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Abstract. Statistical and biochemical studies of the
genetic code have found evidence of nonrandom patterns
in the distribution of codon assignments. It has, for ex-
ample, been shown that the code minimizes the effects of
point mutation or mistranslation: erroneous codons are
either synonymous or code for an amino acid with
chemical properties very similar to those of the one that
would have been present had the error not occurred. This
work has suggested that the second base of codons is less
efficient in this respect, by about three orders of magni-
tude, than the first and third bases. These results are
based on the assumption that all forms of error at all
bases are equally likely. We extend this work to inves-
tigate (1) the effect of weighting transition errors differ-
ently from transversion errors and (2) the effect of
weighting each base differently, depending on reported
mistranslation biases. We find that if the bias affects all
codon positions equally, as might be expected were the
code adapted to a mutational environment with transi-
tion/transversion bias, then any reasonable transition/
transversion bias increases the relative efficiency of the
second base by an order of magnitude. In addition, if we
employ weightings to allow for biases in translation, then
only 1 in every million random alternative codes gener-
ated is more efficient than the natural code. We thus
conclude not only that the natural genetic code is ex-
tremely efficient at minimizing the effects of errors, but
also that its structure reflects biases in these errors, as
might be expected were the code the product of selection.

Key words: Genetic code — Error minimization —
Mistranslation — Transition/transversion bias — Evolu-
tion — Natural selection

Introduction

The genetic code is not random. Wong (1975), for ex-
ample, has argued that the assignment of codons to
amino acids was guided by the biosynthetic relationships
between amino acids (but see Amirnovin 1997). Signifi-
cantly, then, it has been shown that codons specifying
amino acids that share the same biochemical synthetic
pathway tend to have the same first base (Taylor and
Coates 1989). Codons of the amino acid belonging to the
shikimate, pyruvate, aspartate, and glutamate families
tend to have U, G, A, and C in the first position, respec-
tively.

That amino acids in the same biochemical pathway
are coded by related codons does not necessarily explain
the observation that amino acids that have similar phys-
icochemical properties also have similar codons (Di Gi-
ulio 1997). It was noted early on that the natural genetic
code appeared to be arranged such that amino acids with
similar chemical properties are coded by similar codons.
This may well be the result of selection favoring those
codes that minimized the average phenotypic effects of
single-point mutations or mistranslations (see, e.g., Alf-
Steinberger 1969; Epstein 1966; Goldberg and Wittes
1966; Sonneborn 1965; Woese 1965, 1973; Woese et al.
1966).

An attempt to quantify this effect by Haig and HurstCorrespondence to:S.J. Freeland;e-mail: s.freeland@gen.cam.ac.uk
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(1991) found that of 10,000 randomly generated codes,
only 2 performed better at minimizing the effects of er-
ror, when polar requirement was taken as the amino acid
property (see also Di Giulio 1989; Goldman 1993; Szath-
mary and Zintzaras 1992). Were this due to the fact that
biosynthetically related amino acids share the same first
codon position, changes at the second and third base
should account for nearly all the efficiency of the code,
as these conserve first-base identity. However, first and
third bases are very efficient, while the second base
proved unexceptional (Haig and Hurst 1991). Put another
way, it is the second base that determines the polar re-
quirement of the amino acid. It may hence be concluded
that the code is very efficient at minimizing the effects of
errors, and this is probably the result of selection be-
tween alternative codes, with selection favoring those
that minimize the effects of errors on fitness.

The above analysis (Haig and Hurst 1991) made no
allowance for any biases in errors. All bases were as-
sumed to be equally prone to error and all forms of error
at each base were assumed to be equally likely. How-
ever, both mutation and mistranslation are biased pro-
cesses. Transition mutations tend to occur more fre-
quently than transversion mutations (e.g., see Collins
1994; Kumar 1996; Moriyama and Powell 1997; Morton
1995). Likewise, mistranslation appears to have transi-
tion/translation biases as well as biases by codon position
(Friedman and Weinstein 1964; Parker 1989; Woese
1965). If the code has evolved to minimize the effects of
either, then we might expect that if one allows for biases
in the direction of mutation and/or mistranslation, the
natural code should, in terms of relative efficiency, per-
form even better than randomly generated codes. Here,
then, we extend the previous analysis so as to ask how
these biases effect the relative efficiency of the natural
code.

Methods

The Mean Square (MS) Measure

Work presented here uses the ‘‘mean square’’ (MS) measure (Haig and
Hurst 1991) to quantify the relative efficiency of any given code. This
measure calculates the mean squared change in an amino acid property
resulting from all possible changes to each base of all codons within a
given code. Any one change is calculated as the squared difference
between the amino acid coded for by the original codon and the amino
acid coded for by the new (mutated) codon. Synonymous changes are
included in the calculation, but changes to and from stop codons are
ignored.

The use of a mean square value avoids a problem with negatives,
but it also, unavoidably, introduces a form of weighting of the relative
importance of differences in chemical property. Many alternative
weightings are imaginable. Code fitness might perhaps be a linear
function of chemical distance or, perhaps, large changes in chemical
property have disproportionately large effects on code fitness. It is hard
to know what would be the best model relating chemical distance to
code fitness and the mean square seems as valid as any.

The MS measure for any particular genetic code is calculated as
four separate values: MS1, MS2, and MS3 correspond to all possible
single-base substitutions in the first, second, and third codon positions,
respectively, of all codons in a given genetic code; MS0 corresponds to
all possible single base changes in all codon positions.

The Weighted Mean Square (WMS) Measure

In an extension to the methods of Haig and Hurst, MS values for each
code were calculated at 20 different weightings (weights of 1, 2, . . . 20)
of transition/transversion bias. Because the nature of the MS measure
is to incorporate every possible (i.e., transition and transversion) mu-
tation of a given base, it was not possible to weight theprobability of
transitions as opposed to transversions, so our tests weighted the
squared difference in polar requirement resulting from transitions dif-
ferently from that resulting from transversion bias, thus turning the MS
measures into WMS measures.

At a weighting of 1, all possible mutations are weighted equally
when calculating the MS values for each position of each codon. At a
weighting of 2, the differences in amino acid attribute resulting from
transition error (i.e., U to C, C to U, A to G, or G to A) were weighted
twice as heavily as those resulting from transversion errors. For ex-
ample, the possible errors used to calculate the MS2 value of codon
UUU (Phe) are UCU (Ser), UAU (Tyr) and UGU (Cys), of which only
UCU (Ser) represents a transition error, Tyr and Cys resulting from
transversion errors.

All MS calculations presented here consider a single attribute of
amino acids, namely, the ‘‘polar requirement’’ (Woese et al. 1966),
which may be considered a measure of hydrophobicity: amino acids
with a high polar requirement are more strongly hydrophobic than
those with a low polar requirement. This particular measure was chosen
because previous work (Haig and Hurst 1991) on optimization of the
genetic code found it to give the most significant evidence of load
minimization from an array of four amino acid properties (also tested
were hydropathy, molecular volume, and isoelectric point).

Rules for Forming Variant Genetic Codes

In general, MS values for a given transition/transversion bias were
calculated for a large number of randomly generated variant genetic
codes. Our criteria for creating plausible alternative codes are the same
as those used by Haig and Hurst (1991).

1. The ‘‘codon space’’ (i.e., the 64 possible codons) is divided into the
21 nonoverlapping sets of codons observed in the natural code, each
set comprising all codons specifying a particular amino acid in the
natural code (20 sets for the amino acids and 1 set for the 3 stop
codons).

2. Each alternative code is formed by randomly assigning each of the
20 amino acids to one of these sets. All three stop codons remain
invariant in position for all alternative codes.

The MS measures of each sample of codes generated by this process
form a probability distribution against which the real code MS values
may be compared. As noted by Haig and Hurst, variant codes produced
by this method retain the level of redundancy inherent to the natural
code, i.e., this method controls for the redundancy inherent in the code.

These methods were incorporated into an ANSI ‘‘C’’ program
which calculated MS values for all randomly generated codes over a
range of weightings for transition/transversion bias. The program also
generated basic descriptive statistics (mean, range, standard deviation)
for each of the MS distributions formed, explored the nature and be-
havior of superficially ‘‘better’’ (lower WMS0) codes, and explored
different models for weighting bias.
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Results

Equal Transition/Transversion Bias

Haig and Hurst (1991) calculated MS values for 10,000
randomly generated codes and found only 2 variants
which were more conservative (i.e., gave a lower MS0)
than the natural code. They thus estimated that the
chance that a code as conservative (for polar require-
ment) as the natural code arose by chance was 0.00002
and, therefore, concluded that the natural code was a
product of natural selection for load minimization.

Our results, based on a sample size of 1,000,000,
found 114 ‘‘better’’ (lower MS0) codes (a proportion of
0.000114), indicating a refinement to the previous esti-
mate for relative code efficiency such that the code be
considered almost twice as conservative as suggested
previously. A full comparison of MS values found during
our test and those described by Haig and Hurst (1991) is
shown in Table 1.

Figures 1a–d show the distribution of MS values of
the 1 million random variants generated by our program.
In each plot, the appropriate MS value of the natural
genetic code is indicated by an arrow: the area under the
curve to the left of the arrow thus indicates the number of
variant codes which are more conservative than the natu-
ral code and may, thus, be used to estimate the probabil-
ity of a code as efficient as the natural genetic code
arising through chance alone.

These plots give a graphical context in which to view
the load minimization of the natural genetic code (in
terms of polar requirement) reported by Haig and Hurst
(1991). As reported previously, both the first and the
third bases show strong evidence for adaptation to load
minimization but that the second base shows no signifi-
cant evidence of optimization (indeed, MS2 varies little
from the mean of the random sample).

One previously unreported feature seen in these plots
is the grainy or ‘‘spiky’’ nature of the frequency distri-

bution, most pronounced for the MS1 and MS3 measure-
ments. Several tests were applied to investigate the cause
of this pattern. First, the programs were run with an
entirely different pseudo-random number generator to
verify that the observed pattern was not an artifact of the
period or mechanism of the algorithm used to create
variant genetic codes. This had no effect on the observed
distribution. Having ruled out this possibility, further in-
vestigations used ‘‘fake’’ codes (with different codon
block structures) and ‘‘fake’’ amino acid sets (with dif-
fering distributions of polar requirement). Both types of
test changed the smoothness of the distribution, indicat-
ing the observed phenomenon to be a combined result of
the discrete, clumped distribution of amino acid polar
requirement (Fig. 2) and of the patterns of codon blocks
in the first and third bases. For example, there are 4!
variant codes in which all codons beginning with C have
a polar requirement of either 4.9 or 6.7, meaning that
there are 4! variant codes which all give the same MS1
and MS3’s for codons CNN. In effect, the MS distribu-
tions show some characteristics reminiscent of the nor-
mal distribution (as might be expected from the central
limit theorem) but differ in their detail because our meth-
odology for creating variant codes maintains the codon
block structure and the distribution of amino acid polar
requirement.

Introducing a Transition/Transversion Bias

Previous MS calculations have been based on the as-
sumption that transition errors (i.e., C↔ T amd A↔ G)
and transversion errors (i.e. C, U↔ A, G) are equally
likely to occur. In contrast, we carried out a second set of
simulations in which we generated 100,000 variant codes
and tested each of these at 20 different weightings of
transition/transversion bias (see below).

The results of these tests are summarized in Figs. 3
and 4. In each plot, theY axis represents the proportion
of random variant codes found which were more conser-
vative (lower WMS) than the actual genetic code, and the
X axis represents different weightings of transition:trans-
version bias. The first plot shows the number of more
conservative codes for all WMS measures, while the sec-
ond plot shows the same, but with theY axis rescaled to
clarify the behavior of WMS0, WMS1, and WMS3.

The most startling feature of these plots is the dra-
matic effect of transition:transversion bias on the relative
efficiency of the second codon base: the number of better
codes (i.e., variant codes for which the WMS2 measure
is smaller than that of the natural code) decreases almost
sixfold as the transition:transversion bias increases from
1 to 5. This increase in second-base relative efficiency is
most pronounced at low weightings, appearing to reach
an asymptote as the weighting bias becomes extreme.
Even at a high transition/transversion bias, however, the
second base remains an order of magnitude less rela-
tively efficient than the first and third bases.

Table 1. Basic descriptive statistics for the distributions of possible
MS values from which the natural genetic code is drawn: comparison
of our results (sample size, 1 million) with those reported by Haig and
Hurst (sample size, 10,000)

Measure
Our calculations
(n 4 1,000,000)

Haig and Hurst (1991)
calculations
(n 4 10,000)

Mean± SD
MS0 9.41 ± 1.51 9.41 ± 1.51
MS1 12.04 ± 2.80 12.05 ± 2.77
MS2 12.63 ± 2.60 12.62 ± 2.60
MS3 3.59 ± 1.50 3.58 ± 1.51

Proportion of better codes found
MS0 0.0001 0.0002
MS1 0.0030 0.0037
MS2 0.2216 0.2214
MS3 0.0001 0.0002
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Fig. 1. Histograms for the MS values
obtained from 1 million randomly generated
variants of the natural genetic code. In each
plot, theX axis gives a particular range of
categories of MS values, andY axis gives the
number of random variant codes generated
with an MS value in that category (from a
sample of 1 million random variant codes
tested). In addition, the arrow in each plot
shows the category into which the appropriate
MS calculation for the natural code falls: the
cumulative frequency to the left of this arrow
therefore indicates the number of more
conservative codes found among the random
variants and, thus, is used to estimate the
probability of a code as efficient as the natural
code arising by chance alone:a MSO, 114
‘‘better’’ codes found (P 4 0.0001);b MS1,
2964 better codes found (P 4 0.0030);c MS2,
221,633 better codes found (P 4 0.2216);d
MS3, 88 better codes found (P 4 0.00009).
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In contrast to the second base, the relative efficiency
of the first base improves as a low transition bias is
applied (optimizing at a bias of about 3) and then steadily
worsens with increasing bias (from 3 to 20). In fact, our

results show that the value of WMS1 decreases (i.e., the
base 1 relative efficiency increases) as the transition bias
increases from 1 to 20 (i.e., it behaves in a qualitatively
similar manner to WMS2) but that this increase in effi-

Fig. 1. Continued.

Fig. 2. The distribution of polar requirement values for the 20 naturally occurring amino acids (data from Woese et al. 1966).

Fig. 3. The proportion (of a sample of 100,000 variants) of ‘‘better’’ (lower WMS) codes found at each of 20 weightings for transition/transversion
bias for the first, second, and third and all codon bases combined.
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ciency is less pronounced than that of many random
variants, so that its comparative efficiency decreases.

The relative efficiency of the third base changes very
little across the entire range of transition biases applied.
This might be expected from the pattern of redundancy
inherent within both the natural code and our variants, in
that redundancy is limited almost-exclusively to the
third-base positions: the structure of the code is such that
half of all possible codons exist as members of a ‘‘family
box’’ of four, so that both transition and transversion
mutations in the third position of such codons are all
synonymous.

These effects in individual bases combine in such a
way that the overall relative efficiency of the natural
code (as measured by WMS0) increases with increasing
transition/transversion ratio up to a bias of approximately
3 (i.e., transition errors being weighted as three times
more likely than transversion errors). As the transition
bias increases still further, however, the relative effi-
ciency of the natural code decreases: at a bias between 8
and 9, the code is as efficient as it is with no bias at all,
and thereafter it is relatively less efficient. This observa-
tion coincides quite well with typical empirical data,
which reveal general transition/transversion biases of be-
tween 1.7 and 5 (e.g., see Collins 1994; Kumar 1996;
Moriyama and Powell 1997; Morton 1995). Although
these data represent the biases observed in extant taxa,
the cause of the bias is primarily physiochemical in that
the two purines are of a similar size and shape as are the
pyramidines, but the two groups are different from each

other. It therefore seems reasonable to suppose that the
biases observed now were present to a similar extent
during the early evolution of life.

Testing ‘‘More Conservative’’ Codes with a
Transition Bias

Given that the WMS values calculated for the natural
genetic code vary considerably as the transition/
transversion bias is altered, we next addressed the ques-
tion of how seemingly ‘‘better’’ codes (i.e., lower MS0)
behave as the transition/transversion bias is increased.
Specifically we calculated WMS0 values at transition
biases of 1..20 for the first 15 better codes found. Figure
5 shows the behavior of WMS0 for each code at different
transition weightings. The 15 superficially better codes
used for this study are given in Fig. 6.

Two clear observations may be made of the WMS
calculations. First, it may be seen that of the 15 super-
ficially better codes, only 1 remains more efficient
(lower WMS0) at transition weightings of 3 or above.
This is in keeping with the observations of improvement
in WMS values for all bases of the natural code with
increasing transition bias. Second, a related but more
general observation is that MS0 (i.e., WMS0 at a tran-
sition/transversion bias of 1) is in no way a predictor of
WMS0 behavior at higher transition weightings: code 13
is more conservative when no transition bias is applied
(MS0 4 4.73) but is less efficient than four other codes

Fig. 4. The proportion (of a sample of 100,000 variants) of ‘‘better’’ codes (lower WMS) found at each of 20 weightings for transition/transversion
bias for the first and third and all codon bases combined.
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(including the natural code) even at a transition weight-
ing of 3.

Mapping Translational Error Data to MS Calculations

Both the work carried out by Haig and Hurst and that
presented above assume that mistakes are equally likely
to be made at any of the three codon positions: it is under
this assumption that the second base remains an order of
magnitude less efficient than either the first or the third
base (Fig. 3). This assumption is plausible if we are
considering point mutations to DNA which are accu-
rately translated via mRNA into an erroneous amino ac-
id(s) but must be reconsidered if we are considering mis-
translation of accurate mRNA. In essence there is no
reason to suspect that rates of point mutations vary de-
pending upon codon base number, but translation ma-
chinery acts upon mRNA in a specific reading frame,
reading bases in triplets. The possibility thus exists that
translation accuracy does indeed vary in a consistent
manner according to base position within a codon (e.g.,
the ‘‘wobble’’ rules).

Empirical data for the rate and nature of translational
errors indicate that the detail of their occurrence varies in
a complex manner [according to the specific codon under
consideration (Parker 1989)] but, in general, appears to
support this assertion (see Friedman and Weinstein 1964;
Parker 1989; Woese 1965). Investigation of the polypep-
tide product resulting from in vitro translation of poly(U)
mRNA suggests the following patterns (Friedman and
Weinstein 1964).

(a) Mistranslation of the second codon position is much
less frequent than mistranslation of either the first or

the third codon position. Mistranslation of the first
codon position is less frequent than mistranslation of
the third codon position.

(b) Those mistranslations which do occur at the second
codon position appear to be almost-exclusively tran-
sitional (as opposed to transversional) in nature.

(c) At the first codon position, mistranslations appear to
be fairly heavily biased toward transitional errors.

(d) At the third codon position, there is very little (if
any) transition bias.

We therefore carried out a further series of MS calcula-
tions which reflected these observations (we term these
measures tMS), both for the natural code and for a
sample of 1 million random variant codes. The precise
quantification of mistranslation data used in creating
weighted MS values is given in Table 2. The distribution
of results obtained in this manner, together with the rela-
tive position of the natural code, is shown in Fig. 7, and
simple descriptive statistics of the distribution of plau-
sible codes are given in Table 3.

From Fig. 7, it is apparent that even under our rather
crude estimations of the relative rate and nature of mis-
translations at each codon position, the natural genetic
code shows startling evidence of optimization, two or-
ders of magnitude higher than has been suggested pre-
viously. Though the precise quantification used here may
be questioned, the overall result seems fairly clear: under
our model, of 1 million random variant codes produced,
only 1 was better (i.e., had a lower tMS) than the natural
code—our genetic code is quite literally ‘‘1 in a mil-
lion.’’ The single more conservative code found is shown
in Fig. 8 alongside the natural genetic code; superficially

Fig. 5. The behavior of WMS0 values to 15 superficially ‘‘better’’ codes at each of 20 transition/transversion weightings.
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it bears little similarity to the natural genetic code other
than in its calculated tMS value (natural code tMS4
2.63, better code tMS4 2.61).

Discussion

Prior to the work presented here, use of the MS measure
has provided strong evidence that natural selection has

shaped the genetic code to minimize the effects of mu-
tation and mistranslation but has suggested that this ad-
aptation is limited to codon positions 1 and 3.

It is widely accepted that bias exists in the rate of
transition/transversion mutations (i.e., that mutations C
↔ T and A ↔ G occur more frequently than mutations
C, U ↔ A, G) (see, e.g., Fitch 1967; Kimura 1983). If
this bias is incorporated into our calculations of the rela-
tive efficiency of the code (transforming a MS measure
of the effect of measure/translation errors into a WMS
measure), then the overall effect of a mild bias (up to the
point where transitions are considered approximately
three times more likely than transversions) is to increase
the relative efficiency of the code and, at a higher bias, to
decrease the relative efficiency of the code. This overall
effect may be partitioned into different effects at each of
the three codon positions: the first base mirrors the over-
all effect, increasing in relative efficiency up to a bias of
3 and decreasing in relative efficiency thereafter; the

Fig. 6. The first 15 random variant codes found with a lower MS0 (4WMS0 at a transition bias of 1) than that of the natural code. These codes
were used in further tests which explored their behavior under increasing transition bias (Fig. 5 and its legend).

Table 2. Quantification of translational errors used to measure the
relative efficiency of the natural genetic code in terms of mistranslation

First base Second base Third base

Relative frequency 0.5 0.1 1
Transition weighting 2 5 1
Combined weighting

For transitions 1 0.5 1
For transversions 0.5 0.1 1
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third base is affected very little by changes in bias; the
second base, however, shows a dramatic, significant, and
consistent improvement with increasing bias. The rela-
tive efficiency of the second base does not peak at any
intermediate bias but does appear to asymptote at an
improvement of an order of magnitude. One might rea-
sonably suppose that as bases 1 and 3 are well adapted
even in the absence of any mutational bias, it is only base
2 that could show any significant improvement. While
probably true, it is unexpected that base 2 should show
such a dramatic improvement with even mild transition–
transversion bias.

In addition to these results, close examination of vari-
ant codes which would have appeared ‘‘better’’ under
Haig and Hurst’s (1991) original model (i.e., produced a
lower MS0 value than the natural code) show them
mostly to behave in the opposite manner to the real code

when transition bias is applied. Of 15 better codes tested,
only 1 consistently outperforms the natural code as tran-
sition bias is increased. In other words, there is good
reason to suspect that the observed behavior of the natu-
ral code really does represent a biologically important
feature.

Table 3. tMS values calculated for the natural code and for a sample
of 1 million random variants

Natural code
tMS value

Sample of 1 million random variants

Mean SD Number of better codes found

2.63 7.63 1.35 1

Fig. 7. Frequency distribution for the tMS0 (4MS0 adjusted for mistranslation parameters) values obtained from 1 million randomly generated
variants of the natural genetic code. TheX axis gives a particular range of categories of MS values, and theYaxis gives the number of random variant
codes generated with an MS value in that category (from a sample of 1 million random variant codes tested). In addition, the arrow indicates the
category into which the tMS0 calculation for the natural code falls: the cumulative frequency to the left of this arrow therefore indicates the
proportion of more conservative codes found among the random variants. This cumulative frequency is in fact 1 (i.e., only 1 of the 1 million variants
had a lower tMS value), indicating that under our quantification of mistranslation parameters, the probability of a code as efficient as or more
efficient than the natural code evolving by chance alone is 0.000001.

Fig. 8. The single random variant code (of a sample of 1 million)
found to have a lower tMS value than the natural code. The natural
genetic code is shown on theright; the single ‘‘better’’ variant is shown
on theleft.

246



While it is thus tempting to view the code as having
been shaped by natural selection to minimize the effects
of point mutation, there is a subtly different possibility.
The observed behaviors of the three bases under increas-
ing transition bias exactly match the apparent order of
translation efficiency. Limited empirical data for the
relative rates and bias in translational errors at the three
codon positions may be mapped into MS calculations for
the natural code in order to estimate its relative effi-
ciency in terms of translational efficiency. Under this
model, the relative efficiency of the natural code in-
creases another two orders of magnitude: of a sample of
1 million random variant codes generated, only 1 variant
code was found to be of greater efficiency under these
criteria. It is necessary to caution, however, that the data
on mistranslational biases are limited, and while the re-
sult is remarkable, it would be valuable to provide further
analysis incorporating better mistranslational bias data.

The results, then, indicate that the code appears to be
very well structured to minimize the effects of mistrans-
lation and point mutation and that biases in these process
are reflected in the structure of the code. This could be
because the code evolved in a world in which these bi-
ases were found. Alternatively, once the code had
evolved, selection might have favored the biases in the
processes (a midground of coevolution between the bi-
ases and the codes is also possible). We consider the first
explanation the most likely, as both biases are most prob-
ably simple chemical consequences of the processes in-
volved. If natural selection has indeed acted to shape the

natural genetic code, did it act on mutational effects,
mistranslational effects, or both?

The 50-fold improvement in estimated relative effi-
ciency of the code from 1 in 20,000 better variants under
WMS0 at a transition bias of 3 to 1 in 1,000,000 better
variants under tMS calculations seems rather too high to
attribute to chance. Hence a role for translation seems
likely. Comparably, the fact that at the third site all
codons pairs are transition pairs suggests a role for mu-
tational biases. The natural genetic code contains six
‘‘family boxes’’ which comprise two transition pairs of
codon meanings (e.g., UUU, UUC: Gly; UUA, UUG:
Leu) and one family box which contains one transition
pair and two individual codons (UGU, UGC: Cys; UGA:
Ter; UGG: Trp). It contains no family boxes which com-
prise transversion pairs. For each family box, the prob-
ability of assigning 4 codon meanings into 2 transition
pairs is 1/3 (there are 4! ways of assigning 4 meanings
and 8 ways of forming 2 transition pairs or 1 transition
pair and 2 individual meanings). The probability of ob-
taining the distribution of transition pairs observed in the
natural genetic code is therefore (1/3)7 4 0.00046.

In spite of the above we have one reason to suspect
that translational biases rather than mutational biases
might have constituted the more important selective
force. The single better code (in terms of tMS) shows
behavior very similar to that of the natural code when
tested under general transition bias (Fig. 9), while the
‘‘best’’ code under general transition bias (code 09, Fig.
6) gives a tMS value of 3.85 for which our sample of 1

Fig. 9. The single random variant code found (of a sample of 1 million) compared to the natural code in terms of WMS measures calculated for
each base at each of 20 transition weightings.
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million random variants provides 872 better codes (i.e.,
code 09 is two orders of magnitude less relatively effi-
cient than the natural code in terms of mistranslation). In
other words, our evidence suggests that codes as good as
(or better than) the natural code in terms of minimizing
the effects of mistranslation may automatically behave as
well as the natural genetic code in terms of minimizing
the effects of point mutation but that the reverse is not
necessarily true. The observed behavior of each base
under general transition bias may then be a side effect of
approaching optimality for minimizing the effects of
translational errors, as Woese (1965, 1973; Woese et al.
1966) originally suggested.

Acknowledgments. We should like to thank Gilean McVean, Nick
Goldman, John Barrett, and Anne Oakenfull for helpful discussion of
aspects of this work. The manuscript was improved by comments from
two anonymous referees.

References

Alf-Steinberger C (1969) The genetic code and error transmission. Proc
Natl Acad Sci USA 64:584–591

Amirnovin R (1997) An analysis of the metabolic theory of the origin
of the genetic code. J Mol Evol 44:473–476

Collins DW (1994) Rates of transition and transversion in coding se-
quences since the human-rodent divergence. Genomics 20:386–396

Di Giulio M (1989) The extension reached by the minimization of the
polarity distances during the evolution of the genetic code. J Mol
Evol 29:288–293

Di Giulio M (1997) On the origin of the genetic code. J Theor Biol
187:573–581

Epstein CJ (1966) Role of the amino acid ‘‘code’’ and of selection for
conformation in the evolution of proteins. Nature 210:25–28

Fitch WM (1967) Evidence suggesting a non-random character to
nucleotide replacements in naturally occurring mutations. J Mol
Biol 26:499–507

Friedman SM, Weinstein IB (1964) Lack of fidelity in the translation
of ribopolynucleotides. Proc Natl Acad Sci USA 52:988–996

Goldberg AL, Wittes RE (1966) Genetic code: aspects of organisation.
Science 153:420–424

Goldman N (1993) Further results on error minimization in the genetic-
code. J Mol Evol 37:662–664

Haig D, Hurst LD (1991) A quantitative measure of error minimization
in the genetic code. J Mol Evol 33:412–417

Kimura M (1983) The neutral theory of evolution. Cambridge Univer-
sity Press, Cambridge.

Kumar S (1996) Patterns of nucleotide substitution in mitochondrial
protein-coding genes of vertebrates. Genetics 143:537–548

Moriyama EN, Powell JR (1997) Synonymous substitution rates in
Drosophila: Mitochondrial versus nuclear genes. J Mol Evol 45:
378–391

Morton BR (1995) Neighbouring base composition and transversion
transition bias in a comparison of rice and maize chloroplast non-
coding regions. Proc Natl Acad Sci USA 92:9717–9721.

Parker J (1989) Errors and alternatives in reading the universal genetic
code. Microbiol Rev 55:273–298

Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature
and genetic implications. Academic Press, New York.

Szathmary E, Zintzaras E (1992) A statistical test of hypotheses on the
organization and origin of the genetic-code. J Mol Evol 35:185–189

Taylor FJR, Coates D (1989) The code within the codons. Bio Systems
22:177–187

Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad
Sci USA 54:1546–1552

Woese CR (1973) Evolution of the genetic code. Naturwissenschaften
60:447–459

Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC (1966) On
the fundamental nature and evolution of the genetic code. Cold
Spring Harbour Symp Quant Biol 31:723–736

Wong JT-F (1975) A co-evolution theory of the genetic code. Proc Natl
Acad Sci USA 72:1909–1912

248


