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Abstract. The use of statistical techniques to build ap-
proximations of expensive computer analysis codes pervades
much of today’s engineering design. These statistical approxi-
mations, or metamodels, are used to replace the actual
expensive computer analyses, facilitating multidisciplinary,
multiobjective optimization and concept exploration. In this
paper, we review several of these techniques, including
design of experiments, response surface methodology,
Taguchi methods, neural networks, inductive learning and
kriging. We survey their existing application in engineering
design, and then address the dangers of applying traditional
statistical techniques to approximatedeterministiccomputer
analysis codes. We conclude with recommendations for the
appropriate use of statistical approximation techniques in
given situations, and how common pitfalls can be avoided.
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1. Introduction

Much of today’s engineering analysis consists of
running complex computer codes: supplying a vector
of design variables (inputs)x and computing a
vector of responses (outputs)y. Despite steady
advances in computing power, the expense of run-
ning many analysis codes remains non-trivial; single
evaluations of aerodynamic or finite-element analy-
ses can take minutes to hours, if not longer. More-
over, this mode of query-and-response often leads
to a trial and error approach to design, whereby a
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designer may never uncover the functional relation-
ship betweenx and y, and therefore never identify
the ‘best’ settings for input values.

Statistical techniques are widely used in engineer-
ing design to address these concerns. The basic
approach is to constructapproximations of the
analysis codes that are more efficient to run, and
yield insight into the functional relationship between
x and y. If the true nature of a computer analysis
code is

y = f(x)

then a ‘model of the model’ ormetamodel[1] of
the analysis code is

ŷ = g(x) and so y= ŷ + e

where e represents both the error of approximation
and measurement (random) errors. The most com-
mon metamodeling approach is to apply the design
of experiments (DOE) to identify an efficient set of
computer runs (x1, x2, . . .,xn) and then use regression
analysis to create a polynomial approximation of
the computer analysis code. These approximations
then can replace the existing analysis code while
providing:

I a better understanding of the relationship between
x and y,

I easier integration of domain dependent computer
codes, and

I fast analysis tools for optimization and exploration
of the design space by using approximations in
lieu of the computationally expensive analysis
codes themselves.

We have found that many applications (including
our own) using these methods for computer-based
design are statistically questionable, because many
analysis codes aredeterministic in which the error
of approximation isnot due to random effects.
This calls into question the subsequent statistical
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analyses of model significance. Consequently, we
seek to highlight potential statistical pitfalls in
metamodeling, and provide general recommen-
dations for the proper use of metamodeling tech-
niques in computer-based engineering design. In
Section 2 we present a review of metamodeling
techniques including regression, neural networks,
inductive learning and kriging. We conclude Sec-
tion 2 with an introduction to the general statisti-
cal approaches of response surface methodology
and Taguchi’s robust design. In Section 3 we
describe the engineering design context for stat-
istical applications, review existing applications
and methods, and conclude with a closer look
at deterministic applications of metamodeling. In
Section 4 we present some recommendations for
avoiding pitfalls in using metamodeling, and in
Section 5 we conclude by discussing some more
advanced issues that contribute to making meta-
modeling an active and interesting research area.

2. Review of Metamodeling
Techniques

Metamodeling involves (a) choosing an experi-
mental design for generating data, (b) choosing a
model to represent the data, and then (c) fitting
the model to the observed data. There are several
options for each of these steps, as shown in Fig. 1,
and we have attempted to highlight a few of the
more frequently used ones. For example, building
a neural network involves fitting a network of
neurons by means of back-propagation to data
which is typically hand selected while Response
Surface Methodology (RSM) usually employs cen-
tral composite designs, second order polynomials
and least squares regression analysis.

Fig. 1. Techniques for metamodeling.

In the remainder of this section we provide a
brief overview of several of the options listed in
Fig. 1. In Section 2.1 the focus is on experimental
designs, particularly (fractional) factorial designs,
central composite designs and orthogonal arrays.
In Section 2.2 we discuss model choice and model
fitting, focusing on response surfaces, neural networks,
inductive learning and kriging. We conclude with an
overview of two of the more common metamodeling
techniques, namely, response surface methodology and
Taguchi’s robust design.

2.1. Experimental Design

Properly designed experiments are essential for
effective computer utilisation. In engineering,
traditionally a single parameter is varied (perturbed)
and the effects are observed. Alternatively, combi-
nations of factor settings are assigned either systemati-
cally (e.g. grid search) or randomly to provide an
alternative for comparison. Experimental design tech-
niques which were developed for physical experiments
are being applied to the design of computer experi-
ments to increase the efficiency of these analyses.
In this section an overview of different types of
experiment designs is provided, along with measures
of merit for selecting/comparing different experi-
mental designs.

2.1.1. A Survey of Experimental Designs
An experimental design represents a sequence of
experiments to be performed, expressed in terms
of factors (design variables) set at specifiedlevels
(predefined values). An experimental design is rep-
resented by a matrixX where the rows denote
experiment runs, and the columns denote particular
factor settings.

Factorial Designs: The most basic experimental
design is a full factorial design. The number of
design points dictated by a full factorial design is
the product of the number of levels for each factor.
The most common are 2k (for evaluating main effects
and interactions) and 3k designs (for evaluating main
and quadratic effects and interactions) fork factors
at 2 and 3 levels, respectively. A 23 full factorial
design is shown in Fig. 2(a).

The size of a full factorial experiment increases
exponentially with the number of factors; this
leads to an unmanageable number of experiments.
Fractional factorial designsare used when experi-
ments are costly, and many factors are required. A
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Fig. 2. Basic three-factor designs. (a) 23 full factorial; (b) 23−1

fractional factorial; (c) composite design.

fractional factorial design is a fraction of a full
factorial design; the most common are 2(k-p) designs,
in which the fraction is 1/2(p). A half fraction of
the 23 full factorial design is shown in Figure 2(b).
The reduction of the number of design points in a
fractional factorial design is not without a price.
The 23 full factorial design shown in Fig. 2(a) allows
estimation of all main effects (x1, x2, x3) all two
factor interactions (x1x2, x1x3 and x2x3), as well as
the three factor interaction (x1x2x3). For the 23–1

fractional factorial indicated by the solid dots in
Fig. 2(b), the main effects are aliased (or biased)
with the two factor interactions.Aliased effects can-
not be estimated independently unless they are
known (or assumed) not to exist.

Often 2k and 2(k-p) designs are used to identify or
screenfor important factors. When there are many
factors, the sparsity of effects principle[2] can
be invoked, whereby the system is assumed to be
dominated by main effects and low order interac-
tions. Thus, two level fractional factorial designs are
used to ‘screen’ factors to identify those with the
greatest effects. The sparsity of effects principle is
not always valid, however; Hunter, [3] notes that
every design provides aliased estimates: quadratic
and cubic effects, if present, bias the estimates of
the mean and main effects when a two level frac-
tional factorial design is used.

One specific family of fractional factorial designs
frequently used for screening are two level Plackett-
Burman (PB) designs [4]. These are used to study
k = n−1 factors in n= 4 m design points, where m
is an integer. PB designs in which n is a power of
two are called geometric designs and are identical
to 2(k-p) fractional factorials. If n is strictly a multiple
of four, the PB designs are referred to as non-
geometric designs and have very messy alias struc-
tures. Their use in practical problems is problematic
particularly if the design is saturated (i.e., the num-
ber of factors is exactly n-1). If interactions are
negligible, however, these designs allow unbiased
estimation of all main effects, and require only one
more design point than the number of factors; they
also give the smallest possible variance [5]. Myers
and Montgomery [6] present a more complete dis-
cussion of factorial designs and aliasing of effects.

Minimum variance and minimum size designs are
discussed in Section 2.1.2.

Central Composite and Box-Behnken Designs:To
estimate quadratic effects, 3k or 3(k-p) designs can
be used but often require an unmanageable number
of design points. The most common second order
designs, configured to reduce the number of design
points, are central composite and Box-Behnken
designs.

A Central Composite Design (CCD) is a two
level (2(k-p) or 2k) factorial design, augmented by n0

center points and two ‘star’ points positioned at±a
for each factor. This design, shown for three factors
in Fig. 2(c) consists of 2(k-p)+2k+no total design
points to estimate 2k+k(k-1)/2+1 coefficients. For
three factors, settinga = 1 locates the star points on
the centers of the faces of the cube, giving a face-
centred central composite (CCF) design; note that
for values ofa other than 1, each factor is evaluated
at five levels.

Often it is desirable to use the smallest number
of factor levels in an experimental design. One
common class of such designs is the Box-Behnken
designs [7]. These are formed by combining 2k

factorials with incomplete block designs. They do
not contain points at the vertices of the hypercube
defined by the upper and lower limits for each
factor. This is desirable if these extreme points are
expensive or impossible to test. More information
about CCD and Box-Behnken designs can be found
in Montgomery [2].

Orthogonal Arrays: The experiment designs used
by Taguchi, orthogonal arrays, are usually simply
fractional factorial designs in two or three levels
(2(k-p) and 3(k-p) designs). These arrays are con-
structed to reduce the number of design points
necessary; two-level L4, L12 and L16 arrays, for
example, allow 3, 11 and 15 factors/effects to be
evaluated with 4, 12 and 16 design points, respect-
ively. Often these designs are identical to Plackett-
Burman designs [8]. The definition of orthogonality
for these arrays and other experiment designs is
given in Section 2.1.2. An overview of Taguchi’s
approach to parameter design is given in Section 2.3.

‘Space Filling’ Designs:For sampling deterministic
computer experiments, many researchers advocate
the use of ‘space filling’ designs which treat all
regions of the design space equally [9]. Simpson
et al. [10] and Palmer [11] also recommend the use
of space filling designs in the early stages of design
when the form of the metamodel cannot be pre-
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specified. As discussed by Bookeret al. [12], in the
‘classical’ design and analysis of physical experi-
ments (i.e. using central composite and factorial
designs) random variation is accounted for by
spreading the sample points out in the design space,
and by taking multiple data points (replicates) (see
Fig. 3). Sachset al. [13,14] state that the ‘classical’
notions of experimental blocking, replication and
randomization are irrelevant when it comes to deter-
ministic computer experiments; thus, sample points
in DACE (Design and Analysis of Computer Experi-
ments – also referred to as kriging) should be chosen
to fill the design space. They suggest minimising
the Integrated Mean Squared Error (IMSE) over the
design region by using IMSE-optimal designs; the
‘space filling’ design illustrated in Fig. 3(b) is an
IMSE optimal design.

Koch [15] investigates the use of a modified
central composite design which combines half frac-
tions of a CCI and a CCF to more evenly distribute
the points throughout the design space. Koehler and
Owen [16] describe several Bayesian and frequentist
‘space filling’ designs, including maximum entropy
designs, mean squared-error designs, minimax and
maximin designs, Latin hypercubes, randomized
orthogonal arrays and scrambled nets. Minimax and
maximin designs were originally proposed by John-
son et al. [17], specifically for use with computer
experiments. Sherwy and Wynn [18] and Currinet
al. [19] use the maximum entropy principle to
develop designs for computer experiments. Tang
[20] describes orthogonal array-based Latin hyper-
cubes, which he asserts are more suitable for com-
puter experiments than general Latin hypercubes.
Park [21] discusses optimal Latin hypercube designs
for computer experiments which either minimize
IMSE or maximise entropy, spreading the points out
over the design region. Morris and Mitchell [22]
propose maximin distance designs found within the
class of Latin hypercube arrangements, since they
‘offer a compromise between the entropy/maximin
criterion, and good projective properties in each
dimension’. Owen [23] advocates the use of
orthogonal arrays as suitable designs for computer
experiments, numerical integration and visualisa-

Fig. 3. (a) ‘Classical’ and (b) ‘Space filling’ designs.

tion; a collection of orthogonal array generators is
available over the Internet [24]. A review of Baye-
sian experimental designs for linear and nonlinear
regression models is given in Chaloner and Verdi-
nelle [25].

2.1.2. Measures of Merit for Evaluating
Experimental Designs
Selecting the appropriate design is essential for
effective experimentation: the desire to gain as much
information as possible about the response-factor
relationships is balanced against the cost of experi-
mentation. Several measures of merit are available
and useful for evaluating and comparing experi-
mental designs.

Orthogonality, Rotatability, Minimum Variance, and
Minimum Bias: To facilitate efficient estimates of
parameters, four desirable characteristics of an
experimental design are orthogonality, rotatability,
minimum variance and minimum bias. A design is
orthogonal if, for every pair of factors xi and xj,
the sum of the cross-products of the N design points

ON
u=1

xiuxju

is zero. For a first order model, the estimates of all
coefficients will have minimum variance if the
design can be configured so that

ON
u=1

x2
iu = N

the variance of predictionsŷ will also have constant
variance at a fixed distance from the centre of the
design, and the design will also be rotatable.

In second order modeling, Hunter [3] suggests
that orthogonality is less important: “If the objective
of the experimenter is to forecast a response at
either present or future settings ofx, then an
unbiased minimum variance estimate of the forecast
ŷ is required. In the late 1950s, Box and his co-
workers demonstrated that “rotatability . . . and the
minimization of bias from higher order terms . . .
were the essential criteria for good forecasting”. A
design isrotatable if NOVar[ŷ(x)]/s2 has the same
value at any two locations that are the same distance
from the design centre. The requirements formini-
mum varianceandminimum biasdesigns for second
order models are beyond the scope of this work;
we refer the reader to Myers and Montgomery [6]
for more information.
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Unsaturated/Saturated and Supersaturated Designs:
In many cases, the primary concern in the design
of an experiment is its size. Most designs are
unsaturatedin that they contain at least two more
design points than the number of factors. Asatu-
rated design is one in which the number of design
points is equal to one more than the number of
factor effects to be estimated. Saturated fractional
factorial designs allow unbiased estimation of all
main effects with the smallest possible variance and
size [5]. The most common examples of saturated
designs are the Plackett-Burman two level design
and Taguchi’s orthogonal arrays. For estimating
second order effects,small composite designshave
been developed to reduce the number of required
design points. A small composite design is saturated
if the number of design points is 2k+k(k−1)/2+1
(the number of coefficients to be estimated for a
full quadratic model). Myers and Montgomery [6]
note that recent work has suggested that these
designs may not always be good; additional com-
ments on small composite designs can be found
elsewhere [26,27]. Finally, in supersaturated
designs, the number of design points is less than or
equal to the number of factors [28].

It is most desirable to use unsaturated designs
for predictive models, unless running the necessary
experiments is prohibitively expensive. When com-
paring experiments based on the number of design
points and the information obtained, the D-optimal
and D-efficiency statistics are often used.

D-optimal and D-efficiency:A design is said to be
D-optimal if uX′Xu/np is maximised, whereX is the
expanded design matrix which hasn rows (one for
each design setting) andp columns (one column for
each coefficient to be estimated, plus one column
for the overall mean). The D-efficiency statistic for
comparing designs, Eq. (1) compares a design
against a D-optimal design, normalised by the size
of the matrix in order to compare designs of
different sizes:

D-efficiency= (uX′Xudesign/uX′XuD-optimum)1/p (1)

Other statistics for comparing designs such as G-
efficiency, Q-efficiency and A-optimality have also
been formulated [6]. We now turn to the issues of
model choice and model fitting.

2.2. Model Choice and Model Fitting

After selecting an appropriate experimental design
and performing the necessary computer runs, the

next step is to choose an approximating model and
fitting method. Many alternative models and
methods exist, but here we review the four which
are most prevalent in the literature: response
surfaces, neural networks, inductive learning and
kriging.

2.2.1. Response Surfaces
Given a response, y, and a vector of independent
factors x influencing y, the relationship between y
and x is

y = f(x) + e (2)

where e represents random error which is assumed
to be normally distributed with mean zero and stan-
dard deviations. Since the true response surface
function f(x) is usually unknown, a response surface
g(x) is created to approximate f(x). Predicted values
are then obtained usingŷ = g(x).

The most widely used response surface approxi-
mating functions are low-order polynomials. For low
curvature, a first order polynomial can be used as
in Eq. (3); for significant curvature, a second order
polynomial which includes all two-factor interactions
is available (see Eq. (4)):

ŷ = b0 + Ok

i=1

bixi (3)

ŷ = b0 + Ok

i=1

bixi + Ok
i=1

biix2
i + Ok

i=1

Ok
j=1,i,j

bijxixj

(4)

The parameters of the polynomials in Eqs (3) and
(4) are usually determined by least squares
regression analysis by fitting the response surface
approximations to existing data. These approxi-
mations are normally used for prediction within
Response Surface Methodology(RSM). RSM was
first developed by Box and Wilson [29]. A more
complete discussion of response surfaces and least
squares fitting is presented in Myers and Mont-
gomery [6]. An overview of RSM is given in Sec-
tion 2.3.

2.2.2. Neural Networks
A neural network is composed of neurons (single-
unit perceptrons) which are multiple linear re-
gression models with a nonlinear (typically
sigmoidal) transformation on y. If the inputs to each
neuron are denoted {x1,x2,. . .,xn}, and the regression
coefficients are denoted by the weights, wi, then the
output, y, might be given by
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y =
1

1 + e−h/T (5)

whereh = Swixi + b (whereb is the ‘bias value’ of
a neuron) and T is the slope parameter of the
sigmoid defined by the user. Aneural network is
then created by assembling the neurons into an
architecture; the most common of which is the
multi-layer feedforward architecture (see Fig. 4).

There are two main issues in building a neural
network: (1) specifying the architecture: and (2)
training the neural network to perform well with
reference to a training set. “To a statistician, this is
equivalent to (i) specifying a regression model, and
(ii) estimating the parameters of the model given a
set of data” [30]. If the architecture is made large
enough, a neural network can be a nearly universal
approximator [31]. Hajela and Berke [32] review
the use of neural networks in structural analysis
and design.

‘Training’ a neural network is the determination
of the proper values for all weights, wi, in the
architecture and is usually done by back-propagation
[31]; this requires a set of n training data points
{( x1,y1) (x2,y2) . . .,(xp,yp)}. For a network with out-
put y, the performance is

E = O
p

(yp − ŷp)2 (6)

where ŷp is the output that results from the network
given inputxp, and E is the total error of the system.
The weights are then adjusted in proportion to

­E
­y

­y
­wij

(7)

Neural networks are best suited for approximating
deterministic functions in regression-type appli-
cations. “In most applications of neural networks
that generate regression-like output, there is no
explicit mention of randomness. Instead, the aim is
function approximation” [30]. Typical applications
of neural nets are speech recognition and handwrit-

Fig. 4. Typical neuron and architecture. (a) Single unit per cap-
tion; (b) feedforward two-layer architecture.

ten character recognition, where the data is complex
and of high dimensionality. Networks with tens of
thousands of parameters have been used, but the
requisite gathering of training data and calculation of
model parameters can be extremely computationally
expensive. Change and Titterington [30] comment
that “. . . the procedure is to toss the data directly
into the NN software, use tens of thousands of
parameters in the fit, let the workstation run 2–3
weeks grinding away doing the gradient descent,
and voilá, out comes the result.” Rogers and Marsh
[33] describe parallel computing efforts aimed at
reducing the time required to ‘train’ neural networks.

2.2.3. Inductive Learning
Inductive learning is one of five main paradigms of
machine learning that also include neural networks,
case-based learning, genetic algorithms and analytic
learning [34]. Of these five, inductive learning is
the most akin to regression and metamodeling, and
is therefore the focus here. An inductive learning
system induces rules from examples; the fundamen-
tal modeling constructs are condition-action rules
which partition the data into discrete categories and
can be combined into decision trees for ease of
interpretation (see Fig. 5).

Training data are required in the form
{( x1,y1)(x2,y2) . . .,(xn,yn) where xi is a vector of
attribute values (e.g., processing parameters and
environmental conditions), and each yi is a corre-
sponding observed output value. Although attributes
and outputs can be real-valued, the method is better
suited to discrete-valued data; real values must often
be transformed into discrete representations [35].
Once the data has been collected, training algorithms
build a decision tree by selecting the ‘best’ divisive
attribute and then recursively calling the resulting
data subsets. Although trees can be built by selecting
attributes randomly, it is more efficient to select
attributes that minimize the amount of information
needed for category membership. The mathematics

Fig. 5. A decision tree.
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of such an information-theoretic approach are given
by Evans and Fischer [35].

Many of the applications of inductive learning
have been in process control and diagnostic systems,
and inductive learning approaches can be used to
automate the knowledge-acquisition process of building
expert systems. Furthermore, although decision trees
appear best suited for applications with discrete
input and output values, there are also applications
with continuous variables that have met with greater
success than standard statistical analysis. Leech [36]
reports a process-control application where “Stan-
dard statistical analysis methods were employed with
limited success. Some of the data were non-numeri-
cal, the dependencies between variables were not
well understood, and it was necessary to simul-
taneously control several characteristics of the final
product while working within system constraints.
The results of the statistical analysis, a set of corre-
lations for each output of interest, were difficult for
people responsible for the day-to-day operation to
interpret and use.” Additional examples can be found
elsewhere [35,34].

2.2.4. Kriging
Since many computer analysis codes are determin-
istic, and therefore not subject to measurement error,
the usual measures of uncertainty derived from least-
squares residuals have no obvious meaning [13].
Consequently, some statisticians [12–14,16,37,38]
have suggested modeling responses as a combination
of a polynomial model plus departures of the form

y(x) = f(x) + Z(x) (8)

where y(x) is the unknown function of interest, f(x)
is a known polynomial function ofx, and Z(x) is
the realisation of a normally distributed Gaussian
random process with mean zero, variances2, and
non-zero covariance. The f(x) term in Eq. (8) is
similar to the polynomial model in a response sur-
face and provides a ‘global’ model of the design
space; in many cases, f(x) is simply taken to be a
constant term [14,37,38].

While f(x) ‘globally’ approximates the design
space, Z(x) creates ‘localised’ deviations so that the
kriging model interpolates the ns sampled data
points. The covariance matrix of Z(x) is given by

Cov[Z(xi)Z(xj)] = s2 R([R(xixj)] (9)

where R is the correlation matrix, and R(xi,xj) is
the correlation function between any two of the ns

sampled data pointsxi and xj. R is a (ns x ns)
symmetric matrix with ones along the diagonal. The
correlation function R(xi,xj) is specified by the user;

several correlation functions may be used [13,14,16].
We have employed a Gaussian correlation function
of the form

R(xi,xj) = exp[Snsk=1 ukuxi
k − xj

ku2] (10)

where uk are the unknown correlation parameters
used to fit the model, and the xi

k and xjk are the kth
components of sample pointsxi and xj. In some
cases, using a single correlation parameter gives
sufficiently good results [13,14,39].

Predicted estimates, yˆ(x) of the response y(x) at
untried values ofx are given by

ŷ = b̂ + rT(x)R−1 (y − fb̂) (11)

where y is the column vector of length ns which
contains the values of the response at each sample
point, and f is a column vector of length ns which
is filled with ones when f(x) is taken as a constant.
In Eq. (11), rT(x) is the correlation vector of length
ns between an untriedx and the sampled data points
{ x1, x2, . . .,xns}, and is given by:

rT(x) = [R(x,x1) R(x,x2) . . .,R(x,xns)]T (12)

In Eq. (11), b̂ is estimated using Eq. (13)

b̂ = (fTR−1f)−1fTR−1y (13)

The estimate of the variance,ŝ2, from the under-
lying global model (not the variance in the observed
data) is given by

ŝ2 =
(y − fb̂)T R−1 (y − fb̂)

ns
(14)

where f(x) is assumed to be the constantb̂. The
maximum likelihood estimates (i.e. ‘best guesses’)
for the uk in Eq. (10) used to fit the model are
found by maximising [12]

−
[nsln(ŝ2) + lnuRu]

2
(15)

for uk . 0 where bothŝ2 and uRu are both functions
of uk. While any values for theuk create an interpol-
ative approximation model, the ‘best’ kriging model
is found by solving the k-dimensional unconstrained
nonlinear optimization problem given by maximis-
ing Eq. (15).

Depending on the choice of correlation function
in Eq. (10), kriging can either ‘honor the data’,
providing an exact interpolation of the data, or
‘smooth the data’, providing an inexact interpolation
[40]. Finally, it should be noted that kriging is
different from fitting splines (i.e. non-parametric
regression models). In several comparative studies
kriging performs as well as, if not better than,
splines [41].
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2.2.4. Additional Metamodeling Approaches
For the reader’s convenience, we include references
for some alternative metamodeling techniques which
have not been discussed in the previous subsections,
offers an accumulated approximation technique for
structural optimization which refines the approxi-
mation of objective and constraint functions by
accumulating the function values of previously
visited points. Similarly, Balling and Clark [42]
describe weighted and gradient-based approxi-
mations for use with optimization which utilize
weighted sums of exact function values at sample
points. Friedman [43] describes Multivariate
Adaptive Regression Splines (MARS): a flexible
regression modeling method based on recursive
partitioning and spline fitting for high dimensional
data. Regression trees are closely related to
MARS. Instead of a piecewise-linear approxi-
mation, regression trees form a piecewise constant-
approximation [44]. Dynet al. [45] use radial basis
functions to build global approximation surfaces to
interpolate smooth data. Wanget al. [46] present
multivariate Hermite approximations for multidisci-
plinary design optimization which uses data gener-
ated during the course of iterative optimization; it
is compared against linear, reciprocal and other stan-
dard approximations, but shows inefficiencies
because it requires more data points. Wavelet mode-
ling uses a special form of a basis function which
is especially effective in modeling sharp jumps in
a response surface [47]. Wavelets are best used
when a large quantity of data is available. Finally,
Friedman and Steutzle [48] introduce projection pur-
suit regression which works well in high-dimen-
sional (,50) data, and with large data sets (can
handle 200,000+ data points); project pursuit
regression takes the data, and generates different
projections of it along linear combinations of the
variables; an optimizer finds the best projections,
and builds a predictor by summing them together
with arbitrary levels of precision.

This concludes our discussion on experimental
design, model selection and model fitting. We now
turn to more general methods for experimental
design and modeling building.

2.3. Experimentation and Metamodeling
Strategies

Two widely used methods incorporating experi-
mental design, model building and prediction are
response surface methodology and Taguchi’s robust
design or parameter design. A brief overview of
these two approaches is provided.

2.3.1. Response Surface Methodology (RSM)
Different authors describe RSM differently. Myers
et al. [49] define RSM as “a collection of tools
in design or data analysis that enhance the explo-
ration of a region of design variables in one or
more responses”. Box and Draper [26] state that
“Response surface methodology comprises a group
of statistical techniques for empirical model building
and model exploitation. By careful design and analysis
of experiments, it seeks to relate aresponse,or
outputvariable, to the levels of a number ofpredic-
tors, or input variables, that affect it”. Finally, Myers
and Montgomery state that RSM “is a collection of
statistical and mathematical techniques useful for
developing, improving, and optimizing process. It
also has important applications in the design, devel-
opment, and formulation of new products, as well
as in the improvement of existing product designs”.

The ‘collection of statistical and mathematical
techniques’ of which these authors speak refers to
the design of experiments (Section 2.1) least squares
regression analysis and response surface model
building (Section 2.2.1) and ‘model exploitation’,
exploring a factor space seeking optimum factor
settings. The general RSM approach includes all or
some of the following steps:

(i) screening: when the number of factors is
large or when experimentation is expensive,
screening experiments are used to reduce the
set of factors to those that are most influential
to the response(s) being investigated;

(ii) first order experimentation:when the starting
point is far from the optimum point or when
knowledge about the space being investigated
is sought, first order models and an approach
such as steepest ascent are used to ‘rapidly
and economically move to the vicinity of the
optimum’ [2];

(iii) second order experimentation:after the best
solution using first order methods is
obtained, a second order model is fit in the
region of the first order solution to evaluate
curvature effects, and to attempt to improve
the solution.

Response surfaces are typically second-order poly-
nomial models; therefore, they have limited capa-
bility to model accurately nonlinear functions of
arbitrary shape. Obviously, higher-order response
surfaces can be used to model a nonlinear design
space; however, instabilities may arise [50], or what
is more likely to happen is that it is difficult to
take enough sample points in order to estimate
all of the coefficients in the polynomial equation,
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particularly in high dimensions. Hence, many re-
searchers advocate the use of asequentialresponse
surface modeling approach using move limits or a
trust region approach [51].

A more detailed description of RSM techniques
and tools can be found in Myers and Montgomery
[6], and a comprehensive review of RSM develop-
ments and applications from 1966–1988 is given in
Myers et al. [49]. In Section 3 we review recent
applications in aerospace and mechanical engineer-
ing design, but first we discuss Taguchi’s robust
design approach.

2.3.3. Taguchi’s Robust Design
Genichi Taguchi developed an approach for indus-
trial product design built on statistically designed
experiments. Taguchi’s robust design for quality
engineering includes three steps:system design,
parameter design, and tolerance design[52]. The
key step is parameter design within which statistical
experimentation is incorporated.

Rather than simply improving or optimizing a
response value, the focus in parameter design is to
identify factor settings that minimize variation in
performance and adjust the mean performance to a
desired target in order to minimize the associated
loss. Factors included in experimentation include
control factorsand noise factors; control factors are
set and held at specific values, while noise factors
cannot be controlled, e.g. shop floor temperature.
The evaluation of mean performance and perform-
ance variation is accomplished by ‘crossing’ two
orthogonal arrays (Section 2.1.1). Control factors are
varied according to an inner array, or ‘control’,
array, and for each run of the control array, noise
factors are varied according to an outer, or ‘noise’,
array. For each control factor experiment, a response
value is obtained for each noise factor design point.
The mean and variance of the response (measured
across the noise design points) are calculated. The
performance characteristic used by Taguchi is a
Signal-to-Noise(S/N) ratio defined in terms of the
mean and variance of the response. Several alternate
S/N ratios are available based on whether lower,
higher or nominal response values are desired [53].

The Taguchi approach does not explicitly include
model building and optimization. Analysis of experi-
mental results is used to identify factor effects, to
plan additional experiments, and to set factor values
for improved performance. A comprehensive dis-
cussion of the Taguchi approach is given in Ross
[53]. Taguchi methods have been used extensively
in engineering design, and are often incorporated
within traditional RSM for efficient, effective and

robustdesign [6]. These applications and their impli-
cations for engineering design are discussed next.

Metamodeling in Engineering Design

How are the metamodeling techniques of the pre-
vious section employed in engineering design?All
of these techniques can be used to create approxi-
mations of existing computer analyses, and produce
fast analysis modules for more efficient computation.
These metamodeling techniques also yield insight
into the functional relationship between input and
output parameters.

Where would such models be useful?A designer’s
goal is usually to arrive at improved or robust
solutions which are the values of design variables
that best meet the design objectives, as shown in
Fig. 6. A search for these solutions usually relies
on an optimization technique which generates and
evaluates many potential solutions in the path toward
design improvement; thus, fast analysis modules are
an imperative.

When are metamodels useful or appropriate?In
the later stages of design when detailed information
about specific solutions is available, highly accurate
analysis is essential. In the early stages of design,
however, the focus is on generating, evaluating, and
comparing potential conceptual configurations. The
early stages of design are characterised by a large
amount of information, often uncertain, which must
be managed. To ensure the identification of a ‘good’
system configuration, a comprehensive search is
necessary. In this case, the trade-off between accu-

Fig. 6. Principal use of statistics in computer-based design.
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racy and efficiency may be appropriate. The creation
of metamodels allows fast analysis, facilitating both
comprehensive and efficientdesign space search at
the expense of a (hopefully slight) loss of accuracy.

Having established our engineering design ‘con-
text’ for using metamodels, we present a review of
several statistical applications in engineering design
in Section 3.1. In Section 3.2, we discuss general
statistical methods which have been developed for
engineering applications, and we conclude by dis-
cussing some of the pitfalls associated with the
application of statistical techniques to deterministic
computer experiments in Section 3.3. This then
paves the way for Section 4, guidelines for the
appropriate use of statistics in computer-based
design.

3.1. Applications in Engineering Design

3.1.1. DOE, RSM and Taguchi’s Robust Design
In Table 1 we present a survey of several engineer-
ing applications of design of experiments, response

Table 1. Survey of engineering applications of DOE, RSM and Taguchi’s Robust Design [81]

Paper Experimental Design Response Surface Method Taguchi Method

Fractional CCD D- OAs Grid/ Fit Using Order of Optimize/ Robust Consider S/N,

Factorial optimal Random Equation Improve Design Interactions Loss

or Resp.Least Step-

Square wise

Balabanovet al. [58] x x 2nd x x
Bauer and Krebs [59] x x x 2nd x x S/N
Beard and Sutherland [55] x x x L
Chenet al. [60] x x 2nd x R
Chi and Bloebaum [61] x x R
Englundet al. [62] x x 2nd x
Gadallah and ElMaraghy [63] x x 2nd x x x S/N
Giunta et al. [64] x x 2nd x
Giunta et al. [65] x x x x 2nd x
Healy et al. [66] x x 2nd x x
Hong et al. [67] x x 2nd x x S/N
Koch et al. [68] x x 2nd x
Korngold and Gabriele [69] x 2nd x
Li et al. [70] x 2nd x x S/N
Mavris et al. [71] x x 2nd R
Mavris et al. [72] x x 2nd R
Roux et al. [57] x x Mix x
Rowell et al. [73] x x x 2nd x x x
Stanleyet al. [74] x x x R
Sundaresanet al. [75] x x x R
Unal et al. [76] x x 2nd x
Unal et al. [77] x x x R
Unal et al. [78] x x x x 2nd x R
Unal et al. [79] x x 2nd x
Venter et al. [56] x x 4th x
Yu and Ishii [80] x x 2nd x x R

surface methodology, and Taguchi’s robust design
approach. Most of these examples come from aero-
space and mechanical engineering design appli-
cations presented at conferences in recent years. A
review of approximation concepts used in structural
design can be found in Barthelemy and Haftka [54].

Some observations regarding our findings are as
follows:

I Central composite designs and D-optimal designs
seem to be preferred among aerospace engineers,
while Orthogonal Arrays (OAs) are preferred by
mechanical engineers; grid and random point
searches are seldom used since they are less
efficient.

I Optimization seems to be the principal driver for
aerospace applications of DOE and RSM; these
types of applications typically involve the use
of computer intensive analysis and optimization
routines, and DOE and RSM is a logical choice
for increased efficiency.

I Mechanical engineers usually use OAs and Tagu-
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chi’s approach for robust design and the signal-
to-noise ratio for parameter and tolerance design.

I Very few designers actually model Taguchi’s loss
function directly (e.g. [55]); many prefer to model
the response instead.

I Most applications use second order response sur-
face models; there are only a few cases where
higher order (e.g. [56]) and mixed polynomial
models (e.g. [57]) are used for engineering design.

I When orthogonal arrays are used, special care
must be taken to avoid aliasing main effects with
interactions, unless the interactions are known (or
assumed) to be insignificant.

I Most applications utilise least squares regression
analysis when fitting a model; only a few use
stepwise regression, and this is usually because
the model is not second order.

3.1.1. Kriging Applications
Kriging, also referred to as DACE (Design and
Analysis of Computer Experiments) after the
inaugural paper [13], has found limited use in
engineering design applications perhaps because
of the lack of readily available software to fit
kriging models, the added complexity of fitting a
kriging model, or the additional effort required to
use a kriging model. Simpsonet al. [81] detail a
preliminary comparison of second order response
surface models and kriging models for the multi-
disciplinary design of an aerospike nozzle which
has three geometry (design) variables; neither the
kriging models nor the response surface models
consistently outperform the other in this engineer-
ing example. Guinta [82] presents an investigation
into the use of kriging for the multidisciplinary
design optimization of a High Speed Civil Trans-
port aircraft. He explores a five and a ten variable
design problem, observing that the kriging and
response surface modeling approaches yield similar
results due to the quadratic trend of the responses.
Osio and Amon [39] have developed an extension
of DACE modeling for numerical optimization
which uses a multistage strategy for refining the
accuracy of the model; they have applied their
approach to the thermal design of an embedded
electronic package which has five design variables.
Booker et al. [83] solve a 31 variable helicopter
rotor structural design problem using a similar ap-
proximation methodology based on kriging. Booker
[84] extends the helicopter rotor design problem
to include 56 structural variables, to examine the
aeroelastic and dynamic response of the rotor. Welch
et al. [38] describe a kriging-based approximation
methodology which they use to identify important

variables, detect curvature and interactions, and pro-
duce a useful approximation model for two 20 vari-
able problems using only 30–50 runs of the com-
puter code; they claim their method can cope with
up to 30–40 variables provided factor sparsity can
be exploited. Trosset and Torczon [85] have
developed a numerical optimization strategy which
incorporates DACE modeling and pattern search
methods for global optimization. Cox and John [86]
have developed the Sequential Design for Optimiz-
ation method which uses lower confidence bounds
on predicted values of the response for the sequential
selection of evaluation points during optimization.
Both approaches have shown improvements over
traditional optimization approaches when applied to
a variety of standard mathematical test problems.

3.2. Existing Methods and Tools in
Engineering Design

In this section we present some methods and tools
developed specifically for engineering which in-
corporate statistical techniques from Section 2.
Since the Taguchi approach and RSM have been
widely applied in engineering design, a literature
review comparing these approaches is given first.
This is followed by an overview of some methods
and ‘tools’ that have been developed for general
design applications. These include the Robust Con-
cept Exploration Method, the Variable-Complexity
Response Surface Modeling Method, and Concurrent
SubSpace Optimization, to name a few.

3.2.1. Taguchi Approach vs. RSM
The Taguchi approach and RSM have been applied
extensively in engineering design. It is commonly
accepted that the principles associated with the
Taguchi approach are both useful and very appropriate
for industrial product design. Ramberget al. [87]
suggest that “the loss function and the associated
robust design philosophy provide fresh insight into
the process of optimizing or improving the simula-
tion’s performance”. Two aspects of the Taguchi
approach are often criticised: the choice of experi-
mental design (orthogonal arrays, inner and outer)
and the loss function (signal-to-noise ratio). It has
been argued and demonstrated that the use of a
single experiment combining control and noise
factors is more efficient [37,76,88]. The drawbacks
of combining response mean and variance into a
single loss function (signal-to-noise ratio) are well-
documented. Many authors advocate measuring the
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response directly and separately tracking mean and
variance [37,87,89]. However, Shoemakeret al. [88]
warn that a “potential drawback of the response-
model approach is that it depends more critically
than the loss-model approach on how well the
model fits”.

Given the wide acceptance of Taguchi robust
design principles and the criticisms, many advocate
a combined Taguchi-RSM approach or simply using
traditional RSM techniques within the Taguchi
framework [6,8,49,87]. We believe that orthogonal
inner and outer arrays, and single composite experi-
ments each have advantages and disadvantages and
appropriate uses, and that separate observation of
mean and variance leads to useful insight. Regard-
less, the core principles of both Taguchi and RSM
provide a foundation for many of the specific design
methods discussed in Section 3.2.2.

3.2.2. An Overview of Existing Methods
The Robust Concept Exploration Method(RCEM)
facilitates quick evaluation of different design
alternatives and generation of top-level design speci-
fications in the early stages of design [90,91]. Foun-
dational to the RCEM is the integration of robust
design principles, DOE, RSM and the compromise
Decision Support Problem (a multiobjective decision
model). The RCEM has been applied to the multi-
objective design of a High Speed Civil Transport
[89,91], a family of General Aviation Aircraft [92]
a turbine lift engine [68], a solar-powered irrigation
system [91], a flywheel [93], to manufacturing
simulation [94] and to maintainability design of
aircraft engines [95]. A preliminary investigation
into the use of DOE and neural networks to augment
the capabilities of response surface modeling within
the RCEM is given by Chenet al. [96].

The Variable-Complexity Response Surface
Modeling (VCRSM) method uses analyses of vary-
ing fidelity to reduce the design space to the region
of interest and build response surface models of
increasing accuracy [64,97]. The VCRSM method
employs DOE and RS modeling techniques, and has
been successfully applied to the multidisciplinary
wing design of a high speed civil transport
[58,64,98,99] to the analysis and design of com-
posite curved channel frames [100], to the structural
design of bar trusses [57], to predict the fatigue life
of structures [101], to reduce numerical noise
inherent in structural analyses [56,64] and shape
design problems using fluid flow analysis [102], and
to facilitate the integration of local and global analy-
ses for structural optimization [103–105]. Coarse-
grained parallelisation of analysis codes for efficient

response surface generation has also been investi-
gated [99,106].

Concurrent SubSpace Optimization(CSSO) uses
data generated during concurrent subspace optimiza-
tions to develop response surface approximations of
the design space. Optimization of these response
surfaces forms the basis for the subspace coordi-
nation procedure. The data generated by the sub-
space optimizers is not uniformly centred about the
current design as in CCD or other sampling
strategies, but instead follows the descent path of
the subspace optimizers. In Renaud and Gabriele
[107–109], interpolating polynomial response sur-
faces are constructed which have either a first or
second order basis for use in the CSSO coordination
procedure. In Wujek et al. [110] a modified
decomposition strategy is used to develop quadratic
response surfaces for use in the CSSO coordination
procedure. Finally, Sellar and colleagues [110–112]
use artificial neural network response surfaces in the
CSSO coordination procedure.

Robust Design Simulation(RDS) is a stochastic
approach which employs the principles of Integrated
Product and Process Development (IPPD) for the
purpose of determining the optimum values of
design factors and proposed technologies (in the
presence of uncertainty) which yield affordable
designs with low variability. Toward this end, RDS
combines design of experiments and response
surface metamodels with Monte Carlo simulation
and Fast Probability Techniques [113] to achieve
customer satisfaction through robust systems design
[72]. RDS has been applied to the design of a High
Speed Civil Transport aircraft [71,71] and very large
transports [114]. RDS has also been used to study
the economic uncertainty of the HSCT [115] and
the feasibility/viability of aircraft [116].

NORMAN/DEBORA is a TCAD (Technology
Computer Aided Design) system incorporating
advanced sequential DOE and RSM techniques to
aid in engineering optimization and robust design
[117]. NORMAN/DEBORA includes a novel
design of experiments concept – Target Oriented
Design – a unique parameter transformation tech-
nique – RATIOFIND – and a nonlinear, constrained
optimizer – DEBORA [117]. It has been successfully
employed for semiconductor integrated circuit design
and optimization [117–120]. An updated and more
powerful version of NORMAN/DEBORA is being
offered as LMS Optimus [121].

The Probabilistic Design System(PDS) being
developed at Pratt and Whitney uses Box–Behnken
designs and response surface methodology to per-
form probabilistic design analysis of gas turbine
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rotors. Fox [122–124] describes twelve criteria
which are used to validate the response surfaces
which are used in combination with cheap-to-run
analyses in a Monte Carlo Simulator to estimate
the corresponding distributions of the responses and
minimum life of system components. Adamson
[125] describes issues involved with developing,
calibrating, using and testing the PDS and discusses
Pratt and Whitney’s plans to validate the PDS by
designing, building and testing actual parts.

DOE/Opt is a prototype computer system for
DOE, RSM and optimization [126]. It has been used
in semiconductor process/device design, including
process/device optimization, simulator tuning, pro-
cess control recipe generation, and design for manu-
facturability.

Hierarchical and Interactive Decision Refinement
(HIDER) is a methodology for concept exploration
in the early stages of design. It integrates simulation,
optimization, statistical techniques and machine
learning to support design decision making [127,128].
The methodology is used to hierarchically
refine/reduce “a large initial design space through a
series of multiple-objective optimizations, until a
fully specified design is obtained” [129]. HIDER
uses the Adaptive Interactive Modeling System
(AIMS) [130] to decompose the design space using
distance-, population-, and hyperplane-based algor-
ithms. HIDER and AIMS have been applied to the
design of a cutting process [130], a diesel engine
[128] and a wheel loader [127].

iSIGHT, developed by Engineous Software, is a
generic software shell environment for integration of
engineering design simulation programs, automated
execution of integrated codes, and design space
exploration. Included in the comprehensive suite
of engineering design functionalities that compose
iSIGHT is a set tools to support DOE capabilities,
including the traditional experimental designs (full
factorial, orthogonal arrays, central composite
designs, Latin hypercubes, etc.) and user defined
designs [131]. Approximation techniques supported
include response surfaces, Taylor series (linear,
reciprocal, hybrid, two point) and variability com-
plexity modeling that allows a lower fidelity
analysis tool to be mapped to a higher fidelity,
more expensive analysis tool. An effective
approach for model updating for improved model
quality during optimization is implemented for
approximation-based optimization [132]. iSIGHT has
been successfully implemented for the design of multi-
component, multidisciplinary products such as auto-
mobiles, [133], aircraft, nuclear reactors, satellites
and weapons systems.

Other approaches incorporating statistical tech-
niques in engineering design exist; only a few have
been included here. Our focus is not on the methods,
but on the appropriateness of the statistical tech-
niques; many of the examples to which these
methods have been applied employ deterministic
computer experiments in which the application of
statistical techniques is questionable. Associated
issues are discussed in the next section.

3.3. A Closer Look at Experimental Design
for Deterministic Computer Experiments

Since engineering design usually involves exercising
deterministic computer analysis codes, the use of
statistical techniques for creating metamodels war-
rants a closer look. Given a response of interest, y,
and a vector of independent factorsx thought to
influence y, the relationship between y andx (see
Eq. (2)) includes the random error terme. To apply
least squares regression, error values at each data
point are assumed to have identical and independent
normal distributions with means of zero and standard
deviations ofs, or ei i.i.d. N(0,s2) (see Fig. 7(a)).
The least squares estimator then minimizes the sum
of the squared differences between actual data points
and predicted values. This is acceptable when no
data point actually lies on the predicted model
because it is assumed that the model ‘smoothes out’
random error. Of course, it is likely that the
regression model itself is merely an approximation
of the true behavior ofx and y so that the final
relationship is

y = g(x) + ebias + erandom (16)

where ebias represents the error of approximation.
However, for deterministic computer analyses as

Fig. 7. Deterministic and non-deterministic curve fitting. (a) Non-
deterministic, (b) deterministic.
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shown in Fig. 7(b)erandom has mean zeroand vari-
ance zero, yielding the relationship

y = g (x) + ebias (17)

The deterministic case in Eq. (17) conflicts shar-
ply with the methods of least squares regression.
Unless ebias is i.i.d. N(0,s2) the assumptions for
statistical inference from least squares regression are
violated. Further, since there is no random error it
is not justifiable to smooth across data points;
insteadthe model should hit each point exactly and
interpolate between them, as in Fig. 5(b). Finally,
most standard tests for model and parameter signifi-
cance are based on computations oferandom, and
therefore cannot be computed. These observations
are supported by literature in the statistics com-
munity; as Sackset al. [14,13] carefully point out,
because deterministic computer experiments lack
random error:

I response surface model adequacy is determined
solely by systematic bias;

I the usual measures of uncertainty derived from
least-squares residuals have no obvious statistical
meaning (deterministic measures of uncertainty
exist, e.g. max.uŷ(x) − y(x)u over x, but they may
be very difficult to compute); and

I the classical notions of experimental blocking,
replication and randomization are irrelevant.

Furthermore, some of the methods for the design
and analysis of physical experiments [5,6,26] are
not ideal for complex, deterministic computer
models. “In the presence of systematic error rather
than random error, statistical testing is inappropriate”
[37]. A discussion of how the modelshould inter-
polate the observations can be found in Sacks,
Shiller and Welch [13].

So where can these methods go wrong?Unfortu-
nately, it is easy to misclassify theebias term from
a deterministic model aserandom, and then proceed
with standard statistical testing. Several authors have
reported statistical measures (e.g. F-statistics and
root mean square error) to verify model adequacy;
see Healyet al. [66], Unal et al. [77,78], Koch
et al. [68], Venter et al. [56] and Welch et al.
[37]. However, these measures have no statistical
meaning, since they assume the observations include
a random error term with a mean of zero and a
non-zero standard deviation. Consequently, the use
of stepwise regression for polynomial model fitting
is also inappropriate since it utilises F-statistics when
adding/removing model parameters.

Some researchers [56,64,65,101,102] have used
metamodeling techniques for deterministic computer

experiments containing numerical noise. Metamodels
are used to smooth the numerical noise which
inhibits the performance of gradient based optimizers
[64]. When constructing the metamodels, the
numerical noise is used as a surrogate for random
error, and the standard least-squares approach is
then used to determine model significance. The idea
of equating numerical noise to random error war-
rants further investigation into the sources and nature
of this ‘deterministic’ noise.

How can model accuracy be tested?R-Squared
(the model sum of squares divided by the total sum
of squares) and R-Squared-adjusted (which takes
into account the number of parameters in the model)
are the only measures for verifying model adequacy
in deterministic computer experiments. This measure
is often insufficient; a high R-Squared value can be
deceiving. Residual plots may be helpful for
verifying model adequacy, identifying trends in data,
examining outliers, etc; however,validating the
model using additional (different) data points is
essential.Maximum absolute error, average absolute
error, and root mean square error for the additional
validation points can be calculated to assess model
accuracy [81,101]. Ottoet al. [134,135] and Yesi-
lyurt and Patera [136] have developed a Bayesian-
validated surrogate approach which uses additional
validation points to make qualitative assessments of
the quality of the approximation model, and provide
theoretical bounds on the largest discrepancy
between the model and the actual computer analysis.
They have applied their approach to optimization of
multi-element airfoils [135], design of trapezoidal
ducts and axisymmetric bodies [137], and optimiz-
ation of an eddy-promoter heat exchanger [136,138].
Finally, an alternative method which does not
require additional points is leave-one-out cross vali-
dation [139]. Each sample point used to fit the
model is removed one at a time, the model is rebuilt
without a sample point, and the difference between
the model without the sample point and actual value
at the sample point is computed for all of the
sample points.

Given the potential problems in applying least-
squares regression to deterministic applications, the
trade-off then is betweenappropriatenessand prac-
ticality. If a response surface is created to model
data from a deterministic computer analysis code
using experimental design and least squares fitting,
and if it provides good agreement between predicted
and actual values, then there is no reason to discard
it. It should be used, albeit with caution. However,
it is important to understand the fundamental
assumptions of the statistical techniques employed
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to avoid misleading statements about model signifi-
cance. In the next section we offer some guidelines
for the appropriate use of statistical metamodeling
with deterministic computer analyses.

4. Guidelines and recommendations

How can a designer apply metamodeling tools while
avoiding the pitfalls described in Section 3.3?This
can either be answered from the bottom up (tools –
. applications, Section 4.1) or from the top down
(motives –. tools, Section 4.2).

4.1. Evaluation of Metamodeling Techniques

There are two components to this section. The first
is an evaluation of the four metamodeling techniques
described in Section 2.2. The second component is
choosing an experimental design which has more
direct applicability to response surface methods.
Determining what experimental designs are most
appropriate for the other metamodeling techniques
discussed in Section 2.2 are open research areas.

4.1.1. Evaluation of Model Choice and Model
Fitting Alternatives
Some guidelines for the evaluation of the meta-
modeling techniques presented in Section 2.2 are
summarized in Table 2.

Response Surfaces:primarily intended for appli-
cations with random error; however, they have been
used successfully in many engineering design appli-
cations. It is the most well-established metamodeling

Table 2. Recommendations for model choice and use

Model Choice Characteristics/Appropriate Uses

Responses surfaces I well-established and easy to use
I best suited for applications with random error
I appropriate for applications with,10 factors

Neural networks I good for highly nonlinear or very large problems (|10,000 parameters)
I best suited for deterministic applications
I high computational expense (often.10,000 training data points); best

for repeated application

Rule induction/Induction learning I best when factors and responses are discrete-valued
I form of model is rules or decision tree; better suited to diagnosis than

engineering design

Kriging I extemely flexible but complex
I well-suited for deterministic applications
I can handle applications with,50 factors
I limited support is currently available for implementation

technique, and is probably the easiest to use, pro-
vided the user is aware of the possible pitfalls
described in Section 3.3.

Neural Networks:nonlinear regression approach
best suited to deterministic applications which
require repeated use. Building a neural network for
a one-shot use can be extremely inefficient due to
the computational overhead required.

Inductive Learning: modeling technique most
appropriate when input and output factors are prim-
arily discrete-valued or can be grouped. The predic-
tive model, in the form of condition-action rules or
a decision tree, may lack the mathematical insight
desired for engineering design.

Kriging: an interpolation method capable of hand-
ling deterministic data which is extremely flexible
due to the wide range of correlation functions which
may be chosen. However, the method is more com-
plex than response surface modeling, and lacks read-
ily available computer support software. Kriging
models are not limited by assumptions on the nature
of random error in the observations.

4.1.2. Evaluation of Experimental Designs
There are many voices in the discussion of the
relative merits of different experimental designs, and
it is therefore unlikely that we have captured them
all. The opinions on the appropriate experimental
design for computer analyses vary; the only consen-
sus reached thus far is that designs for non-random,
deterministic computer experiments should be ‘space
filling’. Several ‘space filling’ designs were dis-
cussed previously in Section 2.1.1. For a comparison
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of some specific design types, we refer the reader
to the following articles:

I Myers and Montgomery [6] provide a comprehen-
sive review of experimental designs for fitting
second order response surfaces. They conclude
that hybrid designs are useful, if the unusual
levels of the design variables can be tolerated;
with computer experiments this is unlikely to be
a problem.

I Carpenter [140] examines the effect of design
selection on response surface performance. He
compares 2k and 3k factorial designs, central
composite designs, minimum point designs, and
minimum point designs augmented by additional
randomly selected points; he favours the aug-
mented point designs for problems involving more
than six variables.

I Giovannitti-Jensen and Myers [141] discuss
several first and second order designs, observing
that the performance of rotatable CCD and Box–
Behnken designs are nearly identical. They note
that, ‘hybrid designs appear to be very promising’.

I Lucas [142] compares CCD, Box–Behnken, uni-
form shell, Hoke, Pesotchinsky and Box–Draper
designs, using the D-efficiency and G-efficiency
statistics.

I Montgomery and Evans [143] compare six second
order designs: (a) 32 factorial; (b) rotatable
orthogonal CCD; (c) rotatable uniform precision
CCD; (d) rotatable minimum bias CCD; (e) rotat-
able orthogonal hexagon; and (f) rotatable uniform
precision hexagon. Comparison criteria include
average response achievement and distance from
true optimum.

I Lucas [27] compares symmetric and asymmetric
composite and smallest composite designs for dif-
ferent numbers of factors using the D-efficiency
and G-efficiency statistics.

4.2. Recommendations for Metamodeling Uses

Most metamodeling applications are built around
creating low order polynomials using central com-
posite designs and least squares regression. The
popularity of this approach is due, at least in part,
to the maturity of RSM, its simplicity, and readily
accessible software tools. However, RSM breaks
down when there are many (greater than 10) factors
or highly nonlinear responses. Furthermore, there
are also dangers in applying RSM blindly in deter-
ministic applications, as discussed in Section 3.3.
Alternative approaches to metamodeling (see Section
4.1.1) address some of these limitations. Our recom-
mendations are:

I If many factors must be modeled in a determin-
istic application, neural networks may be the best
choice despite their tendency to be compu-
tationally expensive to create.

I If the underlying function to be modeled is deter-
ministic and highly nonlinear in a moderate num-
ber of factors (less than 50, say), then kriging may
be the best choice despite the added complexity.

I In deterministic applications with a few fairly well
behaved factors, another option for exploration is
using the standard RSM approach augmented by
a Taguchi outer (noise) array for the case in
which noise factors exist (robust design).

RSM/OA approach:the basic problem in applying
least-squares regression to deterministic applications
is the lack oferandom in Eq. (17). However, if some
input parameters in the computer analysis are classi-
fied as noise factors, and if these noise factors are
varied across an outer array for each setting of the
control factors, then essentially a series ofrepli-
cationsare generated to approximateerandom. This is
justified if it is reasonable to assume that, were the
experiments performed on an actual physical system,
the random error observed would have been due to
these noise factor fluctuations. Statistical testing of
model and parameter significance can then be perfor-
med, and models of both mean response and vari-
ability are created from the same set of experiments.
Further discussion and a preliminary investigation
into such an approach is given in Lewis [144].

5. Summary and Closing Remarks

In this paper, we survey some applications of stat-
istics in engineering design and have discussed the
concept ofmetamodeling, see Section 1 and Fig. 6.
However, applying these techniques to deterministic
applications in engineering design can cause problems,
see Sections 3.1 and 3.3. We present recommendations
for applying metamodeling techniques in Section 4,
but these recommendations are by no means com-
plete. Comprehensive comparisons of these tech-
niques must be performed; preliminary and ongoing
investigations into the use of kriging as an alterna-
tive metamodeling technique to response surfaces is
described in Simpsonet al. [145].

The difficulties of large problem size and non-
linearity are ever-present. In particular, an issue of
interest to us is theproblem of size[146]. As the
number of factors in the problem increases, the cost
associated with creating metamodels begins to out-
weigh the gains in efficiency. In addition, often
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screening is insufficient to reduce the problem to a
manageable size. This difficulty is compounded by
the multiple response problem– complex engineer-
ing design problems invariably include multiple
measure of performance (responses) to be modeled.
The screening process breaks down when attempting
to select the most important factors for more than
one response, since each response may require dif-
ferent important factors. The general question arising
from these problems, then, ishow can these
experimentation and metamodeling techniques be
used efficiently for larger problems (problems with
greater than 10 factors after screening)?One
approach is problem partitioning or decomposition.
Using these techniques, a complex problem may be
broken down into smaller problems allowing
efficient experimentation and metamodeling, which
again leads tocomprehensive and efficientexplo-
ration of a design space [15]. A significant literature
base exists of techniques for breaking a problem
into smaller problems; a good review of such
methods can be found in Lewis and Mistree [147].
Detailed reviews of multidisciplinary design
optimization approaches for formulating and concur-
rently solving decomposed problems are presented
in Sobiesczanski-Sobieski and Haftka [148] and
Crameret al. [149], and a comparison of some of
these approaches is given in Balling and Wilkin-
son [150].
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