$, then $\{x_2, y_1, y_2\}$ is an independent set. Hence we have $d_C(x_2) \geq k_0 + 2$ by Proposition 2. Thus $d_P(x_i) \geq d_C(x_i) - 2 \geq k_0$ for i = 1, 2, 3. Therefore P is a path as required.

Subcase 2.2. There is no m-segment with $m \le 3$ among these t segments.

In this case, $d(y_1) \le d(y_2) \le \frac{1}{5}(n-2)$. Hence we have $d_C(u_1^-) = d(u_1^-) \ge \frac{1}{5}(3n+4)$ and $d_C(v_1^-) = d(v_1^-) \ge \frac{1}{5}(3n+4)$. This implies $d_C(u_1^-) + d_C(v_1^-) \ge \frac{1}{5}(6n+8) > |C|$. By Lemma 2, G has a path P from u_1 to v_1 such that

V(P) = V(C). Therefore G has a hamiltionian path from y_1 to y_2 . This is a contradiction.

Case 3. $l \ge 3$ and $d(y_2) = t \le k_0 - 2$.

To prove Case 3, we need some claims.

Claim 2.2. $t \ge \frac{1}{4}(n+l) = \frac{1}{4}(|C|+2l)$.

Proof. Since C is a longest cycle of G, we have that for each $y \in Y$, $d(y) \le \frac{1}{2}(n-l)$. Since $l \ge 3$, we may take $y_3 \in Y - \{y_1, y_2\}$. Noting that $\sigma_3(G) \ge 3k_0 - 2 \ge n$ and $d(y_2) \ge d(y_1)$, we have $2t \ge d(y_1) + d(y_2) \ge \sigma_3(G) - d(y_3) \ge n - \frac{1}{2}(n-l)$, and hence $t \ge \frac{1}{4}(n+l)$.

Claim 2.3. $t_1 + t_2 \ge l$ and if $t_1 = 0$, then $t_2 \ge 2l$.

Proof. It is easy to see that $t + t_1 + 2t_2 + 3t_3 \le |C|$. This implies that $4t \le |C| + 2t_1 + t_2$ as $t = t_1 + t_2 + t_3$. If $t_1 + t_2 < l$, we have $4t \le |C| + 2t_1 + t_2 \le |C| + 2(t_1 + t_2) < |C| + 2l$ which contradicts Claim 2.2. Similarly, we have $t_2 \ge 2l$ if $t_1 = 0$.

Claim 2.4. If G has no k_0 -dominating path, then both (a) and (b) hold.

(a) Let $v_i \overrightarrow{C} v_{i+1} = v_i x_1 v_{i+1}$ be any 1-segment. Then $|N_Y(x_1)| \ge 3$;

(b) Let
$$v_i \overrightarrow{C} v_{i+1} = v_i x_1 x_2 v_{i+1}$$
 be any 2-segment. Then $|N_Y(x_1) \cup N_Y(x_2)| \ge 2$.

Proof. Let $P = y_1 u_1 \overrightarrow{C} v_i y_2 v_{i+1} \overrightarrow{C} u_1^-$. Since $\{x_1, y_1, y_2\}$ is an independent set, by Proposition 2, we have $d(x_1) \ge k_0 + 2$. By Claim 2.1 we get that $|N(y) \cap X| \le 1$ holds for any $y \in Y$. Hence we have that $d_P(y) \ge k_0 + 1$ holds for any $y \in Y - \{y_1, y_2\}$. If $|N_Y(x_1)| \le 2$, then P is a path as required since $d_P(x_1) \ge k_0$, and therefore (a) holds. We can prove (b) similarly.

By Claim 2.1 and Claim 2.4, we have the following

Claim 2.5.
$$|N_Y(X_1)| \ge 3t_1$$
, $|N_Y(X_2)| \ge 2t_2$.

Now we begin to prove Case 3.

Suppose to the contrary that G contains no k_0 -dominating path. By Claim 2.1, $N_Y(X_1) \cap N_Y(X_2) = \emptyset$. Hence $|N_Y(X)| \ge 3t_1 + 2t_2$. If $t_1 \ge 1$, we have $|N_Y(X)| \ge 3t_1 + 2t_2 > 2(t_1 + t_2) \ge 2l > l = |Y|$, a contradiction. If $t_1 = 0$, by Claim 2.3 we have $t_2 \ge 2l$. Hence $|N_Y(X)| \ge 3t_1 + 2t_2 = 2t_2 \ge 4l > l = |Y|$, also a contradiction.

Case 4. $l \ge 3$ and $d(y_2) = t = k_0 - 1$.

Suppose that G has no path as required.

Claim 2.6. For any $x_1 \in X_1$, $N(x_1) \cap Y \neq \emptyset$.

Proof. Let $P = y_1 u_1 \overrightarrow{C} x_1^- y_2 x_1^+ \overrightarrow{C} u_1^-$. If there is some vertex $x_1 \in X_1$ such that $N(x_1) \cap Y = \emptyset$, then P is a path as required since $d_P(x_1) \ge k_0$ and $d_P(y) \ge k_0$ for any vertex $y \in Y - \{y_1, y_2\}$.

Claim 2.7. $|N_Y(X_1)| \ge |X_1| \ge l - 1 \ge 2$.

Proof. First we show that $t_1 \ge l - 1$. Otherwise, we have $n - l = |C| \ge t + t_1 + 2t_2 + 3t_3 = 3t - t_1 + t_3 \ge 3t - t_1 \ge 3t - l + 2$. This implies that $t \le \frac{1}{3}(n-2)$ which contradicts that $d(y_2) = t = k_0 - 1 \ge \frac{1}{3}(n-1)$.

By Claim 2.1 and Claim 2.6, we can get that $|N_Y(X_1)| \ge |X_1|$. \square We now begin to prove Case 4.

By |Y| = l and Claim 2.7, we have $l - 1 \le |X_1| \le |N_Y(X_1)|$. By (*), we have $y_1 \notin N(x_1)$ for any vertex x_1 in X_1 . This implies that $N(x_1) \subseteq Y - \{y_1, y_2\}$ for any vertex $x_1 \in X_1$. Hence we have $|N(X_1)| \le |Y - \{y_1, y_2\}| = l - 2$, a contradiction.

The proof of Lemma 4 is complete.

Lemma 5. (Johansson [7]). Let G be a graph of order n and $(n_1, n_2, ..., n_k)$ a k-partition of n, where all n_i are odd positive integers. Suppose furthermore that G contains a path P such that every vertex $v \in V(G) - V(P)$ has no two consecutive neighbours on P and satisfies $d_P(v) \ge (n-k)/2$. Then G contains a path-factor consisting of paths of orders $n_1, n_2, ..., n_k$.

Bondy [1] showed that if G is a 2-connected graph of order n with $\sigma_3(G) > \frac{3}{2}(n-1)$, then G contains a hamiltonian cycle. From this result we can get the following

Lemma 6. Let G be a connected graph of order n. If $\sigma_3(G) \ge (3n-5)/2$, then G has a hamiltionian path.

3. Proofs of theorems

Proof of Theorem A. If all n_i 's are even then $\lambda = k$, and hence $\sigma_3(G) \geq (3n-4)/2$. Thus, Theorem A holds by Lemma 6. Hence we may assume at least one of the n_i 's is odd. Without loss of generality, we can assume $n_1, n_2, \ldots, n_{p-1}$ are even and n_p, \ldots, n_k are odd. Hence $\lambda = p-1$. Set $n_1' = n_1 + n_2 + \cdots + n_p$ and $n_{i+1}' = n_{i+p}$ for all $1 \leq i \leq k-p$. Clearly, $(n_1', n_2', \ldots, n_{k-p+1}')$ is a k'-partition of n, where k' = k-p+1. Since each $n_i'(1 \leq i \leq k')$ is odd, we have $\lambda' = \lambda(n_1', n_2', \ldots, n_{k-p+1}') = 0$. By the assumptions of Theorem A we get $n \geq 3$ $(k-\lambda)+4=3(k-p+1)+4=3k'+4$ and $\sigma_3(G) \geq \frac{3}{2}(n-k+\lambda)-2=\frac{3}{2}(n-k+p-1)-2=3k_0'-2$, where $k_0'=\frac{1}{2}(n-k')$. Then the assumptions of Lemma 4 are satisfied. If G contains a hamiltonian path, then Theorem A holds. Hence we may assume that G contains a $\frac{1}{2}(n-k')$ -dominating path. Let P be a longest $\frac{1}{2}(n-k')$ -dominating path, then no vertex in V(G)-V(P) has two consecutive neighbours on P. Hence G and P satisfy the hypothesis of Lemma 5. Therefore G contains a path-factor consisting of paths of orders n_1, n_2, \ldots, n_k . The proof of Theorem A is complete.

In order to prove Theorems B and C, we first prove a result which is slightly stronger than Theorems B and C.

Theorem D. Suppose G is a connected graph of order n and G contains a maximal strongly dominating cycle C such that $\sigma_3(Y) \ge n-1$ or $|Y| \le 2$, where Y = V - V(C). Then the following three conclusions hold.

- (1) If n = 3k, then G has a P_3 -factor.
- (2) If $n = 3k + 2 \ge 11$, then G has a $P_{3.5}$ -factor.
- (3) If n = 3k 1, then G contains a $P_{3,2}$ -factor.

Proof. We shall prove this result by induction on n.

Obviously, if n = 3, then the conclusion (1) holds, and if n = 5, the conclusion (3) holds. As the bases of induction, we now need show that if n = 11 the conclusion (2) holds.

If n=11 and $|Y| \le 2$, then the conclusion (2) holds. Hence we may assume that $|Y| \ge 3$. Since $\sigma_3(Y) \ge n-1=10$, we have $\Delta(Y) \ge 4$. By the maximality of C and $\Delta(Y) \ge 4$, we have $|C| \ge 8$. Because of n=11, we get that $\Delta(Y)=4$, |C|=8 and |Y|=3. Let $Y=\{y_1,y_2,y_3\}$ with $d(y_1)\le d(y_2)\le d(y_3)$. Clearly $d(y_1)\ge 2$ and $d(y_2)\ge 3$. Suppose that $C=v_1v_2\cdots v_8$. Without loss of generality, we can assume that $N(y_3)=\{v_1,v_3,v_5,v_7\}$ and $N_C^+(y_3)=N_C^-(y_3)=\{v_2,v_4,v_6,v_8\}$. By Lemma 3, we have that $|N(y_1)\cap N_C^+(y_3)|\le 1$, where i=1,2. This implies that $|N(y_2)\cap N(y_3)|\ge 2$ and $|N(y_1)\cap N(y_3)|\ge 1$. If $N(y_1)\cap N(y_2)\cap N(y_3)\ne \emptyset$, say $v_1\in N(y_1)\cap N(y_2)\cap N(y_3)$, then $y_1v_1y_2,\ v_2v_3y_3$ and v_4Cv_8 is a $P_{3,5}$ -factor as required. We now assume that $N(y_1)\cap N(y_2)\cap N(y_3)=\emptyset$. By symmetry, we may assume, without loss of generality, that $\{v_1,v_3\}\subseteq N(y_2)\cap N(y_3)$ and $v_5\in N(y_1)\cap N(y_3)$ or $\{v_1,v_5\}\subseteq N(y_2)\cap N(y_3)$ and $v_3\in N(y_1)\cap N(y_3)$. In the former case $y_2v_3y_3,\ v_4v_5y_1$ and v_6Cv_2 is a $P_{3,5}$ -factor as required. In the latter case $y_2v_1y_3,v_2v_3y_1$ and v_4Cv_8 is a $P_{3,5}$ -factor as required. Hence the conclusion (2) holds when n=11.

We now assume that the conclusions hold for small values of n.

It is easy to see the conclusions hold when $|Y| \le 2$. If $\delta(Y) = 1$, then we must have $|Y| \le 2$. Since if $|Y| \ge 3$, we can get a vertex $y \in Y$ such that $d_C(y) = d(y) \ge \frac{1}{2}(n-2) > \frac{1}{2}(n-3) \ge \frac{1}{2}|C|$. This contradicts that C is maximal. So we may assume that $|Y| \ge 3$ and $\delta(Y) \ge 2$ in the rest of the proof.

Let $y \in Y$ such that $d(y) = \Delta(Y) = t$. Since $\sigma_3(Y) \ge n-1$ and $n \ne 1 \pmod 3$, we have $t \ge \frac{1}{3}n$. Set $N(y) = \{v_1, \ldots, v_t\}$ which divides C into t segments $v_1 \overrightarrow{C} v_2, v_2 \overrightarrow{C} v_3, \ldots, v_t \overrightarrow{C} v_1$. Here we assume that v_1, v_2, \ldots, v_t occur on \overrightarrow{C} in the order of their indices. Suppose that there exists t_1 1-segments, t_2 2-segments and t_3 m-segments with $m \ge 3$ among these t segments. We first claim that $t_1 \ge 3$. Otherwise we have $n-3 \ge |C| \ge t+t_1+2t_2+3t_3 \ge 3t-t_1$. This implies that $t \le \frac{1}{3}(n-1) < \frac{1}{3}n$, a contradiction.

Case 1. There is some $j(1 \le j \le t)$ such that both $v_{j-1}\overrightarrow{C}v_j$ and $v_j\overrightarrow{C}v_{j+1}$ are 1-segments.

Without loss of generality we may assume the two 1-segments are $u_1u_2u_3$ and $u_3u_4u_5$. Let now $P = u_2u_3u_4$ and G' = G - P. Obviously $n = n' \pmod{3}$, where

n'=|G'|. It is easy to see that the cycle $C'=u_1yu_5\overrightarrow{C}u_1$ is a strongly dominating cycle of G'. Let $Y'=Y-\{y\}$, then for any vertex $y'\in Y'$, we have $|N(y')\cap\{u_2,u_3,u_4\}|\leq 1$. Otherwise, if $\{u_2,u_3\}$ or $\{u_3,u_4\}\subseteq N(y')$, then C is not a maximal cycle in G. And if $\{u_2,u_4\}\subseteq N(y')$, then $C^*=u_4\overrightarrow{C}u_1yu_3u_2y'u_4$ is a cycle such that $V(C)\subset V(C^*)$, a contradiction. Thus we have $|N(y')\cap\{u_2,u_3,u_4\}|\leq 1$ and G' is connected since $\delta(Y)\geq 2$. Moreover, we have $\sigma_3(Y')\geq n'-1$ or $|Y'|\leq 2$. If C' is maximal in G', then by induction hypothesis, G' has a P_3 -factor $(P_{3,5}$ -factor or $P_{3,2}$ -factor, respectively) \mathscr{P}' . Let $\mathscr{P}=\mathscr{P}'\cup\{P\}$. Clearly \mathscr{P} is a P_3 -factor $(P_{3,5}$ -factor or $P_{3,2}$ -factor, respectively) of G. If C' is not maximal in G', then we must be able to find a cycle C'' such that C'' is maximal strongly dominating cycle of G' and $V(C')\subset V(C'')$. Let Y''=V(G')-V(C''), it is not difficult to see $|Y''|\leq 2$ or $\sigma_3(Y'')\geq n'-1$. Similar to the discussion above, we get the conclusions.

Case 2. For any $j(1 \le j \le t)$, there is at most one 1-segment in $v_{j-1}\overrightarrow{C}v_j$ and $v_j\overrightarrow{C}v_{j+1}$.

To prove Case 2, we need the following claims.

Let $u_1 \overrightarrow{C} u_k = u_1 u_2 u_3 \cdots u_{k-2} u_{k-1} u_k$ be a segment in $C, k \equiv 2 \pmod{3}$ and $k \ge 8$. If $N(y) \cap u_1 \overrightarrow{C} u_k = \{u_1, u_k\} \cup \{u_i : i \equiv 0 \pmod{3} \text{ and } 3 \le i \le k-2\}$, we call $u_1 \overrightarrow{C} u_k$ a (1, 2)-segment.

Claim 3.1. There exists at least three (1,2)-segments in C.

Proof. If there are at most two (1,2)-segments in C, then $t_3 \ge (t_1 - 2)$. Hence $n-3 \ge |C| \ge t + t_1 + 2t_2 + 3t_3 \ge 3t - t_1 + t_3 \ge 3t - 2$. This implies that $t \le \frac{1}{3}(n-1)$, contrary to that $t \ge \frac{1}{3}n$.

We now choose two 1-segments $v_j \overrightarrow{C} v_{j+1}$ and $v_s \overrightarrow{C} v_{s+1}$ such that $v_j \overrightarrow{C} v_{s+1}$ is a (1,2)-segment and the number of vertices between v_{j+1} and v_s along \overrightarrow{C} is as small as possible. Without loss of generality, we may assume $u_1u_2u_3$ and $u_iu_{i+1}u_{i+2}$ are the two 1-segments. Set $u_4 \overrightarrow{C} u_{i-1} = x_1x_2 \cdots x_m$. By Claim 3.1, we have $m \leq \frac{1}{3}(n-12) = \frac{1}{3}n-4$ and $m \equiv 2 \pmod{3}$.

Claim 3.2. $\delta(Y) \ge \frac{1}{5}n + \frac{7}{5}$

Proof. Since for any $j(1 \le j \le t)$, there is at most one 1-segment in $v_{j-1}\overrightarrow{C}v_j$ and $v_j\overrightarrow{C}v_{j+1}$, hence we have $\Delta(Y)=t\le (n-3)-t_1-2t_2-3t_3\le (n-3)-\frac{3}{2}t$. That is $t\le \frac{2}{5}(n-3)$. Therefore $\delta(Y)\ge \sigma_3(Y)-2\Delta(Y)\ge \frac{1}{5}n+\frac{7}{5}$.

Claim 3.3. Let $y_0 \in Y$, then:

$$N(y_0) \cap V(C) - \{u_2, u_3, x_1, \dots, x_m, u_i, u_{i+1}\} \neq \emptyset$$

Proof. If $N(y_0) \cap V(C) - \{u_2, u_3, x_1, \dots, x_m, u_i, u_{i+1}\} = \emptyset$, then we must have $\delta(Y) \le d(y_0) \le \frac{1}{2}(m+4) \le \frac{1}{6}n < \frac{1}{5}n + \frac{7}{5} \le \delta(Y)$, a contradiction.

Now we begin to prove Case 2.

Case 2.1. There is some x_j with $j \not\equiv 0 \pmod{3}$ such that $N(x_j) \cap Y \neq \emptyset$, say $x_1y_1 \in E(G)$, where $y_1 \in Y$.

Let $P = y_1x_1x_2$, Set G' = G - P and $Y' = Y - \{y, y_1\}$. Then $C' = u_3yx_3\overrightarrow{C}u_3$ is a strongly dominating cycle of G' and $|Y'| \le 2$ or $\sigma_3(Y') \ge n' - 1$, where $n' \equiv n \pmod{3}$ and n' = |G|. Similar to the discussion in Case 1, we get the conclusions.

Case 2.2. For any x_j with $j \not\equiv 0 \pmod{3}$, $N(x_j) \cap Y = \emptyset$.

Let $m=3m_1+2$. The segment $u_2\overrightarrow{C}u_{i+1}$ can be partitioned into (m_1+2) P_3 's: $u_2u_3x_1, x_2x_3x_4, \ldots, x_{m-3}x_{m-2}x_{m-1}, x_mu_iu_{i+1}$. We denote by \mathscr{R} the set of these m_1+2 P_3 's and set $G^*=G-\{u_2,u_3,x_1,\ldots,x_m,u_i,u_{i+1}\}$ and $n^*=n-m-4$. Then G^* is a graph of order $n^*\equiv n\pmod{3}$. Let $C^*=u_1yu_{i+2}\overrightarrow{C}u_1$. Then C^* is a strongly dominating cycle of G^* . Set $Y^*=V(G^*)-V(C^*)$. We claim that for any vertex $y'\in Y-\{y\}$, both $|N(y')\cap\{u_2,u_3,x_1\}|\leq 1$ and $|N(y')\cap\{x_m,u_i,u_{i+1}\}|\leq 1$ hold by the maximality of C and Lemma 3. Therefore we have $\sigma_3(Y^*)\geq n^*-1$ if $|Y^*|\geq 3$. By Claim 3.3, G^* is connected. If C^* is maximal in G^* , then by induction hypothesis, G^* has a P_3 -factor $(P_{3,5}$ -factor or $P_{3,2}$ -factor, respectively) \mathscr{P}^* . Let $\mathscr{P}=\mathscr{P}^*\cup\mathscr{R}$. then \mathscr{P} is a P_3 -factor $(P_{3,5}$ -factor or $P_{3,2}$ -factor, respectively) of G. If C^* is not maximal in G^* , then similar to the discussion in Case 1, we can get the conclusions.

Hence we complete the proof of Theorem D.

Proof of Theorem B. (a) It is a direct consequence of Lemma 1 and Theorem D(1).

(b) When n = 5 or n = 8, we can see the conclusion holds by checking it directly. When $n \ge 11$, it is a direct consequence of Lemma 1 and Theorem D(2). Therefore the proof of Theorem B is completed.

Proof of Theorem C. If G contains a hamiltonian path, then the conclusion holds trivially. If G contains a strongly dominating cycle, then the conclusion holds by Theorem D(3). Hence we may assume that G has neither hamiltonian path nor strongly dominating cycle in the following proof.

Let $P = x_1x_2\cdots x_m$ be a longest path of G and y any vertex such that $y\in V-V(P)$. Set $A=N_P^-(x_1),\ B=N_P^+(x_m),\ D=N_P(y)$. By the maximality of P we get that $A\cap D=B\cap D=\emptyset$ and $\{x_1,y,x_m\}$ is independent.

Claim 3.4. $A \cap B = \emptyset$.

Proof. Suppose that $A \cap B \neq \emptyset$, say $x_i \in A \cap B$. Then $C = x_1 \overrightarrow{P} x_{i-1} x_m \overleftarrow{P} x_{i+1} x_1$ is a cycle of length |P| - 1. Let U = V - V(C). Obviously, $N(x_i) \cap U = \emptyset$. If G[U] contains at least one edge, then since G is connected, we can get a path P' of length at least |P| + 1, a contradiction. If G[U] contains no edges, then G[V - V(C)] contains no edges, and hence C is a strongly dominating cycle of G, also a contradiction.

Claim 3.5. G[V - V(P)] is a complete graph.

Proof. Otherwise, there exists a vertex $y \in V - V(P)$ such that $d_{G-P}(y) \le n - |P| - 2$. Thus, we have $n - 1 \le \sigma_3 \le d(x_1) + d(x_m) + d(y) \le |P| + n - |P| - 2 = n - 2$ since x_1 and x_m has no neighbours in G - P and are not connected to each other, furthermore $A \cap B = B \cap D = A \cap D = \emptyset$. This contradiction proves Claim 3.5.

By Claim 3.5, we can assume that the only component of G[V-V(P)] is H_y and $H_y=K_{n-m}$. If $n-m\equiv 0,2\pmod 3$, then we can get the conclusion easily. Let now $n-m\equiv 1\pmod 3$. Without loss of generality, we can assume $N(y)\cap V(P)\neq\emptyset$. Clearly $H_y-\{y\}$ has a P_3 -factor. Let $x_{i_0}\in N_P(y)$. If $i_0\equiv 1\pmod 3$, then $P'=x_1x_2\cdots x_{i_0}y$ has a P_3 -factor and $P''=x_{i_0+1}x_{i_0+2}\cdots x_m$ has a P_3 -factor. Hence we get a path-factor as required. If $i_0\equiv 2\pmod 3$, then $P'=x_1x_2\cdots x_{i_0}y$ has a P_3 -factor and $P''=x_{i_0+1}\cdots x_m$ has a P_3 -factor. Hence G has a P_3 -factor. If $i_0\equiv 0\pmod 3$, then $P'=x_1x_2\cdots x_{i_0-1}$ has a P_3 -factor and $P''=yx_{i_0}x_{i_0+1}\cdots x_m$ has a P_3 -factor. Hence we can also get a path-factor as required.

The proof of Theorem C is complete.

References

- Bondy, J.A.: Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, University of Waterloo, Waterloo, Ontario 1980
- Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, North-Holland, Amsterdam 1976
- 3. Chyátal, V., Erdős, P.: A note on Hamilton circuits, Discrete Math. 2, 111-113 (1972)
- 4. El-Zahar, M.: On circuits in graphs, Discrete Math. 50, 227–230 (1984)
- Erdös, P., Gallai, T.: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)
- Enomoto, H., Kaneko, A., Tuza, Z.S.: P₃-factor and covering cycles in graphs of minimum degree ½n, Colloq. Math. Soc. Janos Bolyai 52. Combinatorics Eger Hungary 1987
- Johansson, R.: An El-Zahar type condition ensuring path-factors, J. Graph Theory 28, 39–42 (1998)

Received: June 30, 1999

Final version received: July 31, 2000