
Engineering with Computers (2001) 17: 1–15
 2001 Springer-Verlag London Limited

Discrete Element Modelling on a Cluster of Workstations

J. W. Baugh Jr. and R. K. S. Konduri
Department of Civil Engineering, North Carolina State University, Raleigh, NC, USA

Abstract. We describe a distributed computing system for
discrete element modelling that has been designed for
loosely-coupled networks of workstations. The implementation
is based on DM2, a state-of-the-art discrete element model-
ling technique for simulating the behaviour of energetic
materials and modelling shock compaction phenomena. The
underlying computational approach is derived from particle
methods, where short-range interactions, both mechanical
and thermochemical, determine individual particle movement
and state. Using spatial decomposition, a client-server
software architecture distributes the computations and, at
the language level, Berkeley sockets enable communication
between conventional Unix processes on workstations con-
nected by an Ethernet. We evaluate the performance of the
system in terms of overall execution time and efficiency, and
develop a simple model of computational and communication
costs that enables us to predict its performance in other
contexts. We conclude that distributed implementations of
short-range particle methods can be very effective, even on
non-dedicated communication networks.

Keywords. Distributed computing; Particle methods;
Short-range interactions

1. Introduction

A new computational approach is emerging for
simulating the mechanical and thermochemical
behaviour of materials, with such diverse markets
and applications as pharmaceuticals, bulk chemicals,
oil exploration and environmental hazard mitigation.
Instead of relying on continuum models, particle
methods – as they are sometimes called – model the
interaction of atoms, molecules or grains, producing
macroscopic behaviour that is not easily captured,
if at all, by conventional means. Related but distinct
approaches are those with spatially discrete domains,

Correspondence and offprint requests to: Dr J. W. Baugh Jr,
Department of Civil Engineering, North Carolina State University,
Raleigh, NC 27695, USA

e.g. cellular automata methods such as lattice-Boltz-
man, in which particles reside only at discrete lat-
tice points.

Depending on the application, particle systems
may be simulated at various scales of time and
space. For example, inmolecular dynamicsappli-
cations, solids and liquids modelled at the level of
atoms and molecules can be simulated for picose-
conds of actual time [1]. At a coarser resolution,
mesoscalemodels of individual grains, crystals or
particles can be studied at the nanosecond scale,
allowing corroboration with experimental results [2].
Problems at still a larger scale have been simulated
using Discrete Element Methods(DEM), in which
test specimens are beginning to approach the size
of those routinely used in engineering experimen-
tation [3]. At the latter scales, particle methods will
have an increasingly important role, particularly for
phenomena that experience mixed regimes of behav-
iour, e.g. soils that transition from solid deformation
to granular flow. In geomechanics alone, they may
substantially improve our ability to predict the
occurrence of catastrophic landslides, or to deter-
mine the effect of seismic events on building struc-
tures.

While enabling the simulation of diverse phenom-
ena, particle methods have enormous computational
requirements, which are determined by the number
of particles in the simulation and the simulation
time. Developments in high performance computing,
however, have led to codes capable of simulating
realistic systems with hundreds of millions of par-
ticles. These research efforts have largely focused
on the development of algorithms for tightly-coupled
parallel machines and supercomputers.

This paper describes the development and per-
formance of a discrete element code that runs well
on a loosely-coupled cluster of workstations. The
implementation is based on DM2, a discrete element
technique developed at NCSU and Los Alamos
National Laboratory for modelling energetic materials

2 J. W. Baugh Jr and R. K. S. Konduri

at the mesoscale. Also described is a performance
model that allows us to predict the timing behaviour
of the code in different contexts, e.g. on high-end
networking hardware, or with a different communi-
cation strategy. We begin with some background
and related work before describing our programming
environment, sequential and distributed implemen-
tations, and performance model.

2. Background and Related Work

Research in particle methods has a long history,
with hundreds of references published by 1973 [4].
Work in molecular dynamics was reported as early
as 1959 [5], and engineering applications of discrete
element methods appeared as early as 1971 [6].
While early studies in DEM typically involved small
systems and focused on granular materials [7,8],
more recent efforts with improved algorithms and
modern computational resources have yielded larger
simulations and diverse applications, including
analysis of hydraulic problems [9], viscoelastic
behaviour of hot mix asphalt [10], and microscopic
modelling of soils [11].

Although the focus of this paper is on DEM, as
opposed to particle methods in general, many of the
underlying concepts, algorithms and representations
are similar. Here we introduce some of those compu-
tational and parallelisation issues, and then describe
the modelling capabilities of DM2.

2.1. Computational Approach

Given an ensemble ofn interacting particles, New-
ton’s equations of motion may be solved to deter-
mine particle trajectories, i.e.

mi

dvi

dt
= On

j

F(ri, rj)
dri

dt
= vi (1)

where mi, ri and vi are the mass, position and
velocity of particle i, respectively, andF(ri, rj) is
the pairwise force between particlesi and j, the
latter of which may be generalised ton-body interac-
tions; a similar relation holds for rotational motion.
In molecular dynamics simulations, interactions may
be governed by interatomic forces, such as the
well-known Lennard-Jones 12–6 potential, originally
proposed for liquid argon. For discrete element mod-
elling, interacting forces may be represented by
mechanical elements, e.g. damped springs in the
normal direction, springs in series with frictional
sliders, etc.

After an initialisation phase, the basic algorithm
consists of a repetition of the following steps:

(1) determine forces, e.g. interaction computations,
contact detection;

(2) integrate equations of motion to determine
updated positions, etc.;

(3) take measurements, e.g. aggregate properties
such as strain;

(4) increment time step.

Of these steps, the most computationally demanding
is the first. For problems involvinglong-range
forces, several approximate algorithms are available
for reducing the O(n2) computations required to
determine interaction forces, including hierarchical
methods, which areO(n log n) [12], and fast mul-
tiple methods, which areO(n) [13]. When particle
interaction is governed only byshort-range forces,
as is the case for the mesoscale and discrete element
models considered in this study, the necessary force
computations can be reduced with two techniques
that can be used alone or in combination:

I Neighbour lists[14]. When a particle is known
to interact only with particles within a radiusRc,
a neighbour list can be constructed for it that
includes all particles within a radiusRc 1 DR,
where DR is small and empirically determined.
Because particle movement is small between time
steps, this list can be used to determine neighbors
within Rc for several iterations, perhaps 10 or 20,
at which time the list is recomputed.

I Cell subdivision[15]. By subdividing the simul-
ation region into square- or cube-shaped cells, as
shown in Fig. 1, every particle can be assigned
to a unique cell based on its position. If the edge

Fig. 1. Cell subdivision.

3Discrete Element Modelling on a Cluster of Workstations

lengths of the cells,Lx andLy, exceedRc, a given
particle will interact with at most the particles in
its own cell or its surrounding cells. Such an
approach reduces the number of interaction calcu-
lations to O(n).

2.2. Parallelisation

Because of their computational requirements and
inherent parallelism, particle methods have received
considerable attention with respect to their im-
plementation on high performance computers [16].
Implementations and studies have been performed
on various architectures, including SIMD machines
such as the CM-5 [17] and MIMD machines with
dozens to thousands of processors [1,18].

Parallelisation of the steps described above typi-
cally centres on the first, since the others are either
trivial or trivially parallelised. This step, the determi-
nation of interaction forces, is often complicated by
the need for processor coordination, since some of
the necessary data may appear on other processors.
Plimpton [1] describes three approaches for its paral-
lelisation:

I Particle decomposition(or atom decomposition).
By assigning particles to processors, a subset
of force computations and position updates is
performed by each. Because a particle’s neighbour
may reside on another processor, an exchange of
data is necessary, although replication can be used
to perform these exchangesen masseat success-
ive time steps. While load balancing is not a
problem, communication isO(n), limiting the
number of processors that can be effectively
employed.

I Force decomposition. If particle decomposition is
viewed as a row-wise decomposition of then3n
matrix of interacting forces between particlesi
and j, force decomposition is a partitioning of
that matrix by blocks. Such an approach maintains
the load-balancing features of the prior approach,
while reducing communication cost toO(n/√N),
where N is the number of processors.

I Spatial decomposition. Space is subdivided across
processors so that each performs computations on
the particles in its own subregion. Because of
particle movement at each time step, some par-
ticles may move from one processor to another.
For some problems, a dynamic load-balancing
scheme may be required to maintain good per-
formance and the optimalO(n/N) communication
cost of the algorithm.

While general guidelines for selecting a decompo-
sition approach are beginning to emerge for some
architectures, variations in processor number and
characteristics, network topology, communication
latencies and bandwidth, memory hierarchies and the
problem domain characteristics themselves frustrate
attempts to make good,a priori design commit-
ments. In addition, the complexity of the structural
and bookkeeping operations required by an approach
and its innumerable variations make after-the-fact
changes difficult; as a result, it is rarely easy to
show that hardware is being used effectively.

2.3. Discrete Element Modelling at NCSU

Prior research at NCSU and Los Alamos National
Laboratory led by Horie [2,19] resulted in DM2

(Discrete Meso-Dynamic Modelling), a discrete
element code featuring

(1) a multi-physics capability to describe both
mechanical and thermochemical processes
including phase change and chemical reaction
at the meso-level;

(2) a multi-element representation of particles and
grains to deal with complex morphology and
large inelastic deformation, and

(3) a connectivity algorithm to deal with flaws,
voids, interfacial properties, and other micro-
structural heterogeneities.

DM2 has been successfully used to model a variety
of materials subjected to dynamic or quasi-static
loading at the meso-level. Examples are inert shock
response of HMX powder, chemical reaction in a
shear band, granular shear flow and shock com-
pression of polycrystalline copper.

Capabilities of DM2

Mechanical interactions consist of a radial force
based on the central potential, a central damping
force, dry friction, a tangential viscous force and
shear resistance. The central potential is represented
by such functions as the Lennard-Jones potential,
the Morse potential and a quadratic potential,
depending on the material under investigation.
Material parameters are evaluated by using Hugoniot
data for compression. In tension, the function is
supplemented by a temperature dependent yielding
function. Shear resistance is described by an elastic-
perfectly plastic model. The central damping force
is a linear function of the radial relative velocity,
and the damping coefficient a constant or function
of pressure and temperature. Dry friction is based

4 J. W. Baugh Jr and R. K. S. Konduri

on Coulomb’s law. Stress and strain in DM2 are
based on a single meso-element and its interactions
with neighbouring elements. Meso-level stress and
strain are defined at the centroid of an element, the
former being based on momentum balance, and the
latter on an average Eulerian strain using incremen-
tal displacements relative to neighbouring elements.

Thermochemical states are defined by several
parameters including temperature, pressure, compo-
sition and phase. The total temperature change of
an element consists of the change due to heat con-
duction and the energy dissipated by inelastic defor-
mation such as viscous damping and friction. Phase
transitions are currently limited to condensed phase.
Presently, no convecting gas phase is considered.
The transitions are assumed to be instantaneous, and
the threshold conditions are specified by a function
of pressure and temperature.

Thermochemical interactions are assumed to occur
only between contacting elements, and consist of
heat conduction and chemical reaction. The former
is based on Fourier’s law. The reaction model can
deal with both stoichiometric and non-stoichiometric
reactions. The current model conserves the number
of particles after the reaction.

3. Computing Environment

A distributed computing system consists of a collec-
tion of autonomous computers connected by an
interconnection network, and equipped with software
that enables them to coordinate activities and share
resources. Laptops, personal computers, high-end
engineering workstations and symmetric multipro-
cessors can all contribute in a heterogeneous, distrib-
uted computing environment. The growing power of
individual processors, coupled with the availability
of high-speed networks, is quickly making distrib-
uted computing a cost-effective alternative to super-
computers and special-purpose parallel computers
for solving large, computationally intense problems.

Anderson et al. [20] note that the case for workst-
ation clusters is stronger than ever, given (1) the
growing availability of switched networks that scale
well with the number of processors, (2) the extra-
ordinary performance of modern workstations, and
(3) the I/O bottleneck that makes ‘memory over the
network’ less costly than disk I/O. Our own studies
since the late 1980s have shown that distributed
solutions on non-dedicated, heterogeneous hardware
are a practical approach in such diverse application
areas as finite element analysis [21,22], vehicle rout-

ing and scheduling [23], and air quality optimisation
and management [24].

3.1. Software Architecture

The software architecture adopted in this study is
based on the client-server model, which is com-
monly used in network applications, such as those
for file transfers, remote logins and front ends for
shared or spooled resources. The basic idea in the
client-server model is to provide specialised servers
that are capable of performing parts of a larger
computational process together with a client that
uses them to solve the more general problem. Thus,
an efficient use of resources is achieved by hier-
archically decomposing problems into subproblems
that are distributed and solved concurrently.

Unlike that of peer-to-peer architectures, the
relationship between processes in the client-server
model is an asymmetric one: initiating interprocess
communication requires that processes know which
role they are to play, whether client or server, so
that they perform the appropriate actions. Aserver
is a process that, once invoked, waits to be contacted
by a client requesting service. Only when a client
requests a connection does a server become active.
After the server processes the request, it goes back
to sleep, waiting for another request to arrive. Ser-
vers that hand off requests by forking new threads
to service them are termedconcurrent, since they
can handle new requests before completing prior
ones. Servers that process requests one-at-a-time are
termed iterative, and are typically more appropriate
for high-performance applications.

A client is a process that, when invoked by the
user, decomposes the problem into parts and assigns
them to servers by first establishing a connection
and then sending its request. Data is communicated
by passing messages with non-blockingwrites and
blocking reads. That is, the sender proceeds after
writing without waiting for the receiver to get the
message, unlike the receiver which must wait until
it is received.

3.2. Program Development

The programs implemented in this study were
developed in the C programming language using
BSD Sockets (Berkeley Software Distribution) for
interprocessor communication. While numerous tools
and languages are available for distributed comput-
ing (e.g. PVM, MPI, ISIS and Linda), sockets offer
both flexibility and efficiency in developing distrib-

5Discrete Element Modelling on a Cluster of Workstations

uted computing solutions. In addition, sockets are
an accepted industry standard that are implemented
on a variety of platforms, and are inexpensive for
the application in terms of both memory and per-
formance.

For interprocessor communication both client and
server issuesocket() calls, as shown in Fig. 2. A
socket is an endpoint for communication, and during
creation the communication domain, type, and proto-
col are specified, e.g. AFFINET for the Internet
protocol and SOCKFSTREAM for reliable, connec-
tion-based streams. On the server side, a local
address and port are assigned to a socket using
bind(), which makes the socket visible. Then, a
listen() call indicates a willingness to accept
incoming connections, and connections are accepted
with accept(). On the client side, a connection with
the other socket is attempted withconnect(), which
specifies its address.

Once a connection is established between the
sockets, data can be transmitted by using the same

Fig. 2. Socket calls between client and server.

I/O system calls,read() and write(), that are used
for ordinary files. The communication isfull duplex,
meaning that each end can act as a sender or a
receiver. Complex structures can be communicated
over the network by marshalling and unmarshalling
data on the sending and receiving ends, respectively.
When no further communication is required, each
end of the socket connection is closed by the
respective process.

3.3. Computing and Network Hardware

The experiments we report were performed on a
cluster of Sun Ultra-10 Workstations with 128 MB
of RAM running Solaris 2.5 on a 10BaseT Ethernet
(10 Mbps). Ethernet (IEEE 802.3) is a broadcast bus
technology: hosts on the network share a single
communication link and data must be broadcast to
reach any other host. The destination host interface
then accepts packets addressed to it and filters the
rest.

The unit of transmission on an Ethernet is the
frame. The minimum size of a frame is 64 bytes
and the maximum 1500 bytes. Frames smaller than
64 bytes are padded while those larger than 1500
bytes are fragmented. The transmission of frames is
based on a distributed medium access control proto-
col referred to as CSMA/CD (Carrier Sense Multiple
Access with Collision Detection). Using CSMA/CD,
each host that has data to transmit listens to see if
the network is idle. If it is busy, it waits until it
becomes idle and then transmits the data. The host
continuously listens to the channel for collisions,
and abruptly stops transmission when they occur. It
then waits for a random amount of time determined
by a binary exponential backoff algorithm before
transmitting again.

The communication costs in sending data on an
Ethernet vary linearly with the length of message
sent. In our environment, experiments show these
costs for 2, 4 and 8 servers to be (Fig. 3):

T2
comm(x) = 3.6 × 10−6x + 3.3 × 10−3 (2)

T4
comm(x) = 7.3 × 10−6x + 4.1 × 10−3 (3)

T8
comm(x) = 14.6× 10−6x + 25.8× 10−3 (4)

wherex is the length of message in bytes andTcomm

is the communication time per cycle in seconds, a
cycle being the round-trip communication of a mess-
age from one processor (client) to 2, 4 or 8 pro-
cessors (servers) and back. Time per cycle is meas-
ured by timing two consecutive statements: awrite()
followed by aread() for the same length of message.

6 J. W. Baugh Jr and R. K. S. Konduri

Fig. 3. Communication costs on an Ethernet network.

This relationship is a characteristic of the network
used, in particular a 9-node subnet during moder-
ate use.

The relative costs of communication to compu-
tation in our environment are many orders of magni-
tude greater than those of switched networks and
tightly-coupled parallel machines. As the constant
terms show, the fixed charge for communication is
significant, especially when compared to the linear
terms. The ratio of times for transmitting a word of
data and performing a single floating point oper-
ation – a common measure of relative communi-
cation cost – is on the order of hundreds of thou-
sands; on architectures supporting fine-grained
parallelism this ratio is often evenly balanced.

These communication characteristics have important
implications for developing distributed systems,
which must be reasonably coarse grained, at least
on conventional networks. In particular, algorithms
should be designed to communicate perhaps larger,
but fewer, messages instead of several short mess-
ages. Thus, when possible, as much data as practical
should be packed into a buffer and sent as a sin-
gle message.

4. Sequential Implementation

Before describing the distributed implementation, in
this section we give a brief overview of enhance-
ments made to the sequential part of the code. The
original implementation of DM2 uses a neighbour
list algorithm to avoid recomputing particle neigh-
bours at each time step. In our implementation, cell
subdivision is combined with neighbour lists to
further improve performance, thereby reducing the
interaction calculations toO(n), as shown in Fig. 4.

The algorithm combining cell subdivision and
neighbour lists appears in Fig. 5. It begins by

Fig. 4. Performance of neighbour lists and cell subdivision algor-
ithms.

algorithm Sequential DM2

var
tmax, Dt % maximum simulation time, time step
dmax, dumax % current and cumulative maximum dis-

placement
threshold % displacement at which neighbors are

recalculated
begin

initialise cells
generate and assign particles to cells
determine neighbor lists
dumax← 0
for i ← 0 to tmax/Dt do

if dumax. threshold then
update neighbor lists
dumax← 0

endif
find linked and contact status of particles
calculate forces and integrate equations of motion
update positions and velocities of particles
reassign exiting particles to cells entered
determine maximum particle displacement, dmax
dumax← dumax+ dmax

endfor
end

Fig. 5. Implementation combining cell subdivision and neigh-
bour lists.

initialising the cell structure, and in doing so selects
cell dimensions so that they exceedRc 1 DR,
guaranteeing that a given particle interacts only with
those in the same or in surrounding cells. Particles
are then generated and assigned to cells, which are
organised in an array-like structure to allow constant
access time to neighbouring cells. Given cell dimen-
sions ofLx andLy, for example, a particle at position
(rx, ry) is assigned tocell[i][j] such thati = rx/Lx
and j = ry/Ly.

Using this cell structure, neighbour lists of par-
ticles are determined from adjacent cells once during
initialisation, and then intermittently in the iterative
part of the algorithm. When this should happen is
found by doing a little bookkeeping: at each time
step the maximum particle displacement (of all

7Discrete Element Modelling on a Cluster of Workstations

particles) is recorded asdmax and added to a run-
ning sum,dumax. Unlessdumaxexceeds athreshold
empirically determined byRc and the respective
particle radii, no new pairs of particles will begin
interacting, so the neighbour lists remain valid.

From neighbour lists, pairs of interacting particles
are determined at each time step, whether linked,
contacting, or both. Contacting particles may be
thought of as ‘touching’, i.e. the distance between
the center points of the particles does not exceed
the sum of their radii. Linked particles, on the other
hand, have a chemical bond that is determined not
only by their separation in the current time step,
but also by their state, whether linked or unlinked,
in the prior time step. That is, particles become
linked when their separation is small, and then stay
linked unless their separation exceeds a predefined
cutoff value.

After finding the interaction status of particles,
forces are then calculated, and the equations of
motion integrated using the leapfrog method, one of
the simplest numerical techniques. In this method,
velocities are evaluated midway between the instants
at which positions and accelerations are computed.
Higher order integration schemes may also be used,
but at the cost of additional storage – usually accel-
eration values retained from previous timestep(s) –
and only a minor amount of extra computation.
After positions and velocities have been updated,
particles leaving a given cell are reassigned to those
they enter.

5. Distributed Implementation

Further improvements to performance can be
obtained by distributing the computational workload
across multiple processors. Obstacles to the efficient
utilisation of those processors, however, generally
include parallelism and synchronisation overhead,
redundancy of computations, inherently sequential
sections, load imbalance and communication costs.
Of these, the latter two are of particular concern
here: because communication costs are likely to be
substantial, a spatial decomposition approach is used
to partition the computations. Unfortunately, such
an approach can lead to imbalances in loads as
particles migrate from processor to processor.

I Load balancing. The goal of load balancing is
simple: assign particles so that processor idle
time at synchronisation points is minimised. Using
approaches similar to those of finite difference
and finite element computations, discrete element

models can be decomposed so that processors
control either an approximately equal volume of
space or number of particles (Fig. 6). For rec-
tangular domains, we use a recursive bisection
technique that successively partitions the domain
into two equal regions of space with a cut in the
direction that minimises interface length, and
hence communication costs (since our network
topology is a simple bus). While such an approach
works well on the problems we have encountered,
a static decomposition cannot satisfactorily deal
with models that exhibit large particle movements.

I Communication costs. Granularity of a distrib-
uted algorithm refers to the relative amount of
computational work done between processor
synchronizations. For short-range interaction prob-
lems, the amount of work performed during a
single step, and hence between synchronisation
points, is much smaller than in the long-range
case; this means that, of the various particle
methods, discrete element problems can be the
most difficult to parallelise efficiently. Mitigating
these concerns to an extent is the observation
that the computation-to-communication ratio for
spatial decomposition grows withn, the number
of particles, asO(√n).

5.1. Algorithm

Observing that communication costs are a potential
concern, we set about to design and implement a
distributed system based on spatial decomposition
and a client-server architecture. The resulting
implementation can be characterised by the top-

Fig. 6. Domain decomposition.

8 J. W. Baugh Jr and R. K. S. Konduri

level flow chart that appears in Fig. 7. In this
implementation, servers perform the same tasks as
the sequential algorithm on the subdomains assigned
to them. Much of the bookkeeping and the overall
control, however, resides in the client process.

Before the computation begins, servers bind to a
socket and wait for a connection on a well-known
port. When the client is invoked, a connection is
established with the servers, and then the processes,
both client and server, read input data from a shared
file that contains basic geometric, material and pro-
cess control parameters. Based on the configuration
parameters in the input file, the client generates a
skeletal representation of the system being modelled
and determines the total number of cells in the
entire domain and the size of each cell. The skeletal
domain is then recursively bisected so that sub-
sequent communication is minimised and roughly
equal subdomains are assigned to each server. Also

Fig. 7. Top-level flowchart of distributed DM2 algorithm.

maintained on the client are structures that keep
track of server data, including socket and TCP/IP
information, coordinates of the inner and outer
boundaries, and a buffer containing particles to be
migrated to the server.

After reading the input file, servers receive their
assignments, which include an eight-element array
(four sides and four corners) that specifies which of
their boundaries interface with other subdomains.
Servers then generate their subdomains by following
the basic steps of the sequential algorithm described
earlier, i.e. by initialising cells, generating and
assigning particles to those cells, and determining
neighbour lists. Initial communication costs are
reduced by generating particles directly on their
respective servers. Servers perform the above steps
on cells in their assigned subdomain, making use
of the outer boundary cells that are mirrored from
other subdomains. The latter cells are ‘read-only’ in
the sense that they are merely used to compute
inter-particle forces on particles within the
assigned subdomain.

Once subdomains are generated, servers perform
a single integration step, which includes updating
neighbour lists if necessary, finding the linked and
contact status of particles, calculating forces and
integrating the equations of motion. The updated
positions and velocities of particles in the inner
boundary cells, which interact with particles in
‘neighbouring’ processors, are then communicated
to the client. Also communicated are the particles
exiting the subdomain, which must be migrated
to other processors. To reduce the effects of load
imbalances, the client issues aselect() system call
to read the data from servers as they become avail-
able instead of in a predefined order.

Two aspects of particle migration should be noted
here. First, because the linked status of particles
depends on their prior state, particles sent to other
processors must also include portions of their neigh-
bour lists. Secondly, to facilitate exchange, each
particle has associated with it two forms of identifi-
cation: a global id assigned by the client, and a
local index in a particle array assigned by the
server for efficient look up. When neighbour lists are
communicated, servers must convert local indices in
the neighbour list to globalids and back; this is
accomplished by maintaining a hash table to map
the global ids to indices; the reverse mapping is
straightforward, since particles ‘know’ their global
ids. The size of the hash table is determined at run
time based on the number of particles in the subdo-
main.

While servers clear their outer boundary cells, the

9Discrete Element Modelling on a Cluster of Workstations

client does some bookkeeping: particles needed by
a given server are collected in a buffer as they
come in, and are then transmitted. In Fig. 8, for
instance, a subset of the inner boundary cells from
subdomains 1, 3 and 4 is needed by subdomain 2
to form its (mirrored) outer boundary. Of course,
sending particles one-at-a-time is extremely inef-
ficient, as is apparent from the simple communi-
cation cost model shown earlier, and so the com-
munication of particles is always buffered by the
sender. Also communicated at pre-specified times-
teps, though not shown in the flowchart of Fig. 7,
are subdomain particle states of interest to the mod-
eller. These states are collected and compiled at the
end of the simulation for studying the evolution of
the system over time.

6. A Performance Model

Our implementation has been validated with a num-
ber of mesoscale models that have been well-studied
and themselves corroborated with experimental data
[2]. Before presenting the results of one such case,
here we describe a simple performance model of
our implementation that captures the predominant
computational and communication costs. The devel-
opment of such a model allows us to further validate
our implementation, in the sense that it can be
shown to respond to changes in model parameters
and size, for example, in a predictable manner. In
addition, the model allows us to assess the perform-
ance of the implementation in other (hypothetical)

Fig. 8. Cell information communicated between clients and ser-
vers.

scenarios, e.g. with faster communication networks
such as Gigabit Ethernet or with high-end servers.

To construct a performance model for discrete
element problems requires that certain simplifi-
cations be made. In particular, numerous parameters
affecting communication and computation in one
way or another cannot be determined without actu-
ally performing the simulation. Particles move
throughout the simulation causing variations in the
amount of computational work within cells, resulting
in load imbalances. Likewise, particle migration
across processors is onlyneed-predictable– the
communication is predictable at compile time, but
the actual number of particles communicated cannot
be known until run time. As a result, we choose to
make several approximations that tend to overesti-
mate to a small degree the predicted efficiency.

The performance model developed in this section
applies to our sequential and distributed implemen-
tations when used to simulate discrete element prob-
lems on rectangular domains. It approximates the
cost of computation and communication as a func-
tion of n, the number of particles in the simulation,
and uses empirical results of the setup described
earlier to determine constants. The basic para-
meters are:

s aspect ratio, width to height, of the domain,

dx, dy centre-to-centre particle spacing inx and

y directions,

Lx, Ly cell width and height, respectively.

Using these, cost functions are developed for the
sequential implementation, and for the distributed
implementation with 2, 4 and 8 servers.

6.1. Sequential Computation Costs

The basic algorithm uses neighbour lists and cell
subdivision to reduce the overall computation time,
which is a function of the number of cells into
which the domain is divided. Within each cell are
a number of particles that undergo movement during
the simulation.

If we assume a rectangular domain of particles
arranged in an orderly fashion, whether vertically
or diagonally, its layout can be viewed as an array
of rows and columns. The total number of particles,
n, therefore, is the product of the number of columns
of particles,nx, and the number of rows,ny, or

n = nxny (5)

The width, w, and height,h, of the domain, then,

10 J. W. Baugh Jr and R. K. S. Konduri

are approximately the product of the particle separ-
ation and number of particles

w = dxnx, h = dyny (6)

Given an aspect ratios of width to height, it follows
that the number of columns and rows of particles
is, respectively

nx = !s
dy

dx

În, ny =
1

!s
dy

dx

În (7)

If cell dimensionsLx and Ly are chosen so that they
evenly divide the width and height, the numbers of
cells in thex and y directions are

cx = w/Lx, cy = h/Ly (8)

and the total number of cells is

c = cxcy (9)

Given the total number of cells in terms ofn,
the cost of the overall computation can be determ-
ined. We know that the algorithm performsO(n2)
operations for then particles in a nine-cell window.
This computation is performed overc cells, so the
computation time is proportional to

c S9
n
cD2

(10)

If hardware, compiler, and other system performance
attributes are collected into a constantk, then the
total sequential computation time is

Tseq = kc Sn
cD2

= kn2/c (11)

Or, in terms of the basic model parameters

Tseq = k
LxLy

dxdy

n (12)

which, as an aside, shows that cell dimensions
should be chosen to be as small as possible. To
determinek, a representative discrete element prob-
lem with the following constants is chosen:dx =
0.04 cm, dy = 0.03464 cm, Lx = Ly = 0.121 cm.
Then, from experimentation within the environment
described in Section 3, the following is obtained:

Tseq = 0.3316n (in ms) (13)

Solving for k yields k = 0.0314, again, wherek is
some measure of processor and compiler perform-
ance.

6.2. Communication Costs

For the distributed implementation, communication
costs are proportional to the cumulative length of
the subdomain interfaces and the average particle
density of the cells along those interfaces. Because
of the rectangular structure of our problems, subdo-
main interfaces are fractions of either rows or col-
umns of cells, or possibly their combination. We
can approximate the total number of particlespx

that appear in a row of cells or the numberpy that
appear in a column as follows:

px = cx Sn
cD = Ly ! s

dxdy

În (14)

py = cy Sn
cD = Lx ! 1

sdxdy

În (15)

where the ration/c is the average number of par-
ticles per cell.

As noted earlier, domain decomposition is
accomplished by a recursive bisection technique in
which the aspect ratio of the domain determines
whether the cut is made vertically or horizontally.
For instance, if the aspect ratio exceeds one, the
cut minimising the interface length, and hence com-
munication costs, is a vertical one. Figure 9 shows
decomposition strategies for 2, 4 and 8 servers that
minimise the interface length for aspect ratios
greater than one. For the two server case, the num-
ber of particles to be transmitted for one of the
subdomains is simplypy. For the four server case,
that number grows on average to 3py/2 when the
aspect ratio exceeds 2, and (px 1 py)/2 otherwise.
For the eight server case, the number is 7py/4 when
the aspect ratio exceeds 4, and (3py 1 px)/4 other-
wise. Again, each of these expressions is the average

Fig. 9. Domain decomposition for various aspect ratios.

11Discrete Element Modelling on a Cluster of Workstations

number of particles transmitted for a single subdo-
main. Using the client-server model, as we have
done, each server both sends (inner) and receives
(outer) boundary particles. Therefore, combined with
the memory required to represent and transmit a
single particle, the round-trip communication model
shown earlier in Fig. 3 can be used to approximate
the total cost of communication.

6.3. Distributed Computation and
Communication Costs

Using the sequential computation and communi-
cation costs, we derive expressions for the distrib-
uted costs for 2, 4 and 8 servers when the aspect
ratio of the domain is unity or greater.

Beginning with communication costs, we make
use of the empirical results presented in Section
3.3 on Ethernet performance characteristics, where
round-trip cost is expressed as a linear function of
message size in bytes forN servers

TN
comm(x) = mNx + bN (16)

Those same costs can also be expressed in terms of
the number of particles communicated, since each
requires the same amount of memory, as

TN
comm(p) = mNpg + bN (17)

where the state of each particle is represented byg
bytes of information (88 bytes in ours).

At each time step, particles are transmitted from
each server to the client, and from the client back
to the servers. The server-to-client communication
includes particles that comprise the inner boundary
and those that have exited the spatial region assigned
to the server. The client-to-server communication
includes particles that comprise the outer boundary
and those that have entered the spatial region
assigned to the server. While we have quantified
the number of boundary particles above, the number
of migrating particles cannot be accurately esti-
mated. Hence, for the latter we include only the
constant term of the communication cost equation.

With respect to computational costs, if we assume
perfect load balancing, the total cost is simply
Tseq/N, whereN is the number of servers. Then, for
an aspect ratio of one or greater, the overall costs
for performing a distributed simulation can be
approximated as

T2
dist =

Tseq

2
+ m2pyg + 2b2 (18)

T4
dist =

Tseq

4
+ m4 min S3py

2
,
px + py

2 D g + 2b4 (19)

T8
dist =

Tseq

8
+ m8 min S7py

4
,
3py + px

4 D g + 2b8 (20)

As noted earlier, theTseq terms (computation) grow
as O(n) while the px and py terms (communication)
grow only asO(√n). These expressions include the
following approximations:

I The initial, structured arrangement of particles is
assumed constant, even though particles move
throughout the simulation, causing variations in
the amount of computational work within the
cells and hence load imbalances.

I The cost of communicating interface boundaries
is included, but not the time required to marshall
and unmarshall particle collections into buffers
before and after transmission.

I Only the constant ‘start-up’ term for communicat-
ing migrating particles is included, since it is
difficult to predict the linear term.

7. Timing Study

The overall performance of a computer code is best
gauged by actual timing measurements. These must
be made and interpreted with care, however, since
they not only depend upon the algorithms used, but
also on other factors, such as the underlying hard-
ware, effectiveness of the compiler, the efficiency
of library routines, and the manner in which
resources are allocated by the operating system, e.g.
paging in a virtual memory system. Also of concern
in our implementation, as we have seen, are com-
munication overheads in a distributed processing
environment.

7.1. Test Problem

Figure 10 depicts a plate impact problem in which
a solid nickel (Ni) flyer strikes a target plate of

Fig. 10. Plate impact problem.

12 J. W. Baugh Jr and R. K. S. Konduri

Fig. 11. Initial geometry.

nickel and aluminum (Ni 1 Al) in equal volumetric
fractions [25]. The flyer has an initial velocity of
400 m/s and the target is at rest. The thickness of
flyer and target are, respectively, 0.3 and 0.8 cm,
and the plates have a common width of 2.2 cm.

A discrete element representation of the problem
appears in Fig. 11, in which 1689 particles, aligned
on a diagonal, are used to represent the combined
plates. Particles have a radius of 0.02 cm with a
spacingdx of 0.04 cm anddy of 0.03464 cm. The
maximum interaction radiusRc is 0.1 cm, and the
neighbour interaction radiusRc 1 DR is chosen to
be 0.11 cm. Using a minimal cell size the total
number of cells is 171, withcx = 19 andcy = 9.

After 200 timesteps, the particle positions 5ms
after impact are shown in Fig. 12. Qualitatively, the
flyer and target have separated, and spallation has
occurred in the target plate. Additional details of
the simulation conducted with the original DM2

code, including velocity profiles and verification
with experimental data, can be found elsewhere [25].

7.2. Timing Results

Executing the small test problem above takes only
a minute or two on a single machine. However, our

Fig. 12. Geometry at 5ms.

Fig. 13. Execution time of sequential and distributed implemen-
tations.

interest in improving the performance of DM2 is so
we can simulate models with hundreds of thousands
of particles or more. To assess the performance of
the implementation, and to validate our performance
model, we have run numerous simulations on vari-
ous problems, and here present results that were
obtained on the test problem above.

Results were obtained by varying the number
servers and the number of particles in the simulation
while keeping constant the aspect ratio (which we
set to 1.3571 for the following). To obtain represen-
tative timings, in all cases we report an average
time per timestep, with the total time itself being
an average of at least three runs, which were typi-
cally very similar. Figure 13 shows the execution
time of several runs with different numbers of par-
ticles. Both the sequential and distributed implemen-
tations have linear performance, and as expected,
we see improvement by increasing the number of
servers that are used.

The speedup, or ratio of sequential to distributed
execution times, is shown in Fig. 14 for the same
runs, where the unadorned curves are from the
performance model previously derived. Looking first

Fig. 14. Speedup versus number of particles.

13Discrete Element Modelling on a Cluster of Workstations

Fig. 15. Efficiency versus number of particles.

at actual performance, we see that, as expected, the
speedup obtained on small problems is modest, but
on larger ones is quite impressive given the chal-
lenges of both problem and computing environment.
With respect to the problem, short-range interaction
models, as we have noted, are of finer granularity
than long-range ones. With respect to the environ-
ment, fine-to-medium grained parallelism can present
a challenge for high-latency networks, in this case
a 10 Mbps Ethernet. Looking at theoretical perform-
ance, we see, as expected, an over-estimate due
to several factors mentioned earlier, including load
imbalances and terms dropped from the communi-
cation cost model. Nevertheless, there is very good
qualitative agreement, and the quantitative agreement
is reasonable enough for making predictions about
performance.

The corresponding efficiency curve, the ratio of
speedup to the number of servers, is shown in Fig.
15. As predicted by the performance model, for a
fixed number of servers, the efficiency improves
with problem size since the computation cost grows
as O(n) and the communication cost grows only as
O(√n). However, for a fixed problem size, the use
of additional servers reduces overall efficiency, as
expected, and this is observed in Fig. 16.

Fig. 16. Ideal and observed speedups.

7.3. Effects of Changes to the Environment

The results presented above were obtained with a
client-server implementation on a cluster of Sun
Ultra-10 Workstations on a 10BaseT Ethernet. How
would the implementation fare in another setting?
Using our performance model, we show the effects
of several environment variations in Fig. 17, plotting
speedups for the eight-server case. First, note the
speedup predicted in the current environment. What
happens when, all other things being equal, com-
puters are upgraded and a factor of ten improvement
in processingspeed is obtained? The bottom curve
of the figure shows that the distributed implemen-
tation is of little if any use, and may actually be
worse than a sequential implementation. While
results will be obtained more quickly by upgrad-
ing computers, the inefficiency of the distributed
implementation makes it completely impractical.

Going in the other direction, we consider the
effect of reducing communication costs by switching
from a client-server model to apeer-to-peermodel.
By ‘peer-to-peer’ we mean a strategy in which
server processes communicate directly with each
other, eliminating the client as the middle-man.
Although somewhat more difficult to develop, a
good peer-to-peer implementation could reduce com-
munication costs by a half, thereby improving the
overall efficiency of the code.

The effect of a different improvement, a change
in the communication environment, can also esti-
mated. The 100BaseT standard (IEEE 802.3u), also
known as Fast Ethernet, might be used to improve
communication by approximately a factor of ten,
yielding very impressive speedups for even small
problems. Going one step further to Gigabit
Ethernet, the recently adopted 1000BaseT standard
(IEEE 802.3ab), would improve communication by

Fig. 17. Variations in architecture and hardware performance for
eight servers.

14 J. W. Baugh Jr and R. K. S. Konduri

approximately another factor of ten, resulting in a
near-perfect linear speedup for problems of any size.

8. Closure

This study shows that particle methods with short-
range interaction forces, some of the most difficult
to parallelise, can be implemented to execute
efficiently on stock network hardware. Our distrib-
uted implementation based on DM2, a discrete
element code originally developed at NCSU and
Los Alamos National Laboratory, obtains good
speedups with eight processors even on a conven-
tional, non-dedicated network of workstations. As
problem sizes get larger its performance improves
since the computation-to-communication ratio grows
with n, the number of particles, asO(√n). We have
used this implementation to simulate systems with
as many as 200,000 particles using eight processors.
Because the computation and storage requirements
increase only linearly with the number of particles,
it is apparent that improvements in computing power
will lead to substantially larger simulations based
on this technique in the future.

By developing a simple performance model, we
also show the effects of several environment changes
on the efficiency of our implementation. Although
our studies were performed on a relatively low-end
10BaseT Ethernet, we show that faster networks,
e.g. Fast or Gigabit Ethernet, or other technologies
such as ATM switches, are even more efficient, and
would enable a substantially larger number of ser-
vers to contribute effectively to solve large-scale
discrete element problems.

There are certainly opportunities for improving
our implementation. One of the most obvious is in
replacing the client-server model with peer-to-peer
communication, which would reduce communication
costs by as much as a factor of one half. Other
efficiency improvements, e.g. optimising particle
memory requirements and tuning communication
protocols, would also be of benefit. Finally, to
enhance usability, the implementation should provide
a simple recovery mechanism for better tolerating
hardware faults, and a dynamic load balancing
scheme for problems that experience large particle
movements.

Acknowledgements

The authors would like to thank Yasuyuki Horie and
Kazushige Yano of Los Alamos National Laboratory for

their help with discrete element modeling and the DM2

code.

References

1. Plimpton, S. (1995) Fast parallel algorithms for short-
range molecular dynamics. Journal of Computational
Physics, 117, 1–19

2. Tang, Z. P., Horie, Y., Psakhie, S. G. (1995) Discrete
meso-element modeling of shock processes in porous
materials. Vol. 1: Theory and model calculations.
Technical Report, North Carolina State University,
Raleigh, NC

3. Carrillo, A. R., Horner, D. A., Peters, J. F., West,
J. E. (1996) Design of a large scale discrete
element soil model for high performance computing
systems. Proceedings, Supercomputing ’96, IEEE
Computer Society Press, Washington, DC
(http://www.supercomp.org/sc96)

4. Hockney, R. W., Eastwood, J. W. (1988) Computer
Simulation Using Particles. Adam Hilger Publishing,
Philadelphia

5. Alder, B. J., Wainwright, T. E. (1959) Studies in
molecular dynamics I. General Method. Journal of
Chemical Physics, 31, 459–466

6. Cundall, P. A. (1971) A computer model for simulat-
ing progressive, large-scale movements in block rock
systems. Proceedings Symp. Int. Soc. Rock Mech.,
Nancy, 11, Art. 8

7. Christoffersen, J., Mehrabadl, M. M., Nemat-Nasser,
S. (1981). A micromechanical description of granular
material behavior. Journal of Applied Mechanics, 48,
339–344

8. Bathurst, R. J., Rothenburg, L. (1988) Micromechan-
ical aspects of isotropic granular assemblies with linear
contact interactions. Journal of Applied Mechanics,
15, 17–23

9. Zhang, R. (1993) Analysis of hydraulic problems using
the discrete element method. Master’s thesis, Colorado
School of Mines, Golden, CO

10. Meegoda, N. J., Chang, K. G. (1994) Modeling of
viscoelastic behavior of hot mix asphalt (HMA) using
discrete element method. In: Basham, K. D. (Editor),
Proceedings of the 3rd ASCE Materials Engineering
Conference, Infrastructure: New Materials and
Methods of Repair, San Diego, CA, 804–811

11. Meegoda, N. J., Washington, D. (1994) Massively
parallel computers for microscopic modeling of soils.
In: Siriwardane, H. J., Zaman, M. M. (Editors), Com-
puter Methods and Advances in Geomechanics, A. A.
Balkema Publishers, 617–622

12. Barnes, J. E., Hut, P. (1986). A hierarchicalO(n log n)
force-calculation algorithm. Nature, 324, 446–449

13. Greengard, L., Rokhlin, V. (1987). A fast algorithm
for particle simulations. Journal of Computational
Physics, 73, 325–348

14. Verlet, L. (1967) Computer experiments on classical
fluids: I. Thermodynamical properties of Lennard-
Jones molecules. Phys Rev, 159, 98–103

15. Hockney, R. W., Goel, S. P., Eastwood, J. W. (1974)
Quiet high-resolution computer models of a plasma.
Journal of Computational Physics, 14, 148–158

15Discrete Element Modelling on a Cluster of Workstations

16. Fox, G. et al. (1988) Solving Problems on Concurrent
Processors. Vol. 1, Prentice-Hall

17. Tamayo, P., Giles, R. (1992) A parallel scalable
approach to short-range molecular dynamics on the
CM-5. Proceedings, Supercomputing ’92, IEEE Press,
Washington, DC, 240

18. Pinches, M. R. S., Tildesley, D. J., Smith, W. (1991)
Large-scale molecular dynamics on parallel computers
using the link-cell algorithm. Molecular Simulation,
6, 51

19. Tang, Z. P., Horie, Y., Psakhie, S. G. (1997) Discrete
meso-element modeling of shock processes in pow-
ders. In: Davison, L., Horie, Y., and Shahinpor, M.
(Editors), High-Pressure Shock Compression of Solids
IV. Springer, New York, 143–176

20. Anderson, T. E., Culler, D. E., Patterson, D. A. (1995)
A Case for NOW (Networks of Workstations). IEEE
Micro, 15(1), 54–64

21. Baugh, J. W., Jr., Sharma, S. K. (1994) Evaluation

of distributed finite element algorithms on a workst-
ation network. Engineering with Computers, 10(1),
45–62

22. Chadha, H. S., Baugh, J. W., Jr. (1996) Network-
distributed finite element analysis. Advances in Engin-
eering Software, 25, 267–280

23. Baugh, J. W., Jr., Kakivaya, G. R., Stone, J. R.
(1998) Intractability of the dial-a-ride problem and
a multiobjective solution using simulated annealing.
Engineering Optimization, 30(2), 91–123

24. Loughlin, D. H., Ranjithan, S., Baugh, J. W., Jr., Brill,
E. D., Jr. (2000) Application of genetic algorithms for
the design of ozone control strategies. Journal of the
Air & Waste Management Association, in press

25. Yano, K., Schwarz, O. J., Tang, Z. P., Horie, Y.
(1996) Discrete meso-element modeling of shock pro-
cesses in porous materials. Vol. 2: User’s Manual for
the DM2 Code. Technical Report, North Carolina State
University, Raleigh, NC

