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Abstract. This paper deals with the first design phase of
three-dimensional speed reducers. Concepts to help designers
during the entry-level model definition are presented and,
more particularly, those related to the task of geometrical
synthesis. From these principles, a specific CAD tool has
been built and is also described. A rough model, called a
skeleton, is introduced to represent each conventional reduc-
ing stage category, thus enabling the automatic formation of
entire geometrical models of speed reducers. Shaft orien-
tations and positions are calculated from products of trans-
formation matrices, in the same way as for spatial kinematic
chain closure conventional problems. Optimisation techniques
are used to obtain a preliminary dimensioning of the struc-
ture. The numerical processing is achieved progressively in
three steps in order to improve the final convergence and,
if necessary, to enlighten further the designer on failure
origins within specification data. Three examples are given
to illustrate both the creation of the geometrical model and
the way results are obtained.

Keywords. 3D speed reducer design; Closed-loop
chain; Geometrical model optimisation; Mechanism
synthesis; Skeleton

1. Introduction

Most common power transmission lines encountered
in machines are one-degree-of-freedom mechanisms
built as a series of elementary stages, such as gear,
belt or chain stages, connected to each other by
intermediate shafts. Their main function is to trans-
mit a rotative movement from an input shaft to a
remote output shaft whose rotation speed is often
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quite small in comparison with that of the input.
These mechanical devices can be designed without
difficulty when input and output shafts are parallel
or on the same planar surface. Attention will be
focused here on cases where the output shaft must
take a complex spatial position with regard to the
input one, such devices being called three-
dimensional speed reducers (3D.S.R.). At least two
stages with non-parallel shafts, such as bevel or
worm gearing, must generally be used to obtain the
required output position. The design of these 3D
mechanisms leads consistently to synthesis problems
for the solution of which methods and assistance
tools are welcome.

The purpose of (3D.S.R.) preliminary design is to
establish an entry-level model of the device, which
specifies the composition of the mechanism and
gives starting values to positions and dimensions for
all main components such as shaft axes and gearing
wheels. This model, often represented by a structural
scheme with some dimensional data, is built from
the kinematic point of view, first considering the
geometrical aspects of the problem. It constitutes
the specification sheet of the next design phase,
which will take into account many other aspects in
a more detailed study of each device part.

The preliminary design process mentioned above
may be considered as the three phase process
presented in Fig. 1.

At the starting point, the main available specifi-
cations are the expected spatial positions of the
input and output shafts, the required speed ratio
and some other global characteristics. The first task
necessarily consists in defining the nature of all the
elementary reducing stages which will be serially
connected to form the transmission line (Phase 1).
A wide range of literature concerning the structural
synthesis of mechanisms is available [1–6]. Gener-
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Fig. 1. Preliminary design process of 3D speed reducers.

ally based on graph representation, methods have
been proposed essentially for the classification and
enumeration of mechanisms according to kinematic
structures. Buchsbaum and Freudenstein [2] and
Ravisankar and Mruthyunjaya [5] applied such
methods to gear transmission and differential drives.
Unfortunately, these methods do not apply to practi-
cal cases where a3D.S.R.. architecture fulfilling
given specifications is to be found. Usually, the task
of structural synthesis is rather carried out using the
designer’s skills and knowledge. In any case, the
final design choice takes the form of an ordered set
of elementary stages, but without the guarantee that
this choice will be appropriate nor optimal.

Afterwards, the definition of an entry-level model
for a 3D.S.R.consists of:

I searching for the main dimensions of structure
components, i.e. searching for a closed spatial
chain running from the input to the output pos-
ition and respecting the structural characteristics
of each selected elementary stage;

I under different constraints such as:
– obtaining the required speed ratio;
– avoiding part interference;
– using realistic wheel dimensions (taking into

consideration the main conventional design cri-
teria: contact stress, fatigue life, proportion
ratios $).

The whole problem is relatively cumbersome, and
there is little chance of succeeding in attempts to
solve it directly, especially as the existence of a
closed geometry is uncertain. A more suitable way
to solve this problem is to divide the resolution into
two phases.

Thus, the design process first continues with a
preliminary task of geometrical synthesis (Phase 2),
intended merely to find a closed geometric chain.
If this search fails, the previous choice (i.e. an
ordered set of stages) has to be reconsidered. If it
succeeds, an initial geometrical model is obtained,
and the process may continue using this model as
a starting point. The last step is a full synthesis
dealing with the complete problem (Phase 3).

In this paper, attention will only be focused on
the task of preliminary geometrical synthesis, and
particularly on Phase 2. A software tool which has
been developed in order to help the designer build
3D.S.R.initial geometrical models is presented. The
main difficulty has been to find a formulation which
is general enough to allow the automatic processing
of all power transmission lines, with any number
and any nature of stages. This obstacle has been
overcome by transforming the problem into a con-
ventional closed spatial chain synthesis. This trans-
formation is based on the use of filar representations
of elementary stages, called stageskeletons, and
which contain only the data necessary to build the
model.

Many studies are available concerning closed spa-
tial chain analysis or synthesis. Algebraic methods
have been applied to various space bar-linkages
made from rotational, spherical or prismatic joints,
such as the RGGR mechanism studies presented
by Shigley and Uicker [7] or by So¨ylemez and
Freudenstein [8]. Analytical approaches, character-
ised by the search for mechanism closed positions
from matrix loop equations, have been initiated by
Denavit and Hartenberg [9], then widely used,
especially in the robotics field. These latter appear
to be perfectly suited to our problem, because they
offer the means of constructing a model by standard
unit association. The relevant literature provides sev-
eral methods of formulating spatial loop equations
[10]. In our case of a simple closed-loop chain,
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Denavit and Hartenberg’s notations [11] have
seemed the most appropriate because of their sim-
plicity.

Using transformation matrix association, it thus
became possible to build automatically a geometrical
model for any3D.S.R.Such a model being usually
redundant, nonlinear optimisation techniques have
been chosen to determine the geometrical parameters
that minimise the device overall dimensions.

2. Classification of the Reducer
Elementary Stages

Let us begin with the presentation of the most
common elementary stages which can be encoun-
tered in power transmission lines. To prepare the
following developments, stages are classified accord-
ing to their general geometrical structure. Figures 2
and 3 emphasise two main stage categories:

I Stages with non-concurrent shafts. The most com-
mon values of the angle defined in Fig. 2 from
k¢ to u¢ and measured in the (i¢, j¢, k¢) direct ordinate
system, are 0°, 90°, 180° and 270°. This category
includes stages with parallel shafts either on
opposite sides (w = 0°) or on the same side

Fig. 2. Stages with non-concurrent shafts.

Fig. 3. Stages with concurrent shafts.

(w = 180°), the associated elementary mechanisms
being: external/external and external/internal cyl-
indrical gearing; belt-pulley transmission; chain
transmission. Some stages with non-parallel, non-
concurrent shafts, such as worm gearing, crossed-
axis helical gearing and hypoı¨d gearing, are also
part of this class, with generallyw = 90° or
w = 270°.

I Stages with concurrent shafts. When the angle
w, defined in Fig. 3, equals 0° or 180°, input and
output shafts are coaxial. Some epicyclic trains
and specific devices such as the harmonic drive
joint are concerned. Other possible devices are
bevel gearing (the two usual configurations shown
in Fig. 3 square withw = 90°, but provide opposite
senses of output rotation) and Cardan joint (under
certain conditions).

The diagrams on the right of Figs 2 and 3 are
called the ‘skeletons’ of the stages. These linear
structures will be used later to construct the geo-
metrical model of 3D speed reducers. Their main
role is to represent the stage spatial architecture.
Dimensions used to mark these architectures are
only general:

I the input shaft lengthL;
I the distancea between input and output axis;
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I the anglew between both axes.

There is no length associated with the output
shafts in order to decrease the parameter number.
At this wide abstraction level, this length will be
included in the input shaft length of the next stage.

3. Problem Setting

The task of preliminary geometrical synthesis
requires only the following initial specifications:

I the nature of the successive stages which will
constitute the power transmission line. It is
assumed this preliminary choice will not necessar-
ily lead to a feasible solution;

I a coordinate systemR0 = (O0, X¢0, Y¢0, Z¢0) which
defines the input shaft position. Actually, only
O0, the shaft starting point, andZ¢0, the shaft
orientation, are related to the practical problem.
X¢0 and Y¢0 are just required for the calculations;

I a coordinate systemRs = (Os, X¢ s, Y¢s, Z¢s) which
defines the output shaft position:Os is the shaft
terminal point andZ¢s the axis orientation;

I the volume within which all the reducer compo-
nents must be contained, the most simple case
being a parallelepiped defined by two opposite
points Pm and PM, relatively to the global co-
ordinate systemRg = (Og, X¢g, Y¢g, Z¢g);

I the objective function the geometrical structure
has to optimise. Hereafter it is considered that
the overall dimensions of the reducer must be
minimal.

Geometrical specifications are illustrated in Fig. 4.

Fig. 4. Geometrical specifications.

4. Towards a Closed Chain Synthesis
Problem

To illustrate our purpose in this section, the example
of a three stage3D.S.R. made of two successive
bevel gearing stages, followed by a cylindrical gear-
ing, as shown in Fig. 5(a), is considered.

The first level dimensional synthesis problem to
be solved consists in determining all the intermediate
shaft spatial positions and all the stage general
dimensions (i.e. those presented in stage skeletons).
The nature of this problem is not the one tradition-
ally encountered in the field of kinematics, as the
motion transformation law is not the aim of our
study. Each stage is homokinetic, so the overall
linkage is also homokinetic.

All input, intermediate and output shafts are
linked by a rotational joint to the housing, so their
axes are fixed in space and there is no other motion
than the rotations about these axes. The problem

Fig. 5. Problem transformations.
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under study is not influenced by these rotations,
which may be ignored. In this case, all shafts may
be considered as rigid bodies completely linked to
the housing. Moreover, each stage may be replaced
by its associated skeleton. This constitutes a first
transformation of the problem leading to the overall
skeleton of the3D.S.R.illustrated in Fig. 5(b).

In order to search for the best positions of all
intermediate shafts and the best general dimensions
of all stages, some structural constraints may be
artificially relaxed. All intermediate shafts are liber-
ated from the housing, and joints are added in such
a way that the search becomes possible:

I a prismatic jointP is introduced wherever a vari-
able length appears in the skeleton. It gives the
possibility of simulating modifications in the
reducer geometry by extension or compression of
the associated dimension. A final prismatic joint
is added onto the output axis to model the output
shaft length which has not been represented
within any stage skeleton;

I a rotational jointR is introduced at each extremity
of the 3D.S.R.and between two successive stages.
It represents the possibility of modifying the
reducer geometry by rotating one stage with
respect to the previous one around their common
linking shaft.

In such a way, the relative position of the different
stage elements is preserved, so the geometrical archi-
tecture of each stage is not affected by the trans-
formation. For instance, all anglesw remain
unchanged. Figure 5(c) illustrates this second and
last transformation of the problem. The initial prob-
lem has become theRPRPRPPPRstudy, which
belongs to the well-known class of closed chain
synthesis problems.

5. The mDH Notations

The system obtained from the transformation
presented above is considered as being composed
of NJ joints and (NJ11) links, links (O) and (NJ)
belonging to the same fixed base. The ‘modified
Denavit–Hartenberg’s’ notations (mDH) proposed by
Khalil and Kleinfinger [12] are such that:

I Joint Jj connects link (j 2 1) and link (j);
I A coordinate frameRj is assigned fixed with

respect to link (j);
I The axis of jointJj is supposed to lie alongZ¢ j;
I The X¢ j−1 axis is defined asX¢ j21 = Z¢ j21 ` Z¢ j.

Four parameters define the relative positions of
two successive co-ordinate systems (see Fig. 6):

Fig. 6. mDH notations.

I aj angle betweenZ¢ j21 and Z¢ j about X¢ j21;
I dj distance betweenOj21 and Vj;
I uj angle betweenX¢ j21 and X¢ j about Z¢ j;
I rj distance betweenVj and Oj.

The variable associated with jointJj, denoted by
qj, is uj if Jj is rotational or rj if Jj is prismatic.
Hence,

qj = uj · (1 − sj) + rj · sj (1)

where sj = 0 if Jj is rotational and sj = 1 if Jj

is prismatic.
The transformation matrix which defines the frame

Rj with respect to frameRj21 is equal to

[T] j
j−1 = 3

cosuj −sinuj 0 dj

cosaj sinuj cosaj cosuj −sinaj −rj sinaj

sinaj sinuj sinaj cosuj cosaj rj cosaj

0 0 0 1

4
(2)

Simple-closed chains are such that

[T]NJ
0 = [T]1

0 . [T]2
1 ... .[T]NJ

NJ−1 (3)

where the right member represents the successive
changes among the links connected by joints, and
the left member is the closure transformation
between co-ordinate systemsR0 and RNJ defined in
the same fixed base.

6. Elementary Geometrical Models
According to Stage Categories

The aim being to build a tool based on standard
unit manipulation, a pre-definite geometrical model
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Fig. 7. Geometrical model for non concurrent shaft stages.

is associated with each stage category. This defi-
nition is done in accordance with the principles of
Section 4. A prismatic joint takes the place of each
variable length. A rotational joint is added at the
beginning of the chain. Figures 7 and 8 give the
two elementary geometrical models, each one being
assigned to its respective stage category. The last
vector prefigures the first link direction of the next
joint. Tables of parameters are drawn up using the
mDH notations.

Fig. 8. Geometrical model for concurrent shaft stages.

7. Automatic Construction of the
Geometrical Model Associated with a
3DSR Problem

It is easy to deal with the case of any reducer made
of serially connected speed reducing stages. The
associated geometrical model may be obtained in
this way:

I The first elementary stage table is set and com-
pleted with parametersa1 = d1 = 0 considering
that the first jointJ1 is a rotational one.

I The next stage table is added like a puzzle piece
at the end of the previous table, and so on up to
the last stage.

I Two columns are added at the end in order to
materialise a prismatic joint representing the pos-
sible length variation of the output shaft, and a
rotational joint representing the possible rotation
of the structure about the output axis.

Let us consider the example of a three stages
3D.S.R.whose constitution is:

I two successive worm gearing stages withw = 90°;
I an external/external cylindrical gearing stage with

shafts on opposite sides (w = 0°).

Figure 9(a) shows the diagram of the reducer
given in an arbitrary starting position. Figure 9(b)
illustrates the whole geometrical model which can
be automatically generated, and Fig. 9(c) is the asso-
ciated parameter table.

8. Expression of the Optimisation
Problem

8.1. Problem Setting

Let us consider a3D.S.R.whose model is composed
of NJ prismatic or rotational joints. These joints are
characterised by variablesqj (j = 1 $ NJ) which
must take values such as the output shaft satisfies
the imposed position and orientation. This is the
problem, often carried out in robotics [10], of solv-
ing the inverse geometrical model of a manipulating
arm. Two main difficulties have been encountered.

First, the model is usually redundant: the variable
number is higher or equal to the closure equation
number for reducers of more than two stages. As a
consequence, the number of solutions will often be
infinite. To choose from among these solutions, it
will be necessary to search for the one which
optimises a certain criterion. Secondly, constraints
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Fig. 9. 3D.S.R.example and its whole geometrical model.

concerning the overall dimension must be respected:
the entire skeleton must lay inside the envelope
formerly specified. As the skeleton is a succession
of segments connecting pointsOj, all these points
must be included within the envelope (this is true
only for convex envelopes). Consequently, there are
six inequality constraints for each pointOj, because
each co-ordinate must be inside an interval.

So an optimising method has to be found to solve
the inverse geometrical problem. The solution will
have to minimise a criterion, and to respect con-
straints concerning the overall dimensions.

8.2. Choice of the Optimisation Criterion

The criterion must be geometrical because the prob-
lem is treated from a geometrical point of view.
For instance, the overall dimensions of the whole
reducer may be minimised. The following function
F is proposed:

F(q1, $ , qNJ) = ONJ

j=1

sj · qj (4)

This function is the sum of the lengths of the
prismatic joints. Minimising F is equivalent to
imagining a rubber band that would run along all
the prismatic joints, and would try to compress
them. This prevents the skeleton from deviating
from a hypothetical axis joiningO0 to Os.

8.3. Equality Constraints

Equality constraints are used to ensure that the
output shaft respects the required orientation and
position. According to the presence ofNJ joints in
the geometrical model, the closure equation takes
the following form.

[T]0
g . [T]1

0 . [T]2
1. $ [T]NJ−1

NJ−2 . [T]NJ
NJ−1 = [T]s

g (5)

where [T]0
g is the transformation matrix fromRg

(global co-ordinate system) toR0 (input co-
ordinate system);
[T] j

j−1 is the transformation matrix defined
by Eq. (2) for each jointj;
[T]s

g is the transformation matrix fromRg to
Rs (required output co-ordinate system).

The matrix equality of Eq. (5) has a geometrical
signification, considering each column separately
as follows.

1st column→ X¢ NJ = X¢ s (6)

2nd column→ Y¢NJ = Y¢s (7)

3rd column→ Z¢NJ = Z¢s (8)

4th column→ O¢ NJ = O¢ s (9)

This leads to 12 scalar relationships which how-
ever are not independent from each other. To
decrease as far as possible the number of equality
constraints to be processed, the closure chain
expression will be reduced to only six independent
scalar relationships by considering the last but one
link system, instead of the last one. Only the follow-
ing constraints will be used:

I Three orientation constraints:
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Z¢NJ−1 = Z¢s → 5
Ge1 = xZNJ−1

− xZs
= 0

Ge2 = yZNJ−1
− yZs

= 0

Ge3 = zZNJ−1
− zZs

= 0

(10)

I Three position constraints:

ONJ−1 = Os → 5
Ge4 = 1 − xONJ−1

/xOs
= 0

Ge5 = 1 − yONJ−1
/yOs

= 0

Ge6 = 1 − zONJ−1
/zOs

= 0

(11)

where the different components are considered in
the co-ordinate systemRg. Constraints are expressed
in a non-dimensional way for best optimisation
efficiency.

The simplification of the closure expression is
made possible thanks to the particular properties of
the last rotational jointJNJ:

aNJ = dNJ = rNJ = 0 (12)

The associated transformation matrix is

[T]NJ
NJ−1 = 3

cosqNJ −sin qNJ 0 0

sin qNJ cosqNJ 0 0

0 0 1 0

0 0 0 1
4

from which it can be concluded that

Z¢NJ−1 = ZNJ andONJ−1 = ONJ (14)

Therefore,Z¢NJ−1 andONJ−1 can replaceZ¢ NJ and
ONJ in the initial closure Eqs (8) and (9). Moreover,
there is no need to impose orientation conditions on
vectors X¢NJ−1 andY¢NJ−1, because it is certain that a
qNJ value (rotation aboutZ¢NJ−1 = Z¢NJ = Z¢S) will
always be available to transform these vectors into
the requiredX¢S and Y¢S vectors. The only alteration
this simplification introduces is that the last
rotational joint variableqNJ does not appear in the
closure formulation any more, and its calculus is
skipped. This can be considered as an advantage,
since it decreases the size of the problem. It remains
possible to deduce, if necessary,qNJ value from the
other variables after the problem has been solved.

In practice,Z¢NJ−1 andONJ−1 components are calcu-
lated for current values ofqj (j = 1 $ (NJ −
1)) by processing numerically the product of the
successive basic change matrices:

[T]NJ−1
g = [T]0

g · PNJ−1

j=1

[T] j
j−1 (15)

8.4. Inequality Constraints

Inequality constraints (16) force pointsOj to stay
within the envelope:

5
xm # xOj

# xM

ym # yOj
# yM

zm # zOj
# zM

⇔ 5
1 − xOj

/xm # 0 and xOj
/xM − 1 # 0

1 − yOj
/ym # 0 and yOj

/yM − 1 # 0

1 − zOj
/zm # 0 and zOj

/zM − 1 # 0

(16)

where:

I [xm, xM], [ym, yM] and [zm, zM] are the intervals
which define the envelope in the coordinate sys-
tem Rg. It must be carefully chosen for having
non null values ofxm, xM, ym, yM, zm, zM, thus
avoiding divisions by zero in Eq. (16);

I xOj
, yOj

, zOj
are the co-ordinates of pointOj in Rg.

They are located on the fourth column of the
intermediate change matrix [T] j

g = [T] 0
g . [T] 1

0 $

[T] j
j−1.

9. Solving the Optimisation Problem

9.1 Algorithm Refinements

The problem had to be enhanced to obtain valid
initial conditions. In fact, since arbitrary initial
values are given to variablesqj at the outset, equality
constraints are false, hence a low convergence. The
closure equation of the reducer must be satisfied
above all. So, to find good initial values, two pre-
liminary optimisation steps are achieved. Figure 10
sums up the process.

It can be easily shown thatZ¢NJ−1 components are
only dependent on the angular variables (not on
those of length). For instance, in the example of
Section 7, the literal development of orientation
constraints yields

5
−sin q1sin q4 = xZS

cosq1sin q4 = yZS

cosq4 = zZS

(17)

where q1 and q4 are two angular variables.
So, a preliminary optimisation may be done by

making only (qal, . . .qak) angular variables vary and
minimising a penalty function which represents the
violation of the three orientation constraints related
to Eq. (10):

Fpa(qa1, $ qak) = O3
i=1

(Gei(q1, $ qNJ−1))2 (18)
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Fig. 10. The three-step solving process.

From this improved starting point, the closed
position is calculated minimising the lack of closure.
This approach is not far from that presented by
Hall, Root and Sandgren [14]. The entire set of
variables and all six closure constraints are con-
sidered now as

Fp(q1, $ qNJ−1) = O6
i=1

(Gei(q1, $ qNJ−1))2 (19)

Then, optimising the whole problem can be pro-
cessed. Starting from a configuration where the skel-
eton is already closed, this last step progressively
alters the dimensions of this skeleton to inscribe it
within the envelope, and to compact it as much as
possible. All the constraints can be initially violated
without compromising final convergence.

9.2. Computer Implementation

From the previously described concepts, software
was implemented in plain ANSI C. The algorithm
is based on theB.F.G.S.method (Broydon–Fletcher–
Goldfarb–Shanno) from the Fortran optimisation
library D.O.T. [13]. A Graphical User Interface
(GUI) was added for convenience, and implemented

in Tcl/Tk. From a practical point of view, the notion
of steps is transparent for the user: he just has to
fill the blank fields in the user interface, select
other advanced options if necessary, and start the
optimisation process (Fig. 11). Data to be input are
the nature of the stages, initial dimensions of the
skeleton, optimisation method and some other tech-
nical parameters.

Then, results can be obtained in two forms:

I an exhaustive file of numerical data (vector of
solutions, values of constraints and optimum func-
tion, number of iterations . . .);

I a 3D model of the skeleton with an associated
3D animation file showing the skeleton retraction
during its optimisation. User can replay each of
the previously calculated iteration and, moreover,
can rotate and zoom the model at a given iteration
(cf. iteration 1431 in Fig. 11) for best viewing
particular configurations.

10. First Example

The example already introduced in Section 7 is
resumed below with the following complementary
specifications:

P Envelope xm = ym = zm = 100 mm
xm = ym = zm = 1100 mm

P Input shaft O0 = (600,600,100)
X¢0 = (1, 0, 0)
Z¢0 = (0, 0, 1)

P Output shaft Os = (1100, 1100, 1100)
Z¢s = (1/√3, 1/√3, 1/√3)

Co-ordinates are given in the general co-ordinate
systemRg. Upper and lower bounds have to be set
for length variables. The upper boundary is taken
as equal to the envelope diagonal length. The lower
boundary is arbitrarily set toLmin = 200 mm here-
after. In a more detailed approach, each lower
boundary could be chosen separately according to
the nature of the variable (shaft length or distance
between shafts) and to technological considerations
such as minimum tooth number, minimum gearing
modulus, etc.

The initial position, illustrated in Fig. 12(a), is
deliberately taken a long away from the optimum
to illustrate the algorithm efficiency. Initial values
of qj are provided in Table 1. The first step predeter-
mines new values for angular variables:

{ q1,q4,q7} = {2.36rad, 5.33rad, 1.57rad} (20)

Note that q7 remains unchanged. This is quite
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Fig. 11. The graphical user interface provided.

normal, since the last cylindrical gearing stage has
parallel shafts and so does not introduce any vari-
ation of the terminal shaft direction. Equation (17)
confirms this property, showing thatq7 does not
appear inZ¢NJ21 component expression.

The second step is intended to find values that
verify the closure equation. Its duration is about 1
second with a Pentium Pro 233 Mhz. The penalty
objective function is less than 10213, giving proof
that the preliminary closure task is working well.
The skeleton has the configuration shown on
Fig. 12(b). The objective function is then
F = 2081 mm.

The third step can be run now to compress the
skeleton, and to obtain, in less than 1 second, what
is represented in Fig. 12(c). The objective function
has decreased toF = 1930 mm.

As for any numerical calculation method running
from an arbitrary point, the influence of the starting
point has to be analysed. By making the starting
point vary, only one other solution can be found
for q1 and q4 by the first preliminary step:

{ q1,q4,q7} = {5.50rad, 0.95rad, 1.57rad} (21)

This second solution in fact represents a dual
geometrical disposition of the first one, as illustrated
in Fig. 13. Note that it can be easily verified that
q1 and q4 values given in Eqs (20) and (21) fit the
whole solutions of Eq. (22) following from Eq. (17):

5−sin q1 sin q4 = 1/√3

cosq1 sin q4 = 1/√3

cosq4 = 1/√3

(22)

The geometry obtained from this point is shown
in Fig. 14, leading toF = 2344 mm. This second
configuration is a local optimum, when the previous
one is the global optimum.

11. Second Example

The three stage3D.S.R. defined below is con-
sidered as:

I a worm gearing stage withw = 90°;
I an external/external cylindrical gearing stage with

shafts on opposite sides (w = 0°);
I a worm gearing stage withw = 90°.

Figure 15 illustrates the general architecture of the
reducer. Note that it represents a variant of the
previous example, the two last stages having been
exchanged. The geometrical specifications are taken
as identical to those of Section 10.

Angular variable values satisfying the three orien-
tation equality constraints are found without dif-
ficulty. When the starting point varies,q1 takes
either the value 3p/2 or the value 5p/2, when q4
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Fig. 12. Towards the first example global optimum.

Table 1. Numerical values associated with the 1st example

Initial (a) Step 1 Step 2 (b) Step 3 (c)

q1 (rad) 4.71 2.36 2.36 2.36
q2 (mm) 400 541 248
q3 (mm) 400 421 200
q4 (rad) 4.71 5.33 5.33 5.33
q5 (mm) 200 205 200
q6 (mm) 200 209 200
q7 (rad) 1.57 1.57 1.57 2.11
q8 (mm) 200 247 420
q9 (mm) 200 205 234
q10 (mm) 200 252 428
F (mm) 2081 1930

Fig. 13. Two dual geometrical configurations.

and q7 always take different values. This typically
characterises the existence of an infinity of solutions.

The second step is now to determine values which
have to verify the six closure equality constraints.
However, in this case, the optimisation algorithm
fails in its search from various starting points.
Figure 16 shows an example among the different
results which could be obtained: output orientation
is correct, but not output position. This seems to
indicate the impossibility of fulfilling the specifi-
cations with the considered structure.

To confirm the validity of this conclusion, literal
expressions of the six equality constraints associated
with the geometrical model in use are developed
below. Equations (23) and (24), respectively, rep-
resent orientation and position constraints:
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Fig. 14. First example local optimum.

Fig. 15. Second example general architecture.

Fig. 16. Example of a closure failure.

5
s1s4c7 + s1c4s7 = 1/√3

−c1s4c7 − c1c4s7 = 1/√3

−c4c7 + s4s7 = 1/√3

(23)

5
(s1s4c7 + s1c4s7)q10 + (s1c4c7 − s1s4s7)q9

−c1q8 − s1c4q6 − c1q5 + s1q3 = 1100

−(c1s4c7 + c1c4s7)q10 + (c1s4s7 − c1c4c7)q9

−s1q8 + c1c4q6 − s1q5 − c1q3 = 1100

(s4s7 − c4c7)q10 + (c4s7 + s4c7)q9 − s4q6 + q2 = 1100

(24)

where si and ci represents respectively sinqi and
cos qi. Equation (23) may be simplified as follows:

5−sin q1sin(p + q4 + q7) = 1/√3

cosq1sin(p + q4 + q7) = 1/√3

cos(p + q4 + q7) = 1/√3

(25)

Equation (25) is similar to Eq. (22). This proves
the existence of an infinity of solutions for the
angular variables. According to Eqs (20) and (21),
they are such that

{ q1, (p + q4 + q7)} = {2.36rad, 5.33rad} (26)

(q1, (p + q4 + q7)} = {5.50rad, 0.95rad} (27)

Making some substitutions between Eqs (23) and
(24), the following relation may be deduced:

q8 + q5 = 0 ⇔ O3O5 + O6O8 = 0 (Fig. 16)
(28)

This relation cannot be satisfied, since both vari-
ablesq5 and q8 are supposed to be strictly positive.
This confirms the impossibility of closing the chain.

This example illustrates the interest of the prelimi-
nary optimisation steps: they achieve a better con-
finement of the failure location, and then they help
the analyst who will have to imagine modifications
for his specification data. In that case, if the output
orientation must be preserved, the output point pos-
ition has to be modified. The designer can try to
find a more appropriate position forOs before calling
the current reducer architecture into question.

12. Third Example

A five stage3D.S.R.example is now presented to
show the algorithm’s behaviour with a larger number
of variables. This example has deliberately been
chosen so that the optimum can be verified from
direct human reasoning. The3D.S.R.is made of:

I an external/external cylindrical gearing stage with
shafts on opposite sides (w = 0°);
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I a bevel gearing stage withw = 45°;
I an external/external cylindrical gearing stage with

shafts on opposite sides (w = 0°);
I two external/external cylindrical gearing stages

with shafts on the same side (w = 180°).

Figure 17 gives a rough sketch of the reducer
under study. Other specifications are (in the general
co-ordinate systemRg:

I Envelope xm = ym = zm = 100 mm
xM = 600 mm
yM = zM = 1100 mm

I Input shaft O0 = (350,300,100)
X¢0 = (1,0,0)
Z¢0 = (0,0,1)

I Output shaft Os = (350,1100,1100)
Z¢s = (0,1/√2, 1/√2)

The starting point is shown in Fig. 18(a).
Figures 18(b) and 18(c) present the configuration
obtained after a few seconds (about five seconds).
The objective function isF = 2448.5 mm. Shafts of
the three last stages are perfectly arranged in an
equilateral triangle with sides ofLmin (Fig. 18(c)).
This disposition, which seems fairly obvious when
proposed by the algorithm, was not so easy to
imagine by direct thinking. A designer would be
naturally inclined to dispose all shafts in a single
planar surface.

Note that for this example, there is an infinity of
optimal solutions:

I points O7 to O14 can be translated alongZ¢s direc-
tion,

I points O8 to O13 can be rotated about the axis
(OsZ¢s).

without changing the optimum value of functionF.

Fig. 17. Third example general architecture.

Fig. 18. Third example initial and final configurations.

This only appears from the numerical results when
the analyst varies the starting point. The next design
phase has to be able to model and exploit this
vagueness.
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13. Conclusion

The principles for a preliminary design CAD tool
have been presented. This mechanism synthesis tool
is specifically dedicated to help designers create 3D
speed reducer (3DSR) structures.

The new concept of mechanismskeleton was
introduced to represent and position in space the
main geometrical characteristics of any 3D trans-
mission mechanism. A formulation using the well-
known mDH notation was then presented and
applied to basic standard reducer stages to create a
skeleton database. Finally, an assembly method was
described for automatic construction of the skeleton
associated with any complex 3D power trans-
mission line.

These concepts were associated with matrix loop
formulation, and proved to be extremely useful for
solving the general speed reducer best 3D geometry
problem. It was expressed as an optimisation prob-
lem where the overall dimensions of the reducer
should be minimised (‘rubber band’ function) under
two types of constraints: equality constraints for
closure conditions; and inequality constraints for
keeping the skeleton inside a given envelope.

Some particular dispositions have been taken to
improve the performance of the solving process, and
the help offered to the designer:

I expression of the closure chain equation has been
reduced to only six scalar relations, decreasing
the number of equality constraints to be pro-
cessed, and thus facilitating the work of the opti-
mizer;

I two preliminary optimisation phases have been
added at the beginning to obtain progressively
consistent initial values and, should the occasion
arise, to enlighten the designer about the causes
of failure when the structure under study appears
to be inappropriate for the specification data.

Software was implemented to show the method
advantages. Thanks to a powerful optimisation tool,
3D CAD software and a user-friendly graphical
interface, the designer has the opportunity to perform
a rough feasibility analysis on any type of 3DSR.

This approach is quite general; it may be extended
either to tree-structured power transmission lines,
such as drilling machines with multiple spindles, or
to any device whose architecture can be represented
by filar structure at the early stage of design.
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