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Abstract. Let & be the family of finite collections . where & is a collection of bounded,
arcwise connected sets in IR? which for any S, T € & where SN T # @, it holds that SN T
is arcwise connected. We investigate the problem of bounding the chromatic number of the
intersection graph G of a collection ¥’ € 4.

Assuming G is triangle-free, suppose there exists a closed Jordan curve C = IR? such
that C intersects all sets of % and for all S € ., the following holds:

(i) SN(CUint(C)) is arcwise connected or SNint(C) = <.
(ii) SN(CUext(C)) is arcwise connected or SNext(C) = .

Here int(C) and ext(C) denote the regions in the interior, resp. exterior, of C. Such
being the case, we shall show that (%) is bounded by a constant independent of .%.

1. Introduction

For any graph G in this paper y(G) will denote the least number of colours nec-
essary to colour the vertices of G so that any pair of adjacent vertices recieve dif-
ferent colours; that is, the chromatic number of G. The clique number of G is the
order of the largest clique of G and we shall denote it by w(G). For a collection &
of subsets of IR” we define the intersection graph of %, G(%) to be the graph whose
vertices correspond to sets in # where two vertices are adjacent if and only if their
corresponding sets have nonempty intersection.

Let % be the family of finite collections . of bounded, arcwise connected sets
in IR? with the property that for each S, 7 €.¥ where SN T # &, it holds that
SN T is arcwise connected. Technically speaking, a set X = IR? is arcwise con-
nected if for any 2 points x, y € X there is a continuous injection f :[0,1] — X
such that f(0) = x and f(1) = y. The function f'and its range are referred to as an
arc where x and y are its endpoints. To avoid pathological varieties of arcwise
connected sets (ie. space-filling curves etc.), we shall assume in our definition of
arcwise connectedness that arcs have the additional property that they can be
closely approximated by polygonal curve; a curve which is a finite union of line
segments. That is, for an arc, we assume that one can find an arbitrarily good
approximation to it via polygonal curves.

Throughout, we shall implicitly use the Jordan curve Theorem (see [8]).
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Following [5] we call a family of graphs 5 y-bound with binding function f if for
each H € ., it holds that

x(H) < f(o(H)).

It is known (see [2]) that if G is an interval graph, that is, if G = G(&) where F is
a finite collection of closed intervals of R, then y(G) = w(G) (ie. G is perfect).
Other families which are y-bound include circular-arc graphs, where Z is the col-
lection of closed, circular arcs of a circle. In this case, it is not difficult to show that
2(G) < 2w(G) — 1. In [6], Gyarfas showed that if & is a collection where each
member of . is a union of at most 7 closed intervals of IR, then G(%) satisfies
2 < 2t(w—1) for v > 2. Gyarfas (see [7]) also showed that for the intersection
graph of chords of a circle, it holds that y < 2?“?w?. Recently, Kostochka and
Kratochvil [9] showed that this bound can be improved to 50(2¢). They also
showed that, among other things, for the class of intersection graphs representing
the intersection of convex polygons inscribed in a circle, has a binding function f
where f(w)=2%. In [10], Kostochka and Nesetfil obtained estimates for the
chromatic numbers of intersection graphs of intervals, rays, and strings in the
plane. Their estimates are valid for such graphs having girth at least 5, and they
mention that even bounds for the chromatic number of the intersection graph of
rays in the plane is unknown when such graphs have girth 4. The main result in
this paper shows that such bounds do exist. In fact, it can be shown (see Corollary
1.2) that a much more general result holds for collections of unbounded, arcwise
connected sets. In [1], Asplund and Grunbaum showed that for the intersection
graph of rectangles in the plane (so-called box intersection graphs) it holds that
% < 4w?* — 3w. Burling [4] subsequently showed via a non-trivial example that y
cannot be bounded by any function of w for the intersection graph of 3-
dimensional boxes; that is, this is not a y-bound family.

For some intersection graphs, it is difficult to determine whether they are y-
bound or not. Erdds (see [5]) posed as a problem to determine whether the family
of intersection graphs of line segments in the plane is y-bound. It was shown
recently in [11], that the family of infinite-L-graphs is y-bound. We shall use some
of the ideas in that paper to prove more general results for the intersection graph
of sets in the plane. More precisely, we focus on the intersection graphs formed by
the intersection of bounded, arcwise connected sets in R?.

For convenience, we shall drop the induced graph notation G(%) and instead
refer directly to %. Thus we will speak of the chromatic number of %, y(¥) as
being y(G(¥)), and we shall speak of paths and cycles of sets of ¥, whose coun-
terparts in G(%) are paths and cycles. We may also use y-bounded in referring to
collections of sets (a family & of collections of sets of .% being y-bounded iff the
family of graphs {G(¥) : & € Z#} is). We say that a collection & € ¥ is triangle-
free if G(¥) is triangle-free. We define 93 = {& € 9 : & triangle-free}.

For a subset S = R?, we let In#(S) denote the set of interior points of S. Let
x € S and let C, be a maximal arcwise connected set in S containing x. The set C,
is unique for each x and if for some x and y we have C, # C,, then C,NC, = &.
The sets Cy, x € S are called the components of S. We say that S is bounded if it is
contained in some disk of finite radius.
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In light of the above-mentioned results and problems, we pose the following
conjecture:

Conjecture. The family ¥ is y-bound.

For a collection of sets & from IR? and %" = &, we let % (") denote the sets
of % contained in the bounded components of IR?> — U scgrS- When & is im-
plicit, we shall just write #(%"). We say that a set of S € . is surrounded by &’ if
Sez(s).

In extending the results on infinite-L-graphs [11], we shall prove the following
which is the main result of this paper.

Theorem 1.1. Let & € 95. Suppose there exists a closed Jordan curve C < R?* such
that C intersects all sets of & and for all S € & the following hold.

(i) SN(CUint(C)) is arcwise connected or SNint(C) = &.
(i) SN(CUext(QC)) is arcwise connected or SNext(C) = &.

Then y(&) is bounded by a constant independent of &.

In [10] it was posed as a problem to determine whether the triangle-free inter-
section of rays in the plane have bounded chromatic number. The above theorem
gives an affirmative answer to this problem. Moreover, one can prove the follow-
ing result for intersections of unbounded arcwise connected sets.

Corollary 1.2. Let & be a finite, triangle-free collection of unbounded, arcwise con-
nected sets in the plane where for any two intersecting sets S and T of & it holds that
SNT is arcwise connected. For such a collection, (&) is bounded by a constant
which is independent of .

The principle idea in the proof of Theorem 1.1 is to surround a group of sets
' = & for which ¥’ has large chromatic number when & does. Let « > 1. For
sake of convenience, we define a relation =, on 2 collections of sets 7 = .&
&, T € %3, in the following way:

1
T =S & ;((.7)>;)((5”).

As a matter of notation, we shall write ¥ =, %> =,, - =,, ¥, to mean
A =u S, P =y, Sy, S a1 S, S Note that if L=, 7 and T =3 7,
then & =5 .

For each vertex v in an intersection graph G = G(%) we let S(v) denote the
corresponding set in %, and for V < V(G) we let S(V) = {S(v) : ve V}. If we are
given an intersection graph G(%), for each S € % we let v(S) denote the vertex
corresponding to S. For any subset &' = % we let v(%') = {v(S) : S € &'}. Here
we shall always assume that there is some implicit one-to-one correspondence
between vertices of G(%) and the sets of .%.

For a graph H and V < V(G) we say that V induces the subgraph H, if V =
V(H) and for all u,v € V, uv € E(H) if and only if uv € E(G). For G = G(%) and
' = &, the collection &’ is said to induce a graph being its intersection graph
G(S").
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For a graph G and u,v € V(G) we shall write u ~ v to mean that u is adjacent
to v. For two sets S and T we shall write S ~ T to mean that S intersects 7 and
S~ T to mean that S does not intersect 7.

2. Colouring Lemmas
We shall make use of the following lemma:

Lemma 2.1. Let G be a graph whose vertices are partitioned into vertex disjoint
subgraphs Gy, G, . .., Gy where E(G) = UiE(Gi)' Suppose also that Vi, V>,...,V;
are subsets of vertices which partition V(G) such that for i=1,2,... k and
J=12,..|V;iNV(G;)| < 1. Let t = max;|V;| and let H be a graph on k vertices
91,92, - - -9k where g; ~ g; if and only if for some 1 <s<I[, Vi~ V(G;) and
Vs ~ V(Gj). Let G* be the graph with vertices vy, vy, ...,v; where v; ~ v; in G* if
there is an edge from V; to V; in G. Then

16 = (M) max Gy

Proof. We suppose that H has a proper colouring ¢y with y(H) colours 1,2,...,
x(H). We can partition G into y(H) subgraphs %1,%,, ..., %, where each sub-
graph %; is the union of all subraphs G; for which ¢y (g;) = i. Each %, has a proper
colouring ¢; with colours 0,1,2,...,max; y(G;) — 1. Assign to each v; € V(G*) a
x(H)-tuple cg-(v;) = (x{,x},...,x) ) where

e ¢i(u) if Vinv(9)) = {u}
' 0 if ViNV(9)=2.
The function cg- is easily seen to be a proper colouring of G* with at most

H
(X([ )) max; 7(G;)" colours. O
We mention here a well-known result (see [6]), which will be used extensively.

Lemma 2.2. Let G be a graph and let ve V(G). Suppose Gy, G1,Ga,... are the
subgraphs induced by vertices at distance 0,1,2, ... respectively from v. Then for

some d, y(Gq) = )@ O

3. Proof of the Main Theorem

We define a dendrite to be an arcwise connected set which is a finite union of arcs,
no sub-collection of which contains a closed Jordan curve.

Let % be a collection of arcwise connected sets where for any pair S, S’ € &
having nonempty intersection, the set SN .S’ has finitely many arcwise connected
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components. We denote the set of such components by K(SNS’). We shall
associate to each set S e.% a dendrite 75 = S in the following way: For each
set Se, we link all the components in (J, ¢K(SNS’) together with a
finite number of disjoint dendrites Ws < S where for each component K €
g g K(SNS’) and each dendrite T of Wy we may assume 7 N K is either empty
or a single point. So if one were to contract each component K into a single point,
then Ws would become a dendrite containing all these points. Now in each com-
ponent K € | Jo, ¢ K(SNS’) we may find a dendrite Tk containing (WsU W)
NK. For each Se%, we let Ts= WsU Umsr%@ Tx. We see that for all

KeK(SNs’)
S,8"e & it holds that S ~ S’ iff Ts ~ T§. By construction, if SN.S’ is arc-
wise connected, then so is TsN Ts.. We summarize the above in the following
proposition:

Proposition 3.1. For each S € & we may associate a dendrite Ts so that S ~ S' iff
Ts ~ Tsi. Moreover, if SNS’ is arcwise connected, then TsN Ts: is also arcwise
connected. O

For any dendrite D and points x, y € D there is a unique arc in D having end-
points x and y. We shall let D(xy) denote this arc.

Let C and & be as stated in Theorem 1.1. Let %} be the collection of inter-
sections SN (CUint(C)) where S e & and SNint(C) # &. Similarly, let % be
the collection of all intersections SN (CUext(C)) where S €. and SNext(C)
# &. It suffices to prove that %] and % have chromatic number bounded by a
constant independent of .%.

To see this, we first find proper colourings for %, and %, using colours
1,2,...,k where k does not depend on .. We then associate a pair (¢;,¢;) of
integers to each set S € .9 in the following way: if SN (CUint(C)) € 4, then let
¢) be the colour it recieves in .%; otherwise let ¢; = 0. If SN (CUext(C)) € 9,
then let ¢, be the colour it recieves in %,; otherwise let ¢; = 0. It is easy to see that
this gives a proper colouring of .% with fewer than (k + l)2 colours.

For convenience we shall only prove that %, has bounded chromatic number.
The sets of > are arcwise connected (by assumption). However, for 2 sets
S, S’ € & which intersect, the intersection need not be arcise connected, but is a
finite union of components. In the case where SN.S'NC = &, we observe that
SN S’ is arcwise connected. For convenience, we shall let . be the collection %5.
According to Proposition 3.1, we may replace each set S €. by a dendrite T,
where the collection of dendrites T's, S € & preserves the same intersection prop-
erties as .. Moreover, we may assume each T intersects C at a finite number of
points, and for any K € K(SNS’), C intersects Tk in at most one point (by pre-
turbing C if necessary). For convenience, we shall assume S = T for all S e <.
Since each component K of a nonempty intersection SN .S’ is a dendrite, we may
contract K to a single point without changing the intersections of ¥, and each set
S remains a dendrite after all contractions. Note that contracting components
which intersect C is allowed since they intersect C in exactly one point. Thus
if S~8 and SNS'NC = &, then we may assume SNS’ is a single point in
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ext(C). If on the other hand S ~ S’ and SNS'NC # &, then we may assume
that SN .S’ is a finite collection of points, all of which lie on C.

The sets of & shall be enumerated as Sy, S1, .52, ..., S, in order of appearance
as we move counterclockwise around C, ie. in their “chronological order”. For
i=0,1,2,... we let x; be the first point of S; we encounter while moving along C.
If two sets appear coincidentally along C, we shall enumerate one before the other
in an arbitrary way.

For a subset I < [0,7] and any subset &' = &, welet ¥'(I) = {S;e & :iel}
Given that % has high chromatic number, Lemma 2.2 implies that for some d, the
set of dendrites .%; at distance d from Sy will also have high chromatic number.
The basic idea we pursue here is to show that given %, has high chromatic number
(for example y > 2!'%), we can find dendrites S,,, S, S, Sh, - - - , Si, which intersect
in one of 2 ways similar to those illustrated by the configurations in Figs. 1 and 2.
In either case, the dendrite S;, is “surrounded”; that is, any dendrite S € . which
chronologically lies to the left or right of all the dendrites in the configuration can
not intersect S;, without first creating a triangle or crossing a dendrite twice.
However, since S;, € ¥, there is a path of length d from S; to S;, and the
(d — 1)'th dendrite in the path will play the role of S, as it must pierce through the
configuration and intersect S;,, either creating a triangle or crossing a dendrite
twice.

Suppose for some i < j we have S; ~ S;. Let y € S§;NS; and let 4; = S;(x;y)
and 4; = S;(x;y).
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Let
(i
(i

We can define (), and (), similarly.
For 6;,0; € {0,1} let

1= { (i j)3Sk~Ai}

=
Jo =1k € (i,)) : Sk~Ai}

(1, s, = ()5, N (1)

Note that (i, j),; = & since & is triangle-free.
For 5,’,51' € {0, 1}, (51',(51') #* (0,0) let

(i, /oy, =k € (i, j)og : " € (i, ))s, 51 S ~ Sir}
We let

. 200 .. NI . A 10
(i /oo = (i 7)oo — (i F)oo — (s Foo-

Lemma 3.2. The collection of sets {Si : k € (i, j)og U (i, /)00 } has chromatic number
bounded by a constant ¢ which is independent of & .

Proof. 1t suffices to show that both #((i, ])(1)8)) and Z((i, j)g(l))) have chromatic
number bounded by constants which are independent of .. We shall show this is
true for the first collection, a similar proof applying to the second as well.

For simplicity, let % = Z((i, /)o0). We let L((i,7)10) = {Sr>Srs--- S0}
wherei <ry <r---<ry,<j Fork=1,2,...,0let

{yrk} =S8, N4;, Ay =Sy ('x"k yrk)'

It is easily seen that the subset of dendrites S € Sj; which intersect at most one
arc A,,, k € {1,2,...,a} has chromatic number at most 2. This being the case, we
assume for convenience that each S € Sj;, S intersects at least 2 different arcs 4,,.

For each S € ¥ let

m(S)= min / and n(S)= max /.
S~4, S~Ay,

The arcs A4,,,A4;,,...,A,, are disjoint and divide the region R bounded by
C, A;, and A; into regions Ri, R, ..., R,41 where R; is the region between and
including 4; and 4,,, R, is the region between and including 4, and 4;, and for
2 <k < a, Ry is the region between and including4,, , and 4,,. For each S € .9,
let A5 be the arc in S joining SN Ar,,, to SN4,, The arcs Ag, S e S are dis-
joint for if S ~ T for some S,T € &, then elther n(S)=m(T)—1 or n(T) =
m(S) — 1. The arcs As, S e ¥ divide each region Ry, k =1,2,...,a into sub-
regions Rii, Ria, . .., Riy,. For S e %, we let Vg = {SNR,s), SﬂR s)+1} and
we call the members of Vg the ends of S. Each end is seen to belong to a sub-
region Ry. Fork=1,2,...;0andl =1,2,... o, let Gy; be the intersection graph
of the ends of dendrites of .} contained in Ry;. Let H be a graph having vertices
g, where bk =1,2,... 0,1 =1,2,... 04, and gy ~ gy iff for some S € Sj;, S has
2 ends, one in Ry; and another in Ry/;.. The graph H is seen to be planar, for if
Gl ~ Gkl ki < kll and gi,;, ~ gty ky < ké, then there exist S, T € S for which
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S ~ Riyiys Rirs and T ~ Ry, Rygyy. Now S ~ T iff either (ki,l{) = (k2,b) or
(k},15) = (ki,1;). We conclude that H has a planar representation, and hence
x(H) < 5 by the 5-colour Theorem [3, p. 156].

Let G* be the intersection graph of %;. We note that 2 dendrites S, T € %
intersect iff they have ends which intersect in some Ryy; that is, there are ends in Vg
and Vr whose corresponding vertices are adjacent in the intersection graph Gy;.
Applying Lemma 2.1, we obtain

x(G7) < (X(?) max 2(G)*.

Clearly x(Gy) <2, for all k and / as each dendrite of .%j; having an end in
Ry must intersect exactly one of A4, or A4, . We obtain from the above that
2(G*) < 40. O

Remark. The proof above indicates that the constant ¢ in the statement of Lemma
3.2 is at most 100.

For A€ Z", a finite sequence {r;} is called a A-sequence if ro = —1, r, =n
and for i=1,2,...,q, x(¥(ri-1,ri]) <A subject to r;, i=1,...,q— 1 being as
large as possible. We note that for i =1,2,...,¢ — 1, y(¥(ri=1,ri]) = A

Lemma 3.3. Let & € Z" and suppose () > 16&. Then there exists a subcollection
S < S where

(i) x(7")=8.

(i) for all S;,S; € ' where S; ~ S; it holds that y(¥ (i, j)) = ¢.

(iii) there exists S, S;, € ' such that S ~ S;, and y(¥[1,i)) = & and y(¥ (ir,n])
> ¢

Proof. Let {r;}1, be a ¢&-sequence. Colour each of &(rg,ri], % (r1,r2],...,
L (rg-1,14) with & colours. Since () > 16¢ at least one of the & colour classes
forms a collection 7~ with x(7°) > 16. The collection 7 can be partitioned into
two subcollections 77 and 7, where .7 is the subcollection .7 intersected with
P (ro, 1)UL (ra,r3]U - -- and 73 is the subcollection 7 intersected with & (ry, r2]

x(7) x(7)
2

US(rs,r4]U ---. We have that either y(7;) > >8or y(77) = =5 > 8.

Assume, without loss of generality that the former holds. Suppose for some i < j
that S;,S; € 71, and S; ~ S;. Then for some 0 < s < ¢t we have S; € S (ra, ragi1]
and S; € & (ra, 12041]. Thus F(ragp1,r242) € (i, j) and hence y(¥(i,j)) =
2(F (ra5:1,12512]) = & We now see that &' = 77 fullfills (i) and (ii). To see that it
satisfies (iii), we note that since x(77) > 8, we can pick S;, € ¥ (rax, Fax+1), k > 0,
and S;, € S (ra, ras1), 2k < 21 < g — 3, such that S;, ~ S;,. This being the case, we
have £(#(0,1)) > 7((0.1]) = & and 2(# (i, n]) > 1(F (ry2.ry1]) = €. 0

Proof of Theorem 1.1. We shall assume that y(.%) is large (for example y > 2'%).
Let %%, .91, ... be the subcollections of dendrites of .% at distance 0, 1,2, ... from
Sp in . We aim to find a subcollection of dendrites in one of the distance classes
which essentially corresponds to one of the configurations in either Fig. 1 or 2. To
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do this we shall use a repeated application of Lemma 1.2. By Lemma 1.2, there
exists @ > 0 such that y(%,) > @ We have that %, =, . Let S,, be the
dendrite of smallest index which belongs to %,. Let S, %u1, a2, - - - be the sub-
collections of dendrites of %, at distance 0, 1,2, ... resp. from S, . As in the above,
there is a b > 0 such that ¥, =, ¥, =, %. Now let S, be the dendrite of smallest
index which belongs to %, and let S50, Fup1, Lup2, - - - be the subcollections of
dendrites of .9, at distance 0,1,2, ... resp. from S,,. Again, there is a ¢ > 0 such
that Sope =2 S =2 Su =2 .

Pick S;,, Si, € Supc where S;, ~ Si, and S (i1, i2) =24 Fupe- Such a pair exists
by Lemma 3.3. Since the dendrites of % intersecting S;, and S;, have chromatic
number at most 2, we have that y (S ((i1,12)4)) = x(Fuave(i1,2)) — 2. Applying
Lemma 3.3 once again, we see that we may choose S;;,S;, € Supc((i1,2)q9) such
that iy < i3 < iy < I», and

(1) Sis ~ Si4
(11) =%1bc(il7i3) =75 eg)abc; =%1bc(i37 i4) =75 *%bca and <g)abc(i47 i2) =75 f%/bc

Since y(&) is large, %, is also large and consequently, Lemma 3.2 implies
that we may pick

Si, € (i1, 12)00) N L (i3, 13)gp)-

In addition, if S, lies between 2 points of S;, N C where x and y are the points
nearest S;; coming respectively, before and after S;,, then we may choose S;; so
that it intersects no other dendrite (besides S;,) containing x and y.

Since S;; € S, there is a shortest path from S, to S;, in ¥, of length ¢, say
SuoSuy -+ Sy, Since y(.¥) is large (and hence y (%) is large) we may assume that
¢ > 2. Since there is no such path which is shorter, it follows that S, ~.S;, for
i=0,1,...,c—2. Moreover, S, does not intersect any dendrite of ¥, for i =
0,1,...,¢—2, but S,_, ~S;. Since n, < i} < iy, it follows that S, _, intersects
either S; or S;,. Since n, < ij < i, we conclude from the choice of S;, S, , ¢
S (i1,1). Let u.—; =/, and assume that (without loss of generality) / < i;. Since
Sabe(i1,13) =25 Fubes X(Fane(i1,13)) 1s large. Lemma 3.3 asserts that we may pick
S,‘(), S,—7 € i%lb(;(l'l, ig) where i1 <ig <i7 <i3and
(i) S;, ~ S5,

(iv) Sape(ir,is) =25 Saveit, 3), Saveis, i7) a5 Sape(in, 13)

Sabe(i7,13) S5 Save(i, 3)
(V) Si(,a<%7wSl'])Siz7Si37Si4)Si57Si(,aSl'

Since %bc(ié, i7) =55 %b((l‘],l},), we may pick Sj, € (%,bc(lb, i7) such that Si, €
S ((iy, iz)gg n(l, is)gg) N Save((i6,17) o). In addition, if Sj, lies between 2 points of
S;; N C where x and y are the points nearest S;, coming respectively, before and
after Sj,, then we may choose S, so that it intersects no other dendrite (besides S;,)
containing x and y.

We have that S, € %, and thus there is a shortest path from .%;,, to S; in %
of length b. Reasoning in a similar way as before, we conclude that there exists
Sm € 4, m ¢ [1, 2] such that S, ~ Sj,.
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Suppose m > ir. Since Fupe(i7,03) =o5 Supelit, i3), Fape(i7,i3) has large
chromatic number, and we may pick S;, € Z((/, m)gg) N Fupe(i7, i3) such that S; ~
S, S1, S, Si; (see Figure 1). Since S;, € ¥, there is a shortest path from S to
S;, in % of length a. Reasoning in a similar way as was done for S;; and S, there
isan S, € ¥,_; where p ¢ [[,m]. and S, ~ S;. Since S, ~ Sj,, there is an arc 4
S, from the first point of S, occuring along C to a point of S, NS;. To avoid
creating a triangle, 4 must either intersect S;, or S;, before intersecting Sj,.

We suppose 4 ~ S;;. Then A either intersects S;, before and after intersecting
Si, or it intersects S;, before before and after intersecting S;,. Clearly 4 can not
intersect S;, before and after having intersected S;, for then such intersection
points would belong to C, and consequently, S;, would have been enumerated
before S;, along C. We suppose therefore that A intersects S;; before and after
intersecting S;,. Such intersection points must belong to C (since all points of
S, N S;; must lie on C), and we let x and y be the nearest intersection points to .S,
coming respectively, before and after S;, along C. Then x and y are the nearest
points of S;; N C occuring respectively before and after S;, along C. By the choice
of S;;, no dendrite containing x and y intersects S;,. This yields a contradiction
since x, y € S, and S, ~ Sj;.

From the above we conclude that 4 ~S;, and we deduce in a similar fashion
that 4 ~ Sis .

Suppose now that m </ <i, (see Fig. 2). We may now choose S;, €
S ((m, iz)gg) N Fupe (i1, I6) such that Sj, ~S;,, S1, S, Si,. Reasoning in a similar way
as before, there is an S, € &, where p ¢ [m, 1], and S, ~ S;,. There is an arc
A < S, from the first point of S, along C to a point of S, N S;,. To avoid creating a
triangle, 4 must intersect S;, before intersecting S;,. One can show in a manner
similar to the previous case that this can not happen. This concludes the proof of
Theorem 1.1. O

Lastly, we include a proof of Corollary 1.2.

Proof of Corollary 1.2. By Proposition 3.1 we may replace each set S€.% by a
dendrite T's where for any pair S,S’ € & we have S ~ S’ iff Ty ~ Ts:. Further-
more, if S ~ S’ then Ts N T is arcwise connected (and bounded). Since there are
only finitely many such dendrites T's, we may choose a circle C in the plane so that
each dendrite T’ lies inside C. We may extend each dendrite T's to a dendrite 7’5 in
the following way: for a pair S, S’ € & where S ~ S’ and SNS'NC # & let Ags
be an arc in SN .S’ from TsN Ts/ to C. Extend both Ts and Ts: by adding Agss to
them. Repeat this operation for every such pair S and S’.

Suppose that for some T, it holds for all sets S" € #\{S} where S ~ S’ that
SNS'NC # &. Since S is unbounded, it intersects C and there is an arc Ag = S
from Cto Ts which we may assume intersects at most one other set S’, and if such
happens, then 45N S’ is an arc in SN S’ which terminates at Ts N Ts/ (this we can
assume since S S’ is arcwise connected). Extend T's to a larger dendrite 7§ which
intersects C by adding Ag. If Ag intersects some other set S’, then extend Ts to a
larger dendrite 7, by adding the arc As N S’. Now TN T4, is still a dendrite, and
hence is arcwise connected. Repeat this proceedure for every such dendrite 7.
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When we have finished, we will have obtained a collection of dendrites T¢, S € &
which preserves the same intersections as . where nonempty intersections are still
arcwise connected and each T is such that it intersects C but is contained in
CUint(C). It follows by Theorem 1.1 that the dendrites 7', S € & have chromatic
number bounded by a constant which is independent of .%. The proof of the cor-
ollary now follows. O
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