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We introduce a method for extracting skele-
tal curves from an unorganized collection
of scattered data points lying on a surface.
These curves may have a treelike structure
to capture branching shapes such as blood
vessels. The skeletal curves can be used for
various applications ranging from surface re-
construction to object recognition.
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The description of objects with cylindrical shapes
has been extensively used in the computer vision
community [1, 32, 33, 39]. In a first approximation,
it is often convenient to model a shape as a gen-
eralized cylinder. This is particularly relevant in
the context of reconstruction of anatomical shapes
from CT data or a scanner [28, 31, 38]. Numer-
ous works regarding object description use treelike
structures [26, 27, 35] or cylindrical representations
[10]). What makes the use of cylindrical descrip-
tions and generalized cylinders so popular is their
relative simplicity. A generalized cylinder is pa-
rameterized by a spin curve together with a set of
cross sections [1]. Depending on the application,
the recovery of such parameters usually requires
less work than a more general description of a
shape.
Note that a spin curve can be used as a skeleton of
an implicit surface model [7, 11, 13, 30]: the surface
of the object is defined as an isosurface of a field
function generated by the skeleton. In [12, 17], the
authors propose an implicit reconstruction of shapes
from a set of 3D scattered points using the Voronoï
graph of the data points to build a geometric skele-
ton. Our method is an alternate skeleton construc-
tion. It avoids the computation of the 3D Voronoï
graph.
Other applications start with volume images so that
the traditional medial axis transform can be ap-
plied [28].
As opposed to voxelized data, we start with an un-
organized cloud of points sampled on a surface.
A 3D curve must be specified inside the cloud of
points in order to use a cylindrical model and to
represent the surface. When the set of 3D points
is given as a set of 2D planar scans, Burdin et al.
[10] use the curve defined by the centroids of each
2D section. However, this implies a consistent ori-
entation of the cross-sectional planes relative to the
position of the object. Figure 1 shows two orienta-
tions of the cross-sectional planes. Clearly, the con-
figuration of Fig. 1a is not adapted. For some ob-
jects, because of their bent shape, it is even impos-
sible to find a suitable orientation for the sectional
planes.
Although essential, the issue of finding a suitable
axis in order to design a generalized cylinder has
rarely been discussed. In practical cases, this task can
be tedious, as mentioned by Nazarian and colleagues
[26]. These authors propose two methods to auto-
mate the determination of the axis.
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• The first one consists in a recursive subdivision
of the set of data points. At each step the subsets
of data points are split by a plane perpendicular
to their main axes of inertia and passing through
their barycenters. The resulting axis is a polyline
composed of main axes of parts of the initial set
of data points (Fig. 2a). The authors recognize
that their method does not always work, and they
show a counterexample where the main axis of in-
ertia (Fig. 2b) cannot be used to find the central
axis.
• The second method works with a set of data

points given by planar 2D scans. It uses the trian-
gulation computed by Boissonnat’s method [9] as
an approximation of the tubular shape.

In this paper, we present a method that automati-
cally computes a set of 3D curves in a cluster of
points. When the points lie on a surface, these curves
may be used as axes for a cylindrical approxima-
tion of the surface. These curves may form a tree
structure if the surface resembles a “tree of gener-
alized cylinders”. The method works independently
of the bending of the surface. As a consequence,
it returns a correct result for the shape shown in
Fig. 2b. As for other reconstruction algorithms [2, 5,
24], we set some conditions on the input cluster of
points.

1. The data points should be sampled on a certain
(unknown) surface.

2. The sampling should be done in such a way that
the distance between neighbor points is small
with respect to the width of the tubular parts of the
surface.

The computation of the axes is based on a decompo-
sition of the surface to be reconstructed into level sets
of a scalar function. In [21–23] we apply a similar
decomposition to a polyhedral surface. In this work
a simplified discrete version of the Morse theory was
developed (see [19, 20, 36, 37] for use of Morse the-
ory in graphics).
In the present case, we are dealing with a cluster of
points, and no topological information, such as an
adjacency relationship, is available. We cannot apply
the method of [21–23], which uses this information
to build the decomposition of the surface.
Here, our goal is to compute the axes rapidly rather
than to reconstruct the surface. We follow the main
steps of [21, 22] and adapt them to our particular
case. The scalar function used in the decomposition

Fig. 1. Two sets of 2D sections sampled on a surface

Fig. 2. a Recursive subdivision using main axes of iner-
tia (Nazarian & al); the first main axis is shown indashed
line. The main axes of inertia and the perpendicular split-
ting planes for the second level of recursion are shown
in plain lines; b The first axis of inertia and the perpen-
dicular splitting plane are not suitable for the subdivision
algorithm

Fig. 3. The source point and the corresponding decompo-
sition

is an approximation of a geodesic distance func-
tion to a given point. This function is determined
by a single point from the set of data points called
the source point. The source point may be interac-
tively designated by the user. It may also be au-
tomatically selected by a simple heuristic as ex-
plained at the end of Sect. 3. Intuitively, the source
point corresponds to a polar extremity of the shape,
as shown in Fig. 3. Once the decomposition into
the level sets of a scalar function is done, a single
axis is obtained for each cylindrical part associated
with it.
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Fig. 4. The main steps of our method

2 Overview

The 3D curves are computed in four steps, as illus-
trated in Fig. 4. Given a set of data points:

1. We build aneighborhood graphof minimum con-
nectivity numbern. This is a nonoriented graph
whose vertices are the input data points. The
edges have the form (v, v′), where the vertexv′ or
the vertexv is one of then nearest neighbors of
v or v′, respectively. The subgraphs of the neigh-
borhood graph induced by a point and its neigh-
bors may be nonplanar and, in general, it will not
be possible to fit a suitable polygonal surface to
this graph.

2. From this neighborhood graph and a source point,
we construct a distance map and an oriented sub-
graph called thegeodesic graph. The geodesic
graph is obtained by computing shortest paths
of the neighborhood graph between all vertices
and the source point. The distance map is sim-
ply the length of these shortest paths. The con-
struction of the neighborhood graph, the distance
map, and the geodesic graph are described in de-
tail in Sect. 3.

3. We computek level sets of the distance map using
the neighborhood graph, wherek is a user-defined
value. The level sets are composed of points at
a constant distance from the source. We connect
these points on a proximity criterion and identify
the connected components. We also compute the
centroids of each of these connected components.

4. The axes are finally obtained by connecting the
centroids of successive levels as previously com-
puted. When the levels contain several connected

components, the connection of the centroids are
based upon the paths of the geodesic graph.

Steps 3 and 4 are discussed in Sect. 4 and examples
are provided in Sect. 5.

3 The geodesic graph

We are given a set of data pointsX = {x1, . . . , xm}
sampled on an unknown surfaceS and an integer
n. The neighborhood graphN(X,n) is an undirected
graph defined as follows:

1. The vertices ofN(X,n) are the points ofX.
2. A pair (xi , xj ) is an edge ofN(X,n) if either xi is

one of then nearest points ofx j in X or xj is one
of then nearest points ofxi in X.

In order to compute then nearest points of each
vertex, we use a subdivision of the space into vox-
els. We subdivide the enclosing box of the data
points into a regular grid of voxels and associate
each data point with the voxel containing it. Then
nearest neighbors of a data pointx are searched for
in two steps. We first visit the voxels close to the
one containingx, progressively moving away un-
til n points (v1, . . . , vn) are found. Then, we set
d = max1≤i≤n(distance(vi , x)), the maximum dis-
tance betweenx and thesen points. As we have
already foundn points (v1 . . . , vn) located at a dis-
tance less or equal tod from x, we are sure that
the n nearest neighbors ofx belong to the sphere
S(x,d ) with centerx and radiusd. We search all
the data points belonging toS(x,d ), and we ex-
tract then nearest points on this set, using a quick
sort on the distance values. The numbern should
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be chosen so thatN(X,n) is a connected graph. This
choice depends on the regularity of the sampling
step of the data points on the surface. In the ex-
ample presented in Fig. 9 we usedn = 5. When
the data points are not uniformly spread over the
surface, larger values may be necessary. For in-
stance, in the case of 2D planar scans, where the
resolution is smaller inside the scan planes than
between the cross-sections, we found that a value
of n = 10 was necessary to obtain a connected
graph. This was the case for the blood vessels
shown in Fig. 11.
The selected source pointxs and the neighbor-
hood graph are used to compute the geodesic graph
G(X,n,xs). The geodesic graph is composed of geodes-
ic paths of the neighborhood graph emanating from
the data points and joining the source point. The
length of an edge of the neighborhood graph is taken
as the euclidean distance between its endpoints. We
use Dijkstra’s algorithm [15] to efficiently compute
these paths and their length. Precisely, Dijkstra’s al-
gorithm computes the geodesic distance from any
point to the source, as well as a pointer to the next
point in a geodesic path joining the source. Note that
several geodesic paths from a point to the source may
exist. We simply use the path returned by Dijkstra’s
algorithm. The distance map introduced in Sect. 2 is
defined for every data point to be its geodesic dis-
tance to the source. It is extended to the interior of
the edges of the geodesic graph with a linear in-
terpolation of the endpoint distance values of the
edges.
As we supposed that the edge of the neighborhood
graph should lie on the surface, the geodesic paths
previously computed are intended to approximate
geodesic paths on the surface. Note that the compu-
tation of geodesic paths for polyhedral surfaces have
been the subject of numerous publications [25, 29].
However, we cannot apply those methods, since our
data points do not have a polyhedral structure.
Note thatG(X,n,xs) is a connected subgraph ofN(X,n)
since all the geodesic paths share the source point.
G(X,n,xs) is actually a tree since Dijkstra’s algorithm
selects only one path from any vertex to the source.
An example of a geodesic graph is shown Fig. 6
for a set of data points registered on a femur (data
courtesy of J. Menon, IBM T. J. Watson Research
Center).
The source pointxs may be selected by the user or
automatically computed by the following two-step
heuristic:

Fig. 5. The leftmost vertex is regular, and the other are crit-
ical (the+ (respectively−) associated to a vertex indicates
that the geodesic distance between the vertex and the source is
greater (respectively lower) than the geodesic distance between
the source and x)

1. A pointx0 is chosen at random (e.g. the first point
in the data set).

2.xs is defined as the farthest point fromx0 on the
neighborhood graph.

When the object has a “tubular structure”, even with
branches, the farthest point fromx0 is a point lo-
cated at the extremity of a tubular part of the surface.
This point can be obtained as the last visited ver-
tex when Dijkstra’s algorithm runs a first time with
source pointx0.

4 Levels and branches

After computing the geodesic graph and the distance
map, we extractk level sets. Intuitively, each level set
corresponds to a set of “sections” of the decompo-
sition of the surface given by the set of data points
X= {x1, . . . , xm}. The numberk is given by the user
to specify the number of points used to approximate
the longest axis. In practice,k can be chosen as the
ratio of the distance of the farthest point to the av-
erage edge length. Thek levelsd1, . . . ,dk are uni-
formly distributed over the interval[αdmax, βdmax],
wheredmax is the extremum of the distance map and
α andβ are two percentage coefficients. We used
α = 3% andβ = 97% in Fig. 12. Thei th level setSi
is the set of points on the neighborhood graph whose
(extended to edge interiors) distance isdi .
Next, we need to partition each level setSi into sub-
sets corresponding to the different branches of the
surface.
Here, we cannot proceed as in [21, 22] where each
vertex of the polyhedron can be classified as regular
or critical according to the configuration of distances
of its neighbors (see Fig. 5). In the polyhedral case,
the decomposition is obtained by cutting through the
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Fig. 6. a 15 level sets computed on the geodesic graph
of a femur;b The corresponding axis

Fig. 7. Different number of levels used to compute the
axis of the femur : 30 (grey curve) and 90 (black curve)

level sets associated with the critical points. More-
over, the adjacency between faces of the polyhedron
can be used to extract the level sets of the geodesic
distance efficiently.
In our case this adjacency relationship is not avail-
able. As a result, points cannot be classified as reg-
ular or critical, which would in turn provide the
branching points and the partition of each level set
corresponding to the various branches. To obtain this
partition, we first construct the neighborhood graph
N(Si ,2), linking every point ofSi with its two closest
neighbors. Then, we remove fromN(Si ,2) the edges
longer than a certain lengthwi . We determinewi
using condition 2 on the data points: the distance be-
tween points is small with respect to the width of
the tubular parts. In practice, we use the median of
the distribution of the distance values of the second
nearest neighbor of each point insideSi to compute
wi . Finally, we partition this graph into its connected
components. We also compute the centroid of each
connected component by taking the barycenter of its
points.
The skeletal curves are constructed by connecting
the centroids of successive level sets. When the level
sets have several connected components, we use the
geodesic paths to connect the centroids. If a level

set Si is partitioned intol i connected components
(Si,1, . . . ,Si,li ) or if the previous level setSi−1 was
partitioned intol i−1 connected components, then for
each j ≤ l i , we select a point ofSi, j and follow its
geodesic path to the source point until an edge con-
taining a point ofSi−1 is encountered. This point
belongs to the connected component ofSi−1, which
is either associated with the branch containingSi, j or
located at the birth of this branch.
Eventually, we may approximate the axes with
spline curves as shown for the femur in Figs. 6
and 7. We use a simple fitting procedure from [16,
34] to compute these splines from the connected
centroids.

5 Results

We applied our skeletonization method on the set of
examples presented in Figs. 8 – 12:

• Figure 8 shows two models of a dinosaur and
a horse. These two models and the man in Fig. 9
are public domain models that can be found on
the Web pages of Cyberware (http://www.cyber-
ware.com/models/index.html). The source point
of the dinosaur is located at the end of its tail.



20 A. Verroust, F. Lazarus : Extracting skeletal curves from 3D scattered data

8a 8b

9a 9b

Fig. 9. a18 level sets and the corresponding skeletal curves on a man described by a set of scattered data points or by a
polyhedron (the darkest lines); b The curves and their associated object representation

Fig. 8. aThe skeletal curves of the dinosaur are built from 20 level sets;b 15 level sets and the corresponding skeletal
curves on a horse
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Fig. 10. aTwo skeletal curves associated to two neighbor points;b Three skeletal curves associated to three different
source points
Fig. 11.Two ramifications of blood vessels

The horse was scanned from many orientations,
resulting in 210 linear scans consisting of a series
of scans of various regions (views) of the object.
The source point is located at the extremity of its
jaw.
Here, the branches are correctly located, and
a treelike axial structure is built.
• For the man in Fig. 9, we tried two versions

of our skeletonization method, as we had the
polyhedron associated to the surface: the ver-
sion described in [23], which works on poly-
hedra and the version described in this pa-
per with the same source point located on the
top of the man’s head and, as a set of data

points, the vertices of the polyhedral descrip-
tion. One can see that the two sets of contours
are very similar, so that the use of the neigh-
borhood graph instead of the polyhedral descrip-
tion of the surface is sufficient to compute the
level sets.
The main difference is in the branches and is
due to the irregular distribution of the vertices
on the man’s feet. The branches corresponding
to the arms and the legs are nearly the same,
and, as there is a lack of vertices on the top of
the feet, two different connected components are
built and a branching node is created at each
foot.
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a

b

Fig. 12. aA colon.b Its axis (two different views)

This example confirms the validity of our ap-
proach when the data points are regularly dis-
tributed on the surface of the object.
• The aorta presented in Fig. 10 is described by

a set of 2D scans. These data come from the Na-
tional Library of Medicine Visible Human Male
(http://www.mayo.edu/bir/Models/Visible_Hu-
man_Male/VRML/index.html). Our method is
hardly sensitive to the location of the source
points: in Fig. 10a, two neighbor points and in
Fig. 10b, three points located at different extrem-
ities of the tubular parts of the surface have been
used to compute the axial structures. The differ-
ence between their corresponding axial structures
is negligible.
• We obtained good results with our method for

the two blood vessels of Fig. 11 (data courtesy of
J. Feldmar). These data sets are especially chal-
lenging since they contain many vessels close to
each other.
• The axis of the colon presented in Fig. 12 can-

not be found with Nazarian’s subdivision method

[26]. It is described by a set of 2D scans and
comes from the National Library of Medicine
Visible Human Male.

Table 1 shows the CPU times required to compute
the axial structure for the models shown in Fig. 6 to
12. We ran nonoptimized code on an Indy. The com-
puting time depends mainly on the number of data
points and on the minimum connectivity number of
the neighborhood graph. In fact, the computation
of the neighborhood graph is one of the most ex-
pensive parts of our method. This is confirmed by
the CPU times measured on the two versions of our
algorithm for Fig. 9:

– When we have a polyhedral description of the
surface (cf. [23]), the computation of the axial
structure is done in10.45 s.

– When we have only a set of data points scat-
tered on the surface, we compute several neigh-
borhood graphs: the first one is for the whole
set of data points and the other are computed
at each level, to partition the level set into con-
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Table 1.Statistics for Fig. 6 to 12

Figure Number of Number of Minimum conectivity number CPU time in seconds
data points levels of the neighborhood graph on an Indy

6 16 781 15 5 27.83
7 16 781 30 5 33.20
7 16 781 90 5 44.83
8 21 500 15 5 52.21

8 (horse) 48 486 15 6 132.61
8 14 071 20 5 54.90
9 21 500 18 5 62.21

9 (polyhedron) 21 500 18 - 10.45
10a,b 7688 50 5 40.01
10a 7688 50 5 39.54

10b(middle) 7688 50 5 35.09
10b(right) 7688 50 5 35.91

11a 11 807 60 10 28.85
11b 13 582 50 8 45.49
12 55 573 150 5 235.56

nected components. In this case the computation
is done in62.21 s.

To improve this computation time, we need to speed
up the computation of thek nearest neighbors (with,
for instance, the method presented in [14]).

6 Conclusion

We have presented a new technique to associate an
axial structure with a set of scattered data points. The
interaction is reduced to the selection of a source
point and can be automated with a simple heuristic.
The main steps for the construction of the axes are:

1. The computation of the neighborhood and geo-
desic graphs, using Dijkstra’s algorithm

2. The computation of geodesic levels and the loca-
tion of branching nodes.

Our method is rapid and robust with respect to the
location of the source point. The “quality” of the re-
sulting skeletal curves mainly depends on the appro-
priate choice of the minimum connectivity number
of the neighborhood graph.
Our skeletonization algorithm relies on the location
of the source point. This means that the axial struc-
ture found by the algorithm is not unique for a given
object. The axial structure is actually defined for
a pair (object, source point).

The question that arises from this observation is how
can we extract interesting axes for objects with tubu-
lar shapes? We should note that the precise defi-
nition of a tubular shape is not clear (except for
the trivial case of a curve extrusion along an axis).
As a consequence, there is no precise definition for
the axis of a tubular shape. The medial axis, for
instance, does not always produce what we would
expect from a tubular object. As opposed, to our
skeletons, the medial axis is in general composed
of pieces of curves, as well as pieces of surfaces
with many ramifications [8, 18]. It can be simplified
to obtain a wire-frame skeleton, fixing some thresh-
olds [3, 4] or by an automatic process [6]. In both
cases, the whole process may also be expensive as
the simplification process works on the medial axis
of the object represented by the set of sampled data
points.
There are many objects, however, for which the def-
inition of an axial structure is intuitively so obvi-
ous that we could draw this axis without any hes-
itation. Blood vessels are good examples of such
objects. Our initial question is now turned into the
more pragmatic question: how does this skeletoniza-
tion algorithm provide an efficient way for com-
puting axes in the structure of blood vessels? The
only point we have to worry about is selecting the
source point, since the computation is entirely au-
tomatic, once this is done. On one hand, we see
in Fig. 10a that the algorithm is fairly insensitive



24 A. Verroust, F. Lazarus : Extracting skeletal curves from 3D scattered data

to the precise location of the source point. This is
due to the continuity of the distance function with
respect to the source location. On the other hand,
we see in Sect. 3 that the source point can be se-
lected with a simple heuristic. Figure 10b shows
that this heuristic works well in practice: extremities
on different branches give rise to a nearly identical
axis.
The work in progress include attempts to model
more precisely the location of the branching nodes.
A more robust construction of the neighborhood
graph using an adaptive number of neighbors based
on the local density of data points is also under
consideration.
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