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Abstract. Previous evidence has demonstrated the ab-
sence of exons 34 and 35 within the 38 end of the human
tropoelastin (ELN) gene. These exons encode conserved
polypeptide domains within tropoelastin and are found in
the ELN gene in vertebrate species ranging from chick-
ens to rats to cows. We have analyzed the ELN gene in
a variety of primate species to determine whether the
absence of exons 34 and 35 in humans either is due to
allelic variation within the human population or is a gen-
eral characteristic of the Primates order. An analysis of
the 38 end of the ELN gene in several nonhuman pri-
mates and in 546 chromosomes from humans of varying
ethnic background demonstrated a sequential loss of ex-
ons 34 and 35 during primate evolution. The loss of exon
35 occurred at least 35–45 million years ago, whenCa-
tarrhinesdiverged fromPlatyrrhines(New World mon-
keys). Exon 34 loss, in contrast, occurred only about 6–8
million years ago, whenHomoseparated from the com-
mon ancestor shared with chimpanzees and gorillas. Loss
of both exons was probably facilitated by Alu-mediated
recombination events and possibly conferred a functional
evolutionary advantage in elastic tissue.
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Introduction

Elastic fibers are extracellular matrix structures that con-
fer the property of resilience and elastic recoil to all
elastic tissues (Sandberg et al. 1969). Elastin is the major
protein component of elastic fibers (Rucker et al. 1973).
Extensively cross-linked and highly insoluble, elastin is
assembled from a family of precursor proteins collec-
tively referred to as tropoelastin (Sandberg et al. 1969;
Rucker et al. 1973; Foster et al. 1975). Tropoelastins
(ELN) are multidomained proteins composed predomi-
nantly of several hydrophobic regions rich in glycine,
valine, and proline (Foster et al. 1973a) and multiple
lysine-containing alanine-rich domains (Foster et al.
1973b) that serve as a substrate for the catalysis of ly-
sine-derived cross-links by the enzyme lysyl oxidase
(Kagan and Trackman 1991). A single-copy multiexon
gene is responsible for the synthesis of multiple isoforms
of tropoelastin by extensive alternate usage of several
exons encoding both hydrophobic domains and lysine-
containing cross-link regions (Boyd et al. 1993).

In recent years, a number of investigators have char-
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acterized the structure of the gene coding for tropoelastin
from several species including humans, cows, and rats
(Bashir et al. 1989; Raju and Anwar 1987; Pierce et al.
1990). This analysis has revealed a gene that, in most
species, is composed of 36 exons distributed throughout
approximately 40,000 bp of genomic DNA, has an in-
tron:exon ratio of almost 19:1, and has an unusually high
frequency of repetitive DNA sequences within many in-
trons, particularly at the 38 end (Indik et al. 1987).

In contrast to the bovine and rat ELN genes, the hu-
man ELN gene has only 34 exons. Several years ago
Rosenbloom and co-workers reported (Bashir et al. 1989;
Indik et al. 1987) the absence of two exons at the 38 end
of the human ELN gene (exons 34 and 35). These au-
thors suggested that the abundance of Alu repetitive
DNA sequence elements surrounding exons 33 and 36
may have been responsible for the loss of exons 34 and
35 in the human ELN gene. These two exons are present
within the tropoelastin gene in all vertebrate species ana-
lyzed to date and also encode highly conserved cross-
link and hydrophobic regions (Boyd et al. 1991). To
explore the possibility that Alu-mediated recombination
events may indeed have contributed to the loss of exons
34 and 35, either within the human population or else-
where within the primate order, we have analyzed the 38
end of the ELN gene within the human population and in
several other primate species. Here we report the sequen-
tial loss of exons 34 and 35 within the tropoelastin gene
during primate evolution and suggest that these evolu-
tionary changes within the ELN gene may be function-
ally important within primate phylogeny.

Materials and Methods

Isolation of the Baboon Tropoelastin cDNA and
Genomic DNA Recombinants

A l gt11 cDNA library (kindly provided by Dr. A.W. Clowes, Depart-
ment of Surgery, University of Washington, Seattle) was constructed
using poly(A+) RNA from cultured baboon smooth muscle cells.
Plaque forming units (pfus; 5 × 104) were screened with a previously
characterized human tropoelastin cDNA, H-11 (Olson et al. 1995),
using a standard screening procedure (Sambrook et al. 1989). DNA
from autoradiographically positive plaque recombinants, obtained after
screening primary and secondary positives, was subject to dideoxy
DNA sequence analysis.

A baboon tropoelastin cDNA (BEL8) was used to screen a partial
Sau3AI baboon genomic DNA library prepared using thel DASH II
cloning vector and supplied by Clonetech. pfus (5 × 104) were screened
and autoradiographically positive recombinants were also characterized
by restriction enzyme analysis and DNA sequencing.

Human and Primate Genomic DNA Preparations

Genomic DNA was isolated from aliquots of blood from 53 unrelated
primates using a previously described procedure (Sambrook et al.
1989). Aliquots of blood were provided by the San Diego Zoo and were

obtained from the following species (the number of individual primates
from which blood was obtained is indicated in parentheses):Pan tro-
glodytes—chimpanzee (3);Gorilla gorilla—gorilla (2); Pongo pyg-
maeus—orangutan (2);Hylobates lar—gibbon (3);Papio cynocepha-
lus anubis—olive baboon (12);Papio cynocephalus cynocephalus—
yellow baboon (12);Papio cynocephalus hamadryas—hamadryas
baboon (12);Madrillus sphinx—mandrill (3);Macacus rhesus—rhesus
monkey (3); andMacacus cyanomegalus—cyanomegalus monkey (2).

Human genomic DNA was isolated from aliquots of blood from
273 unrelated individuals representing the following ethnic and geo-
graphical groups (the number of individuals from which blood was
obtained is also indicated in parentheses): African Americans (50),
Hispanic Americans (50), Caucasian Americans (76), Hungarians (46),
Zaire pygmies (10), Central African Republic pygmies (7), Indonesian
Rotis (1), Indonesian Ternates (4), Indonesian Hiris (5), Papua New
Guinea—highland region (10), and Papua New Guinea—coastal region
(14).

PCR Analysis of the 38 End of the Human and Primate
Tropoelastin Genes

PCR analysis of human genomic DNA was carried out in a 25-ml
volume containing intron specific primers derived from intron 33 (58

AAC ACA GGG AAC ATT TGC TTT 38) and intron 36 (58 CCT CTC
AGT TTC GGC TCT AAT 38), 67 mM Tris–HCl (pH 8.3), 16.6 mM
(NH4)2SO2, 10 mM 2-mercaptoethanol, 1.5 mM MgCl2, 10% DMSO,
0.625 U AmpliTaq polymerase, and 100 ng genomic DNA. Following
a 3-min incubation at 94°C, reactions were incubated for 34 cycles,
each cycle consisting of a denaturation step at 94°C for 30 s, an an-
nealing step at 61°C for 30 s, and an extension step at 72°C for 75 s.

PCR analysis of primate genomic DNA was carried out using simi-
lar incubation conditions and primers derived from exon 33 (58 GGC
TTC GGA TTG TCT CCC AT 38) and exon 34 (58 CCA ACT CCC
AAG CCT CCA GC 38) of the baboon tropoelastin gene. The reaction
conditions, following a preincubation at 94°C for 3 min, involved 35
cycles, and each cycle consisted of an incubation at 94°C for 30 s, 63°C
for 30 s, and 72°C for 15 s. PCR products from both human and primate
DNA samples were analyzed by electrophoresis through 1.2% agarose
and visualized by staining with 0.5mg/ml ethidium bromide.

Results

The Sequence Analysis of Baboon Tropoelastin cDNAs

Six positive individual recombinants (four of which were
identical) were obtained following screening of a baboon
smooth muscle cell cDNA library with a human tro-
poelastin cDNA. Analysis of these recombinants pro-
vided DNA sequence from the domains corresponding to
exon 23 of the human ELN gene to the first polyadenyl-
ation consensus sequence in the 38 untranslated region
within exon 36. The nucleotide sequence corresponding
to the coding domain, the derived amino acid sequence,
and a comparison to the derived amino acid sequences
from human, rat, and chicken are presented in Fig. 1. The
baboon tropoelastin cDNA sequence, as one would ex-
pect, shows the most identity to the human sequence.
Exon 34, which does not exist in human, encodes a hy-
drophobic domain that is identical in sequence between
baboon and rat. The polypeptide domains encoded by
exons 27 and 33 are identical in baboon and human;
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Fig. 1. Continued.
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Fig. 1. Multiple alignment of the nucleic acid and the translated
amino acid sequences of the ELN gene corresponding to exons 23
through 36 from different vertebrate species. Nucleic acid alignments
for the five species alternate with the corresponding amino acid align-
ments.Barsabove the nucleic acid sequence indicate exon boundaries
and the numbers on either side of these bars identify the particular
exons. The exon boundaries for the chicken ELN gene are inferred by
comparing the chicken tropoelastin amino acid sequence to the amino
acid sequence for rat, bovine, and human ELN. Sequence conservation
within the exon-encoded domains known in rat, bovine, and human

permitted the inferred assignment of exon–intron boundaries in the
chicken ELN gene. Only the nucleic acid sequence from the baboon
ELN gene is presented in full; in the comparison of this sequence to the
other mammalian sequences, no designation represents an identical
sequence anddashesrepresent lack of sequence. Note the high degree
of conservation of sequence from exon 33 through exon 36 that is
evident in the comparison of these domains in chicken, rat, and cow.
Exon 35 is absent in the baboon sequence. Exons 34 and 35 are absent
in the human sequence.



there is only a single valine-to-alanine change between
human and baboon in the sequence encoded by exon 26.
The sequence encoded by exon 29 in baboon lacks a
single alanine preceding the first lysine compared to the
human sequence. Exons 24, 25, and 30 differ the most in
sequence. Similarly to humans, the elastin receptor bind-
ing hexapeptide repeating element VGVAPG is encoded
seven times in exon 24 in baboons. In addition, there is
a leucine-to-valine substitution in the fourth repeat and a
valine and glycine insertion in the baboon sequence en-
coded at the end of exon 24. Five additional amino acids
(GVGAP) are encoded in exon 25 in baboons and an
additional alanine-to-glycine substitution creates a pen-
tapeptide VGAPG, very similar to the repeating receptor-
binding VGVAPG found in other mammals. A polar
threonine also substitutes a hydrophobic alanine in the
domain encoded by exon 25. The domain encoded by the
baboon exon 30 contains a valine-to-glycine and an ala-
nine-to-proline substitution, in addition to an insertion of
glycine, valine, and alanine. A valine–serine dipeptide
replaces an isoleucine and proline following the first
amino acid residue in exon 31. Exon 36 contains an
alanine insertion and a serine-to-alanine substitution,
making the 38 end of the baboon tropoelastin cDNA
more polar by comparison to the human sequence.

The 38 End of the Baboon Tropoelastin Gene

Baboon tropoelastin cDNA recombinants B8 and B16
were used to obtain five recombinants from a baboon
genomic DNA library. Restriction and PCR analysis
combined with DNA sequencing permitted the overlap-
ping alignment of the insert DNA from these recombi-
nants and the identification of exon and intron sequence
corresponding to the 38 end of the baboon tropoelastin
gene. The results are summarized in Fig. 2. The 58 over-
lapping DNA fragments contained 5942 bp of genomic
DNA sequence. The 58 end of this sequence was located
within intron 32. The 38 end of this sequence was located
immediately downstream of a second polyadenylation
site within exon 36. Within this genomic DNA sequence,
we were able to identify successfully intact exons 33, 34,
and 36. Extensive sequence analysis revealed no evi-
dence of an intact exon 35 within the intron separating

exons 34 and 36. At sequence positions 2636–2671 a
potential vestige of exon 35 was identified (AGG-
GAAACCCCCCAGCGCGTGCAAGGTGCCTGGGC),
but the absence of a canonical acceptor site precluded the
possibility that this intron sequence could be used as a
functional exon sequence.

Fig. 3. A comparison of exon and intron sequence within the 38 end
of the human and baboon ELN genes. The 38 end of the human gene
and the baboon ELN gene are graphically represented and drawn to
scale on the abscissa and the ordinate, respectively.Filled boxesrep-
resent coding sequences, 38 UTR is represented by ahatched box.
Identical nucleic acid sequences are indicated in this comparison as
single dots.The dotplot chartwas produced by the program Compare
from the GCG software package.Diagonal linesdesignate matching
sequences. Theboxed regionbetween the two longest diagonal lines,
corresponding to 506 bp in the human and 2943 bp in the baboon ELN
gene, represents a domain of little sequence identity. This domain
contains Alu repeat elements which are represented in this comparison
asshort, multiple parallel lines.

Fig. 2. Restriction map and subcloning strategy for thel genomic
clone GB3.Filled boxesrepresent coding sequences within individual
exons; thehatched areain exon 36 is the 38 untranslated region (UTR).
Arrows indicate unique restriction enzyme recognition sites as well as

two putative polyadenylation sites within exon 36. The genomic clone
GB3 was divided into five overlapping plasmid subclones, which are
represented asshaded horizontal barsand referred to as pGB recom-
binants.
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Comparison of DNA sequences from intron 32 to the
38 end of exon 35 from both human and baboon ELN
genes revealed the expected and extensive identity be-
tween exon 33 and exon 36 (Fig. 3). Moreover, consid-
erable identity was also noted within the intron sequence
surrounding exon 33 and the 58 region of exon 36 be-
tween both orthologues. This similarity in intron se-
quence ended 58 of exon 34 in the baboon gene and 58 of
exon 36 in both the baboon and the human gene, directly
within an Alu repeat sequence (Fig. 4). Between these
Alu repeats, 2943 bp of DNA in the baboon gene shared
only a 40% identity with the corresponding 506 bp of the
human sequence, as opposed to 80% identity for the rest
of the 38 end. The 506-bp sequence corresponded to a
complex Alu repeat structure composed of a complete
Alu repeat in the reverse orientation and a right monomer
in the 58–38 orientation. The putative breakpoints them-
selves fall in the right half of the surrounding Alu ele-
ment.

PCR Analysis of the 38 End of the Primate and Human
ELN Genes

PCR primers derived from the 38 end of exon 33 and the
58 end of exon 36 in the human tropoelastin gene were
used to generate a 1655-bp amplimer that represented the
arrangement of intron 33 as previously characterized in
the human gene and is presented in Fig. 5A. PCR analy-
sis, using these intron 33 primers, of genomic DNA from
546 alleles that represented 11 diverse ethnic groups re-
vealed no size variation in the recovery of this 1655-bp
PCR fragment (Table 1). Representative examples of the
recovery of PCR-derived DNA from these human geno-
mic samples are presented in Fig. 5B.

Similarly, a PCR assay was established from exon 33
to exon 34 in the baboon tropoelastin gene that yielded a
PCR amplimer of 880 bp (Table 1). Analysis of genomic
DNA from 53 unrelated primates, ranging from gorillas
to baboons to rhesus monkeys revealed a consistent re-
covery of a PCR derived DNA fragment of 880 bp. A
representative example of this result is shown in Fig. 5B.

Discussion

The vertebrate ELN gene has been analyzed in species
ranging from chicken to human. In comparing the se-
quence divergence within functionally defined exons in
the rat and human tropoelastin genes, it is clear that
exons encoding hydrophobic domains diverge more rap-
idly than exons encoding cross-link domains (Boyd et al.
1991). Exon 34 encodes a hydrophobic domain; exon 35
encodes a potential cross-link domain. Both these exon
domains are relatively conserved in sequence between
bovine and rat tropoelastin. Significantly, however, both
these exon-defined domains are present in all nonprimate
vertebrate species analyzed, including chicken, suggest-
ing that they predate both primate and mammalian ra-
diation. The evolutionary radiation of mammals occurred
about 200 million years ago (Macdonald 1993). There-
fore, for over 200 million years, sequences defined by
exons 34 and 35 were maintained in vertebrate tropoelas-
tin genes. The conservation of this hydrophobic sequence
and potential cross-link domain were therefore clearly
important to the function of tropoelastin within verte-
brate elastic tissues.

In contrast, exons 34 and 35 show little evolutionary
stability during primate phylogeny. Nonhuman primates
and human all diverged during the last 70 million years
(Martin 1993). During this relatively short evolutionary
period, two exons that had been maintained for over 200
million years were sequentially lost through what ap-
pears to be a series of Alu element-mediated recombina-
tion events. From the remnant of exon 35 detected in
baboon genomic DNA, it would seem that mutational
events resulted in the loss of exon 35 through the disap-
pearance of constitutive splicing recognition signals.
Continued recombination events at the 38 end of the tro-
poelastin gene in the primate lineage that eventually de-
veloped into modern humans resulted in the additional
removal of exon 34.

One can only speculate as to the functional and evo-
lutionary significance of the sequential loss of exons 34
and 35 during the development of primates. In several
patients with a heritable vascular disorder, supravalvular

Fig. 4. A comparison of the 38 end of
the baboon (Papio cyanocephalus) and
human (Homo sapiens) tropoelastin
genes. Regions containing a high
percentage of identical sequences are
indicated asshaded areas,exons are
represented asfilled boxes.The 38 UTR
in exon 36 is marked as across-hatched
box.Distances between exons and other
domains are shown as basepairs. A
vestige of exon 35 is marked as () in
the middle of intron 34 of the baboon
ELN gene. (Alu→ ) Alu repeat,
( ←Alu ) Alu repeat in reverse
orientation, (Aluc→ ) complementary
sequences to the Alu repeat.
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aortic stenosis (SVAS), it has been shown that Alu ele-
ment-mediated recombination events led to deletion mu-
tations either within or involving the tropoelastin gene
(Olson et al. 1995). While other elastic tissues such skin
are affected by these tropoelastin gene deletions (Urba´n
and Csisza´r, manuscript submitted), the overwhelming
phenotype is a vascular disorder. In considering therefore
selective advantages conferred through an Alu mediated
loss of exons 34 and 35 during primate evolution, it is not
unreasonable to speculate that perhaps alterations in vas-
cular (particularly arterial) wall function, coincident with
the evolution of primates, may have provided the selec-
tive advantage that led to the rapid loss of these two 38
exons.
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