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Abstract. The Gibbard-Satterthwaite Theorem on the manipulability of social-
choice rules assumes resoluteness: there are no ties, no multi-member choice
sets. Generalizations based on a familiar lottery idea allow ties but assume
perfectly shared probabilistic beliefs about their resolution. We prove a more
straightforward generalization that assumes almost no limit on ties or beliefs
about them.

Introduction

The social-choice procedures found in practice all allow strategic manipula-
tion, the pro®table misrepresentation of someone's preference, as when a voter
pivotal under plurality rule votes for his second-favorite of three candidates
because his favorite would not win anyway. The Gibbard-Satterthwaite
Theorem (GS) is often said to show that manipulability is inescapable.1
It does not. Take a social choice function that picks one alternative
C�P1; . . . ;Pn� from a ®xed set A of three or more, given any orderings Pi of A

by n individuals i. Assuming that C can pick any x A A (Citizens' Sovereignty)
and thwart any i (Nondictatorship), GS says C must be manipulable. Re-
markable for the sweep of those two assumptions, GS also assumes resolute-

ness: unlike ordinary voting rules, C always picks single members of A, not
subsets, leaving no room for ties. Ties may be rare, but GS assumes they are

We thank P. Ordeshook, T. Palfrey, C. Plott, J. Schummer, and M. van Hees for
comments and especially S. Ching and L. Zhou for locating an error in an earlier ver-
sion. T. Schwartz thanks the UCLA Senate for ®nancial support.
1 Independently proved by Gibbard (1973) and Satterthwaite (1975).



impossible, not rare, leaving open the possibility that some reasonable proce-
dures escape manipulability by allowing rare ties. True, resolute C might
combine a nonresolute C 0 with a tie-break rule: ties do get resolved. Often,
however, we cannot predict how. That dulls the bite of GS by opening the
possibility that those who can manipulate do not know they can, even if they
know all preferences. Often, moreover, the tie-break rule is normatively arbi-
trary or otherwise uninteresting. Then the procedure we care about is not C

but C 0, of which GS says nothing.
So let C pick subsets of A, not necessarily singletons. Then C is manipu-

lable if two conditions are met by some P1; . . . ;Pn, i, and sets X and Y: (1) A
solo change in Pi changes C�P1; . . . ;Pn� from X to Y. (2) It is possible for i,
with true preference ordering Pi, to pro®t from this change. What does (2)
mean? Since Pi orders alternatives, not sets of them, we cannot have YPiX .
But since manipulability requires only the possibility of pro®table misrepre-
sentation, it is enough that a Y-to-X preference be ``compatible'' with Pi.
What does that mean?

Some answers have spawned manipulability theorems that allow ties but
otherwise assume much more than GS.2 Zeckhauser (1973), Gibbard (1977),
and Feldman (1980) base GS-like theorems on another answer: socially cho-
sen along with X is a single X-lottery (a lottery with support X ) and likewise
Y, and some utility representative of Pi gives the latter lottery a greater
expected utility than the former. Then, however, i might manipulate though
X � Y : he might change the lottery but not the set. Then, moreover, all indi-
viduals must see the same X- and Y-lotteries, sharing beliefs about tie resolu-
tion. That is plausible if ties are resolved by chance, but often they are not.
For example, in 1824 the U.S. House of Representatives resolved a presi-
dential-election tie, and the outcome surprised some voters more than others.
If, as in that case, the C of interest is part of a longer procedure whose later
steps resolve its ties, participants may well have diverse beliefs about
later outcomes.

2 GaÈrdenfors (1976), Kelly (1977), and BarberaÂ (1977a,b) construe (2) to mean that a
Y-to-X preference is compelled by Pi ± as, e.g., ``xPi y'' compels ``i prefers fxg to fx; yg
and fx; yg to fyg.'' But GaÈrdenfors assumes ``democratic'' conditions (anonymity,
neutrality, Condorcet); BarberaÂ (a), strict monotonicity; BarberaÂ (b), acyclicity of strict
social preference; and Kelly, transitivity. Also BarberaÂ (b) and Kelly let the feasible set
vary: manipulability is not proved for an arbitrary but ®xed set. Feldman (1979) and
MacIntyre and Pattanaik (1981) o¨er results in a similar vein.

Pattanaik (1978) takes (2) to mean that yPix when y is the Pi-worst member of Y
and x that of X. This is less demanding than it looks, as in e¨ect our M= -Lemma (1)
below shows. But Pattanaik uses strong democratic conditions and lets the feasible set
vary.

BarberaÂ, Sonnenschein, and Zhou (1991) let individuals order sets of alternatives,
restricted by a ``separability'' condition but still including, e.g., fxgPifygPifx; yg.
Schwartz (1982) restricts preferences between sets to avoid such anomalies. But he uses
a host of opaque preferential axioms, one found questionable by Martin van Hees
(personal communication), and he too lets the feasible set vary.
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Manipulability is little a¨ected by ties or beliefs about them. For we can
generalize GS by allowing almost unlimited ties and, when (1) holds, counting
C as manipulable only if a Y-to-X preference would be Pi-compatible what-

ever i's relevant beliefs happened to be: for every X-lottery and every Y-lottery,
some utility representative of Pi gives the latter lottery a greater expected
utility than the former ± now impossible if X � Y . Beyond that we require
linear Pi (no two alternatives at the same level), countable C�P1; . . . ;Pn�, and
this residuum of resoluteness: there is no tie if everyone professes the same
ordering with (say) x ®rst, y second, and there is still no tie if one i moves y
above x.

2 Theorem

Formally, the theorem is about an integer n, set A, and function C. Denote
1; 2; . . . ; n by i; j, elements of A by x, y, z, nonempty countable subsets of A by
X,Y. A pro®le is an ordered n-tuple of linear orderings of A (asymmetric,
transitive, connected in A), denoted P � �P1; . . . ;Pn�, P 0 � �P 01; . . . ;P 0n�, etc.
An i-variant of P is any P 0 with P 0j � P j for all j 0 i. An X-lottery is any
l : X ! �0; 1� with

P
x AX l�x� � 1. A representative of Pi in X is any u : X !

R with u�x� > u�y� , xPi y for all x; y A X .

Theorem. Assuming that jAjV 3 and that C turns every P into a nonempty

countable C�P�JA, four conditions are inconsistent:

M= For no P, i, and i-variant P 0 of P is this true: for every C�P�-lottery l and

every C�P 0�-lottery l 0, some representative u of Pi in C�P�WC�P 0� hasP
x AC�P 0� l 0�x�u�x� >Px AC�P� l�x�u�x� (Nonmanipulability).

CS For all x, some P has x A C�P� (Citizens' Sovereignty).

D= No i is such that, for all x and P, fxg � C�P� if x is atop Pi (Non-

dictatorship).

RR If all Pj0i are the same, with x ®rst and y second, and if Pi is either the

same as them or else the same but with y ®rst and x second, then C�P� is a

singleton (Residual Resoluteness).

Every condition of nonmanipulability rests on a test of manipulability. The
stronger the test, the weaker the condition ± and the stronger any theorem like
ours. M= 's test follows the colon and begins with three quanti®ers: ElEl 0bu.
The nonmanipulability condition of Zeckhauser (1973), Gibbard (1977), and
Feldman (1980) weakens that test, strengthening M= , by weakening the uni-
versal quanti®cation to an instance of it: for us manipulability requires that a
certain relation hold for every pair of lotteries with supports C�P� and C�P 0�,
but for them the relation need hold only for one pair, socially chosen along
with C�P� and C�P 0�. An even stronger nonmanipulability condition weakens
the ``all'' of our test to ``some,'' ElEl 0bu to blbl 0bu. But that condition is
preposterously strong: it counts C as manipulable so long as C�P� � C�P 0�
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and x0 y (whence xPi y or yPix) for some x and y therein.3 Instead of
weakening ElEl 0bu, one might strengthen it to buElEl 0 or even EuElEl 0. But
that makes M= so weak that our conditions are all satis®ed when n � jAj � 3
and C picks just the Condorcet winner when there is one but otherwise all of
A.4

Drop resoluteness and you allow two versions each of Citizens' Sover-
eignty and Nondictatorship, ours and these:

CS� For all x, some P has fxg � C�P�.
D=� No i is such that, for all x and P, x A C�P� if x is atop Pi.

Obviously CS and D= are weaker.
RR is quite restrictive if n � 2, but otherwise we can imagine no objection.

Zeckhauser (1973), Gibbard (1977), and Feldman (1980) do not assume even
that much resoluteness, but Zeckhauser adds ex ante Pareto optimality, Gib-
bard bans random dictators and Feldman dual dictators, and all three assume
commonly perceived lotteries ± uniform ones in Feldman's case. We can
avoid those extra assumptions and still drop RR by strengthening CS and D=
to CS� and D=�.5 We cannot strengthen CS alone because, for ®nite A, our
remaining conditions would then be met by C�P�1 fx j x is atop P1 or P2g,
nor D= alone because, for ®nite A and subset B such that jBjV 2 and
jAnBjV 2, our remaining conditions would then be met by C�P�1 fx j x is
atop P1 in B or atop P2 in AnBg. A fortiori we cannot simply drop RR.
However, CS� obviously incorporates a degree of resoluteness, and so, more
subtly, does D=�: it bans those exceedingly irresolute procedures that always
pick every alternative ranked ®rst by anyone. We gladly add a separate bit of
resoluteness as the price of keeping our other conditions as few, as weak, and
as free of implicit resoluteness as possible.

3 Proof

Gibbard and Satterthwaite prove their theorem by de®ning a ``social prefer-
ence'' function that must meet Arrow's (1963) inconsistent conditions if C

3 In e¨ect, Ching and Zhou (1998) also have blbl 0bu, but they ingeniously avoid the
anomalous consequence by following blbl 0 with an added constraint on l and l 0:
those lotteries come from some one lottery on A, l by conditioning on C�P�, l 0 by
conditioning on C�P 0�. That is weaker than the Zeckhauser-Gibbard-Feldman (ZGF)
test when C�P� and C�P 0� are disjoint because the constraint is then vacuous, stronger
when they are identical because, unlike the ZGF test, it bans manipulability in that
case. So the Ching-Zhou test neither implies nor follows from ZGF's. Obviously it is
much weaker than ours, making their nonmanipulability condition much stronger: for
us manipulability requires that a certain relation hold for every pair of lotteries, but for
them the relation need hold only for one pair, suitably constrained. (That allows them
to drop RR in their theorem.)
4 We thank an anonymous referee for that example.
5 We used RR only to prove Topset and B= , of Section 2 below, where CS� and D=�
would su½ce. The inconsistency of M= with these stronger conditions is proved in an
earlier version of this paper, Duggan and Schwartz (1993).
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meets theirs. Resoluteness helps by erasing ``social indi¨erence,'' social-
preference gaps. We likewise exploit a variant of Arrow; it uses transitivity of
social preference but not of indi¨erence, now unerasable.

Call X a top set in P if xPi y for all i, all x A X , and all y B X . Call P 0 an
xy-twin of P if xP 0i y, xPi y for all i. De®ne function F (our ``social prefer-
ence'' function) from all pro®les P to relations F�P�JA2:

xF�P�y iff x0 y and fxg � C�P 0� for every
xy-twin P 0 of P with top set fx; yg:

It follows that F turns every P into an asymmetric F�P�JA2 (Asymmetry, or
S=), and xF �P�y) xF�P 0�y whenever P 0 is an xy-twin of P (Independence of
Irrelevant Alternatives, or IIA).

To the assumptions of the theorem, add M= , CS, D= , and RR. We shall de-
duce a contradiction by way of six consequences. The ®rst alone makes use of
M= .

M= -Lemma. If P 0 is an i-variant of P and x A C�P 0�, then

(1) x or some P 0i -worse y belongs to C�P�, and

(2) x or some Pi-better y belongs to C�P�.
Proof. Let l be any C�P�-lottery and l 0 any C�P 0�-lottery. If (1) is false then
zP 0i x for all z A C�P�, and some representative u of P 0i in C�P�WC�P 0� must
make u�x� low enough that

P
z AC�P� l�z�u�z� >Pz AC�P 0� l 0�z�u�z�, contrary

to M= . Or if (2) is false then xPiz for all z A C�P�, and some representative u of
Pi in C�P�WC�P 0� must make u�x� great enough that

P
z AC�P 0� l 0�z�u�z� >P

z AC�P� l�z�u�z�, again contrary to M= .

Topset. If X is a top set in P then C�P�JX .

Proof. Suppose not; say y A C�P�nX . Take any x A X and construct Px so all
Px

i are the same with x ®rst and something second. By CS, x A C�P�� for some
P�. Change P� to Px one i at a time. Since x is atop every Px

i , each P�i -to-Px
i

change keeps x in the choice set (value of C) by M= -Lemma (2). So x A C�Px�,
whence fxg � C�Px� by RR. Now starting from P, a P1-to-Px

1 change keeps y

in the choice set or includes some P1-worse y 0, by M= -Lemma (1). Either way,
since X is a top set in P, the new choice set contains some z B X . Repeating
this argument nÿ 1 times, we have z A C�Px� � fxg for some z B X , impos-
sible since x A X .

Dominance. If C�P� � fxg and x0 y then xF �P�y.

Proof. Suppose not: C�P 0�0 fxg for some xy-twin P 0 of P with top set fx; yg.
Change P 0 to P one i at a time. Some ith change must change the choice set
from some Y 0 fxg to fxg. Say x0 z A Y . By M= -Lemma (1), z or some P 0i -
worse z 0 must belong to fxg, so x � z 0 and zP 0i x. Since fx; yg is a top set in P 0,
z � yP 0i x by Topset. But by M= -Lemma (2), y or some Pi-better y 0 belongs to
fxg0 fyg, so y 0 � xPi y, impossible since yP 0i x and P 0 is an xy-twin of P.
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3-Undomination: If x A C�P� and fx; y; zg is a 3-member top set in P, then not
yF�P�x.

Proof. Change P to Pxy by moving z just below x and y in every ordering,
leaving all else the same. For every i, if xPi y then x is atop P

xy
i , so the Pi-

to-Pxy
i change keeps x in the choice set by M= -Lemma (2). And if yPix then

M= -Lemma (1) implies that x or some Pi-worse w belongs to the choice set.
But since fx; y; zg remains a top set, such a w must be z by Topset, so
P

xy
i � Pi and x again remains in the choice set. Hence, x A C�Pxy�0 fyg. But

Pxy is an xy-twin of P with top set fx; yg, so not yF �P�x.

Unanimity (U): If xPi y for all i then xF �P�y.

Proof. If P 0 is any xy-twin of P with top set fx; yg then fxg too is a top set in
P 0, so C�P 0� � fxg by Topset; i.e., xF �P�y.

Nonblocker (B= ): No i has this property: for all x, y, P, if xPi y but yPjx for all

j 0 i then not yF �P�x.

Proof. Take any i. By D= , for some P, x, and y, x is atop Pi but x0 y A C�P�.
Make P 0 so P 0i has x ®rst and y second and every P 0j0i is the same but with y

®rst and x second. Each Pj0i-to-P 0j0i change keeps y in the choice set by
M= -Lemma (2). And the Pi-to-P 0i change then puts y or some Pi-worse z0 x

in the new choice set by M= -Lemma (1). Since C�P 0�J fx; yg by Topset,
y A C�P 0�. So C�P 0� � fyg by RR, so yF�P 0�x by Dominance: i lacks the
property.

Transitivity (T): If xF �P�yF �P�z then xF �P�z.

Proof. Let P 0 be an xy-, yz-, and xz-twin of P with top set fx; y; zg. Then
C�P 0�J fx; y; zg by Topset, and xF �P 0�yF �P 0�z by IIA. So C�P 0� � fxg by
3-Undomination, whence xF �P 0�z by Dominance, and thus xF �P�z by IIA.

Contradiction: Elsewhere it has been proved that jAjV 3, S= IIA, U, B= , and T

are inconsistent.6

4 Relaxations

We allowed diverse beliefs, but only up to a point: given P, di¨erent individ-
uals might see di¨erent lotteries, but C�P� is the support set for all of them.
However, a close reading of the proof of M= -Lemma shows we could have
relaxed M= by allowing di¨erent individuals to see di¨erent support sets ± to
give positive probabilities to di¨erent alternatives ± within limits. Letting l
and l 0 denote arbitrary lotteries with support X ;X 0JA, M= amounts to the
following:

6 Mas-Colell and Sonnenschein (1972), Fishburn (1973 : 128), Schwartz (1986 : 59).
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For no P, i, and i-variant P 0 of P is this true: for every l and every l 0 with
�X ;X 0� � �C�P�;C�P 0��, some representative u of Pi in X WX 0 hasP

x AX 0 l
0�x�u�x� >Px AX l�x�u�x�.

To relax M= as a whole, we relax ``�X ;X 0� � �C�P�;C�P 0��'' to this: if either
some element of C�P� is Pi-worse than every element of C�P 0� or some ele-
ment of C�P 0� is Pi-better than every element of C�P�, then either some ele-
ment of X is Pi-worse than every element of X 0 or some element of X 0 is Pi-
better than every element of X. Far from assuming �X ;X 0� � �C�P�;C�P 0��,
we no longer assume any connection at all between subjective support sets X

and X 0 and objective choice sets C�P� and C�P 0� except in this special case:
C�P 0� is either maximin or maximax better than C�P� according to Pi. Even
then not much of a connection is assumed, merely that X 0 is better than X in
one of those two ways ± not necessarily the same way.

This relaxation lets us drop another assumption. We left the cardinality of
A unrestricted but assumed that choice sets are countable. Drop that as-
sumption and M= -Lemma is blocked: any lottery over uncountable C�P 0� gives
probability zero to some members, possibly x. But all we really need is that
support sets be countable. If choice sets do not have to be support sets, they do
not have to be countable.

We can also drop countability by dropping M= and assuming M= -Lemma.
This nonmanipulability condition captures the idea that a Y-to-X preference is
compatible with Pi at least when an extreme optimist or pessimist with pref-
erence Pi would prefer Y to X ± when some y A Y is Pi-better than all x A X

or some x A X is Pi-worse than all y A Y .7 Our proof of M= -Lemma gave an
expected-utility rationale for that condition, but it could stand alone just as
well. In fact, under the assumption of countable choice sets used to prove M= -
Lemma, the two nonmanipulability conditions are equivalent.8

Another relaxation of M= worth investigating allows manipulations that
contract C�P� while still forbidding all others. The idea is that if C�P� com-
prises welfare optima when P1; . . . ;Pn are true preferences then any contrac-
tion of C�P� still ensures an optimal choice. If this relaxation of M= is inade-
quate for a similar result (our proof of Dominance made use of the ban on
contractive manipulations), a stronger condition that rules out a sequential
form of manipulation merits consideration. Let x B C�P� and suppose a series
of manipulations, one by i, has shrunk C�P� to C�P 0�, and i now adds x to
C�P 0� by changing P 0i . By standard criteria, that change is not a manipulation
unless it is P 0i -pro®table. But even if it is not, a stronger condition could
properly ban it if it were pro®table according to i's original Pi.

D= is so weak it is no restriction at all unless C is resolute, for it follows

7 Pattanaik's (1978) maximin condition (note 2) is the pessimism half of M= -Lemma.
But optimism is no less plausible, and as our theorem shows, the combination of the
two obviates any need for Pattanaik's strong democracy conditions.
8 M= -Lemma is one half of that equivalence. The other is easily veri®ed and probably
well-known. A proof may be obtained from the authors.
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from ``jC�P�j0 1 for some P.'' But CS harbors hidden strength: it makes ev-
ery x A A a feasible alternative, yet we assumed C de®ned for orderings of A,
implying that C does not depend on preferences for infeasible alternatives.
That was needless. Let AJB and rede®ne ``pro®le'' so each Pi orders B, not
just A. Now C can depend on orderings of infeasible alternatives, those in
BnA: maybe they are there to infer preference intensities. But the proof is still
good: M= e¨ectively makes C independent of infeasible alternatives.

What about RR? Without some limit on ties, all our conditions are met by
C�P�1A. True, RR bans more than that: it requires one-member choice sets
in special cases. But we cannot allow even two-member sets in those cases
because, for ®nite A, C�P�1 fxjx is atop P1 or P2g would then meet our
conditions. For the same reason we cannot relax RR by limiting it to cases
where all P j are the same.

5 Conclusion

Gibbard and Satterthwaite found strategic manipulability to be inescapable in
the universe of resoluteness, of agreement and certainty about ®nal outcomes
(conditional on preferences). Zeckhauser, Gibbard, and Feldman enlarged the
known universe of manipulability to encompass uncertainty, but still no dis-
agreement: everyone assigns probabilities to ®nal outcomes, but all make the
same assignment. Our even larger universe accommodates considerable dis-
agreement: all individuals assign positive probabilities to the same outcomes
(relaxable, as shown in Section 4), but beyond that they can di¨er as much as
you please in the probabilities they assign.
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