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Abstract. Let G be a connected graph of order » and suppose that n = Z;‘Zl n;, where
n; > 2 are integers. In this paper we give some sufficient conditions in terms of degree sums
to ensure that G contains a spanning subgraph consisting of vertex disjoint paths of orders
ny,n2, ..., .

1. Introduction

In this paper all graphs considered are finite undirected graphs without loops and
multiple edges. Let G be a graph, V' (G) and E(G) will denote the set of its vertices
and edges, respectively. The neighborhood Ng(v) of a vertex v is the set of vertices
adjacent to v and the degree dg(v) of v is |Ng(v)|. For a vertex v € V(G) and a
subgraph H of G, Ny(v) is the set of neighbours of v contained in H, i.e.,
Ny (v) = Ng(v) NV (H). We let dy(v) = [Ny (v)|. We will write N(v) and d(v) in-
stead of Ng(v) and dg(v), respectively. A subgraph H is said to be k-dominating if
dy(v) > k holds for every vertex v € V(G —H). A subgraph H is said to be
strongly dominating if G — H contains no edges. Iﬁt C be a cycle. We denote by C
the cycle C with a given orlentatlon and by C the cycle C with the reverse
orientation. If u,v € V(C) then u_C}'v denotes the consecutive vertices of C from u
towv 1n the direction spemﬁed by C. The same vertices, in reverse order are given
by vCu. If u = uthenqu = {u}. We call uCv an s- segment ofC1f|qu| =5+ 2.
We will consider u Cv and v Cu both as paths and vertex sets. We use u™* to denote
the successor of u and u~ to denote its predecessor. If 4 C V(C) then
At ={at:a€ A} and 4~ = {a” :a € A}. Similar notation is used for paths.

A path of order & is denoted by P;. A spanning subgraph H of G is called a
path-factor if each component of H is a path of order at least 2. Specially, H is
called a Py-factor if each component of H is isomorphic to P;. The independent
number, and connectivity of G are denoted by o(G) and x(G), respectively.

* This research was supported by NSFC
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Let U CV = V(G). We define:

o0(U) = min{dg(x) : x € U},

A(U) = max{dg(x) : x € U},

03(U) =min{)>_;_, dg(v;) : {v1,v2,v3} C U is an independent set of G }.
In particular, we write 6(G), A(G) and 03(G) insteading of 6(V), A(V) and a3(V),
respectively. Terminology not defined here can be found in [2].

In [7] Johansson proved the following result:

Theorem 1. (Johansson [7]). Let G be a connected graph of order n = Ef;l n;,
where n; > 2 for all 1 <i<k. If 6(G) > L%nlj + o+ L%nkj, then G contains a
path-factor consisting of paths of orders ny,ny, ..., n.

The form of the degree condition in Theorem | came from the following
conjecture of M. El-Zahar:

Conjecture. (El-Zahar [4]). If G is a graph with n = ny + --- 4+ ny vertices and
8(G) > [fm] + -+ [3ni], then G has a spanning subgraph consisting of cycles of
lengths ny, ... n.

The case of n; = 3 for all i of Theorem 1 was settled by Enomoto, Kaneko and
Tuza in [6].

Theorem 2. (Enomoto et al. [6]). Suppose G is a connected graph of order 3k with
0(G) > k. Then G has a Ps-factor.

Let n,ny,ny,...,n; be integers. If n = Zf‘:l n; and n; > 2 (1 <i<k), then we
call (m,na,...,n;) a k-partition of n. Given a k-partition (ny,ny,...,n;) of n, we
let A= A(ny,na,...,mg) = [{n; : n; is even, 1 <i < k}|. Itis easy to see that The-
orem 1 is equivalent to the following:

Theorem 1'. Let G be a connected graph of order n and (ny,ny, . .., ny) a k-partition
of n. If 6(G) > (n —k + A)/2 then G contains a path-factor consisting of paths of
orders ny,ny, ..., ng.

We note that if G contains a hamiltonian path then Theorem 1 holds trivially.
So we may always assume that G has no hamiltonian path. Thus we can get that
o(G) > 3 by a result of Chvatal and Erdds [3] which says that if o(G) < k(G) + 1
then G has a hamiltonian path. Hence we may consider the existences of path-
factors in connected graphs with the assumption that «(G) > 3.

In this paper we give some sufficient conditions in terms of degree sums for the
existence of path-factors in a connected graph. The following are main results of
this paper.

Theorem A. Let G be a connected graph of order n and (ny,ny, . .., ny) a k-partition
of n. If n > 3(k— 1)+ 4 and 03(G) > 3(n —k+ 1)/2 — 2 then G contains a path-
factor consisting of paths of orders ny,na, ..., n.

For the case n < 3(k — 1) + 4, we first note the following:
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Proposition 1. Let (ny,na,...,n) be a k-partition of n. Then n < 3(k— 1)+ 4 if
and only if one of the following three cases holds:

(a) n=3%k+2,n=nmn=---=n_1 =3 and n, = 5;
b)) n=3kn=n=--=n,=3;
) n=3k—-1,ny=m=---=m_, =3 and n, = 2.

Proof. Tt is enough to show the part “only if”’. By the definition of the k-partition,
we have n > 24+ 3(k — ) i.e. n > 3k — A. Thus the assumption n < 3(k — 1) + 4
implies 3k — A <n < 3k — 32+ 3 and hence /1 < 1. It is easy to see that the cases
(a) and (b) occur if 2 =0, and the case (¢) occurs if 1 = 1.

Let G be a connected graph of ordern = Zf;l n;. A path-factor of G consisting of
paths of orders ny,n,, ..., n; is called a Py ;-factorif ny = --- =n;_y =sand ny = ¢.
For the cases (a) and (b), we will show the following:

Theorem B. Let G be a connected graph of order n. If 03(G) > n, then

(a) G contains a Ps-factor if n = 3k;
(b) G contains a P;s-factor if n = 3k + 2.
For the case (c), we have

Theorem C. Let G be a connected graph of order n = 3k — 1. If 03(G) > n — 1, then
G contains a Ps»-factor.

It is easy to see that 3 (n — k + A) > n. Hence combining Theorems A, B and C
we can get the following:

Corollary. Let G be a connected graph of order n and (ny,ny, ..., ng) a k-partition
of n. If 03(G) >3 (n — k+ A) then G contains a path-factor consisting of paths of
orders ny,ny, ... ny.

Since 6(G) >4 (n—k+ 2) implies that o3(G) >3 (n—k+ 1), the corollary
above generalizes Theorem 1.

Remark. Theorems A, B and C are best possible in the following sense:

The bound of Theorem A is sharp.

Take the complete bipartite graph K,, with bipartition (4,B), where
|A| = a < b =|B|. Suppose that n = Y"r_ n;, a =ln—k+2i)—land b=n-a.
Clearly, K,; is connected and o3(K,5) = %(n —k+2)—3. Since a=
ln1] + -+ [3m]) — 1 and each path contributes at least [}n;] vertices to 4, Ky
can not have vertex disjoint paths of order ny, ..., n.

The bound of Theorem B is sharp.

(a) Let G, be a graph of three complete graphs K,.1,K,+1,K,41 with one
vertex in common, where |G, ,,|=n=p+qg+r+1 and p=g=2 (mod 3),
r =1 (mod 3). It is easy to see that 03(G) =n — | and G has no Ps-factor.

(b) Let G be a graph of three complete graphs K3, K5, K, with one vertex in
common, where |G| =n = p+ 7 and p = | (mod 3). It is easy to see g3(G) =n — 1
and G does not contain a P; s-factor.
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The bound in Theorem C is also sharp.
Consider complete bipartite graph Kj_j . It’s easy to see o3(Ky_12) =
3k —3 =n—2 and K » does not contain a Ps,-factor.

2. Lemmas
To prove our results, we need some lemmas.

Lemma 1. (Enomoto et al. [6]). Suppose G is a connected graph of order n with
03(G) > n or a(G) < 2. Then either G contains a hamiltonian path or every longest
cycle of G is strongly dominating.

Lemma 2. (Erdos and Gallai [5]). Let C =x1x3---xux1 be a cycle of G. and
xi,X; € V(C) withi # j. If de(x;) + dc(x;) > m + 1, then G has a path P from x;" to
x; such that V(P) =V (C).

Lemma 3. Let G be a connected graph and C a maximal cycle of G. Suppose that
ve V(G- C)and dc(v) > 2. Then for any two distinct vertices y and z in N/ (v) or
N (v), 2 € E(G) and N(y) "\N(z) NV (G —C) = 0.

Lemmad4. Let G be a connected graph of order n and k an integer with k < % (n—4).
Suppose a3(G) > 3ky — 2, where ky = %(n — k). Then either G has a hamiltonian
path or G contains a ko-dominating path.

Proof. Suppose G has no hamiltonian path. Let C be a longest cycle of G. Since
03(G) > 3ky—2=3(n—k)—2 and k<i(n—4), we have 03(G)>3(n—k)
—2>n. Hence C is a strongly dominating cycle of G by Lemma 1. Let
Y =V(G)—V(C)and |Y| = . Because G has no hamiltonian path, we have / > 2.
If Y contains at most one vertex of degree less than ky, the conclusion holds
trivially. On the other hand, because of o3(G) > 3ky — 2, ¥ contains at most two
vertices of degree less than kj. Hence we may assume Y contains exactly two

vertices, say yi, ), such that d(y;) < d(3) < ko in the following proof.
The following proposition is obvious.

Proposition 2. If v e V(G) such that {v,y1,y,} is an independent set, then
d(v) = 3ko —2 —d(y1) —d().

LetN()ﬁ)) ={ui,...,us} and N(») = {v1,v2,...,v,}. Assume that vy, vs,...,0,
occur on C in the order of their indices. The vertices of N(y,) divides C into ¢
segments. Let 71, ©, and #; be the numbers of 1-segments, 2-segments and m-
segments for all m > 3, respectively, among these ¢ segments. Thus ¢, + ¢ + 13 = ¢.
Let ¥; be the union of the vertex sets of all i-segment and X; = V; — N()»), where
i=1,2. Let X =X, UX;. If N(yl) ﬁN+(y2) #* 0 or N(yl) ﬁNf(yz) 7£ (@, then G
has a path P containing V' (C) from y, to y,. Obviously P is a kp-dominating path
of G, and hence Lemma 4 holds. Therefore we may assume that
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NO) NN (n) =N NN~ (1) =0 (%)
in the following proof.
Claim 2.1. For any x;,x| € X1, and for any x,,x, € X», we have:

(a) Ny(xl) ﬂNy()C’l) = Ny(xl) ﬂNy(Xz) = @,
(b) Ny(XQ) ﬂNy(xlz) = (Z)

Proof. Noting that x;,x{ € NT(0n) NN~ ()») and x2,x, e NT(3») UN~(3n), by
Lemma 3, we get (a).

For (b), we may assume that x, € N~ ()») and x5, € N*()») by (a). Assume that
z € Ny(x2) N Ny(xy),x2 = v; and xj = v;. It is easy to see that i # j — 1 by the
maximality of C. Let (' = xzf)vjyzvi,lﬁx’zzxz. Obviously, V(C') =
(V(C) = {vj",;}) U {»2,z}, which contradicts the maximality of C. The proof of
Claim 2.1 is complete. O]

We consider the following four cases separately.

Case 1. I=2and d(») =t =ko — 1.

Since kg =4 (n —k) and k <1(n—4), we have r =ko— 1 >1(n—1). Hence
t; > 1. Otherwise we have_;%t <|Cl=n-2,thatist < %(n —2). Assg)me, witlx)out
loss of generality, that v; Cv; = v1x v be a 1-segment. Let P = yju; C 13,02 Cuy .
Since {xi,y1,)2} is an independent set, we have dp(x|) = dc(x;) = d(x1) > ko by
Proposition 2. Therefore P is a path as required.

Case 2. 1=2and d(y,) =t <ky—2.

Since a3(G) > 3ky — 2 > n, we have ¢t > 2. Hence we can choose two vertices,
say uy, vy, such that u; # v;. By the maximality of C and (x), we have that both
{uy,»,»} and {v,y1,»»} are independent sets.

Subcase 2.1. There is an m-segment with m < 3 among these ¢ segments.

Without loss of generality, we may assume 01602 = UIX1X2 - XUy 1S an
m-segment with m < 3. Since both {x;,y1,»} and {x,,»,»} are independent
sets, We_>have @(xl) >ky+2 and dc(x,) >ko+2 by Proposition 2. Let
P=yu Copyv,Cuy. If m=1, then P is a path as required since
dp(xl) = dc(xl) > ko + 2. If m= 2, since dp(x,') = dc(xi) —1 > ko + 1 f(&)l = 172,
P is a path as required. Now we assume m = 3. If x, € N(y;), then y;x; Cvyy, is a
path as required. If x, € N(y1), then {x,,y1,)»} is an independent set. Hence we
have dc(xp) > ko +2 by Proposition 2. Thus dp(x;) > dc(x;) —2 > ko for
i =1,2,3. Therefore P is a path as required.

Subcase 2.2. There is no m-segment with m < 3 among these ¢ segments.

In this case, d(y) <d(y2) <i(n—2). Hence we have dc(uy)=d(uy) >
1(3n+4) and dc(vy) =d(vy) >1(3n+4). This implies dc(uy)+de(vy) >
1(6n+8)>|C|. By Lemma 2, G has a path P from u; to v; such that
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V(P) = V(C). Therefore G has a hamiltionian path from y; to y,. This is a con-
tradiction.

Case 3. 1 >3 and d(y) =t < ky—2.
To prove Case 3, we need some claims.

Claim 2.2. ¢ > 1(n+ 1) = 1 (|C| +20).

Proof. Since C is a longest cycle of G, we have that for each ye€Y,
d(y) <%(n—1). Since />3, we may take y3 €Y —{y,)»}. Noting that
03(G) >3kg—2>n and d(»n) >dn we have 2t>d(y)+d(n) >

)a
03(G) —d(y3) >n—1(n—1), and hence t > % (n +1). ]
Claim 2.3. t, + 6, >l and if t, =0, then t, > 21.

Proof. 1t is easy to see that ¢+t + 26+ 363 <|C|. This implies that
4t <|C|+2t + t» as t=t+nH+t. If h+n<l, we have
4 <|C| 42t + 6 <|C|+2(t1 + ;) < |C| + 2] which contradicts Claim 2.2.
Similarly, we have t, > 2/ if t; = 0. O

Claim 2.4. If G has no ko-dominating path, then both (a) and (b) hold.

(a) Let Uizvi+] = vxyv41 be any l-segment. Then |Ny(x;)| > 3;
(b) Let v; Cv;y1 = vxix20;4 be any 2-segment. Then |Ny(x;) UNy(x2)| > 2.

Proof. Let P:ylulﬁvi 2vi+1€u1‘. Since {x;,y1,»} is an independent set, by
Proposition 2, we have d(x;) > ko + 2. By Claim 2.1 we get that |[N(y)NX]| <1
holds for any y €Y. Hence we have that dp(y) >ky+ 1 holds for any
yeY—{m,»m} If INy(x1)| <2, then P is a path as required since dp(x;) > ko, and
therefore (a) holds. We can prove (b) similarly. O

By Claim 2.1 and Claim 2.4, we have the following
Claim 2.5. |Ny(X;)| > 3t, |[Ny(X2)| > 2. O

Now we begin to prove Case 3.

Suppose to the contrary that G contains no kyp-dominating path. By Claim 2.1,
Ny(X1) NNy(X2) =0. Hence |[Ny(X)|>3t+2t. If #>1, we have
Ny (X)| > 381 + 26 > 2(t) + 1) > 2] > 1 = Y|, a contradiction. If # =0, by
Claim 2.3 we have t, > 21. Hence |Ny(X)| > 3t) + 2t =2t > 41 > 1 = |Y], also a
contradiction.

Case 4. 1 >3 and d(y) =t =ko — 1.

Suppose that G has no path as required.

Claim 2.6. For any x; € Xj, N(x;)NY # 0.
— — .
Proof. Let P = yju; Cxyyox] Cuy. If there is some vertex x; € X; such that

N(x;)NY =0, then P is a path as required since dp(x1) > ko and dp(y) > ko for
any vertex y € Y — {y1,»}. ]
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Claim 2.7. [Ny(X))| > [Xi[ =2 1 —1>2.

Proof. First we show that H>1-1. Otherwise, we have
n—I1=|C|>t+tH+26+3t:=3t—t, +t3 >3t —1t, > 3t—[+2. This implies
that 7 < 1(n — 2) which contradicts that d(y,) =t =ko — 1 > 1(n —1).

By Claim 2.1 and Claim 2.6, we can get that |Ny(X;)| > |Xi]. O

We now begin to prove Case 4.

By |Y| =1 and Claim 2.7, we have [ — 1 < |X|| < [Ny(X;)]. By (x), we have
y1 € N(x;) for any vertex x; in X;. This implies that N(x;) C Y — {y1,} for any
vertex x; € X;. Hence we have |[N(X;)| < |Y — {y1,n}| = — 2, a contradiction.

The proof of Lemma 4 is complete. O

Lemma 5. (Johansson [7]). Let G be a graph of order n and (ny,na,... ng) a k-
partition of n, where all n; are odd positive integers. Suppose furthermore that G
contains a path P such that every vertex v € V(G) — V(P) has no two consecutive
neighbours on P and satisfies dp(v) > (n —k)/2. Then G contains a path-factor
consisting of paths of orders ny,ny, ..., ng. O

Bondy [1] showed that if G is a 2-connected graph of order n with
03(G) >3 (n—1), then G contains a hamiltonian cycle. From this result we can

get the following

Lemma 6. Let G be a connected graph of order n. If 5(G) > (3n — 5)/2, then G has
a hamiltionian path. O

3. Proofs of theorems

Proof of Theorem A. 1f all n;’s are even then A = k, and hence ¢3(G) > (3n — 4)/2.
Thus, Theorem A holds by Lemma 6. Hence we may assume at least one of the
n;’s is odd. Without loss of generality, we can assume ny, n2, ..., n,-1 are even and
np,...,n; are odd. Hence 2 =p—1. Set n} =n; +ny+---+mn, and n} | = n;y,
for all 1 <i<k—p. Clearly, (”’17”/2,---7”27,%1) is a k’-partition of n, where
K =k—p+1. Since each n)(1<i<k') is odd, we have A =i(n],
ny,...sM_,y1) =0. By the assumptions of Theorem A we get n>3
(k—A)+4=3k-p+1)+4=3K+4 and 03(G) >3(n—k+71)-2=
3(n—k+p—1)—2=3k—2, where kj =1(n—k’). Then the assumptions of
Lemma 4 are satisfied. If G contains a hamiltonian path, then Theorem A holds.
Hence we may assume that G contains a § (n — k’)-dominating path. Let P be a
longest 4 (n — k’)-dominating path, then no vertex in ¥'(G) — V(P) has two con-
secutive neighbours on P. Hence G and P satisfy the hypothesis of Lemma 5.
Therefore G contains a path-factor consisting of paths of orders n},n}, ..., 1,
and hence G contains a path-factor consisting of paths of orders ny,na, ..., n;. The
proof of Theorem A is complete. O



68 Y. Chen et al.

In order to prove Theorems B and C, we first prove a result which is slightly
stronger than Theorems B and C.

Theorem D. Suppose G is a connected graph of order n and G contains a maximal
strongly dominating cycle C such that o3(Y)>n—1 or |Y| <2, where
Y =V —V(C). Then the following three conclusions hold.

(1) If n = 3k, then G has a Ps-factor.
(2) If n=3k+2> 11, then G has a P;s-factor.
(3) If n =3k — 1, then G contains a Ps,-factor.

Proof. We shall prove this result by induction on #.

Obviously, if n = 3, then the conclusion (1) holds, and if n» = 5, the conclusion
(3) holds. As the bases of induction, we now need show that if » = 11 the con-
clusion (2) holds.

If n =11 and |¥| < 2, then the conclusion (2) holds. Hence we may assume
that | Y| > 3. Since g3(Y) > n — 1 = 10, we have A(Y) > 4. By the maximality of C
and A(Y) > 4, we have |C| > 8. Because of n = 11, we get that A(Y) =4, |C| =8
and [Y| = 3. Let Y = {y,}»,33} with d(y) < d(y,) < d(y3). Clearly d(y1) > 2 and
d(y2) > 3. Suppose that C = vjv; - - - v3. Without loss of generality, we can assume
that N(y3) = {v1,v3,vs,07} and Nt (y3) = Ng (v3) = {v2, v4, 06, v3}. By Lemma 3,
we have that |N(y)NNG(s)| <1, where i=1,2. This implies that
IN(b»)NN(p3)[ =2 and [N(y) NN(3)| = 1. If NOon) ONQG2) NN(3) # 0, sa
v € N(yl) ﬂN(yz) ﬂN(y3), then Y1U1)2, 0203)3 and v4Cug is a P375-fact0r as re-
quired. We now assume that N(y;) " N(3») N N(y3) = (. By symmetry, we may
assume, without loss of generality, that {v;,v3} CN(O»)NN(y;) and vs € N
(1) NN (y3) or {vi,vs} SN(»)NN(y3) and vs € N(y1) N N(y3). In the former
case »v3y3, UaUsy _a)nd vsCvy is a P3s-factor as required. In the latter case
s, 1av3yr and va Cug s a Ps s-factor as required. Hence the conclusion (2) holds
when n = 11.

We now assume that the conclusions hold for small values of n.

It is easy to see the conclusions hold when |Y| < 2. If §(Y) = 1, then we must
have |Y|<2. Since if |Y|>3, we can get a vertex y€ Y such that
de(y) =d(y) > 1(n—2) >3 (n—3) >1|C|. This contradicts that C is maximal.
So we may assume that |Y| > 3 and 6(Y) > 2 in the rest of the proof.

LetyeY such that d(y) = A(Y) =¢. Since 03(Y) >n—1and n #Z 1 (mod 3),
we_have t >1n. Set N(y) ={v1,...,v} which divides C into ¢ segments
vy Cvz,vz Cvg,.. Uthl. Here we assume that vy, v;,...,0, occur on C in the
order of their 1ndices. Suppose that there exists ¢; 1-segments, #, 2-segments and #;
m-segments with m > 3 among these ¢ segments. We first claim that #; > 3. Oth-
erwise we have n—32>|C|>t¢+1# +2t+3t3 >3t —1#. This implies that
t <1(n—1) <in, a contradiction.

Case 1. There is some j(l <j<¢) such that both vj_lﬁvj and vjﬁvﬁl are
1-segments.

Without loss of generality we may assume the two 1-segments are uupu; and
usuqus. Let now P = upuzuy and G' = G — P. Obviously n = n' (mod 3), where
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n' =|G|. Tt is easy to see that the cycle C' = ulyu5€u1 isa strongly dominating
cycle of G. Let Y=Y —{y}, then for any vertex ) €Y, we have
INO') N {uz, us,us}| < 1. Otherwise, if {uz, us} or {us,us} € N(3/), then Cis not a
maximal cycle in G. And if {uz,us} C N()/), then C* = uy Culyuguzy uy is a cycle
such that V(C) C V(C*), a contradiction. Thus we have |[N()/') N {u2, u3,us}| <1
and G’ is connected since 6(Y) > 2. Moreover, we have o3(Y')>n'—1 or
|Y'| <2.If C' is maximal in G, then by induction hypothesis, G’ has a Ps-factor
(Pss-factor or Pj,-factor, respectively) 2. Let # = &' U {P}. Clearly &2 is a P;-
factor (P; s-factor or P;»-factor, respectively) of G. If C’ is not maximal in G’, then
we must be able to find a cycle C” such that C” is maximal strongly dominating
cycle of G' and V(C") C ¥V (C"). Let Y" = V(G') — V(C"), it is not difficult to see
|Y"] <2 or o3(Y") > n' — 1. Similar to the discussion above, we get the conclu-
sions.

-
Case 2. For any j(1 <j<1), there is at most one l-segment in v;_; Cv; and
v C Uyt

To prove Case 2, we need the following claims.

Let u; Cuy = = ujupus - - - Up_oug— U be a segment in C, k = 2 (mod 3) and & > 8.
IfNO)Nu Cuy = {ul,uk} U{wy; :i=0(mod 3)and 3 <i <k — 2}, wecall u; Cuk
a (1,2)-segment.

Claim 3.1. There exists at least three (1,2)-segments in C.

Proof. If there are at most two (1,2)-segments in C then #; > (#; —2). Hence
n=3>|C|>t+t1+2t,+3t3 >3t—t;+t; >3t—2. This implies that
t <1(n—1), contrary to that ¢ > {n. ]

— — — .
We now choose two 1-segments v; Cv;y1 and vgCugyq such that v;Cvgg is a

(1,2)-segment and the number of vertices between v, and v, along C is as small
as possible. Without loss of gengr)ality, we may assume u upuz and wuu;,u;y o are
the two 1-segments. Set u4Cu;_y =x1x3---x,. By Claim 3.1, we have
m<i(n—12)=1n—4and m =2 (mod 3).

Claim 3.2. 5(Y) >1n+1
. . -
t), there is at most one 1-segment in v;_; Cv; and

t<(n—3)—t — 20— 3t < (n—3) — 3. That is
o3(Y) —2A(Y) > in+ 1 ]

Proof. Since for any j(1 <j <
v; Cvjy1, hence we have A(Y) =
t <2(n—3). Therefore 6(Y) >
Claim 3.3. Let yy € Y, then:

N(yo) N V(C) - {u27u37x17 .. vxmauivuiJrl} 7& @

Proof. If N(y) NV(C) — {uz,u3,x1,...,Xm,uju;11} =0, then we must have
0(Y) <d(w) <i(m+4) <in<in+1<4(Y), acontradiction. O
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Now we begin to prove Case 2.

Case 2.1. There is some x; with j# 0 (mod 3) such that N(x;) NY # 0, say
x1 € E(G), where y; € Y.

Let P=yxix2,Set G =G —Pand Y =Y — {y,»}. Then C' = u3yX3€u3 isa
strongly dominating cycle of G’ and |Y’'| <2 or o3(Y') >#n' — 1, where ' =n
(mod 3) and ' = |G|. Similar to the discussion in Case 1, we get the conclusions.

Case 2.2. For any x; with j # 0 (mod 3), N(x;) N Y = 0.

Let m = 3m; 4+ 2. The segment uzﬁuiﬂ can be partitioned into (m; + 2) Ps’s:
UDU3X ], X2X3X4y + -+ y X 3Xm—2Xm—1, XmUiUtir1. We denote by A the set of these m; + 2
Py’s and set G* = G {ua, us, X1, oo X, Uiy U1 } and n*=n—m—4.Then G* isa
graph of order n* =n (mod 3). Let C* = upu;in Cul Then C* is a strongly
dominating cycle of G*. Set Y* = V(G*) — V(C*). We claim that for any vertex
¥y €Y —{y},both IN(V) N {uz,us,x;}| < 1and [N(Y') N {xp, us, ui1}| < 1 hold by
the maximality of C and Lemma 3. Therefore we have o3(Y*) > n* — 1 if |Y*| > 3.
By Claim 3.3, G* is connected. If C* is maximal in G*, then by induction hy-
pothesis, G* has a Ps-factor (P;s-factor or Ps,-factor, respectively) 2. Let
P =P* UZ. then 2 is a P3-factor (P s-factor or Ps,-factor, respectively) of G. If
C* is not maximal in G*, then similar to the discussion in Case 1, we can get the
conclusions.

Hence we complete the proof of Theorem D. O

Proof of Theorem B. (a) It is a direct consequence of Lemma 1 and Theorem
D(1).
(b) When n=5 or n =28, we can see the conclusion holds by checking it
directly. When n > 11, it is a direct consequence of Lemma 1 and Theorem D(2).
Therefore the proof of Theorem B is completed. O

Proof of Theorem C. If G contains a hamiltonian path, then the conclusion holds
trivially. If G contains a strongly dominating cycle, then the conclusion holds by
Theorem D(3). Hence we may assume that G has neither hamiltonian path nor
strongly dominating cycle in the following proof.

Let P=x1x3---x, be a longest path of G and y any vertex such that
y €V —V(P). Set A= Np (x1), B= Nz (x»), D= Np(y). By the maximality of P
we get that AND =BND ={ and {x;,y,x,} is independent.

Claim 3.4. ANB = (.

Proof. Suppose that AN B # (), say x;, € ANB. Then C = xlﬁxi_lxm??xl“xl isa
cycle of length |P|—1. Let U =V — V(C). Obviously, N(x;) N U = (. If G[U]
contains at least one edge, then since G is connected, we can get a path P’ of length
at least |P| 4 1, a contradiction. If G[U] contains no edges, then G[V — V' (C)]
contains no edges, and hence C is a strongly dominating cycle of G, also a
contradiction. O]
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Claim 3.5. G[V — V(P)] is a complete graph.

Proof. Otherwise, there exists a vertex yé€V —V(P) such that
do_p(y) <n—|P|—2. Thus, we have n—1<o03<d(x;)+dxn)+ dO) <
|P| +n—|P|—2=n—2 since x; and x, has no neighbours in G — P and are
not connected to each other, furthermore ANB=BND =AND = (. This con-
tradiction proves Claim 3.5. O

By Claim 3.5, we can assume that the only component of G[V — V(P)] is H,
and H, = K,,_,,. If n —m = 0,2 (mod 3), then we can get the conclusion easily. Let
now n—m=1 (mod 3). Without loss of generality, we can assume
N(@y)NV(P) # 0. Clearly H, — {y} has a P3-factor. Let x;, € Np(). If ip = 1 (mod
3), then P’ = xx; - - - x;,y has a Py,-factor and P” = x;,41x;,42 - - - X, has a P3-factor.
Hence we get a path-factor as required. If i) = 2 (mod 3), then P/ = x;x3 - - x;y
has a Ps-factor and P” = x; 41 - - - x,, has a P; >-factor. Hence G has a P;-factor. If
ip =0 (mod 3), then P’ = xjx;---x;,—1 has a P3p-factor and P” = yx; Xjy+1 -+ - Xm
has a P3-factor. Hence we can also get a path-factor as required.

The proof of Theorem C is complete. O

References

1. Bondy, J.A.: Longest paths and cycles in graphs of high degree, Research Report
CORR 80-16, University of Waterloo, Waterloo, Ontario 1980

2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, North-Holland, Am-
sterdam 1976

3. Chvatal, V., Erdés, P.: A note on Hamilton circuits, Discrete Math. 2, 111-113 (1972)

4. El-Zahar, M.: On circuits in graphs, Discrete Math. 50, 227-230 (1984)

5. Erdés, P., Gallai, T.: On maximal paths and circuits of graphs, Acta Math. Acad. Sci.
Hung. 10, 337-356 (1959)

6. Enomoto, H., Kaneko, A., Tuza, Z.S.: Ps-factor and covering cycles in graphs of
minimum degree %n, Collog. Math. Soc. Janos Bolyai 52. Combinatorics Eger Hungary
1987

7. Johansson, R.: An El-Zahar type condition ensuring path-factors, J. Graph Theory 28,
39-42 (1998)

Received: June 30, 1999
Final version received: July 31, 2000



