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Abstract. Sequence analysis of two nuclear-encodedhe S phase (Grasse and Dragesco 1957). Mitosis is dis-
glyceraldehyde-3-phosphate dehydrogenase (GAPDHjnct from that of other eukaryotes (Spector et al. 1981);
genes isolated from the dinoflagella@®nyaulax polye- there is no spindle and chromosomes are segregated by
dra distinguishes them as cytosolic and chloroplasticattachment to the nuclear envelope, which remains intact
forms of the enzyme. Distance analysis of the cytosolicthroughouit.

sequence shows th&onyaulaxgene branching early Phylogenetic analysis based on large nuclear-encoded
within the cytosolic clade, consistent with other analysesribosomal RNA sequences has placed the dinoflagellates
However, the plastid sequence forms a monophyletiGuith ciliates and apicomplexans (Baroin et al. 1988; Ga-
group with the plastid isoforms of cryptomonads, within jadhar et al. 1991; Lenaers et al. 1991; Woese 1987).
an otherwise cytosolic clade, distinct from all other plas-However, about 50% of dinoflagellate species are pho-
tid GAPDHSs. This is attributed to lateral gene tranSfertosynthetiC, with Ch|0r0p|asts surrounded by a tr|p|e
from an ancestral cryptomonad to a dinoflagellate, proymembprane; whether this is explained by capture of pro-
viding the first example of genetic exchange accompaygayyotic or eukaryotic endosymbionts is debated (Gibbs
nying symbiotic associations between the two, which are| 9g14). |n addition, most contain the carotenoid peridi-
common in present day cells. nin, which to date has been found only in dinoflagellates
(Jeffrey et al. 1975; Loeblich 1976).

We have obtained the sequence of two glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) genes from
Gonyaulax polyedraa photosynthetic dinoflagellate.
GAPDH has been extremely useful in phylogenetic
analysis, notably in demonstrating a symbiotic origin of
Introduction chloroplasts in vascular plants (Shih et al. 1986; Martin

and Cerff 1986; Martin et al. 1993). It is highly con-
Dinoflagellates have features that make their phylogeserved and its genes have been sequenced from a large
netic affinities and evolutionary history enigmatic. Their number of different taxa. All known plastid-containing
nuclei contain up to 200 pg DNA per nucleus (Holm- eykaryotes have two different forms of the enzyme
Hansen 1969) and lack histones (Rizzo 1981), while thgcerff 1995; Martin and Schnarrenberger 1997). One, a
chromosomes remain permanently condensed thrOUngchontic enzyme, specific for NAD, is typically found
in the cytosol. A second form, found in chloroplasts, can
utilize both NAD" and NADP and is involved in Calvin
Correspondence tal.W. Hastingsp-mail: hastings@fas.harvard.edu  cycle reactions. We report here that the phylogeny of the
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cytosolic form of (GAPC) is consistent with previous Results and Discussion

nuclear ribosomal RNA analysis. However, as in the case

of the recently reported cryptomonads (Liaud et al.Two cDNAs encoding GAPDH were isolated froBp-
1997), the chloroplast form (GAPCp) is different from nyaulax polyedraand though slightly different in size
that found in all other plastids. (1.3 and[1.4 kb), both show homology to cytosolic
forms of GAPDH from other eukaryotes. The 1.3-kb
form (GAPC) encodes a cytosolic enzyme (see below); it
contains a 1029-bp open reading frame, predicting a pro-

_ _ _ tein of 36 kDa, similar to the 32 to 36 kDa reported for
Clones for GAPDH were obtained by polymerase chain reaction and by

screening of &. polyedracDNA library. Sequences were determined other Cyt_OSO“C GA_PDH en_zymes'
using the dideoxy chain termination method (Sanger et al. 1977), and 1WO lines of evidence indicate that the 1.4-kb form

their identities determined by BLAST searches of the NCB1 sequenceencodes a protein (GAPCp) localized to the chloroplast.
data banks (Altschul et al. 1990). The forward degenerate primer GAPRFrst, it contains a presequence indicative of chloroplast

5a (TCSAACGCNTCSTGYACBAC), which codes for the conserved targeting. Its 1275-bp open reading frame encodessa
peptide sequence SNASCTT, surrounding the GAPDH catalytic cys-kDa rotein. considerably larger than the cvtosolic form
teine residue, was used with the vector primer T7 to amplify a 765-bp p ! ylarg Yy !

fragment from &GonyaulaxcDNA library directionally cloned into the ~ PUt Similar in mass to the 42_ and .48 kD? for chloroplast
\ Zap vector. This fragment had significant homology with mammalian GAPDH precursors fromArabidopsisandPisum, respec-
GAPDH genes and allowed design of the nondegenerate antisenq@\/e|y (Brinkmann et al. 1989; Shih et al. 1991, 1992)
primer GAPP 27 (CACAAAACAAGCGAGCTTCACTC), which, to- — (Fjg 13) . Although the cleavage site has not been deter-
gether with the vector primer T3, amplified a 1.3-kb product from the . d. th | | fth t tein (38-40
same library. This product contained a complete open reading framgmne » tN€ molecular mass O_ e ma_ ureé protein ( -
which, based on sequence, was predicted to encode a GAPDH enzym&Da; data not Shown_) 15 consistent W_|th the r.emoval ofa
GAPP 5a was also used together with the reverse degenerate prim@resequence. In addition, the N-terminal region of@he
GAPP 4a (RATSGGGTTVGTCTCSARSTC), the complement of polyedraGAPCp is similar to those found in other chlo-

which encodes the peptide DLETNPI, originally identified by peptide roplast-localized proteins in dinoflagellates (Le et al.
sequences of proteins isolated from 2D gels (Markovic et al. 1996), to,

amplify a 430-bp fragment. This fragment was then used to create thé'997_) andqulena(Ch?n etal. 1990; Henze ?t al. 19.95;
reverse primer GAPP 4b (TAGTCTCGAAGTCTGTGGACAC), Sharif et al. 1989) (Fig. 1b), These N-terminal regions
which, together with the vector primer T3, amplified a 1.1-kb clone. have in common a typical signal peptide structure (von
This was used to isolate a 1.4-kb cDNA clone from the library, which, Heijne 1986) with a charged N terminus, followed by a
though different in sequence from the 1.3-kb clone, also contained Ehydrophobic core and peptidase cleavage site, and a sec-

complete open reading frame and showed sequence similarities to . . . .
GAPDH genes from other organisms. ond region rich in hydroxylated and charged residues,

Sequences from a wide range of species were utilized in order t¢°ONtaining another hydrophobic stretch (Fig. 1b). The
obtain a comprehensive picture of GAPDH phylogeny. Sequences wersimilarity to theEuglenasequences, which are involved
aligned using ClustalW (Thompson et al. 1994) and adjusted manuallyjn directing proteins to the chloroplast via the endoplas-
the N- and C-terminal ends of the sequences were trimmed to yield 3nic reticulum (Kishore et al. 1993), suggests that pro-
common block of sequences 339 amino acids long, and equivoca] . . . S .

a#ems may be likewise targeted to plastids in dinoflagel-

Materials and Methods

residues were removed. Parsimony analysis was carried out usin .
PAUP Version 3.1.1 written by David L. Swofford, and the 50% ma- |at€s. Also, the chloroplasts in both groups are
jority rule consensus tree was retained after a heuristic search of 108urrounded by a triple membrane, whichBnglenahas
bootstrap resamplngs. Distance analysis was carried out using softwailgeen shown to be associated with the endoplasmic re-
in the Phylogeny Inference Package (PHYLIP) Version 3.572, by J°'ticu|um (Gibbs 1981b).

seph Felsenstein, University of Washington. The Dayhoff PAM matrix . T
was used to generate distance matrices (Protdist) from 100 bootstrap Second, a chloroplast location of the GAPCp is indi-

resamplings (Segboot). The majority-rule consensus tree was compute@ated_ by the .identity O_f thrge .key amino .aCid_ resi-
(Consense) after unrooted trees were generated from the distance meues involved in nucleotide binding, which differ in the

trices by the neighbor joining method (Neighbor). Branch lengths werecytosolic and chloroplastic forms of the enzyme (Fig. 2)

obtained from an unbootstrapped distance matrix using the unrooteﬁmermont et al. 1993). Eukaryotic cytosolic forms
consense tree as a user tree (Fitch). The consense tree is graphica ' : '

displayed using TreeView 1.5 (Page 1996). The sequences used can Mithh tyelcally T'“_Ilflll a catabolic role in glycolysis an_d
obtained from GENBANK using the following accession numbers: '€ NAD" specific, have conserved aspartate, glycine,
Anabaenal, P34916;Anabaena2, P34917:ArabidopsisA, P25857;  and proline residues at positions 32, 187, and 188, re-

ArabidopsisC, P25858Chlamydomonas, P50362;Chlamydomonas  gpectively, numbered as iBacillus (Biesecker et al.

C, P49644;ChondrusA, P34919;ChondrusC, P34920;Drosophila, 1977). Plastid GAPDHSs, which typically have an ana-

P0O7486;E. coli 1, PO6977;E. coli 2, P11603;EuglenaA, P21904; . .

EuglenaC, L21903:Giardia, M88062: Gonyaulax CAF028562:Go-  POIIC role and are able to utilize both NARand NADP,

nyaulax Cp, AF028560;Gracillaria C, P54270;Gracillaria A, have substitutions at these positions Gnpolyedrathe
residues are indeed conserved in GAPC, confirming its

P30724,Guillardia C, U39873;Guillardia Cp, U40032;Methanother-
mus, P19314; Neurospora,P54118; Pinus A, P1285%®inus Cp,  jdentity as a cytosolic form, but not in GAPCp, where

L07501; PisumA, P12859;PyrenomonasC, U39897;Pyrenomonas
Cp, U40033;Pyrococcus,P20286;RhodobacterP29272;Saccharo-
myces P00360;SulfolobusP39460;Synechocystif?49433;Trypano-
somaC, P10097; andenopus,P51469. The alignment is available
upon request.

alanine occurs at positions 32 and 188, and serine at 187.
Based on the deduced amino acid sequeGc@olye-

dra GAPCp is less than 42% identical to the previously

known chloroplast forms of vascular plants, chloro-
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Fig. 1. A Hydrophobicity plot of G. polyedraGAPDH sequences, chlorophyll a binding protein (Lee et al. 1997); GAPA, chloroplast
obtained using the Protean module of the DNASTAR (Madison, WI) glyceraldehyde-3-phosphate dehydrogenase (Henze et al. 1995). The
package based on parameters of Kyte—Doolittle (1982). GAPC is thesymbols +, —, andD refer to positively charged, negatively charged,
cystolic isoform, while GAPCp, with its additional N-terminal se- and hydroxylated amino acids, respectively. Hydrophobic regions are
guence, is the chloroplast forrB.N-terminal amino acid sequences of underlined. Superscripted numbeédentify amino acids positions. The
nuclear-encoded chloroplast targeted proteins. @pnyaulax polye-  N-terminal amino acids of the mature proteins are unknown.

dra: E.g., Euglena gracilis; GAPCp, this paper; PCP, peridinin—

phytes, and rhodophytes, which among themselves arhe Archaea, which was used as an outgroup in the par-
greater than 60% identical (Fig. 3). Indeed, excluding thesimony analysis; (ii) plastids of most higher plants and
N-terminal presequence, ti& polyedraGAPCp is more algae together with the eubacteria; and (iii) primarily
identical to the cytosolic than to the chloroplastic form of eukaryotic cytosolic sequences.

GAPDH found in other eukaryotes. Howev&, polye- In the parsimony analysis the cyanobacterial se-
dra GAPCp exhibits a high sequence similarity to the quences $ynechocystiand Anabaena appear as a po-
recently reported (Liaud et al. 1997) chloroplast GAPDHIytomy with the red alga and vascular plant sequences,
sequences from two cryptomona@jillardia thetaand  while the distance analysis shows modest support for
Pyrenomonas saling67 and 68%, respectively). An earlier branching of the cyanobacterial lineages. The
analysis of the cryptomonad sequences suggested thahalyses are thus consistent with a cyanobacterial origin
they may have been derived from proteobacteria (Liaudf chloroplasts in vascular plants and rhodophytes.
et al. 1997), as proposed previously for tBepolyedra Somewhat unexpectedly (as cyanobacteria are also
RuBisCO gene (Morse et al. 1995). Irrespective of theirthought to be the origin oEuglenachloroplasts), the
origin, it is clear from the amino acid sequence compari-Euglenalineage is more deeply rooted than the cyano-
sons that dinoflagellate and cryptomonad plastid GAPCybacterial branches. It may be noted that Ehaylenase-
proteins are similar to one another and different fromquence contains many insertions not present in GAPDH
GAPDHs found in other chloroplasts. genes from other taxa.

In order to obtain a more detailed picture of the evo- The topology of the cytosolic clade is less well de-
lution of G. polyedra GAPDH genes, phylogenetic fined, and not all nodes are well supported. The high
analyses were performed using sequences from a broatkgree of similarity between the cytosolic sequences
array of taxa. Similar tree topologies were obtained withcompromises reliable tree resolution and produces the
either maximum-parsimony or distance analysis (Fig. 2) polytomy and poorly supported branches observed in the
In both analyses the taxa fall into three main clades: (i)parsimony and distance analyses, respectively. Neverthe-
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Fig. 2. Phylogenetic analysis of 33 GAPDH sequences generated byubset usingAnabaenal as an outgroup. In the distance analysis the
maximum parsimony (lengtk- 2493 steps, Ck= 0.606, RI= 0.629, scale bar represents the number of substitutions per site. The branch
RC = 0.381) and by distance analysis. Dinoflagellate and cryptomo-length between the outgroup (i) and the rest of the tree is greater than
nad branches are shown boldface,with the chloroplast sequences can be represented by the diagram, indicated bseakin the line.
underlined.Both trees separate archaeal (i), plastisd (ii), and cytosolicFilled circles indicate the presence of asparfateylycine®’, or pro-

(iii) sequences with similar topology. Bootstrap support is given as theline'®®in a given sequence, indicative of a specificity for NADvhile
number of times a given node appeared in 100 reiterations; those witlsubstitutions in these positionepen circle} are indicative of a dual
values below 50 are shown as polytomies. Where two values arespecificity and chloroplast localization.

shown, the second was obtained from an analysis of the eukaryotic

less, apart from th&. coli/T. bruceiclade, which has Both parsimony and distance analyses place the
previously been observed as an outgroup to the verteNAD™ specific G. polyedraGAPC sequence within the
brate and plant clades, the branching order is consisterytosolic clade (Fig. 2). Distance analysis shows branch-
with a previously reported phylogenetic analysis (Martining close to and befor8iardia andChlamydomonabut

et al. 1993). In particular, the relatively late branching of the bootstrap support is weak. Reanalysis of the cytosolic
the cryptomonad cytosolic sequences has been prevelade, with theAnabaenal sequence as the outgroup,
ously documented (Liaud et al. 1997). Three chloroplasteveals the same overall topology but with better support
targeted sequences, which unexpectedly fall into the cyvalues.

tosolic clade, have been described previously. Two are The phylogeny of the chloroplast form of the enzyme
the cryptomonad chloroplast GAPDH sequences, de(GAPCp) places it outside the plastid clade, where most
scribed above. The other, from the gymnospdtimus  of the other plastid forms are found. In both analyses
sylvestrisjs thought to be derived from the introduction there is a well-supported grouping of t&e polyedraand

of a chloroplast-targeting sequence to the N terminal otryptomonad GAPCp sequences within the cytosolic
the plant cytosolic isoform (Meyer-Gauen et al. 1994).clade, well separated from the chloroplast forms of other
The function of this isoform is unclear, as it lacks the eukaryotes (Fig. 2). The distance analysis shows this
necessary modifications for binding NADRsed in the  group branching deeply within this clade. Reanalysis of
Calvin cycle; it has been suggested that it may play a roléhe cytosolic subset reveals the same branching order,
in “chlororespiration” (Liaud et al. 1997). with even higher support values (Fig. 2).
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The position ofG. polyedraGAPCp within the cyto-  Peridinium balticumandP. foliaceumfor example, har-
solic clade raises the question of its origin. It is possiblebor diatoms with distinct nuclei and chloroplasts in a
that, as inPinus GAPCp, it arose by targeting a cytoso- stable association (Chesnick et al. 1997). A more com-
lic-type isoform to the chloroplast, with amino acid mon, if more transient, association occurs in kleptochlo-
changes allowing catalysis using both NADand roplasty, in which chloroplasts of an ingested cell are
NADP*. This is unlikely because gene duplication fol- retained and used as temporary photosynthetic organelles
lowed by an extremely rapid divergence would be necby the dinoflagellate after endocytotic engulfment of
essary to explain the distance between the GAPC and threy. Indeed, in the dinoflagellatesmphidinium poe-
GAPCp sequences. Also, the similarity between cryptocilochroum, Gymnodinium aeruginosurand Am-
monad and dinoflagellate GAPCp sequences argueBhidinium wigrensethe kleptochloroplasts are thought
against both being derived independently from their re£0 be of cryptomonad origin (Larsen 1988; Schnepf
spective GAPC homologs. 1992; Wilcox and Wedemayer 1985). We postulate that

The origin of GAPCp in cryptomonads is proposed tothe GAPCp gene in the phototrofh. polyedrais de-
be proteobacterial, while that of their chloroplasts is evi-fived from such an association, in which the integration
dently cyanobacterial, as indicated by sequences of sef @ cryptomonad-like cell or chloroplast into a hetero-
eral plastid-encoded genes, including 16S rRNAs androphic dlnoflagellate. led to the transfer of a cryptomo-
tufA (Delwiche et al. 1995: Douglas 1993; Giovannoni et "@d gene(s) to the dinoflagellate nucleus. However, our
al. 1993). In dinoflagellates RuBisCO is also reported todata are also consistent with such a transfer from a dino-
be proteobacterial in origin (Morse et al. 1995; Rowan etfl2gellate to a cryptomonad.

al. 1996; Watson and Tabita 1997), while the intrinsic Ijhylogene;ci% aEIaIysils of the thdree dinoflagefllate
peridinin—chlorophyll binding protein (iPCP) is of cya- nuci€ar-encoded chlorop ast-targeted proteins so far ex-

nobacterial origin [part of a larger gene family encom—ammed' RUB'SEO' 'PCP’h?”d .GA;ECp, suggestls tha;c. the
passing the fucoxanthin—chlorophyll proteins of thethne?jn}eMcr)Tr]sg etealmlcggsc' F';:V?/gﬁ etzrll [1);%\29\7\2{322 :';Iq_d
chromophytes and the chlorophyll a/b-binding proteinsp ' ' ' ’

of the land plants (Durnford et al. 1996)]. What could Tabita 1997). Lateral transfer from a cryptomonad in the

. . : . course of an ancestral association with a dinoflagellate
explain the presence of proteobacterial-type isoforms in o

. . - would account for the acquisition of two of these genes,
plastids of cyanobacterial origin?

. GAPCp and iPCP, which have homologues in the cryp-
For cryptomonads it was proposed that the GAP,C omonads, as the consequence of a single endosymbiosis.
gene was laterally transferred from a proteobacterial-
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