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Abstract. We suggest a nucleotide substitution model
that takes correlation between base-paired nucleotides
into account. The model includes the estimation of the
transition–transversion ratio and allows inference of the
shape parameter of a discrete gamma distribution to in-
clude rate heterogeneity. A Cox-test statistic, applied to
a diatom ribosomal RNA alignment, shows that the sug-
gested correlation model explains evolution of the stem
region better than usual independence models. More-
over, the Cox-test procedure is extended to shed some
light upon the problem of assigning helical regions in a
secondary structure based alignment. This approach pro-
vides an estimate of the percentage of stem positions that
do not appear to be correlated.
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Introduction

Most methods of inferring phylogenetic relationships
from sequence data are based on models of sequence
evolution most prominently expressed in maximum-
likelihood approaches (Felsenstein 1981) or in distance

correction methods (Jukes and Cantor 1969; Kimura
1980; Tavare´ 1986; Tamura and Nei 1993; Yang 1994a;
Zharkikh 1994). The definition of a model usually re-
quires some assumptions about the evolutionary process.
Typically it is assumed that nucleotide sites evolved in-
dependently of each other. This assumption is clearly
violated for sequences that display a distinct secondary
structure, e.g., ribosomal RNA (rRNA) or transfer RNA.
Nucleotides in the stem regions of these molecules ob-
viously do not evolve independently of their base-pairing
counterparts. Consequently, there have been several at-
tempts to incorporate dependencies induced by base-
pairing into a Markov model of sequence evolution
(Schöniger and von Haeseler 1994; Tillier 1994; Muse
1995; Rzhetsky 1995; Tillier and Collins 1995, 1998).
However, only the model by Rzhetsky (1995) accounts
for rate heterogeneity among base-paired nucleotides. In
this paper we suggest a slightly modified version of our
previous model (Scho¨niger and von Haeseler 1994) that
encompasses the Hasegawa–Kishino–Yano model (Ha-
segawa et al. 1985) as a special case. The current imple-
mentation of the model in the PUZZLE program (Strim-
mer and von Haeseler 1996) includes the estimation of
the transition–transversion parameter and the amount of
rate heterogeneity assuming a discrete gamma distribu-
tion (Yang 1994b).

Given this elaborate model of sequence evolution of
base-paired regions of rRNA, we address the question
about the appropriateness of this description. Thus, we
apply the approach of Goldman (1993), who employed a
test statistic suggested by Cox (1961, 1962) to check the
adequacy of stochastic models. This approach was ap-
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plied successfully to various estimation problems in
studies of molecular evolution (Goldman and Yang
1994; Yang et al. 1994, 1995; Huelsenbeck and Rannala
1997). Here we test the correlation model as an alterna-
tive to independence models like the one introduced by
Hasegawa et al. (1985) that allows for arbitrary, station-
ary base frequencies and any transition–transversion
bias. For the sake of illustration we analyze the stem
regions of the diatom rRNA alignment by Medlin et al.
(1996a).

To apply a correlation model one needs to find the
appropriate assignment of helical regions in an rRNA
alignment. Helices (stems) may be defined in a relatively
straightforward way (Zuker and Stiegler 1981; Hofacker
et al. 1994) forsingle rRNA sequences. But the task of
deciding which columns of an entirealignmentbelong to
a helix remains tedious and very time consuming, since
the necessary adjustments must be made manually. In
this paper, we demonstrate how the Cox-test methodol-
ogy can be employed to estimate the percentage of stem
positions that do not appear to be correlated.

Methods and Data

Models of Nucleotide Substitution

The substitution process at a given site is modeled as a homogeneous
stationary Markov process where the instantaneous rate of change from
state (nucleotide)i to j is typically defined by ann × n rate matrixR1

(Swofford et al. 1996). For example, the HKY (Hasegawa et al. 1985)
matrix has entries

Rij
1 = Hapj for transitions: A↔ G, C↔ U

bpj for transversions: A, G↔ C, U (1)

wherepj (j 4 A, G, C, U) is the equilibrium frequency of nucleotide
j. The diagonal elements of the rate matrix are defined by setting row
sums equal zero.R1 describes the evolution of a nucleotide site. If we
assume that each site in a sequence evolves according toR1 and inde-
pendently of the rest, then this model of sequence evolution is appli-
cable in a maximum-likelihood framework.

To model the evolution of base pairs in stem regions of RNA
molecules, the state space is extended to the 16 possible dinucleotides
with stationary frequenciespm (m 4 AA, AG, AC, . . ., UU). The 16
× 16 rate matrixR2 4 (R2

nm) is given by

Rnm
2 = Hapm/pi if D~n,m! = 1 for transitions

bpm/pi if D~n,m! = 1 for transversions
0 if D~n,m! = 2

(2)

whereD(n,m) is the number of nucleotide differences between doublet
n and doubletm, andpi is the stationary marginal distribution of the
nucleotidei, which remains unaffected when substituting doubletn by
doubletm. This definition ensures that the HKY model is a special case
of the doublet correlation model (DC). Instantaneous substitution rates
of two nucleotides in one doublet are assumed to be zero. However,
given the predominant frequencies of the admissible base-paired dou-
blets, it is quite likely that a substitution at a non-base-pairing doublet
will lead to a base-paired doublet within a relatively short time interval,

representing a so-called compensatory mutation. The doublet frequency
parameterspm are estimated from the aligned data. Throughout this
study we use a symmetrized version of the DC model with parameters
pij 4 pji (e.g.,pGC 4 pCG).

Since different positions in a sequence evolve at different rates, a
site-dependent relative factorr is introduced and the rate matrix for that
site, i.e.,R1 or R2, is multiplied byr to emulate the effect of rapidly or
slowly evolving sites. The distribution of relative rates is assumed to
follow a gamma distribution,

ga~r! =
aara−1

earG~a!
(3)

with expectation 1 and variance 1/a (Uzzell and Corbin 1971; Wakeley
1993). The parametera specifies the shape of the distribution and thus
the amount of rate heterogeneity along the sequence. Ifa tends to
infinity, then rates are homogeneous. Fora ≈ 1 we observe a bell-
shaped distribution indicative of weak rate heterogeneity. Ifa ! 1, then
strong rate heterogeneity is obtained, and the corresponding distribu-
tion of rates is L-shaped. If an evolutionary model includes rate het-
erogeneity, aG is appended to the abbreviation of the substitution
model, e.g., DCG represents the doublet correlation model together
with a gamma distribution.

Estimation of Model Parameters

Based on the model of sequence evolutionM the likelihood,(T | M, !)
of a treeT for a sequence alignment! can be computed where the
model parameters are estimated from the data. A treeT̂M is called the
maximum-likelihood estimate if

,~T̂M |M,!! = max
T∈t

$,~T|M,!!% (4)

wheret is the space of all possible trees. Note that̂TM represents the
tree topology together with branch lengths and parameter estimates of
M. We use version 4.0a of the PUZZLE program (Strimmer and von
Haeseler 1996; Strimmer 1997) to computêTM. The shape parametera
is estimated assuming the discrete gamma model (Yang 1994b) as
implemented in PUZZLE. In all analyses we assumed five rate catego-
ries.

Statistical Tests Using Monte Carlo Simulation

Different substitution models can produce different trees and different
likelihoods. In a statistical framework a method is required to decide
which model fits the data better. If the models are nested, i.e., the
simple model is a special case of the more complex one, then the usual
x2 approximation to the likelihood-ratio statistics may apply (Navidi et
al. 1991). Unfortunately, one faces, among other things, a serious
sample size problem that casts some doubts on the reliability of this
approach (Goldman 1993). Goldman (1993) suggested, based on work
by Cox (1961, 1962), a method to decide which one of two models or
hypotheses provides a better fit to the data. The test makes use of the
log-likelihoodsS0 4 log,(T̂M0

| M0, !) andS1 4 log,(T̂M1
|M1, !) of

two competing modelsM0 andM1, namely,

dM1−M0
4 S1 − S0 (5)

Since the distribution of statistic (5) is not known, it is estimated
by Monte Carlo simulation (Goldman 1993). A large number (1000
in this study) of simulated data sets is generated under the null hypoth-
esis thatT̂M0

represents the evolutionary history of the sequences (cf.
Schöniger and von Haeseler 1995; Rambaut and Grassly 1997; unpub-
lished modifications of the programs). For each simulated alignmenti
4 1, . . ., 1000, the differencesdi according to Eq. (5) are computed.
Note that the computation ofdi requires the maximum-likelihood es-
timation of two treesT̂M0

andT̂M1
, whose topologies are not necessarily
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identical. If dM1−M0
falls below the 95th percentile of the empirical

distribution obtained from thedi values, thenM0 is not rejected.
However, it is not necessary to compare two models of sequence

evolution together with the resulting maximum-likelihood trees. One
may also ask how well are the data described byT̂M0 compared to the
unconstrained hypothesis (Navidi et al. 1991; Goldman 1993). The
unconstrained hypothesis makes no phylogenetic inferences but uses
only the observed frequencies of character patternsj in the alignment.
If independence is assumed, there are 4N patterns forN aligned se-
quences, whereas the dinucleotide model (DC) has 16N patterns. LetLj

be the number of occurrences of patternj in an alignment of lengthL,
then the log-likelihood of the unconstrained hypothesis (UC) is calcu-
lated to be

S1 = (
j

LjlogLj − LlogL (6)

(Navidi et al. 1991). We note that for dinucleotide models, the length
of the alignment reduces toL/2.

Data

Medlin et al. (1996a) published an alignment of 34 small-subunit (SSU)
rRNA sequences of diatoms consisting of 2076 nucleotides.1 To keep
the computation time reasonable, we selected 9 of the 34 species,

namely, the 4 clade I diatomsAulacoseira distans, Melosira varians,
Stephanopyxiscf. broschii, and Rhizosolenia setigera;the 4 clade II
diatomsDitylum brightwelli, Fragilaria striatula, Cymatosira belgica,
andChaetoceros rostratus;andPelagomonas calceolataas outgroup.
Medlin et al. (1996b) and Chesnick et al. (1997) suggested, for a variety
of diatom SSU rRNAs, secondary structure models that were used as
guidelines to assign helical regions to the SSU rRNA alignment. As
Fig. 1 illustrates, this is sometimes straightforward (Fig. 1, top). Some-
times, however, it is difficult to decide which columns of the alignment
constitute the overall helix (Fig. 1, bottom). Although the DC model
explicitly allows for intermediates like AG or UU, it is not clear which
columns should be included in an overall helix. Based on visual in-
spection of the available secondary structure information, we produced
a stem data set, called STEM960, consisting of 480 doublets (960
paired nucleotides).

Results

Figure 2 displays the estimated maximum-likelihood
trees for STEM960 assuming an HKY model (Fig. 2,
left) or a DC model (Fig. 2, right). The branching pat-
terns of the trees are slightly different, e.g., the clade II
diatoms constitute a monophyletic group in thêTDC tree.
Both trees are not fully resolved. The multifurcations are
possibly due to the short alignment length. Medlin et al.
(1996a) found clade I diatoms as the sister group of clade
II diatoms, which is not supported by the trees in Fig. 2.
However, the polytomies can be resolved, and the mono-
phyly of the clade I diatoms is confirmed, if a combined

1 Some positions were excluded due to alignment uncertainties indi-
cated by the authors (Medlin, personal communication).

Fig. 1. Helices 1 and 4 of the
secondary structure-based alignment of
diatom small-subunit rRNA. Medlin et
al. (1996b) useduppercase lettersfor
bases that do not belong to helices; i.e.,
in their secondary structure models,
helix 4 may consist of two, three, or
four canonical base pairs.
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data set of stem and loop positions is analyzed with
PUZZLE, no matter whether DC or HKY is used for the
stem regions (results not shown). TreeŝTHKY and T̂DC

were used as the basis for the computation of the em-
pirical d distribution.

The scoreS0 of T̂HKY equals −3661.67 andS1, the
score ofT̂DC, is equal to −3123.89, indicating a substan-
tial increase in the log-likelihood value. This improve-
ment is highly significant. Figure 3 shows the empirical
d distribution if HKY serves as the null model that is
tested against the DC model. The mean of this distribu-
tion is d̄ 4 1.43, with an empirical standard deviation of
s 4 2.22. Thus the observed value ofd 4 537.78 is 242
standard deviations away fromd̄. Therefore, we con-
clude that DC is a better model for the stem region than
HKY.

One may now ask if this improvement is a typical
value for sequences that evolved under a DC model. To
answer this question, 1000 sets of sequences were gen-
erated underT̂DC (the right tree in Fig. 2) and analyzed
assuming HKY as well as DC. The resulting empirical
distribution of the gain in improvement has a mean of
685.61 and a standard deviation of 30.37 (see Fig. 3).
The observed improvementd 4 537.78 is −4.87 units of
standard deviations away from the average improvement,
that is, left from the expected distribution of improve-
ments. In other words, the improvement for the data
provided by the DC model is too poor compared to simu-
lated sequences. Thus, there must be some sites in data
set STEM960 that do not evolve according to the DC
model. One possible explanation is that the data set con-

tains base pairs that are not correlated. This hypothesis is
corroborated by the following experiment.

A certain proportionx of the 960 nucleotide positions
evolved according tôTDC, whereas the remaining part 1
− x evolved according tôTHKY. One thousand simulated
alignments were generated for eachx 4 0, 10, 20, . . .,
100% and the averagesd̄DC–HKY(x) for each fractionx
were calculated. Figure 4 displaysd̄DC–HKY(x) as a func-
tion of x, together with the empirical 95% confidence
limits. The graph shows that the average improvement of
the DC model increases as the proportionx of sites
evolving according to DC increases. Ifx 4 100%, the
average improvement equals 685.61.

Since STEM960 led to an improvement of 537.78,
Fig. 4 was used to estimate the fraction of sites that
evolve according to DC. About 92% of the positions are
in accord with the DC model, with an approximate con-
fidence interval of 89–96%. Thus, STEM960 contains
about 76 nucleotide positions that do not conform to the
DC model. Unfortunately, we have no information about
the location of these sites.

Reevaluation of the Secondary Structure-Based
rRNA Alignment

The assignment of helical regions in multiple rRNA
alignments can be very difficult. The results of our pre-
ceding analysis suggest that STEM960 includes assign-
ments of base pairs that we compiled incorrectly. There-
fore, we reevaluated the alignment, taking into account
the secondary structure data provided in the original data

Fig. 2. Trees of the diatom small-subunit rRNA data set STEM960 obtained with PUZZLE using HKY (left) and DC (right ). Roman numbers
indicate the affiliation of species to clade I and II (Medlin et al. 1996a). Branch lengths are proportional to the number of substitutions per nucleotide
site.
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set (Medlin, personal communication). We found three
instances in the data set STEM960 where we had ignored
a looped-out nucleotide in one strand of the helical re-
gion. This led to a wrong assignment of base pairs in the
rest of the helix, i.e., we got many nonclassical doublets
like UC, UU, and AA.

Some positions of STEM960 contained, in addition to
classical base pairs (GC, AU, GU), sporadically columns
with a high frequency of nonstandard base pairs (like AA
or AC). These columns represent inner loops rather than
stems. Although the DC model explicitly includes such
intermediates along the evolutionary path as elements of
stable helices, it is not very likely to observe their fixa-
tion in many species. Therefore we excluded positions
from the analysis that showed at least eight (of nine)
nonclassical doublets. This reduced the number of col-
umns in helical regions by 18 doublets (36 nucleotides).
Together with the reexamination of the frame shifts, the
data set STEM924 of length 462 doublets (924 nucleo-
tides) was created and is used in the rest of the paper.

Application of PUZZLE assuming HKY and DC pro-
vided maximum-likelihood trees that served as the basis
for the computation of the empiricaldDC–HKY distribu-
tion. The branching patterns of these trees are very simi-
lar to those in Fig. 2.

Toward More Complex Models

For STEM924 the Cox test to compare DC and HKY is
repeated. The improvement of the score due to the in-

troduction of the DC model compared to HKY is sig-
nificant (Table 1, test 1). Moreover, thedDC–HKY value
of 701.20 falls inside the distribution of improvements if
sequences actually evolve according to DC (Fig. 5). It is
only 1.00s 4 30.96 away from the meandDC–HKY 4
732.18. Hence, we have no reason to mistrust the DC
model. However, comparison of the log-likelihoods of
the DC model and the UC model for 16 dinucleotides
shows that DC does not adequately describe the evolu-
tion of the data (Table 1, test 2).

If we introduce rate heterogeneity, then the DCG
model provides again a significant improvement com-
pared to the DC model (Table 1, test 3). However, the
DCG model is still not appropriate to describe the evo-
lutionary processes that have led to the aligned data.
However, if the goodness of fit is measured in units of
the empirical standard deviations, DCG is, with a d̃ 4
4.00, much closer to the mean of the simulated distribu-
tion dUC−M0

than the DC model (d̃ 4 10.36) (cf. Table 1,
tests 2 and 4). Thus, one might speculate that the entire
sequences or subsets thereof have evolved under a dif-
ferent, yet unresolved model.

Discussion

We have shown that a model which takes correlation into
account significantly enhances the description of the
evolutionary forces acting upon the stem region of ribo-
somal RNA. A simple HKY model cannot account for

Fig. 3. Distributions of the statisticdDC–HKY for STEM960 (480 doublets). Theleft distribution belongs to the null model̂THKY, whereasT̂DC

serves as the model tree for theright distribution. One thousand replicates were simulated using the model trees in Fig. 2. Theline shows the
observeddDC–HKY value of 537.78.
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the complexities inherent in the data. The goodness of fit
can be further improved if we allow for rate heterogene-
ity among the doublets. A DCG model describes the data
better than a DC model. This observation matches results
for models assuming independently evolving sites (Gold-
man and Yang 1994; Yang et al. 1994, 1995). Although
the DCG model is the “best” model, it does not suffice to
explain the full variability in terms of doublet patterns in
the alignment compared to the unconstrained hypothesis.
Thus, there is ample space to refine the model suggested
here. One should also note that we have only studied one
data set. The analysis of further examples will shed more
light on the suitability of DCG.

While the above-mentioned methodology to compare
different models is straightforward, we suggest the use of
the empirical distribution ofd-values, if sequences actu-
ally evolved under a more complex model, to detect de-

viations from the complex model. As an example, we
showed how this approach may be used to estimate the
amount of positions that do not evolve according to a DC
model but, rather, to an HKY model. For STEM960 we
estimated that we had falsely assigned about 8% of the
sites to helical regions, which turned out to coincide
fairly well with the number of positions that were modi-
fied or excluded after reanalysis of the alignment. This
procedure, however, is tedious and time-consuming. It is
therefore desirable to develop an automated version of
our approach. However, we note the danger of circular-
ity. If the alignment is modified to fit the model, then of
course the model will fit better. Thus, independent data
are needed to substantiate the claim that the alignment
and the model are both better. Moreover, it is certainly
worthwhile to investigate the applicability of the pre-
sented ideas by analyzing more data sets. In addition, it

Fig. 4. Averages and approximate 95% confidence intervals (average
± 2 SD) of thedDC–HKY distribution obtained from simulation assuming
a mixture model: some of the positions evolve according to DC, and the
rest according to HKY. Thevertical lineshows the value of 537.78 for

STEM960. Thehorizontal linesdisplay the estimated proportion
(solid) of positions evolving according DC and its 95% confidence
interval (dashed).

Table 1. Comparison of different models of sequence evolution for STEM924

Test
No. M0 M1 S0 S1 d d̄ s d̃ M0

1 HKY DC −3479.40 −2778.20 701.20 1.54 2.11 331.67 Rejected
2 DC UC −2778.20 −1611.64 1166.56 719.32 43.17 10.36 Rejected
3 DC DCG −2778.20 −2539.47 238.73 0.00 0.97 246.66 Rejected
4 DCG UC −2539.47 −1611.64 927.83 753.87 43.43 4.00 Rejected

a S0 andS1 are the log-likelihood of the corresponding hypotheses;d is the observed difference betweenS0 andS1 for the data;̃d 4 (d − #d)/s is
the normalized difference, wherēd ands are the empirical mean and standard deviation based on the simulated distribution ofd values.
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should be possible to use our test methodology to detect
regions of misaligned positions.
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