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Abstract. The reliable reconstruction of tree topology
from a set of homologous sequences is one of the main
goals in the study of molecular evolution. If consistent
estimators of distances from a multiple sequence align-
ment are known, the distance method is attractive be-
cause the tree reconstruction is consistent. To obtain a
distance estimated, the observed proportion of differ-
encesp (p-distance) is usually ‘‘corrected’’ for multiple
and back substitutions by means of a functional relation-
ship d 4 f(p). In this paper the conditions under which
this correction ofp-distances will not alter the selection
of the tree topology are specified. When these conditions
are not fulfilled the selection of the tree topology may
depend on the correction function applied. A novel
method which includes estimates of distances not only
between sequence pairs, but between triplets, quadru-
plets, etc., is proposed to strengthen the proper selection
of correction function and tree topology. A ‘‘super’’ tree
that includes all tree topologies as special cases is intro-
duced.
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Introduction

The evolutionary distanceD between two sequences is
usually defined as the number of residue substitutions
per site which occur on the shortest path between the two
sequences in the tree. The simplest estimate of the dis-

tance is the observed proportion of differences between
two aligned sequences (thep-distance). This estimate is
not consistent, because it misses multiple and back sub-
stitutions (Rzhetsky and Sitnikova 1996). Therefore a
variety of ‘‘correction’’ methods has been proposed
(Zuckerkandl and Pauling 1965; Jukes and Cantor 1969;
Uzzell and Corbin 1971; Kimura and Ohta 1972; Holm-
quist et al. 1983; Saitou and Nei 1987; Tajima and
Takezaki 1994; Ota and Nei 1994; Grishin 1995; Tou-
rasse and Gouy 1997; Feng and Doolittle 1997; Grishin
1997). The corrected distanced 4 f(p) is a consistent
estimate under the assumed statistical model of sequence
change. However, the statistical rules governing the sub-
stitution process in real-world sequences remain un-
known. Therefore it is problematic to obtain consistent
distance estimators.

The consistency of currently available phylogenetic
methods has been discussed (DeBry 1992; Steel et al.
1994; Chang 1996a, b). In this article a novel approach to
distance method is proposed. First, it is determined if
p-distance correction is necessary. Second, in the case
that corrections are needed, new methods are described
to determine the appropriate correction formula. The im-
plication of the approach is illustrated by three examples.

Method Description

Suppose we have an alignment of homologous se-
quences. Assume the existence of a twice differentiable
correction functionf(p), which depends only onp. This
correction function should have the following properties.

1. If p is small, thenf(p) ≈ p, since the number of mul-
tiple and back substitutions is small. Therefore, as-
sume that df/dp (0) 4 1.
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2. f(p) is concave upward, since the rate of accumulation
of multiple and back substitutions increases with in-
creasingp. Therefore, assume that d2f/dp2 (p) > 0 for
0 ø p < b, where b < 1.

For example, properties 1 and 2 are true1 for the class
of correction formulas in a form 1 −p/b 4 ∫0+` r(x) exp
{−xd/b}dx, whered is a distance estimate,r(x) is a prob-
ability density function of relative substitution rates over
sites, and b is the expected value ofp for infinitely dis-
tant sequences (Ota and Nei 1994; Grishin 1995). It is
assumed that for a given alignment b is a constant.

Further consideration is limited to the case of four
protein sequencesi, j, k, andl. By (ij |kl) we designate the
binary unrooted tree of these four sequences in which

sequencesi andj are grouped together. Byi we designate
the branch of the tree with the sequencei as a leaf, and
bi is the branch length. The interior branch is designated
as 5 with the lengthb5 (Fig. 1A). Letd*ij be an unbiased
estimate of the distanceDij between sequencei and se-
quencej. For the tree (ij |kl) the four-point condition
(Buneman 1974) is true due to the additivity of distances:

E(d*ij + d*kl) ø E(d*ik + d*jl ) 4 E(d*il + d*jk) (1)

whereE(x) is the expected value ofx. Equation (1) can
be used to determine the tree topology. In practice one
deals with three inequalities in a form

dij + dkl ø dik + djl (2)

wheredij is an estimate of the distanceDij between se-
quencei and sequencej (see Table 1 for an example).
Since unbiased distance estimates are unknown, what is1 Subject to some conditions on the functionr(x).

Fig. 1. Phylogenetic trees.(A) Unrooted tree of
four sequences subject to study in the article, with
designations for branch lengths shown.(B C D)
Phylogenetic trees illustrating text samples 1, 2, and
3, respectively. Tree B shows the amniote
relationship on the basis of nine protein families.
Tree C is derived from the four cytochromeb
sequences, and tree D is reconstructed from
sequences generated by computer according to the
given stochastic model. For each tree the scale bar
has the unit of the number of amino acid
substitutions per site. Branch lengths are drawn to
scale. The radius of acircle at the tipof a branch
scales with the standard error of the corresponding
branch length. The standard error of the length of
the middle branch is shown by thecircle at the top
of the branch. The number of sites from which the
tree was derived is shown below the tree.
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the chance of recovering the correct tree topology when
biased distance estimates are used? Will the chances of
recovering the tree increase if correction formulas are
applied? The partial answer is given in the following
theorem.

A Theorem About Invariance to Correction

Let four real values,pi, i 4 1, 2, 3, 4, satisfy conditions
0 < pi < b < 1. Let thevaluep4 be maximal:p4 ù pi. Let
f(x) be a twice differentiable function for 0ø x < b. Let
df/dx 4 1 for x 4 0, and d2f/dx2 > 0 for 0 <x < b. Then

f(p1) + f(p2) < f(p3) + f(p4) if p1 + p2 < p3 + p4

For the casep1 ø pi or p2 ø pi the proof is obvious. Ifp3

ø pi, then the proof can be based on Theorem 8 from
Bers (1969). The theorem about invariance to correction
specifies conditions under which no correction function
possessing properties 1 and 2 alters inequality (2). This
means that if the maximal among the four observed pro-
portions of differencesp appears on the right side of
inequality (2), no correction function will invert the in-
equality. Theoretically if there exists a method to get
consistent estimates of distances from the observed pro-
portion of differences via a correction function, then the
tree topology is consistently estimated withp-distances if
the maximalp-distance consistently appears on the right
sides of all three inequalities (2). One should apply the
theorem with care, since due to sampling error the maxi-
mal expectedp-distance may occur on the left side of
inequality (2) when the maximal observed proportion of

differences is on the right side. The estimate of the stan-
dard error of the sumS4 pik + pjl − pij − pkl shows the
statistical significance of inequality (2). The variance of
Scan be estimated from the variances and covariances of
p-distances. For a linear functionY 4 ∑n

i41 aiyi, where
ai are constants andyi are values ofn random variables
with the covariance matrix of elementslij , the variance
of Y is given by the equation Var(Y) 4 ∑n

i41 ∑n
j41 aiajlij

(Stuart and Ord 1994). A formula, proposed by Bulmer
(1991) can be used to estimate the covariance matrix of
p-distances. Namely, the elements of the covariance ma-
trix for proportion of identical residues are approximated
by the equationl(qij , qkl) 4 (qijkl − qijqkl)/m, whereqijkl

is the proportion of residues identical in all sequencesi,
j, k, and l, qij and qkl are the proportions of residues
identical in sequencesi and j and sequencesk and l,
respectively,i < j, k < l, and m is the number of sites
without gaps. The case wherei 4 k and j 4 l gives the
variance ofqij , with covariance betweenqij andqkl given
otherwise. The elements of the covariance matrix for
functions of proportions of identical residuesfi(qi) are
approximated by the delta method (Stuart and Ord 1994) as

l~fi~qi!, fj~qj!! =
dfi
dx

~qi!
dfj
dx

~qj! l~qi, qj!

The following theorem deals with the case when the
maximal value ofp-distance estimate is on the left side
of inequality (2).

A Theorem About Inversion After Correction

Let four real values,pi, i 4 1, 2, 3, 4, satisfy conditions
0 < pi < b < 1. Let thevaluep1 be maximal:p1 ù pi, and
p1 Þ p3, p1 Þ p4. Then there exists a functionf(x) that is
twice differentiable for 0ø x < b, df/dx 4 1 at x 4 0,
d2f/dx2 > 0 for 0 < x < b, and

f(p1) + f(p2) > f(p3) + f(p4) if p1 + p2 < p3 + p4

To prove the theorem it is enough to show that for the
functionf(x) 4 ((1 −x)−a − 1)/a,we have lima → +`{ (af(p3)
+ af(p4) + 2)/(af(p1) + af(p2) + 2)} 4 0. Thus if the maxi-
mal among the four observed proportions of differences
appears on the left side of inequality (2), the inequality
will invert when some correction functions are applied.
Since the selected tree topology might be altered if one
or more inequalities (2) invert, it is necessary to justify
the selection of correction function. Two methods, which
facilitate the choice of correction function are proposed.

Inspection of an Inversion Point
For some class of correction functionsf(p, a), where

a is a parameter, it is possible to find the valuea* that
satisfies equationf(p1, a*) + f(p2, a*) 4 f(p3, a*) + f(p4,
a*). Inspection ofa* helps to answer whether inequality
(2) will invert. For example, consider the correction for-

Table 1. Analysis ofp-distancesa,b

Example Inequality S/s(S) a

1a p13 + p24 < p12 + p34 0.6 0
p14 + p23 < p12 + p34 1.3 0
p14 + p23 < p13 + p24 0.7 0

1b p13 + p24 < p12 + p34 2.6 0
p14 + p23 < p12 + p34 1.3 0
p13 + p24 < p14 + p23 1.3 0

2 p12 + p34 < p13 + p24 3.0 0.14
p12 + p34 < p14 + p23 2.2 0.17
p14 + p23 < p13 + p24 0.7 0.06

3 p13 + p24 < p12 + p34 5.8 1.41
p12 + p34 < p14 + p23 1.4 0
p13 + p24 < p14 + p23 7.0 1.01

a For each example all three inequalities (2) are shown.S/s(S) is the
ratio of the difference between the right and the left sides of corre-
sponding inequality to the standard error of this difference,a gives the
value of parametera from the gamma distribution-based correction
formula (6), which turns corresponding inequality into equality; a zero
value means that inequality never inverts. The line with the largest
S/s(S) for each example is in boldface.
b In Tables 1, 2, 3, and 4 the sequences are numbered as follows. 1,
Testudines;2, Lepidosauria; 3, Archosauria; 4, Mammalia for ex-
amples 1a and 1b. 1, carragheen (rhodophyte); 2, potato; 3, yeast; 4,
mouse for example 2. 1, seq1; 2, seq2; 3, seq3; 4, seq4 for example 3.
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mula f(p, a) 4 ba(exp{−ln {1 − p/b}/a} − 1), based on
the assumption that the substitution rate varies among
site according to the gamma distribution (Uzzell and
Corbin 1971; Holmqist et al. 1983). Then fora < a*
inequality (2) inverts. From the analysis of protein se-
quences it is known that the parametera usually takes
values between 0.5 and 2. Therefore ifa* 4 0.1, it is
unlikely that the inequality inverts. Ifa* 4 20, the in-
equality is probably inverted. More elaborate schemes of
analysis of all three inequalities (2) favoring each of the
three topologies can be developed.

Triplet and Quadruplet ‘‘distances’’
Triplet, quadruplet, etc., ‘‘distances’’ are introduced

in this article in addition to the widely used pair dis-
tances. The definition of the proportion of identical resi-
duesqij 4 1 − pij in the two sequencesi and j extends
naturally to the case of 3, 4,. . . , n sequences. Thus the
proportion of identical residues in the alignment ofn
sequencesi1, . . . , in is

qi1...in
=

mi1...in

m
(3)

wheremi1. . .in
is the number of sites that are occupied by

the same amino acid type in the sequencesi1, i2, . . . ,
in−1, in, n > 1, andm is the total number of sites. The
definition of the distance between two sequences is ex-
tended here to the case ofn sequences.

The ‘‘distance’’ Di1. . .in
betweenn sequencesi1, . . . ,

in is defined as the number of substitutions per site that
occurred on all shortest paths between all pairs of these
sequences where each substitution event is counted only
once. In other words, if the branch lengths of the tree are
proportional to the number of substitutions, the ‘‘dis-
tance’’ betweenn sequences is the sum of all branch
lengths connecting thesen sequences. Thus for the tree
of n sequences the ‘‘distance’’ between thesen se-
quences is equal to the tree length. For example, in the
tree in Fig. 1Adij 4 bi + bj, dijk 4 bi + bj + bk + b5,
dijkl 4 bi + bj + bk + bl + b5. For the distances defined
this way the general formula relating the distance and
proportion of identical residues for the pair of sequences
extends (see Appendix) for the case ofn sequencesi1,
. . . , in:

qi1...in
− q`

n−1

1 − q`
n−1 ≈ *

0

`

r~x! expH−
di1...in

x

1 − q`
n−1J dx, n . 1

(4)

wherer(x) is the distribution of relative substitution rates
over sites, andq` is the expected proportion of identical
residues in a pair of infinitely distant sequences (q` ù
1/20 for protein sequences). More exact equations [see
Appendix, Eq. A.2] can be used if desired.

Therefore, the ‘‘distance’’ betweenn sequences is es-
timated readily from the proportion of identical residues
in thesen sequences, provided that the functionr(x) is

known. Introduction of triplet, quadruplet, etc., ‘‘dis-
tances’’ enables us to use information which is being lost
when only pair distances are considered. Additional ob-
servations for statistical estimation of parameters in-
crease the number of degrees of freedom of the system.
These ‘‘distances,’’ along with the pair distances, can be
used to facilitate selection of the appropriate correction
function. This leads to the justified selection of the tree
topology, and the improvement in estimation of branch
lengths of the tree. This can be crucial for the case when
selection of the tree topology depends on the correction
function. Three methods are proposed for the estimation
of a and selection of the tree topology for four sequences.

The Least-Squares Estimation.For each tree topology
(m) let us find the value of parametera and branch
lengthsb1, . . . b5, which minimize\ d − Tmb \2, where
d is an 11-vector of distances with elementsdi 4 f(qi, a),
b is a 5-vector of branch lengths with elementsbj, andTm

is an 11 × 5-matrix with elementstij . If the branch length
bj is included in calculations of the distancedi for topol-
ogy m, then tij 4 1; otherwisetij 4 0. For example, if
sequences 1, 2, 3, and 4 are related by the tree with
topology (12|34), the vector of distances isd 4 { d12, d13,
d14, d23, d24, d34, d123, d124, d134, d234, d1234}, and the
vector of branch lengths isb 4 { b1, b2, b3, b4, b5}, then
the matrixT(12|34) is

T~12?34! = 1
1 1 0 0 0

1 0 1 0 1

1 0 0 1 1

0 1 1 0 1

0 1 0 1 1

0 0 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1

2
The topology for whichb5, the length of the middle
branch of the tree, is maximal should be selected. It
should be noted that if the middle branch 5 of the tree is
longer than some other branches, then\ d − Tmb \2 could
be monotonic witha.

Parity Analysis.For unbiased distance estimatesd*
the expected valueE(d*1234 − d*12 − d*34) is equal to the
middle branch lengthb5 if the tree has topology (12|34)
and is equal to −b5 otherwise. Therefore

|E(d*1234 − d*12 − d*34)| 4 |E(d*1234 − d*13 − d*24)|
4 |E(d*1234 − d*14 − d*23)| 4 b5 (5)

For a distance estimated 4 f(q, a) let us consider the
function gi(a) 4 d1234 − d1i − djk, wherei, j, andk are
pairwise different integers from the set {2, 3, 4} andj <
k. Assume thatf(q, a) is a decreasing function ofa. If the
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functionf gives a consistent estimate, then it is likely that
gi is positive for one value ofi and negative for the two
others. If the distances are severely and nonadditively
underestimated (the larger the proportion of differences,
the larger the discrepancy between the estimate and the
distance), then all threegi values could be negative. In
the case of overestimation more than onegi value could
be positive. If there exista*i , solutions of three equations
gi(a*i ) 4 0, then for alla, such thatamin 4 mid(a*2, a*3,
a*4) < a < max(a*2, a*3, a*4) 4 amax, gi is positive for one
value of i and negative for the two others.2 Let j be the
index of the maximal value among three valuesa*i . Then
the preferred tree topology is (1j|ik). The optimal value
of a for estimation of branch lengths will be the valuea*,
which minimizes the function∑4

i42 (|gi(a*)| − ∑4
i42

|gi(a*)|/3)2 on the intervalamin < a* < amax. The value of
b*5 4 ∑4

i42 |gi(a*)|/3 is a topology-independent estimate
of the middle branch length, which can be compared to
the estimates by the least-squares method for each topol-
ogy. The statistical hypotheses about their equality can
be tested. The favored topology will be the one in which
the topology-dependent estimate of the middle branch
length matches best the topology-independent estimate.

‘‘Super’’ Tree Analysis.Traditionally, the branch
lengths are estimated for each tree topology and then the
topology, satisfying certain criteria, is selected. How-
ever, it is desirable (Yang 1996a) to construct a ‘‘super-
model’’ that encompasses all tree topologies as special
cases. The network (Fig. 2) is used as a ‘‘super model’’
here.3 In the network of four sequences 1, 2, 3, 4 the

vector of branch lengths contains three middle branch
lengths (b51

, b52
, andb53

) in addition tob1, . . . ,b4. If b52

4 b53
4 0, then the network reduces to the tree with

topology (12|34). Ifb51
4 b53

4 0, then the tree has
topology (13|24), and ifb51

4 b52
4 0, the special case

of topology (14|23) arises. Let us find the values of pa-
rametera and branch lengthsb1, . . . , b53

which mini-
mize \ d − Tb \2, under the conditionb51

+ b52
+ b53

−
max (b51

, b52
, b53

) 4 0, whered is an 11-vector of dis-
tances with elementsdi 4 f(qi, a), b is a 7-vector of
branch lengths with elementsbj, andT is an 11 × 7-ma-
trix with elementstij . If branch lengthbj is included in
calculations of the distancedi, thentij 4 1; otherwisetij
4 0. For example, if the vector of distances for se-
quences 1, 2, 3, and 4 isd 4 { d12, d13, d14, d23, d24, d34,
d123, d124, d134, d234, d1234}, and the vector of branch
lengths isb 4 { b1, b2, b3, b4, b51

, b52
, b53

}, then the
matrix T is

T = 1
1 1 0 0 0 1 1

1 0 1 0 1 0 1

1 0 0 1 1 1 0

0 1 1 0 1 1 0

0 1 0 1 1 0 1

0 0 1 1 0 1 1

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

2
Let b5i

4 max(b51
, b52

, b53
); then the topology in which

sequences 1 andi + 1 are grouped together should be
selected.

2 mid(x, y, z) 4 x if y ø x ø z or z ø x ø y.
3 The proposed usage of a network differs from traditional use of net-
work models in evolution studies.

Fig. 2. ‘‘Super’’ tree and its special cases.
The scheme illustrates how a network of four
sequences(top) reduces to three trees of
different topologies(bottom).
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Relations to Other Methods

Traditionally, phylogenetic methods are divided into two
groups based on the type of data they use: distance ma-
trix methods and character-state methods (Saitou 1996
and references therein). According to the distance meth-
ods, the tree that gives the best fit to the estimated matrix
of pairwise distances is chosen. Character-state methods
analyze patterns of characters in each site of a multiple
alignment. Maximum-parsimony and maximum-
likelihood method are character-state methods. For
nucleotide sequences the maximum-likelihood method is
considered the most efficient, since it uses all the data
and statistical models of substitutions on a four-character
alphabet are well developed (Schadt et al. 1998; Gu et al.
1995; Tateno et al. 1994; Yang 1993, 1994, 1996; Yang
et al. 1994; Felsenstein 1981). However, for protein se-
quences implementation of maximum likelihood on 20
or even 64 character alphabet, in combination with vari-
ability of rates among sites, is limited by computational
time, on the one hand, and by sparse data and underde-
veloped statistical models of protein sequence evolution,
on the other (Felsenstein 1996). Therefore distance meth-
ods are widely used for protein sequences (Saitou and
Nei 1987). Distance methods do not use all the informa-
tion contained in a multiple sequence alignment; they
consider only pairwise alignments. Therefore, in the cur-
rently proposed approach, a compromise between the
simplicity of a distance method and the comprehensive-
ness of a character-state method is made. Thek-sequence
distances are estimated from thek-sequence alignments.
The proposed approach still misses information, since
only patterns of invariant residues are used. In the type of
data used the current method is similar to the Hadamard
spectral analysis (Hendy et al. 1994) developed for
nucleotide sequences. Consideration of all patterns re-
quires a better understanding of substitution processes in
protein sequences in combination with variability of
rates and patterns of substitutions among sites. Likeli-
hood calculation is crucially dependent on the underlying
statistical models. Since the validity of an implemented
model is not apparent, it is desirable to use more general
assumptions. Therefore, in the proposed approach the
conditions under which correction ofp-distances will not
change the tree topology are specified. If these condi-
tions are not fulfilled, the topology selection will depend
on the model of variability of rates among sites. The
advantages of the presently proposed method over the
existing methods can be summarized as follows.

● It allows separation of cases in which the tree topol-
ogy will not depend on the assumed model of vari-
ability of rates among sites.

● It improves the distance method introducingk-
sequence distances. Consideration of triplet and qua-
druplet distances in addition to pairwise distances al-
lows for the robust selection of the model of

variability of substitution rates among sites. This se-
lection is impossible in a four-sequence case with only
pairwise distances.

● It allows estimation of branch lengths of the tree and
of a parameter from the distribution of substitution
rates over sites, without elaborating statistical assump-
tions to the level necessary for maximum-likelihood
methods that consider all patterns of characters.

Additionally, most tree-building methods (including
the maximum-likelihood method) estimate parameters
for every tree topology and then select the topology that
fits best according to some criteria. Alternatively, in the
current method it is proposed to use a network to esti-
mate parameters once and then reduce the network to a
tree, eliminating branches whose lengths differ from zero
insignificantly.

Examples

The following examples illustrate the proposed methods
for the case of four sequences. Designatev1. . .n 4 (q1. . .n

− q`
n−1)/(1 − q`

n−1), and bn 4 1 − q`
n−1. It is assumed in

calculations thatq` 4 1/20. Three classes of correction
functions are analyzed for each example. First,

d1...n = bnaSv
1...n

−
1

a − 1D (6)

which is based on the assumption that the substitution
rate varies among sites according to the gamma distri-
bution (Uzzell and Corbin 1971; Holmquist et al. 1983;
Ota and Nei 1994; Grishin 1995). The second is

d1...n = bn

1 − b

lnb
ln

b − b1−v1...n

b − 1
(7)

which is suggested from the analysis of spatial structures
(Grishin 1997). The two functions given by Eqs. (6) and
(7) are among the simplest single-parameter relations
that transform the interval [0,1] (the fraction of un-
changed residues is defined on this interval) into the
interval [0,̀ ) (evolutionary distance is defined on this
interval). The expressionsv−1/a − 1 and − ln {(b − b1−v)/
(b −1)} perform the interval transformation. The expres-
sions a and (1 −b)/lnb are scaling factors that allow
direct comparison of distances calculated by the different
formulas.

The third function is a numerical solution ford of Eq.
(4) for the case of the log-normal distribution (Olsen
1987),

r~x! = ~x=2pc!−1 expH−
~lnx + c/2!2

2c J (8)
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A computer program in C language was written by the
author to perform the calculations. It runs on a DEC-
alpha computer under UNIX. The LAPACK library
(Anderson et al. 1995) was used for least-squares calcu-
lation, matrix inversion, and SVD. The analysis of all
examples follows the same general scheme.

1. Each of the three inequalities (2) forp-distances is
analyzed. It is determined if the inequality can invert
when the correction function is applied, and the range
of values of parametera in the gamma distribution-
based Eq. (6) for which inequality (2) inverts is found.
The statistical significance of the inequality is esti-
mated by the calculation of the standard error ofS4
pik + pjl − pij − pkl (Table 1).

2. For each of the three tree topologies and each of the
three correction functions least-squares estimates of
the function parameter and tree branch lengths are
found (Table 2).

3. For each of the three correction functions the tree
topology, suggested by parity analysis, is selected and
estimates of the function parameter are found (Ta-
ble 3).

4. For each of the three correction functions the ‘‘super’’
tree is analyzed (Table 4).

Example 1. The Turtle Enigma (Fig. 1B)

The position of turtles (Testudines) in the phylogenetic
tree of amniotes is highly controversial (Caspers et al.
1996; Rieppel and deBraga 1994; Hedges 1994). Tradi-
tionally they are placed to branch beforeLepidosauria
(tuatara, lizards, and snakes) (Eernisee and Kluge 1993).
Recently the turtle puzzle became ‘‘hot,’’ with several
publications inNaturesuggesting thatTestudinesmight

have separated from the common ancestor afterLepido-
sauria (Lee 1997; Platz and Conlon 1997; Wilkinson et
al. 1997), making turtles advanced diapsid reptiles. For
phylogeny reconstruction it is usual to take a large pro-
tein family, for example, hemoglobina. The results of an
analysis of homoglobina sequences from turtle, tuatara,
alligator, and human are presented in Tables 1, 2, 3, and
4, example 1a. None of the correction formulas invert
inequalities (2), and none of the topologies can be sta-
tistically supported (the largestS is only about 1.3 of its
error). Thus more sites should be added to analysis. Nine
protein families containing sequences from all four taxa
(Testudines, Lepidosauria, Archosauria,andMammalia)
were found in data banks,4 and sequences were com-
bined. The number of sites increased from 141 in hemo-
globin a to 1029 in all nine families. As illustrated in
Tables 1, 2, 3, and 4, example 1b, the largestS and the
middle branch length, which are about three times their
error, support groupingArchosauriaandTestudinesto-
gether. If nine families are analyzed separately (data not
shown), six of them favor groupingArchosauriawith
Testudines(with the largest middle branch length about
2.5 of its error in myoblobin). The remaining three fami-

4 For nine protein families the lists of four sequence IDs (Entrez, http://
www.ncbi.nlm.nih.gov/Entrez/) for sequences fromTestudines, Lepi-
dosauria, Archosauria,andMammalia(human), respectively, follow.
Hemoglobina chain, 1708121, 122487, 122344, 122412; hemoglobin
b chain, 1518804, 632037, 2144728, 122615; myoglobin, 70575,
127700, 127633, 21444731; cytochromeb, 2147229, 1209488,
117847, 117863; cytochromec, 65465, 118039, 117970, 117996; in-
sulin, 400062, 85933, 124540, 124617;a-crystalline chain A, 1223847,
71478, 71477, 1706112; androgen receptor, 1703693, 1195596,
2134448, 113830; estrogen receptor, 1703692, 1195592, 119597,
2134678.

Table 2. Parsimony and least-squares analysisa

Example
Topology

1a 1b 2 3

12|34 13|24 14|23 12|34 13|24 14|23 12|34 13|24 14|23 12|34 13|24 14|23

m.n.s. 109 109 109 621 616 620 374 378 373 1484 1480 1485

a 0.7 0.8 0.7 0.7 0.7 0.6 1.1 1.0 1.1 0.6 0.5 0.7
res 0.11 0.11 0.08 0.03 0.03 0.03 0.07 0.12 0.13 0.02 0.01 0.02
b5 −0.03 0.01 0.07 0.005 0.025 −0.018 0.09 −0.05 −0.005 0.009 −0.022 0.002
b5/s(b5) −0.9 0.3 1.5 0.5 2.9 −2.5 2.6 −1.5 −0.2 1.9 −4.5 0.8
b 15. 11. 16. 16. 16. 20. 11. 11. 9. 17. 33. 16.
res 0.12 0.12 0.09 0.04 0.03 0.04 0.08 0.15 0.16 0.02 0.01 0.02
b5 −0.03 0.01 0.07 0.006 0.027 −0.019 0.11 −0.05 −0.001 0.009 −0.023 0.002
b5/s(b5) −0.7 0.4 1.5 0.6 2.6 −2.0 2.4 −1.2 −0.0 2.9 −3.5 0.8
c 1.1 0.9 1.3 1.3 1.4 1.5 1.1 1.0 0.9 1.4 1.8 1.4
res 0.12 0.12 0.10 0.04 0.03 0.04 0.08 0.14 0.15 0.02 0.01 0.02
b5 −0.02 0.02 0.07 0.006 0.028 −0.019 0.11 −0.04 0.00 0.009 −0.023 0.002
b5/s(b5) −0.6 0.5 1.5 0.7 2.7 −1.9 2.4 −1.1 0.0 2.6 −3.3 0.6

a For each example for each topology for each correction function, the best-fit value of the parameter of the correction function [a for Eq. (6),b
for Eq. (7), andc for Eq. (8), least-squares sum of residuals (res), middle branch length (b5), and ratio of the middle branch length to its standard
error [b5/s(b5)] are shown. m.n.s., minimal number of substitutions (maximum parsimony). The maximalb5 andb5/s(b5) and minimal m.n.s. are
in boldface for each example.
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lies (androgen receptor, cytochromeb, and hemoglobin
a) favor groupingArchosauriawith Lipidsauria (largest
middle branch length 1.6 of its error for the androgen
receptor, which is an overestimation, since the number of
sites and the number of substitutions are small).

In summary, the data presented here suggest that the
turtle problem can be solved with justp-distances, pro-
vided that the number of sites used in the analysis is large
enough. About 1000 amino acid sites combined from
nine protein families under the proposed analysis scheme
contradict the classical view on the turtle origin and sug-
gest (Fig. 1B) that turtles branched off afterLepidosauria
and are diapsids.

Example 2. The Minimal Tree Fails (Fig. 1C)
The example with four cytochromeb sequences5

shows that the maximum-parsimony tree (minimum
number of substitutions) fails to group sequences from
green plant and rhodophyte together (Table 2, example
2). Analysis of the sequences by the methods discussed
in this article statistically support the traditional and most

probable view (Leblanc et al. 1995; Kumar and Rzhetsky
1996) (Tables 1, 2, 3, and 4 example 2; Fig. 1C). In this
example all inequalities (2) invert for very small values
of parametera. These values ofa correspond to an un-
realistically high variability of substitution rates over
sites. Estimates of the parametera according to the least-
squares, parity, and ‘‘super’’ tree analysis from the data
are much larger (Tables 2, 3, and 4, example 2). Thus in
this examplep-distances are successful again in selection
of the tree topology.

Example 3. When Correction Is Crucial (Fig. 1D)
The sequences (seq1 to seq4) used in this example

were randomly generated according to a tree with the
branch lengthsb1 4 0.2, b2 4 0.02, b3 4 0.2, b4 4
0.02, andb5 4 0.01 and topology (12|34). The sequence
length was 2000 amino acids. All amino acids were as-
sumed to be equally changeable, but the substitution
rates over sites varied according to the exponential dis-
tribution r(x) 4 exp(−x). No gaps were allowed. The
generated sequences were analyzed by the methods pro-
posed in this article to test whether the known phylogeny
between them is recovered. Analysis ofp-distances
(Table 1, example 3) statistically supports a false group-

5 Sequence IDs (Entrez, http://www.ncbi.nlm.nih.gov/Entrez/) for the
sequences analyzed are 1345906, 231953, 117899, and 117870.

Table 3. Parity analysisa

Example
Parameter

1a 1b 2 3

a b c a b c a b c a b c

i 4 2 0.4 108. 3.2 0.6 25. 1.7 1.3 9. 0.9 0.7 15. 1.3
i 4 3 0.5 54. 2.4 0.8 13. 1.2 0.7 36. 2.0 0.3 359. 3.6
i 4 4 0.7 19. 1.5 0.4 53. 2.3 0.8 24. 1.6 0.6 21. 1.6
min 0.6 37. 2.1 0.6 21. 1.6 1.0 16. 1.3 0.6 19. 1.5
b5 0.06 0.07 0.09 0.02 0.02 0.03 0.09 0.11 0.11 0.01 0.01 0.01
b5/s(b5) 1.4 1.2 1.2 2.4 2.2 2.2 2.3 1.9 1.9 2.9 3.8 3.6

a For each example for each correction function [a for Eq. (6),b for Eq. (7), andc for Eq. (8), designate any of these parametersj], for eachi 4

2, 3, 4, the solutionj of the equationgi (j) 4 0 is given. For each example and for each correction function min gives the value of parameterj*
that minimizes∑4

i42(|gi(j*) | − ∑4
i42|gi(j*) |/3)2. The middle branch length is estimated asb5 4 ∑4

i42|gi(j*) |/3. The ratio of the middle branch length
to its standard error [b5/s(b5)] is shown. The values of parameters for the favored topology (1i|jk) and the largest value ofb5/s(b5) are in boldface.

Table 4. ‘‘Super’’ tree analysisa

Example
Parameter

1a 1b 2 3

a b c a b c a b c a b c

param 0.5 70. 2.7 0.5 32. 1.9 0.8 24. 1.6 0.7 14. 1.3
res 0.11 0.15 0.20 0.03 0.03 0.04 0.10 0.14 0.14 0.02 0.02 0.02
b51

−0.02 −0.02 −0.03 −0.01 −0.01 −0.01 0.092 0.124 0.126 0.008 0.008 0.009
b51

/s(b51
) −0.4 −0.2 −0.3 −0.9 −0.7 −0.7 2.2 1.5 1.4 2.2 1.9 1.9

b52
0.02 0.02 0.03 0.024 0.027 0.030 −0.02 −0.02 −0.02 −0.00 −0.00 −0.00

b52
/s(b52

) 0.4 0.2 0.3 2.3 1.7 1.8 −0.4 −0.3 −0.3 −0.7 −0.5 −0.5
b53

0.07 0.09 0.12 0.008 0.009 0.010 0.015 0.020 0.021 0.004 0.004 0.004
b53

/s(b53
) 1.6 0.9 0.9 1.0 0.7 0.7 0.4 0.3 0.3 1.1 0.9 0.9

a For each example for each correction function [a for Eq. (6),b for Eq. (7), andc for Eq. (8)] the value of the parameter (param), least-squares
sum of residuals (res), and values ofb5i

andb5i
/s(b5i

) for i 4 1, 2, 3 are given. The maximalb5i
andb5i

/s(b5i
) are in boldface.
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ing of seq2 with seq4, because these sequences are most
similar to each other. The same conclusion comes from
the parsimony analysis (Table 2, example 3). Thusp-
distances and maximum parsimony fail to recover the
correct topology. Application of the theorem about in-
version after correction shows that some inequalities (2)
invert when some correction functions are applied (Table
1, example 3). The distances obtained by the best-fit
correction function (Tables 2, 3, and 4, example 3) allow
us to recover and statistically support the correct phy-
logeny (Fig. 1D). This example illustrates the suitability
of the proposed methods in the case where substitution
rates are drastically unequal between lineages, as well as
sites.

In summary, the methods of analysis proposed in this
article recover reasonable trees in all three examples. In
the last two examples they outperform the popular par-
simony analysis, which appears misleading. In the ex-
amples above three one-parameter correction functions
were considered. Their difference is due to the different
underlying distributions of substitution rates over sites.
The striking feature is that the resulting selection of the
tree topology and branch lengths are relatively indepen-
dent of the type of correction function applied. The three
examples illustrate a general tendency: it is not very
important which single-parameter distribution of substi-
tution rates over sites is chosen. It is crucial, however,
that variations of the parameter in the distribution allow
for transition from the case where the substitution rate is
highly variable among sites to the case of equal rates for
all sites.

Appendix. Relations Between Proportion of
Identical Residues and Evolutionary Distance

We define a site to be unchanged over a tree branchi connecting
sequencess1 ands2, if no amino acid substitutions occurred at this site
between sequences1 and sequences2. The definition implies that the
unchanged site is occupied by the same amino acid type in sequences
s1 ands2. The opposite is not true due to the possibility of ‘‘back’’ and
‘‘convergent’’ substitutions. We define a site to be unchanged inn
sequences, if it was unchanged over all branches of the tree connecting
thesen sequences.

We assume that sites mutate independently. The distribution of
substitution rates over sites remains constant. The probability that a site
with a relative substitution ratex remains unchanged over branchi of
length bi is exp{−xbi}. Since the substitutions in different branches
occur independently, the probability that the site remains unchanged
over branches 1,. . . , n is exp {−x∑n

i41 bi}. Thus the expected number
of unchanged sitesu1. . .n in n sequences and the sum of all branch
lengths connecting these sequences are related via equation

u1...n = *
0

`

r~x! exp$− x (
i=1

2n−3

bi% dx = *
0

`

r~x!e−xdi...ndx

(A.1)

wherer(x) is a probability density function of relative substitution rates
over sites. We see that under the present model the functional relation-

ship u1. . .n 4 F(d1. . .n) exists. Assume that the conditional probability
of the ‘‘back’’ substitution provided that a substitution occurred inr.
For protein sequencesr ≈ 1/19. Letu1. . .n be the fraction of unchanged
sites in a group ofn sequences separated by the ‘‘distance’’d(1 + r).
Let q1. . .n be the fraction of identical sites in a group ofn sequences
separated by the ‘‘distance’’d. The following equations hold for se-
quencesi, j, k, and l (n ø 4):

~1 + r!qij = uij + r

~1 + r!2qijk = ~1 − r!uijk + r~uij + uik + ujk! + r2

~1 + r!3qijkl = ~1 − r!2uijkl + r~1 − r!~uijk + uijl + uikl + ujkl! + r2~uij

+ uik + uil + ujk + ujl + ukl! + rF~~dijkl − b5!~1 + r!! + r3

(A.2)

wheredijkl is the ‘‘distance’’ between sequencesi, j, k, and l andb5 is
the branch length of the middle branch 5 of an unrooted tree, relating
four sequences (Fig. 1A). Expressions (A.2) can be derived as solutions
of differential equations describing the changes of expected values of
proportions of identical residues (N.V. Grishin, unpublished). Equation
(4) in the text is an approximation of Eqs. (A.2).
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