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Abstract. Let G be the family of ®nite collections S where S is a collection of bounded,
arcwise connected sets in R2 which for any S;T A S where S VT 0h, it holds that S VT
is arcwise connected. We investigate the problem of bounding the chromatic number of the
intersection graph G of a collection S A G.

Assuming G is triangle-free, suppose there exists a closed Jordan curve C HR2 such
that C intersects all sets of S and for all S A S, the following holds:

(i) S V �C U int�C�� is arcwise connected or S V int�C� �h.
(ii) S V �C U ext�C�� is arcwise connected or S V ext�C� �h.

Here int�C� and ext�C� denote the regions in the interior, resp. exterior, of C. Such
being the case, we shall show that w�S� is bounded by a constant independent of S.

1. Introduction

For any graph G in this paper w�G� will denote the least number of colours nec-
essary to colour the vertices of G so that any pair of adjacent vertices recieve dif-
ferent colours; that is, the chromatic number of G. The clique number of G is the
order of the largest clique of G and we shall denote it by o�G�. For a collection F
of subsets of Rn we de®ne the intersection graph of F;G�F� to be the graph whose
vertices correspond to sets in F where two vertices are adjacent if and only if their
corresponding sets have nonempty intersection.

Let G be the family of ®nite collections S of bounded, arcwise connected sets
in R2 with the property that for each S;T A S where S VT 0h, it holds that
S VT is arcwise connected. Technically speaking, a set X JR2 is arcwise con-

nected if for any 2 points x; y A X there is a continuous injection f : �0; 1� ! X

such that f �0� � x and f �1� � y. The function f and its range are referred to as an
arc where x and y are its endpoints. To avoid pathological varieties of arcwise
connected sets (ie. space-®lling curves etc.), we shall assume in our de®nition of
arcwise connectedness that arcs have the additional property that they can be
closely approximated by polygonal curve; a curve which is a ®nite union of line
segments. That is, for an arc, we assume that one can ®nd an arbitrarily good
approximation to it via polygonal curves.

Throughout, we shall implicitly use the Jordan curve Theorem (see [8]).



Following [5] we call a family of graphs Hw-bound with binding function f if for
each H A H, it holds that

w�H�U f �o�H��:
It is known (see [2]) that if G is an interval graph, that is, if G � G�F� where F is
a ®nite collection of closed intervals of R, then w�G� � o�G� (ie. G is perfect).
Other families which are w-bound include circular-arc graphs, where F is the col-
lection of closed, circular arcs of a circle. In this case, it is not di½cult to show that
w�G�U 2o�G� ÿ 1. In [6], GyaÂrfaÂs showed that if F is a collection where each
member of F is a union of at most t closed intervals of R, then G�F� satis®es
wU 2t�oÿ 1� for oV 2. GyaÂrfaÂs (see [7]) also showed that for the intersection
graph of chords of a circle, it holds that wU 22oo2. Recently, Kostochka and
Kratochvil [9] showed that this bound can be improved to 50�2o�. They also
showed that, among other things, for the class of intersection graphs representing
the intersection of convex polygons inscribed in a circle, has a binding function f

where f �o� � 2o. In [10], Kostochka and NesÏetrÏil obtained estimates for the
chromatic numbers of intersection graphs of intervals, rays, and strings in the
plane. Their estimates are valid for such graphs having girth at least 5, and they
mention that even bounds for the chromatic number of the intersection graph of
rays in the plane is unknown when such graphs have girth 4. The main result in
this paper shows that such bounds do exist. In fact, it can be shown (see Corollary
1.2) that a much more general result holds for collections of unbounded, arcwise
connected sets. In [1], Asplund and Grunbaum showed that for the intersection
graph of rectangles in the plane (so-called box intersection graphs) it holds that
wU 4o2 ÿ 3o. Burling [4] subsequently showed via a non-trivial example that w
cannot be bounded by any function of o for the intersection graph of 3-
dimensional boxes; that is, this is not a w-bound family.

For some intersection graphs, it is di½cult to determine whether they are w-
bound or not. Erdo00s (see [5]) posed as a problem to determine whether the family
of intersection graphs of line segments in the plane is w-bound. It was shown
recently in [11], that the family of in®nite-L-graphs is w-bound. We shall use some
of the ideas in that paper to prove more general results for the intersection graph
of sets in the plane. More precisely, we focus on the intersection graphs formed by
the intersection of bounded, arcwise connected sets in R2.

For convenience, we shall drop the induced graph notation G�S� and instead
refer directly to S. Thus we will speak of the chromatic number of S, w�S� as
being w�G�S��, and we shall speak of paths and cycles of sets of S, whose coun-
terparts in G�S� are paths and cycles. We may also use w-bounded in referring to
collections of sets (a family F of collections of sets of S being w-bounded i¨ the
family of graphs fG�S� : S A Fg is). We say that a collection S A G is triangle-

free if G�S� is triangle-free. We de®ne G3 � fS A G : S triangle-freeg.
For a subset S JR2, we let Int�S� denote the set of interior points of S. Let

x A S and let Cx be a maximal arcwise connected set in S containing x. The set Cx

is unique for each x and if for some x and y we have Cx 0Cy, then Cx VCy �h.
The sets Cx, x A S are called the components of S. We say that S is bounded if it is
contained in some disk of ®nite radius.

430 S. McGuinness



In light of the above-mentioned results and problems, we pose the following
conjecture:

Conjecture. The family G is w-bound.

For a collection of sets S from R2 and S 0HS, we let LS�S 0� denote the sets
of S contained in the bounded components of R2 ÿ6

S AS 0 S. When S is im-
plicit, we shall just write L�S 0�. We say that a set of S A S is surrounded by S 0 if
S A L�S 0�.

In extending the results on in®nite-L-graphs [11], we shall prove the following
which is the main result of this paper.

Theorem 1.1. Let S A G3. Suppose there exists a closed Jordan curve C HR2 such

that C intersects all sets of S and for all S A S the following hold:

(i) S V �C U int�C�� is arcwise connected or S V int�C� �h.
(ii) S V �C U ext�C�� is arcwise connected or S V ext�C� �h.

Then w�S� is bounded by a constant independent of S.

In [10] it was posed as a problem to determine whether the triangle-free inter-
section of rays in the plane have bounded chromatic number. The above theorem
gives an a½rmative answer to this problem. Moreover, one can prove the follow-
ing result for intersections of unbounded arcwise connected sets.

Corollary 1.2. Let S be a ®nite, triangle-free collection of unbounded, arcwise con-

nected sets in the plane where for any two intersecting sets S and T of S it holds that

S VT is arcwise connected. For such a collection, w�S� is bounded by a constant

which is independent of S.

The principle idea in the proof of Theorem 1.1 is to surround a group of sets
S 0HS for which S 0 has large chromatic number when S does. Let aV 1. For
sake of convenience, we de®ne a relation Ta on 2 collections of sets TJS
S;T A G3, in the following way:

T Ta S , w�T� > 1

a
w�S�:

As a matter of notation, we shall write S1 Ta1
S2 Ta2

� � � Tan
Sn to mean

S1 Ta1
S2, S2 Ta2

S3; . . . ;Snÿ1 Tan
Sn. Note that if L Ta T and T Tb S,

then L Tab S.
For each vertex v in an intersection graph G � G�S� we let S�v� denote the

corresponding set in S, and for V JV�G� we let S�V� � fS�v� : v A Vg. If we are
given an intersection graph G�S�, for each S A S we let v�S� denote the vertex
corresponding to S. For any subset S 0JS we let v�S 0� � fv�S� : S A S 0g. Here
we shall always assume that there is some implicit one-to-one correspondence
between vertices of G�S� and the sets of S.

For a graph H and V JV�G� we say that V induces the subgraph H, if V �
V�H� and for all u; v A V , uv A E�H� if and only if uv A E�G�. For G � G�S� and
S 0JS, the collection S 0 is said to induce a graph being its intersection graph
G�S 0�.
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For a graph G and u; v A V�G� we shall write u@ v to mean that u is adjacent
to v. For two sets S and T we shall write S @T to mean that S intersects T and
SDT to mean that S does not intersect T.

2. Colouring Lemmas

We shall make use of the following lemma:

Lemma 2.1. Let G be a graph whose vertices are partitioned into vertex disjoint
subgraphs G1;G2; . . . ;Gk where E�G� �6

i
E�Gi�. Suppose also that V1;V2; . . . ;Vl

are subsets of vertices which partition V�G� such that for i � 1; 2; . . . ; k and

j � 1; 2; . . . ; ljVj VV�Gi�jU 1. Let t � maxijVij and let H be a graph on k vertices

g1; g2; . . . ; gk where gi @ gj if and only if for some 1U sU l, Vs @V�Gi� and

Vs @V�Gj�. Let G � be the graph with vertices v1; v2; . . . ; vl where vi @ vj in G � if

there is an edge from Vi to Vj in G. Then

w�G ��U w�H�
t

� �
max

i
w�Gi� t:

Proof. We suppose that H has a proper colouring cH with w�H� colours 1; 2; . . . ;
w�H�. We can partition G into w�H� subgraphs G1;G2; . . . ;Gw�H� where each sub-
graph Gi is the union of all subraphs Gj for which cH�gj� � i. Each Gi has a proper
colouring ci with colours 0; 1; 2; . . . ;maxj w�Gj� ÿ 1. Assign to each vi A V�G �� a
w�H�-tuple cG � �vi� � �xi

1; x
i
2; . . . ; xi

w�H�� where

xi
j �

cj�u�
0

if

if

Vi VV�Gj� � fug
Vi VV�Gj� �h:

( )
The function cG � is easily seen to be a proper colouring of G � with at most

w�H�
t

� �
maxi w�Gi� t colours. r

We mention here a well-known result (see [6]), which will be used extensively.

Lemma 2.2. Let G be a graph and let v A V�G�. Suppose G0;G1;G2; . . . are the

subgraphs induced by vertices at distance 0; 1; 2; . . . respectively from v. Then for

some d, w�Gd�V w�G�
2

. r

3. Proof of the Main Theorem

We de®ne a dendrite to be an arcwise connected set which is a ®nite union of arcs,
no sub-collection of which contains a closed Jordan curve.

Let S be a collection of arcwise connected sets where for any pair S;S 0 A S
having nonempty intersection, the set S VS 0 has ®nitely many arcwise connected
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components. We denote the set of such components by K�S VS 0�. We shall
associate to each set S A S a dendrite TS HS in the following way: For each
set S A S, we link all the components in 6

S 0@S
K�S VS 0� together with a

®nite number of disjoint dendrites WS HS where for each component K A
6

S 0@S
K�S VS 0� and each dendrite T of WS we may assume T VK is either empty

or a single point. So if one were to contract each component K into a single point,
then WS would become a dendrite containing all these points. Now in each com-
ponent K A 6

S 0@S
K�S VS 0� we may ®nd a dendrite TK containing �WS UWS 0 �

VK . For each S A S, we let TS �WS U6S VS 00h
K A K�S VS 0 �

TK . We see that for all

S;S 0 A S it holds that S @S 0 i¨ TS @T 0S. By construction, if S VS 0 is arc-
wise connected, then so is TS VTS 0 . We summarize the above in the following
proposition:

Proposition 3.1. For each S A S we may associate a dendrite TS so that S @S 0 i¨

TS @TS 0 . Moreover, if S VS 0 is arcwise connected, then TS VTS 0 is also arcwise

connected. r

For any dendrite D and points x; y A D there is a unique arc in D having end-
points x and y. We shall let D�xy� denote this arc.

Let C and S be as stated in Theorem 1.1. Let S1 be the collection of inter-
sections S V �C U int�C�� where S A S and S V int�C�0h. Similarly, let S2 be
the collection of all intersections S V �C U ext�C�� where S A S and S V ext�C�
0h. It su½ces to prove that S1 and S2 have chromatic number bounded by a
constant independent of S.

To see this, we ®rst ®nd proper colourings for S1 and S2, using colours
1; 2; . . . ; k where k does not depend on S. We then associate a pair �ci; cj� of
integers to each set S A S in the following way: if S V �C U int�C�� A S1, then let
c1 be the colour it recieves in S1; otherwise let c1 � 0. If S V �C U ext�C�� A S2,
then let c2 be the colour it recieves in S2; otherwise let c2 � 0. It is easy to see that
this gives a proper colouring of S with fewer than �k � 1�2 colours.

For convenience we shall only prove that S2 has bounded chromatic number.
The sets of S2 are arcwise connected (by assumption). However, for 2 sets
S;S 0 A S2 which intersect, the intersection need not be arcise connected, but is a
®nite union of components. In the case where S VS 0 VC �h, we observe that
S VS 0 is arcwise connected. For convenience, we shall let S be the collection S2.
According to Proposition 3.1, we may replace each set S A S by a dendrite TS,
where the collection of dendrites TS;S A S preserves the same intersection prop-
erties as S. Moreover, we may assume each TS intersects C at a ®nite number of
points, and for any K A K�S VS 0�, C intersects TK in at most one point (by pre-
turbing C if necessary). For convenience, we shall assume S � TS for all S A S.
Since each component K of a nonempty intersection S VS 0 is a dendrite, we may
contract K to a single point without changing the intersections of S, and each set
S remains a dendrite after all contractions. Note that contracting components
which intersect C is allowed since they intersect C in exactly one point. Thus
if S @S 0 and S VS 0 VC �h, then we may assume S VS 0 is a single point in
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ext�C�. If on the other hand S @S 0 and S VS 0 VC 0h, then we may assume
that S VS 0 is a ®nite collection of points, all of which lie on C.

The sets of S shall be enumerated as S0;S1;S2; . . . ;Sn in order of appearance
as we move counterclockwise around C, ie. in their ``chronological order''. For
i � 0; 1; 2; . . . we let xi be the ®rst point of Si we encounter while moving along C.
If two sets appear coincidentally along C, we shall enumerate one before the other
in an arbitrary way.

For a subset I J �0; n� and any subset S 0JS, we let S 0�I� � fSi A S 0 : i A Ig
Given that S has high chromatic number, Lemma 2.2 implies that for some d, the
set of dendrites Sd at distance d from S0 will also have high chromatic number.
The basic idea we pursue here is to show that given Sd has high chromatic number
(for example wV 2100), we can ®nd dendrites Sm;Sl ;Si1 ;Si2 ; . . . ;Si9 which intersect
in one of 2 ways similar to those illustrated by the con®gurations in Figs. 1 and 2.
In either case, the dendrite Si9 is ``surrounded''; that is, any dendrite S A S which
chronologically lies to the left or right of all the dendrites in the con®guration can
not intersect Si9 without ®rst creating a triangle or crossing a dendrite twice.
However, since Si9 A Sd , there is a path of length d from S0 to Si9 , and the
�d ÿ 1�0th dendrite in the path will play the role of S, as it must pierce through the
con®guration and intersect Si9 , either creating a triangle or crossing a dendrite
twice.

Suppose for some i < j we have Si @Sj. Let y A Si VSj and let Ai � Si�xi y�
and Aj � Sj�xj y�.

Fig. 1

Fig. 2
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Let

�i�1 � fk A �i; j� : Sk @Aig
�i�0 � fk A �i; j� : SkDAig

We can de®ne � j�1 and � j�0 similarly.
For di; dj A f0; 1g let

�i; j�didj
� �i�di

V � j�dj
:

Note that �i; j�11 �h since S is triangle-free.
For di; dj A f0; 1g, �di; dj�0 �0; 0� let

�i; j�didj

00 � fk A �i; j�00 : bk 0 A �i; j�didj
s:t: Sk @Sk 0 g:

We let

�i; j�00
00 � �i; j�00 ÿ �i; j�01

00 ÿ �i; j�10
00:

Lemma 3.2. The collection of sets fSk : k A �i; j�10
00 U �i; j�01

00g has chromatic number
bounded by a constant c which is independent of S.

Proof. It su½ces to show that both S��i; j�10
00�� and S��i; j�01

00�� have chromatic
number bounded by constants which are independent of S. We shall show this is
true for the ®rst collection, a similar proof applying to the second as well.

For simplicity, let Sij � S��i; j�10
00�. We let S��i; j�10� � fSr1

;Sr2
; . . . ;Sra

g
where i < r1 < r2 � � � < ra < j. For k � 1; 2; . . . ; a let

fyrk
g � Srk

VAi; Ark
� Srk

�xrk
yrk
�:

It is easily seen that the subset of dendrites S A Sij which intersect at most one
arc Ark

, k A f1; 2; . . . ; ag has chromatic number at most 2. This being the case, we
assume for convenience that each S A Sij , S intersects at least 2 di¨erent arcs Ark

.
For each S A Sij let

m�S� � min
S@Arl

l and n�S� � max
S@Arl

l:

The arcs Ar1
;Ar2

; . . . ;Ara
are disjoint and divide the region R bounded by

C;Ai, and Aj into regions R1;R2; . . . ;Ra�1 where R1 is the region between and
including Ai and Ar1

, Ra�1 is the region between and including Ara
and Aj, and for

2U k U a, Rk is the region between and includingArkÿ1
and Ark

. For each S A Sij ,
let AS be the arc in S joining S VArm�S� to S VArn�S� . The arcs AS, S A Sij are dis-
joint for if S @T for some S;T A Sij , then either n�S� � m�T� ÿ 1 or n�T� �
m�S� ÿ 1. The arcs AS, S A Sij divide each region Rk, k � 1; 2; . . . ; a into sub-
regions Rk1;Rk2; . . . ;Rkak

. For S A Sij, we let VS � fS VRm�S�;S VRn�S��1g and
we call the members of VS the ends of S. Each end is seen to belong to a sub-
region Rkl . For k � 1; 2; . . . ; a and l � 1; 2; . . . ; ak, let Gkl be the intersection graph
of the ends of dendrites of Sij contained in Rkl . Let H be a graph having vertices
gkl , where k � 1; 2; . . . ; a, l � 1; 2; . . . ; ak, and gkl @ gk 0l 0 i¨ for some S A Sij , S has
2 ends, one in Rkl and another in Rk 0l 0 . The graph H is seen to be planar, for if
gk1l1 @ gk 0

1
l 0
1
, k1 < k 01 and gk2l2 @ gk 0

2
l 0
2
, k2 < k 02, then there exist S;T A Sij for which
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S @Rk1l1 , Rk 0
1
l 0
1
, and T @Rk2l2 , Rk 0

2
l 0
2
. Now S @T i¨ either �k 01; l 01� � �k2; l2� or

�k 02; l 02� � �k1; l1�. We conclude that H has a planar representation, and hence
w�H�U 5 by the 5-colour Theorem [3, p. 156].

Let G � be the intersection graph of Sij. We note that 2 dendrites S;T A Sij

intersect i¨ they have ends which intersect in some Rkl ; that is, there are ends in VS

and VT whose corresponding vertices are adjacent in the intersection graph Gkl .
Applying Lemma 2.1, we obtain

w�G��U w�H�
2

� �
max

k; l
w�Gkl�2:

Clearly w�Gkl�U 2, for all k and l as each dendrite of Sij having an end in
Rkl must intersect exactly one of Ark

or Ark�1
. We obtain from the above that

w�G ��U 40. r

Remark. The proof above indicates that the constant c in the statement of Lemma
3.2 is at most 100.

For l A Z�, a ®nite sequence frigq
i�0 is called a l-sequence if r0 � ÿ1, rq � n

and for i � 1; 2; . . . ; q, w�S�riÿ1; ri��U l subject to ri, i � 1; . . . ; qÿ 1 being as
large as possible. We note that for i � 1; 2; . . . ; qÿ 1, w�S�riÿ1; ri�� � l.

Lemma 3.3. Let x A Z� and suppose w�S�V 16x. Then there exists a subcollection

S 0HS where

(i) w�S 0�V 8.
(ii) for all Si;Sj A S 0 where Si @Sj it holds that w�S�i; j��V x.
(iii) there exists Si1 ;Si2 A S 0 such that Si1 @Si2 and w�S�1; i1��V x and w�S�i2; n��

V x.

Proof. Let frigq
i�0 be a x-sequence. Colour each of S�r0; r1�;S�r1; r2�; . . . ;

S�rqÿ1; rq� with x colours. Since w�S�V 16x at least one of the x colour classes
forms a collection T with w�T�V 16. The collection T can be partitioned into
two subcollections T1 and T2 where T1 is the subcollection T intersected with
S�r0; r1�US�r2; r3�U � � � and T2 is the subcollection T intersected with S�r1; r2�
US�r3; r4�U � � � : We have that either w�T1�V w�T�

2
V 8 or w�T2�V w�T�

2
V 8.

Assume, without loss of generality that the former holds. Suppose for some i < j

that Si;Sj A T1, and Si @Sj . Then for some 0U s < t we have Si A S�r2s; r2s�1�
and Sj A S�r2t; r2t�1�. Thus S�r2s�1; r2s�2�JS�i; j� and hence w�S�i; j��V
w�S�r2s�1; r2s�2�� � x. We now see that S 0 �T1 full®lls (i) and (ii). To see that it
satis®es (iii), we note that since w�T1�V 8, we can pick Si1 A S�r2k; r2k�1�, k > 0,
and Si2 A S�r2l ; r2l�1�, 2k < 2l U qÿ 3, such that Si1 @Si2 . This being the case, we
have w�S�0; i1��V w��0; r1��V x and w�S�i2; n��V w�S�rqÿ2; rqÿ1��V x. r

Proof of Theorem 1.1. We shall assume that w�S� is large (for example wV 2100).
Let S0;S1; . . . be the subcollections of dendrites of S at distance 0; 1; 2; . . . from
S0 in S. We aim to ®nd a subcollection of dendrites in one of the distance classes
which essentially corresponds to one of the con®gurations in either Fig. 1 or 2. To
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do this we shall use a repeated application of Lemma 1.2. By Lemma 1.2, there

exists a > 0 such that w�Sa�V w�S�
2

. We have that Sa T2 S. Let Sna
be the

dendrite of smallest index which belongs to Sa. Let Sa0;Sa1;Sa2; . . . be the sub-
collections of dendrites of Sa at distance 0; 1; 2; . . . resp. from Sna

. As in the above,
there is a b > 0 such that Sab T2 Sa T2 S. Now let Snb

be the dendrite of smallest
index which belongs to Sab, and let Sab0;Sab1;Sab2; . . . be the subcollections of
dendrites of Sab at distance 0; 1; 2; . . . resp. from Snb

. Again, there is a c > 0 such
that Sabc T2 Sab T2 Sa T2 S.

Pick Si1 ;Si2 A Sabc where Si1 @Si2 and Sabc�i1; i2�T24 Sabc. Such a pair exists
by Lemma 3.3. Since the dendrites of S intersecting Si1 and Si2 have chromatic
number at most 2, we have that w�Sabc��i1; i2�00��V w�Sabc�i1; i2�� ÿ 2. Applying
Lemma 3.3 once again, we see that we may choose Si3 ;Si4 A Sabc��i1; i2�00� such
that i1 < i3 < i4 < i2, and

(i) Si3 @Si4

(ii) Sabc�i1; i3�T25 Sabc, Sabc�i3; i4�T25 Sabc, and Sabc�i4; i2�T25 Sabc

Since w�S� is large, Sabc is also large and consequently, Lemma 3.2 implies
that we may pick

Si5 A S��i1; i2�00
00�VSabc��i3; i4�00�:

In addition, if Si5 lies between 2 points of Si3 VC where x and y are the points
nearest Si5 coming respectively, before and after Si5 , then we may choose Si5 so
that it intersects no other dendrite (besides Si3 ) containing x and y.

Since Si5 A Sabc, there is a shortest path from Snb
to Si5 in Sab of length c, say

Su0
Su1
� � �Suc

. Since w�S� is large (and hence w�Sab� is large) we may assume that
cV 2. Since there is no such path which is shorter, it follows that Sui

DSi5 for
i � 0; 1; . . . ; cÿ 2. Moreover, Sui

does not intersect any dendrite of Sabc for i �
0; 1; . . . ; cÿ 2, but Sucÿ1

@Si5 . Since nb < i1 < i2, it follows that Sucÿ1
intersects

either Si1 or Si2 . Since nb < i1 < i2, we conclude from the choice of Si5 , Sucÿ1
B

S�i1; i2�. Let ucÿ1 � l, and assume that (without loss of generality) l < i1. Since
Sabc�i1; i3�T25 Sabc, w�Sabc�i1; i3�� is large. Lemma 3.3 asserts that we may pick
Si6 ;Si7 A Sabc�i1; i3� where i1 < i6 < i7 < i3 and

(iii) Si6 @Si7

(iv) Sabc�i1; i6�T25 Sabc�i1; i3�;Sabc�i6; i7�T25 Sabc�i1; i3�
Sabc�i7; i3�T25 Sabc�i1; i3�

(v) Si6 ;Si7DSi1 ;Si2 ;Si3 ;Si4 ;Si5 ;Si6 ;Sl .

Since Sabc�i6; i7�T25 Sabc�i1; i3�, we may pick Si8 A Sabc�i6; i7� such that Si8 A

S��i1; i2�00
00 V �l; i5�00

00�VSabc��i6; i7�00�. In addition, if Si8 lies between 2 points of
Si6 VC where x and y are the points nearest Si8 coming respectively, before and
after Si8 , then we may choose Si8 so that it intersects no other dendrite (besides Si6 )
containing x and y.

We have that Si8 A Sab and thus there is a shortest path from Sna
to Si8 in Sab

of length b. Reasoning in a similar way as before, we conclude that there exists
Sm A Sa, m B �l; i2� such that Sm @Si8 .
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Suppose m > i2. Since Sabc�i7; i3�T25 Sabc�i1; i3�, Sabc�i7; i3� has large

chromatic number, and we may pick Si9 A S��l;m�00
00�VSabc�i7; i3� such that Si9D

Sm;Sl ;Si7 ;Si3 (see Figure 1). Since Si9 A Sa, there is a shortest path from S0 to
Si9 in S of length a. Reasoning in a similar way as was done for Si5 and Si8 , there
is an Sp A Saÿ1 where p B �l;m�. and Sp @Si9 . Since Sp @Si9 , there is an arc AH
Sp from the ®rst point of Sp occuring along C to a point of Sp VSi9 . To avoid
creating a triangle, A must either intersect Si8 or Si5 before intersecting Si9 .

We suppose A@Si5 . Then A either intersects Si3 before and after intersecting
Si5 , or it intersects Si4 before before and after intersecting Si5 . Clearly A can not
intersect Si4 before and after having intersected Si3 , for then such intersection
points would belong to C, and consequently, Si4 would have been enumerated
before Si3 along C. We suppose therefore that A intersects Si3 before and after
intersecting Si5 . Such intersection points must belong to C (since all points of
Sp VSi3 must lie on C ), and we let x and y be the nearest intersection points to Si3

coming respectively, before and after Si3 along C. Then x and y are the nearest
points of Si3 VC occuring respectively before and after Si5 along C. By the choice
of Si5 , no dendrite containing x and y intersects Si5 . This yields a contradiction
since x; y A Sp and Sp @Si5 .

From the above we conclude that ADSi5 and we deduce in a similar fashion
that ADSi8 .

Suppose now that m < l < i2 (see Fig. 2). We may now choose Si9 A
S��m; i2�00

00�VSabc�i1; i6� such that Si9DSi1 ;Sl ;Si6 ;Si7 . Reasoning in a similar way
as before, there is an Sp A Saÿ1 where p B �m; i2�, and Sp @Si9 . There is an arc
AHSp from the ®rst point of Sp along C to a point of Sp VSi9 . To avoid creating a
triangle, A must intersect Si8 before intersecting Si9 . One can show in a manner
similar to the previous case that this can not happen. This concludes the proof of
Theorem 1.1. r

Lastly, we include a proof of Corollary 1.2.

Proof of Corollary 1.2. By Proposition 3.1 we may replace each set S A S by a
dendrite TS where for any pair S;S 0 A S we have S @S 0 i¨ TS @TS 0 . Further-
more, if S @S 0, then TS VTS 0 is arcwise connected (and bounded). Since there are
only ®nitely many such dendrites TS, we may choose a circle C in the plane so that
each dendrite TS lies inside C. We may extend each dendrite TS to a dendrite T 0S in
the following way: for a pair S;S 0 A S where S @S 0 and S VS 0 VC 0h let ASS 0

be an arc in S VS 0 from TS VTS 0 to C. Extend both TS and TS 0 by adding ASS 0 to
them. Repeat this operation for every such pair S and S 0.

Suppose that for some TS, it holds for all sets S 0 A SnfSg where S @S 0 that
S VS 0 VC 0h. Since S is unbounded, it intersects C and there is an arc AS HS

from C to TS which we may assume intersects at most one other set S 0, and if such
happens, then AS VS 0 is an arc in S VS 0 which terminates at TS VTS 0 (this we can
assume since S VS 0 is arcwise connected). Extend TS to a larger dendrite T 0S which
intersects C by adding AS. If AS intersects some other set S 0, then extend TS 0 to a
larger dendrite T 0S 0 by adding the arc AS VS 0. Now T 0S VT 0S 0 is still a dendrite, and
hence is arcwise connected. Repeat this proceedure for every such dendrite TS.
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When we have ®nished, we will have obtained a collection of dendrites T 0S, S A S
which preserves the same intersections as S where nonempty intersections are still
arcwise connected and each T 0S is such that it intersects C but is contained in
C U int�C�. It follows by Theorem 1.1 that the dendrites T 0S, S A S have chromatic
number bounded by a constant which is independent of S. The proof of the cor-
ollary now follows. r
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